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Stable foliations and semi-flow Morse homology

JOA WEBER

Abstract. In case of the heat (semi-)flow on the free loop space 3M of a closed
Riemannian manifold M we construct a natural isomorphism between Morse ho-
mology and singular homology of 3M . The construction is not limited to only
those semi-flows which are accompanied by a genuine partner flow. (The W1,2

partner flow is not used at all in the construction).
There are two main results. Firstly, a method to construct a cellular filtration

for the domain of a gradient semi-flow, no background flow needed. Secondly,
foliations of Conley pairs. These are of independent interest; see Subsection 1.4
where consequences and perspectives are discussed.

Concerning the natural isomorphism we build a Morse filtration for 3M
using Conley pairs and their pre-images under the time-T -map of the heat flow.
The construction is new also in finite dimensions. Due to infinite dimension a
subtle step is to contract each Conley pair onto its part in the unstable manifold.
To achieve this we construct stable invariant foliations of Conley pairs. It was this
step that led to the discovery of a backward �-lemma [31] for the (forward) heat
flow.

Mathematics Subject Classification (2010): 58J35 (primary); 58E05, 37L05,
37D15, 35K05, 35B40 (secondary).

1. Main results

Before introducing the technical setup let us informally introduce the main players
and their key properties that will be used. Suppose S : 3 ! R is a bounded below
Morse function on a Banach manifold which satisfies the Palais-Smale condition
and such that all critical points are of finite Morse index.

(M) Morse function S : 3 ! R;
(BB) S is bounded below;
(MI) Finite Morse index (including non-degeneracy);
(PS) S satisfies the Palais-Smale condition.
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For the heat flow these axioms are satisfied and one obtains, for any fixed sublevel
set 3a

= {S  a}, finitely generated Morse chain groups graded by the Morse
index. To define a boundary operator one uses a dynamical system, preferably a
gradient system. In fact, a gradient semi-flow will do:

(SF) ' : (0,1)⇥3 ! 3 is a C1 downward gradient semi-flow of S that extends
continuously to time zero;

(MS) ' is Morse-Smale.

At this stage one obtains a boundary operator and thereforeMorse homology groups
for each sublevel set 3a . To relate them to singular homology it is a common
method to construct a cellular filtration. Here the property of open sets staying
open under the dynamics is crucial. Unfortunately, the time-T -map of the heat flow
violates this (for every open set). A way out is to

(Pre) take pre-images ('T )�1

– as a substitute for the non-existing backward flow and in order;
– to have open sets mapped to open sets.

To construct a cellular filtration one starts with a small open neighbourhood N0 of
the local minima. Pull N0 upward via ('T )�1. The next step is to include all index
one critical points. To achieve this

(Con) suitably adapt to infinite dimensions the notion of Conley pair (N1, L1)

and make sure that the exit set lies in the open set ('T )�1N0 by choosing T larger,
if necessary. To achieve such inclusion we utilize that

(MS)nb ' is Morse-Smale on neighbourhoods (see Lemma 3.1).

1.1. Semi-flow Morse homology

Consider a closed Riemannian manifold (M, g). A smooth function V 2 C1(S1⇥

M), called potential, gives rise to the classical action functional

SV (� ) =

Z 1

0

✓
1
2

|�̇ (t)|2 � V (t, � (t))
◆
dt,

defined on the free loop space of M , that is the Hilbert manifold

3M = W 1,2(S1,M),

which consists of all absolutely continuous maps � : S1 ! M whose first derivative
is square integrable. Here and throughout we identify S1 = R/Z and think of
maps defined on S1 as 1-periodic maps defined on R. Let r be the Levi-Civita
connection. The set Crit of critical points of SV consists of the 1-periodic solutions
of the ODE

rt ẋ + rVt (x) = 0, (1.1)



STABLE FOLIATIONS AND SEMI-FLOW MORSE HOMOLOGY 855

where Vt (q) := V (t, q). For constant V these are the closed geodesics. The nega-
tive L2 gradient of SV is given by the left hand side of (1.1) and defined on a dense
subset W 2,2 of 3M . It generates a C1 semi-flow

' : (0,1) ⇥ 3M ! 3M,

which extends continuously to time zero, preserves sublevel sets, and is called the
heat flow; see, e.g. [6,28,29]. The semi-flow still exists for a class of abstract pertur-
bations, introduced in [19], that take the form of smooth maps V : 3M ! Rwhich
satisfy certain axioms, say (V0)–(V3) in the notation of [29]. These perturbations
allow to achieve Morse-Smale transversality generically; see [29]. They extend
from the dense subset LM = C1(S1,M) to 3M by (V0). Define 's� = u(s, ·)
where u : [0,1) ⇥ S1 ! M solves the heat equation

@su � rt@t u � gradV(u) = 0, (1.2)

with u(0, ·) = � . If V(� ) =

R 1
0 Vt (� (t))dt , then gradV(u) = rVt (u); see [29].

From now on fix V in the residual (hence dense) subset of C1(S1⇥M, R) for
which SV is aMorse function, that is all critical points are nondegenerate; see [27].
An oriented critical point hxi or ox is a critical point x together with an orientation
of the maximal vector subspace Ex ⇢ Tx3M on which the Hessian of SV is neg-
ative definite. Recall that the dimension of Ex , denoted by indV (x), is finite and
called theMorse index of x ; see, e.g. [27].

Chain groups

Fix a regular value a of SV . The set Crita of critical points of the Morse function
SV defined on the sublevel set

3aM = {SV  a}

is a finite set, see, e.g. [27], hence the set Crit is countable. To avoid dependence of
the Morse chain complex on the (traditionally taken and lamented) a priori choices
of orientations a look at the construction of simplicial homology is useful; see,
e.g. [10, Section 5]. In this theory all simplices are taken oriented, because the
algebraic boundary operator induces on (or transports to) the faces precisely the
geometric boundary orientation which eventually leads to @2 = 0. Then in a sec-
ond step one factors out opposite orientations. In the context of Floer homology
a similar approach was taken recently by Abbondandolo and Schwarz [2] who use
oriented critical points as generators and then factor out opposite orientations. This
requires a mechanism of orientation transport, but avoids having unnatural orienta-
tions built into the chain complex and therefore allows for a natural isomorphism to
singular homology.

By definition the Morse chain group CMa
⇤

= CMa
⇤
(V ) is the free Abelian

group generated by the (finite) set of oriented critical points hxi, likewise denoted
by ox , below level a and subject to the relations

ox + ōx = 0, 8x 2 Crita, (1.3)
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where ōx is the orientation opposite to ox . The Morse index provides a natural
grading and Critak ⇢ Crita denotes the set of critical points of Morse index k.

Boundary operator

Fix an element v = va : 3M ! R of the set Oa
reg of regular perturbations defined

in [29, Section 5], set

V(� ; V, va) = va(� ) +

Z 1

0
V (t, � (t)) dt, (1.4)

and note the following consequences. Firstly, on3aM the critical points of SV and
the perturbed action SV , also calledMorse-Smale function, given by

SV(� ) =

1
2

Z 1

0
|�̇ (t)|2 dt � V(� ) (1.5)

coincide by [29, Section 5, Proposition 8]. In abuse of notation we denote the
perturbed action SV sometimes by SV+va . In fact, both functionals coincide on a
neighbourhood U = U(V ) in 3M of the set Crit of all critical points. Therefore
the subspaces Ex do not change under such perturbations. Secondly, the perturbed
action SV is Morse Smale below level a in the functional analytic sense of [29,
Section 1].

By [29, Section 6, Theorem 18] the unstable manifold Wu(x) = Wu(x;V) of
any critical point x is a contractible, thus orientable, smooth submanifold of 3M
whose dimension is given by the Morse index k = indV (x). On the other hand, for
" = "(a) > 0 small1 the stable or ascending disk

Ws
" (y) = Ws

" (y;V) := Ws(y;V) \ {SV < SV(y) + "} (1.6)

of any y 2 Crita is a C1 Hilbert submanifold of 3M of finite codimension ` =

indV (y). Since TyWu(y) is the orthogonal complement of the tangent space at y
to the ascending disk Ws

" (y), an orientation of the unstable manifold determines a
co-orientation of the (contractible) ascending disk and vice versa.

The functional analytic characterization of the Morse-Smale condition below
level a used in the definition ofOa

reg translates into the form common in dynamical
systems, namely that all intersections

M"
xy := Wu(x) t Ws

"(y), 8x, y 2 Crita, (1.7)

are cut out transversely from 3M . Consequently these intersections are C1 mani-
folds of dimension equal to the Morse index difference k � `. They are naturally

1 As a consequence of the local stable manifold theorem, see, e.g. [31, Section 2.5, Theorem 3],
and the Palais-Morse lemma there is a constant "a > 0 such that the assertion holds 8" 2 (0, "a].
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oriented given an orientation of Wu(x) and a co-orientation of Ws
" (y). More pre-

cisely, condition (1.7) implies that there is the pointwise splitting

T�Wu(x) ⇠
= T� M"

xy �

�
T�Ws

" (y)
�
?

, � 2 M"
xy, (1.8)

into two orthogonal subspaces. Furthermore, for generic � 2 (0, ") each set

mxy := M"
xy \ {SV = SV(y) + �} , 8x, y 2 Crita, (1.9)

is cut out transversely from M"
xy and so inherits the structure of a C1 manifold of

dimension k�`�1. By the gradient nature of the heat flow each trajectory between
x and y intersects a level set precisely once. Thus the elements of mxy correspond
precisely to the heat flow lines from x to y. Thus one calls mxy the manifold of
connecting flow lines between x and y.

Now consider the case of index difference 1. Fix an oriented critical point hxi
of Morse index k. Then mxy is a finite set for any y 2 Critk�1 by [29, Propo-
sition 1].2 The orientation hxi of Ex = TxWu(x) extends to an orientation of
Wu(x). Because the dimension of M"

xy is one, each of its components is a heat
flow line which runs to y and, most importantly, is naturally oriented by the for-
ward/downward flow. Because two of the vector spaces in (1.8) are oriented, declar-
ing the direct sum an oriented direct sum determines an orientation of the third
space. More precisely, the identity

⌦
T�Wu(x)

↵
hxi

⇠
=

⌦ d
ds's�

↵
hflowi

�

D
T�Ws

" (y)?
E
u⇤hxi

, � 2 mxy, (1.10)

determines a co-orientation of Ws
" (y), thus an orientation of Wu(y), depending

on hxi. This orientation, denoted by u⇤hxi or by hyiu⇤hxi to emphasize the target
critical point y = y(u� ) = u� (1), is called the transport or push-forward of hxi
along the trajectory u = u� where u� (s) = 's� . Already in the early days of
finite dimensional Morse homology a corresponding procedure appeared in [18],
although it was used to compare, not to transport, orientations.

TheMorse boundary operator is defined on oriented critical points by

@Mk = @Mk (V, va) : CMa
k (SV ) ! CMa

k�1(SV ), hxi 7!

X
y2Critk�1

X
u2mxy

u⇤hxi.

By (1.10) this definition respects the relations (1.3). Extend @Mk by linearity.

Theorem 1.1. It holds that @Mk�1 � @Mk = 0 for every integer k.

Proof. Theorem 1.5.

2 Identify mxy and the spaceM(x, y)/R in [29] via the bijection � 7! u(s, t) := ('s� ) (t).
Actually, if there are no critical points whose action lies between that of x and y, then the finite
set property is elementary: because mxy is the transverse intersection – inside the level hypersur-
face {SV = SV (y) + "/2} – of a descending k-sphere Su(x) and an ascending sphere of y of
codimension k, finiteness of mxy follows from compactness of Su(x).
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Morse homology

Assume SV is Morse and a 2 R is a regular value. For va 2 Oa
reg define heat flow

Morse homology of the perturbed action by

HMa
k (3M,SV+va ) := ker @Mk /im @Mk+1 (1.11)

for every integer k. In (3.31) we will establish isomorphisms

HMa
⇤
(3M,SV+v) ⇠

= H⇤({SV+v  a}) ⇠
= H⇤({SV  a}) (1.12)

for every v 2 Oa
reg and where the second isomorphism is natural in v 2 Oa . More-

over, given regular values a < b and a perturbation v 2 Oa
reg \ Ob

reg, the isomor-
phisms (1.12) commute with the inclusion induced homomorphisms; see (3.32).
Throughout singular homology H⇤ is taken with integer coefficients.
Definition 1.2. Heat semi-flow homology below level a of the Morse function SV :

3M ! R is defined by

HMa
⇤
(3M,SV ) := HMa

⇤
(3M,SV+v)

where v 2 Oa
reg. By (1.12) this definition does not depend on the perturbation v

(which even leaves all critical points including neighbourhoods untouched; cf. (1.5)).
Theorem A. Assume SV is Morse and a is either a regular value of SV or equal
to infinity. Then there is a natural isomorphism

HMa
⇤
(3M,SV ; R) ⇠

= H⇤(3
aM; R)

for every principal ideal domain R. If M is not simply connected, then there
is a separate isomorphism for each component of the loop space. The isomor-
phism commutes with the homomorphisms HMa

⇤
(3M,SV ) ! HMb

⇤
(3M,SV ) and

H⇤(3
aM) ! H⇤(3

bM) for a < b.
This result was announced in [19, Theorem A.7] and originally motivated the

present paper. Although there is a genuine flow accompanying the heat flow, its
W 1,2 partner flow, our proof does not utilize it. So the presented method is not
restricted to only those semi-flows that come with a genuine partner flow.

1.2. Morse filtrations and natural isomorphism

Theorem A relates a purely topological object with one whose construction relies
heavily on analysis and geometry. Thus it is a natural idea to look for a family of
intermediate objects – all encoding the same homology – which is flexible enough
so one is able to relate some member to the Morse side. A good choice for the
family are cellular filtrations of a topological space. Indeed by [5, V, Section 1]
cellular homology relates naturally to singular homology. This idea was applied
successfully already byMilnor [9] in finite dimensions and, more recently, for flows
on Banach manifolds by Abbondandolo and Majer [1]; see also [30].
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Definition 1.3. A sequence of subspaces F(3) = (Fk)k2Z of a topological space
3 is called a cellular filtration of 3 if

(i) Fk ⇢ Fk+1 for every k 2 Z;
(ii) every singular simplex in 3 is a simplex in Fk for some k;
(iii) relative singular homology H`(Fk, Fk�1) vanishes whenever ` 6= k.

The cellular complex CF(3) = (C⇤F(3), @
trip
⇤

) of a cellular filtration F(3) =

(Fk)k2Z of a topological space 3 consists of the cellular chain groups

CkF(3) := Hk(Fk, Fk�1)

and the cellular boundary operator @
trip
k : CkF(3) ! Ck�1F(3) given by the

connecting homomorphism in the homology sequence of the triple (Fk,Fk�1,Fk�2).
In fact, the triple boundary operator is the composition

@
trip
k : Hk(Fk, Fk�1)

@
�! Hk�1(Fk�1)

j⇤
�! Hk�1(Fk�1, Fk�2) (1.13)

of the connecting homomorphism @ associated to the pair (Fk, Fk�1) and the quo-
tient induced homomorphism j⇤ associated to the pair (Fk�1, Fk�2). It is well
known that cellular homology H⇤F(3), that is the homology associated to the cel-
lular complex, is naturally3 isomorphic to singular homology of the topological
space 3 itself; see, e.g. [5, Section V.1] or [9].

Definition 1.4. A cellular filtration Fa
= (Fk)k2Z of 3aM is called a Morse

filtration associated to the action SV on 3aM if each relative homology group
Hk(Fk, Fk�1) is generated by (the classes of appropriate disks Du

x contained in) the
unstable manifolds of the critical points of Morse index k and, in addition, every
x 2 Critak lies in Fk \ Fk�1. Consequently Fk \ Crita = Crita

k .

Observe that for a Morse filtration the group H`(Fk, Fk�1) is isomorphic to
ZCritak , if ` = k, although not naturally and it is trivial, otherwise. By ak we denote
the positive generator of Hk(Dk, Sk�1), that is the class [Dk

hcani] of the unit disk
equipped with the canonical orientation; see Definition 2.14.

Theorem B (Morse filtration and natural isomorphism).

a) Consider the Morse-Smale function SV on 3aM given by (1.5). There exists an
associated Morse filtration, namely the sequence of subsets F(3aM) = (Fk)
defined by (3.6–3.7). Furthermore, for every regular value b  a there is a
Morse filtration F(3bM) =

�
Fbk

�
such that the inclusion map ◆ : 3bM ,!

3aM is cellular.

3 Natural in the usual sense that these isomorphisms commute with the homomorphisms induced
by cellular maps, that is continuous maps f : 3 ! 30 such that f (Fk) ⇢ F 0

k 8k.
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b) Let Fa
= F(3aM) be given by a). Pick an integer k � 0 and a (finite) list

# = (# x ) of diffeomorphisms # x
: (Dk,Sk�1) ! (Du

x , Sux ) between the unit
disk and certain descending disks Du

x , see (2.17), one for each x 2 Critak . Then
there is an isomorphism 2k determined by

2k = 2a
k (#) : CMa

k (SV) ! Hk(Fk, Fk�1) = CkFa

hxi 7! #̄ x
⇤
(�hxiak) =

h
Du

hxi

i (1.14)

where #̄ x
: Dk

# x
⇠
= Du

x
◆

,! Nx
◆x
,! Nk

◆
,! Fk denotes the diffeomorphism

composed with inclusions, cf. (2.18). The sign �hxi of # x is defined by (2.20)
and Du

hxi denotes the disk D
u
x oriented by hxi; see Figure 2.7 and (2.22).

The main point of Theorem B is existence of a Morse filtration. For an overview of
the construction of the Morse filtration we refer to our survey [30] in which we also
discuss related previous work [1] of Abbondandolo and Majer. For instance, once
one has a Morse filtration the proof of the following result is essentially based on
their arguments.

Theorem 1.5. Let the Morse filtration Fa associated to the Morse-Smale function
SV and the isomorphisms 2k : CMa

k (SV) ! CkFa be as in Theorem B, then

�
@
trip
k � 2k

�
hxi =

X
y2Critak�1

X
u2mxy

#̄u(1)
⇤

�
�u⇤hxiak�1

�
=

�
2k�1 � @Mk

�
hxi

for every oriented critical point hxi, where #̄
u(1)
⇤

�
�u⇤hxiak�1

�
= 2k�1 (u⇤hxi).

1.3. Stable foliations for Conley pairs

The proof that the filtration Fa
= (Fk) defined by (3.6–3.7) is Morse hinges on

two properties of the subsets Fk ⇢ 3aM: openness and semi-flow invariance.
Suppose F0 ⇢ 3M is open and semi-flow invariant and consider, for instance, a
local sublevel set about some nondegenerate local minimum y. Then the pre-image
's

�1F0 is open by continuity of the time-s-map. It is also semi-flow invariant,
because F0 is. Now suppose x is a nondegenerate critical point of Morse index
one. Its unstable manifold connects to such y. The problem is that x , although
approximated for large s, will never be included in the pre-image. Now the basic
idea of Conley theory [4] enters, namely the notion of an isolating neighbourhood
N with exit set L . Suppose Nx is an open neighbourhood of x which admits a
subset Lx through which any trajectory leaving Nx has to go first. Suppose further
that there is some large time T such that the pre-image 'T

�1F0 contains Lx . Then
the union 's

�1F0 [ Nx has both desired properties.
Definition 1.6. A Conley pair (N , L) for a critical point x of SV consists of an
open subset N ⇢ 3M and a closed subset L ⇢ N which satisfy
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Su(x)

τ = time to reachτ 2τ 2τ
{SV = c − }

W s(x)

Lx ⊂ Nx

W u(x)

D(x)

{SV = c + }, c := SV(x)

γ

Dγ(x) x
W u(x)

∞

Figure 1.1. Conley pair (Nx , Lx ) for critical point x .

(i) x 2 N \ L;
(ii) cl N \ CritSV = {x};
(iii) � 2 L and '[0,s]� ⇢ N ) 's� 2 L;
(iv) � 2 N and 'T � /2 N ) 9� 2 (0, T ) : '�� 2 L and '[0,� ]� ⇢ N .

In particular, conditions (i) and (ii) tell that N is an open neighbourhood of x which
contains no other critical points in its closure. Condition (iii) says that L is posi-
tively invariant in N and (iv) asserts that every semi-flow line which leaves N goes
through L first. Hence we say that L is an exit set of N .

Given a nondegenerate critical point x of SV , set c := SV(x). Borrowing from
finite dimensions [18] we define the two sets

Nx = N ",⌧
x : = {� 2 3M | SV(� ) < c + ", SV('⌧� ) > c � "}x , (1.15)

where {. . .}x denotes the path connected component that contains x , and

Lx = L",⌧
x := {� 2 Nx | SV('2⌧ � )  c � "}. (1.16)

Note that Lx is a relatively closed subset of the open subset Nx of 3M .

Theorem 1.7 (Conley pair). The pair (Nx , Lx ) defined by (1.15-1.16) is a Conley
pair for the nondegenerate critical point x for all " > 0 small and ⌧ > 0 large.

Theorem 1.7 holds for all " 2 (0, µ] and ⌧ > ⌧0 with µ and ⌧0 as in Hypothe-
sis 2.2 (H4). Then all a/descending disks Ws,u

" and spheres Ss,u" are manifolds.
Figure 1.1 shows a typical Conley pair, illustrates the exit set property of Lx ,

and indicates hypersurfaces which are characterized by the fact that each point
reaches the level set {SV = c � "} in the same time. The points on the stable
manifold never reach level c � ", so they are assigned the time label 1. By the
Backward �-lemma [31] locally near x these hypersurfaces fiber over descending
disks into diffeomorphic copies of the local stable manifold. This provides a fo-
liation of small neighbourhoods of x the leaves of which, a priori, have no global
meaning. It is the main content of Theorem C to express such neighbourhoods
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and leaves in terms of (globally defined) level sets of the action functional. The
difficulty being infinite dimension. Concerning the naming invariant stable folia-
tion note the boldface ’stable’ above and a) below, whereas invariant refers to b).
Parts c) and d) are quite useful as they allow to contract Nx onto the ascending disk
or even fit Nx into any given neighbourhood of x .
Theorem C (Invariant stable foliation). Pick a nondegenerate critical point x of
SV and set c := SV(x). Then for every small " > 0 the following is true. Consider
the descending sphere and the descending disk given by

Su" (x) := Wu(x) \ {SV = c � "}, Wu
" (x) := Wu(x) \ {SV > c � "}. (1.17)

Pick a tubular neighbourhood D(x) (associated to a radius r normal disk bundle)
over Su" (x) in the level hypersurface {SV = c�"}. Denote the fiber over � 2 Su" (x)
by D� (x); see Figure 1.1. Then the following holds for every large ⌧ > 0:4

a) The set Nx = N ",⌧
x defined by (1.15) contains in its closure no critical points

except x . Moreover, it carries the structure of a codimension-k foliation5 whose
leaves are parametrized by the k-disk '�⌧Wu

" (x) where k is the Morse index of
x . The leaf Nx (x) over x is the ascending disk Ws

" (x). The other leaves are the
codimension-k disks given by

Nx (�T ) =

⇣
'T

�1D� (x) \ {SV < c + "}
⌘

�T
, �T := '�T � ,

whenever T > ⌧ and � 2 Su" (x);
b) Leaves and semi-flow are compatible in the sense that

z 2 Nx (�T ) ) '� z 2 Nx ('��T ) 8� 2 [0, T � ⌧ );

c) The leaves converge uniformly to the ascending disk in the sense that

distW 1,2
�
Nx (�T ),Ws

" (x)
�

 e�T
�
16 , (1.18)

for all T > ⌧ and � 2 Su" (x); see (H4) below for �. If U is a neighbourhood of
the closure of Ws

" (x) in 3M , then N ",⌧⇤

x ⇢ U for some constant ⌧⇤;
d) Assume U is a neighbourhood of x in 3M . Then there are constants "⇤ and ⌧⇤

such that N "⇤,⌧⇤

x ⇢ U .

Theorem D (Strong deformation retract). Pick one of the Conley pairs (Nx , Lx )
in Theorem 1.7 and abbreviate by

Nu
x := Nx \ Wu(x), Lux := Lx \ Wu(x)

the corresponding parts in the unstable manifold. Then the pair of spaces (Nx , Lx )
strongly deformation retracts to (Nu

x , Lux ). Moreover, the latter pair consists of an
open disk whose dimension k is the Morse index of x and an annulus which arises
by removing a smaller open disk from the larger one.

4 Hypothesis 2.2 (H4) specifies the precise ranges of " and ⌧ .
5 For the precise degree of smoothness we refer to the backward �-lemma [31, Theorem 1].
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φT z = φT−σ(φσz)

N(γT )
φσ−→

φσ(γT )

N(φσγT )

0
γ∞ γT

N(0) = W s

φσz

γ ∈ Su

Dγ ⊂ {S = c − }

γτ := φ−τ γ

B+

X−

{S = c + }, c := S(0), S := SV ◦ Φ

z

Figure 1.2. Invariant foliation of N = N ",⌧ in local coordinates of Hypothesis 2.2.

Corollary 1.8. Given a Conley pair (Nx , Lx ) as in Theorem 1.7, then

H`(Nx , Lx ) ⇠
=

(
Z ` = indV(x)
0 otherwise.

(1.19)

Proof. Isomorphism (2.18).

The �-lemma, therefore Theorem C, both depend on finiteness of the Morse
index (MI) and the pre-image idea (Pre). It is the proof of Theorem D in Subsec-
tion 2.3 which requires the extension of the linearized graph maps in the Backward
�-lemma [31] from W 1,2 to L2; see Remark 2.12 and [31, Remark 1].

1.4. Past, presence, future

Historical development

The Morse complex goes back to the work of Thom [23], Smale [21, 22], and Mil-
nor [9] in the 40’s, 50’s and 60’s, respectively. The geometric formulation in terms
of flow trajectories was discovered by Witten in his influential 1982 paper [33].
He studied a supersymmetric quantum mechanical system related to the Laplacian
1s = dsd⇤

s + d⇤

s ds which involves the deformed Hodge differential ds = e�s f des f
acting on differential forms. Here f : M ! R is a Morse function on a closed
finite dimensional Riemannian manifold M and s � 0 is a real parameter. The
Morse complex arises as the adiabatic limit, as the parameter s tends to infinity, of
the quantum mechanical system. In the early 90’s the details of the construction
have been worked out, among others, by Poźniak [15], by Schwarz [20] in terms of
functional analysis, and by the author [26] in terms of dynamical systems. In the
past decade Abbondandolo and Majer [1] extended the theory to flows on Banach
manifolds. Very recently Rot and Vandervorst [16] used the dynamical systems
approach [26] to recover Conley theory of compact dynamical systems.

Perspectives

Semi-flow Morse homology. Morse homology for semi-flows was constructed re-
cently in [28,29] where the functional analytic (moduli space) framework has been
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worked out for the heat flow. Being based on Sard’s theorem, the theory could be
trivial. The present paper develops the dynamical systems framework and, above
all, establishes non-triviality of the theory by constructing a natural isomorphism to
singular homology.
Natural isomorphism. The natural isomorphism is based on constructing a Morse
filtration associated to a Morse function. The construction also works in finite
dimensions where the isomorphism generalizes, firstly, Milnor’s isomorphism for
self-indexing Morse functions on manifold triads [9, Theorem 7.4] and, secondly,
Salamon’s isomorphism [18] in the sense that we don’t require existence of Conley
theory. In particular, Conley’s connection matrix is not used. Instead one gets away
with a basic tool in topology, namely cellular homology. The isomorphism should
be useful, also in finite dimensions, for instance, to calculate local Morse homology
of open sets [32].
Stable foliations and (in)finite dimensional hyperbolic dynamics. A key tool to
construct the Morse filtration are the invariant stable foliations provided by Theo-
rem C. However, we believe they are of independent interest:
FINITE DIMENSION. As noticed in [25], interpreting these stable foliations together
with the induced semi-flow (2.8) as a dynamical thickening of the stable manifold
one obtains a tool to avoid the infamous discontinuity of the flow endpoint map near
non-degenerate critical points. More precisely, one obtains an alternative proof of a
fundamental theorem, the homotopical cell attachment theorem [8, I, Theorem 3.2],
using (the finite dimensional analogue of) the induced semi-flow (2.8) to contract
the foliation provided by Theorem C onto its part in the unstable manifold.

As for another perspective recall that discontinuity of the flow endpoint map
causes well known problems in Morse theory. For instance, it is plausible that the
unstable manifolds of a Morse-Smale flow give rise to a CW decomposition of the
manifold; cf. [3]. Dynamical thickening seems a promising candidate.
INFINITE DIMENSION. Consider infinite dimensional hyperbolic dynamics driven
by semi-linear parabolic PDEs. In this situation there is in general no backward
flow, but only a forward semi-flow. Thus one would a priori not expect to get
a backward �-lemma in this situation. However, it was precisely the attempt to
prove Theorem D which led to discover one in [31]. Concerning the perspectives
of now having both – a forward and a backward �-lemma – look at the impact of
Palis’ �-lemma [13] on the development of finite dimensional hyperbolic dynam-
ics. The point is that �-lemmas provide local coordinates near a hyperbolic fixed
point which, for instance, conjugate the flow and its linearization. Many proofs
which only use a forward �-lemma have been carried over to infinite dimensions.
Results relying on a backward �-lemma are now potentially accessible in infinite
dimensions. For instance, the �-lemma has been utilized in [26] to define the glu-
ing map that appears in the Morse-Witten complex of a closed manifold, the other
essential ingredient having been (its consequence) the Grobman-Hartman theorem.
Rot and Vandervorst [16] recently used these constructions to reformulate finite di-
mensional Conley theory in terms of the Morse-Witten complex. But the arrival
of the backward �-lemma, in its sharper form of Theorem C, now allows to carry
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out geometric gluing and compactness for the heat flow. Thus to generalize Rot and
Vandervorst’s formulation of Conley theory to the heat flow seems rather promising,
thereby obtaining an alternative to Rybakowski theory [17].

Note that Theorem C refines the (local) backward �-lemma [31] in the sense
that it provides a relation to global quantities, namely sublevel sets which in the
infinite dimensional context is not quite obvious. It is work in progress to extend
the stable foliations along the whole stable manifold, that is in the non-existing
backward flow direction.
Geometric analysis. A rich source of semi-flows is geometric analysis. The present
theory handles harmonic spheres of dimension one. This can be interpreted as a first
step in one of various possible directions. A natural step is to look into the simplest
non-trivial geometric semi-flows and investigate consequences of having, by the
analogue of Theorem A, a non-trivial Morse homology.

Fundamental ingredients and applicability

Finite Morse index (MI) is one of the most heavily used ingredients in this paper.
Already the Backward �-lemma [31] hinges on it via well posedness of the mixed
Cauchy problem. So does existence of the backward flow on unstable manifolds.
No manifold structure needed globally on stable manifolds, one gets away with em-
bedded ascending disksWs

" (x). Remarkably, in the very last step of the construction
suddenly the need for a forward �-lemma arises; see Figure 3.5.

It is important to notice that the constructions in the present text nowhere use
the W 1,2 partner flow of the L2 semi-flow under consideration. Thus the proposed
construction of a natural isomorphism is not restricted to only those semi-flows
which happen to come with a genuine parter flow.

Furthermore, there is a conceptually clarifying aspect provided by heat flow
Morse homology. Namely, even in the case of a closed manifold there are (too)
many choices which one can take to construct the Morse complex. For instance,
should one orient stable or unstable manifolds? Or even M itself? Should we
use the forward or the backward flow? The heat flow eliminates these questions
alltogether – only unstable manifolds are of finite dimension, so only on them it
makes sense to talk about orientation, and there is no backward flow in general.

ACKNOWLEDGEMENTS. For extremely useful and pleasant discussions the author
is indebted to Alberto Abbondandolo and Klaus Mohnke. Many thanks to both of
them. The present paper was announced in previous publications under different
titles, for instance in [29] as Stable foliations associated to level sets and the ho-
mology of the loop space and in [30, 31] as Stable foliations and the homology of
the loop space.
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2. Conley pairs and stable foliations

In Section 2 we study the heat flow locally near a given nondegenerate critical point
x of SV of Morse index k. Although V is subject to axioms (V0)–(V3) in the
notation of [29], it is safe to think of it as V(� ) =

R 1
0 Vt (� (t))dt ; see (1.2). We

recommend the reader have a look at [31] since Section 2 is based on its results.
Remark 2.1 (Backward flowonunstablemanifold).The unstablemanifoldWu(x)
carries a backward flow '�s by finite Morse index (MI). Thus the time-s-map 's
restricted to the unstable manifold is a diffeomorphism of Wu(x) and its inverse
is given by '�s . To see this recall that by definition, see, e.g. [29, Section 6.1],
each element � of Wu(x) is of the form u� (0, ·) where u� : (�1, 0] ⇥ S1 ! M
solves the heat equation (1.2) and u� (s, ·) converges to x , as s ! �1. Given
s > 0, obviously '�s� := u� (�s, ·) lies in the pre-image 's

�1(� ) which contains
no other element by backward unique continuation [29, Theorem 17].

Outline

The �-lemma, thus Section 2 in general, relies on finite Morse index (MI) and the
pre-image idea (Pre).

In Subsection 2.1 we define an open subset Nc = N ",⌧
c ⇢ 3M associated to a

critical value c of the action and reals ", ⌧ > 0. If the action of x is c, then Nx =

N ",⌧
x is the path connected component of N ",⌧

c that contains x . Lemma 2.6 asserts
that Nx intersects the stable manifold Ws(x) in the ascending disk Ws

" (x) and the
descending disk Wu

" (x) in the k-disk '�⌧Wu
" (x). The inclusions (2.2) suggest that

Nx contracts onto x , as " ! 0 and ⌧ ! 1. Thus by nondegeneracy of x the
closure of Nx contains no critical point except x whenever " > 0 is sufficiently
small and ⌧ > 0 is sufficiently large. Inspired by Conley [4] such Nx is called an
isolating block for x .

Subsection 2.2 shows that an isolating block Nx is foliated by disks diffeo-
morphic to the ascending disk Ws

" (x) via the graph maps GT� and G1 provided
by the Backward �-lemma [31, Theorem 1] and the Local Stable Manifold Theo-
rem [31, Theorem 3]. More precisely, the leaves of the foliation are parametrized
by the elements of the k-disk '�⌧Wu

" (x). In particular, the leaf over its center x is
the ascending disk Ws

" (x). Furthermore, the heat flow 's maps leaves to leaves and
the isolating block Nx contracts onto Ws

" (x), as ⌧ ! 1.
Subsection 2.3 uses (PS). We extend the heat flow on the ascending diskWs

" (x)
artificially to the other leaves of the isolating block Nx using the diffeomorphisms
mentioned in the former paragraph. This way we prove that the part Nu

x of Nx in
the unstable manifold is a strong deformation retract of Nx . This seems obvious. So
why is there a long calculation? Because we need to make sure that the deformation
takes place inside Nx and the dimension of each leaf is infinite.

In Subsection 2.4 we introduce the notion of an exit set Lx = L",⌧
x associated

to an isolating block Nx = N ",⌧
x . The pair (Nx , Lx ) is called a Conley pair and

we state and prove key properties that will be used in Section 3. In particular we
show that the homology of the pair (Nx , Lx ) coincides with the homology of the
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pair (Dk, Sk�1) where k is the Morse index of x and Sk�1 denotes the boundary of
the closed unit disk Dk

⇢ Rk . The latter relies on Subsection 2.3, thus on (PS).

Local coordinate setup and choices

Hypothesis 2.2. Fix a perturbation V that satisfies the axioms (V0)–(V3) in [29]
and a nondegenerate critical point x of SV of Morse index k and action c.

(H1) We use the local setup of [31]; see Figure 2.2. Fix a local parametrization

8 : expx : X � U � B⇢0 ! 3M, X = Tx3M = W 1,2(S1, x⇤T M),

of a neighbourhood of x in 3M and consider the orthogonal splitting

X = TxWu(x) � TxWs
" (x) = X�

� X+,

with corresponding orthogonal projections ⇡±. By a standard argument we
assume that U is of the form Wu

⇥ O+ where Wu
⇢ X� represents the

unstable manifold near x andO+
⇢ X+ is an open ball about 0. The constant

⇢0 > 0 is provided by [31, Hypothesis 1] and B⇢0 denotes the closed radius
⇢0 ball in X centered at the origin.
By � we denote the local semi-flow on U which represents the heat flow with
respect to 8; see [31, (5)]. In these coordinates 0 2 X represents x and S :=

SV � 8�1 the action functional. In general, our coordinate notation will be
the global notation with x omitted, for example Ws

" abbreviates 8�1Ws
" (x).

(H2) Due to nondegeneracy of the critical point x we assume that the radius ⇢0 >
0 has been chosen sufficiently small such that the coordinate patch 8(B⇢0)
about x contains no other critical points.

(H3) Fix a constant µ > 0 sufficiently small such that the ascending disk Ws
2µ(x)

defined by (1.6) and the descending disk Wu
2µ(x) defined by (1.17) are con-

tained in the coordinate patch 8(B⇢0) and such that their closures are diffeo-
morphic to the closed unit disks in Rk and X+, respectively; cf. Lemma 2.5
and Lemma 2.9.

(H4) The following are the hypotheses of Theorem C which allow to apply the
Backward �-lemma [31, Theorem 1]. Fix an element � 2 (0, d) in the spec-
tral gap6 of the Jacobi operator Ax associated to x . Pick " 2 (0, µ] where
µ is the constant in (H3). Choose r = r(") > 0 sufficiently small such that
the tubular neighbourhood D(x) associated to the radius r normal disk bun-
dle of the descending sphere Su" (x) in the level hypersurface {SV = c � "}
of the Hilbert manifold 3M exists and is contained in the coordinate patch
8(B⇢0). Denote the fiber over � 2 Su" (x) by D� (x); see Figure 1.1 or, in
coordinates, Figure 1.2. Then there is a constant ⌧0 = ⌧0(", r, �) > 0 such
that the assertions of Theorem C hold true whenever ⌧ > ⌧0.

6 Distance d between zero and the spectrum of the Jacobi operator Ax associated to x .
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2.1. Isolating blocks

As some results in this section do not require nondegeneracy we use the notation y
for arbitrary critical points of SV . In contrast x always denotes the nondegenerate
critical point that has been fixed at the very beginning of Section 2.
Definition 2.3. Assume " > 0 and ⌧ > 0 are constants.

(a) Given a critical value c of the action functional SV consider the set 7

Nc = N ",⌧
c : = {� 2 3M | SV(� ) < c + ", SV('⌧� ) > c � "}

= {SV < c + "} \ '�1
(⌧,1]

{SV = c � "}
(2.1)

where by definition '�1
1

{SV = c� "} denotes those points of 3M above action
level c � " which never reach that level; 8

(b) Suppose y is a critical point of action c = SV(y). By Ny = N ",⌧
y we denote the

path connected component of N ",⌧
c that contains y; compare (1.15);

(c) Suppose x is a nondegenerate critical point and there are no other critical points
in the closure of N ",⌧

x . Then N ",⌧
x is called an isolating block.

Figure 2.1 shows a set Nc that consists of three path connected components one of
which is an isolating block.

τ

τ Nx

A

x

time τ
τ

z
Ny

c −

c +

c

SV

y

Figure 2.1. A set Nc with three path connected components Ny , A, Nx .

Lemma 2.4. The set N ",⌧
c defined by (2.1) is an open subset of 3c+"M and con-

tains all critical points with action values in the interval (c � ", c + ").

Proof. Openness is due to continuity of the action functional SV and Lipschitz
continuity of the time-s-map 's when restricted to sublevel sets. The latter follows
from a mild extension of [28, Theorem 9.1.5]. The second assertion is true since
critical points of SV and fixed points of 's coincide.

7 We borrow definition (2.1) from the finite dimensional situation [18, page 119].
8 If SV is Morse below level c + " then N",⌧

c = [yWs
" (y) where the union is over all critical

points y whose action lies in the interval (c � ", c + "). (In this case there are no limit cycles.)
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Lemma 2.5 (Descending disks). Given a nondegenerate critical point x of SV ,
there is a constant "0 > 0 such that the following is true. For each " 2 (0, "0]
the closure of the descending disk Wu

" (x) defined by (1.17) is diffeomorphic to the
closed unit disk in Rk where k is the Morse index of x . Furthermore, any open
neighbourhoodU of x in the unstable manifoldWu(x) contains the closure of some
descending disk Wu

" (x).

Proof. Unstable Manifold Theorem [29, Theorem 18] and Morse-lemma [8].

Lemma 2.6. Assume N ",⌧
y is given by Definition 2.3 (b), then

� < " ) N �,⌧
y ⇢ N ",⌧

y , T > ⌧ ) N ",T
y ⇢ N ",⌧

y . (2.2)

Assume x is a nondegenerate critical point of SV , then

N ",⌧
x \ Ws(x) = Ws

" (x),
N ",⌧
x \ Wu(x) = '�⌧Wu

" (x)

= {x} [

[
T>⌧

'�⌧ Su" (x).
(2.3)

for every " 2 (0, "0] where "0 is given by the descending disk Lemma 2.5.

Proof. The first inclusion in (2.2) is trivial and the second one follows from the fact
that the action does not increase along heat flow trajectories.

Consider the first identity in (2.3). Since Ws
" (x) := Ws(x) \ {SV < c + "}

the inclusion “⇢” is trivial. To see “�” note that Ws
" (x) is a subset of Nc. Given

� 2 Ws
" (x) the trajectory '[0,1]� connects � and x in Ws

" (x), hence in Nc. Thus
� lies in the component of Nc that contains x .

Recall that Wu
" (x) := Wu(x) \ {SV > c � "}. By flow invariance of the un-

stable manifold '�⌧Wu
" (x) = Wu(x) \ {z 2 3M | SV('⌧ z) > c � "} ⇢ Nc. Now

the second identity in (2.3) follows by a similar argument as the first identity, just
use backward trajectories. To see the third identity observe that any flow trajectory
in Ws(x) \ {x} hits Su" (x) precisely once. Obviously Wu

" (x) is diffeomorphic to its
image under the diffeomorphism '�⌧ of Wu(x). On the other hand, it is diffeomor-
phic to the open unit disk inRk by the descending disk Lemma 2.5 where k denotes
the Morse index of x .

Remark 2.7 (Open problem). The inclusions (2.2) suggest that one could fit Nx
into any given neighbourhood of x by choosing " > 0 sufficiently small9 and ⌧ > 0
sufficiently large.10 By Theorem C part (d) this is indeed possible. Can this also be
achieved by shrinking only "?

9 So the ascending disk Ws
" (x) contracts to x by the Palais-Morse lemma.

10 So N",⌧
x contracts to Ws

" (x) by the Backward �-lemma [31, Theorem 1].
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2.2. Stable foliations associated to level sets

Local non-intrinsic foliation

Assume (H1) and (H2) of Hypothesis 2.2. We start with an investigation of the
foliation property provided by the Backward �-lemma [31, Theorem 1] for a disk
family D = Su" ⇥ B+

 ⇢ B⇢0 , not necessarily related to level sets, but which still
has the no return property with respect to the local flow �, that is

D \ �s
�1D = ;

for all s > 0 for which � is defined.

Corollary 2.8 (to the Backward �-lemma [31, Theorem 1]). Given (H1) and
(H2), the assumptions of [31, Theorem 1], and the additional assumption that
(D,�) has the no return property, then the following is true. Let G,G1

: B+
! X

be the graph maps provided by [31, Theorems 1 and 3], respectively. Then the
subset

F = F",T0
:=

�
imG [ imG1

�
⇢ B⇢0 ⇢ U

of the Banach space X carries the structure of a codimension k foliation; see Fig-
ure 1.2 for the part N of F below level c + ". The leaves are given by the subset
F(0) := G1(B+) of the local stable manifold Ws(0,U), defined in Lemma 2.9,
and by the graphs F(�T ) := GT� (B+) for all T > T0 and � 2 Su" . Leaves and
semi-flow are compatible in the sense that

z 2 F(�T ) ) �� z 2 F(���T ) , �T := ��T � = GT� (0),

whenever the semi-flow trajectory from z to �� z remains inside F .

Proof of Corollary 2.8. Assume that the leaves F(�T ) and F(�S) are disjoint when-
ever �T 6= �S . Then the Lipschitz continuous C1 maps GT� : B+

! X and
G1

: B+
! X endow F with the structure of a codimension k foliation.

To prove the assumption suppose (T, � ) 6= (S,�). Because T � T0 � T1,
the endpoint conditions [31, (21)] are satisfied by the choice of T1 in [31, (19)].
Assume by contradiction that GT� (z+) = GS� (z+) =: z for some z+ 2 B+. Then
by [31, (31)] the point z is the initial value of a heat flow trajectory ⇠T ending at
time T on the fiberD� and also of a heat flow trajectory ⇠ S ending at time S onD� .
By uniqueness of the solution to the Cauchy problem [31, (5)] with initial value z
the two trajectories coincide until time min{T, S}. If T = S, then � = � and we
are done. Now assume without loss of generality that T < S, otherwise rename.
Hence ⇠ S meets D� at time T and D� at the later time S. But this contradicts the
no return property of D.

We prove compatibility of leaves and semi-flow. The fixed point 0 is semi-flow
invariant. Its neighbourhood F(0) in the local stable manifold is trivially semi-flow
invariant in the required sense, namely up to leaving F(0). Pick z 2 F(�T ) :=

GT� (B+). By [31, (31)] the point z is the initial value of a heat flow trajectory



STABLE FOLIATIONS AND SEMI-FLOW MORSE HOMOLOGY 871

⇠T ending at time T on the fiber D� . Assume the image ⇠T ([0, T ]) = �[0,T ]z is
contained in F := imG [ imG1. Pick � 2 [0, T � T0]. This implies that z+ :=

⇡+�� z 2 B+. The flow line �[0,T�� ]�� z runs from �� z to �T z 2 D� . Hence
this flow line coincides with the fixed point ⇠T��

� ,z+ of the strict contraction 9T��
� ,z+ .

But �� z = ⇠T��
� ,z+ (0) is equal to GT��

� (z+) again by [31, (31)] and GT��
� (B+) =:

F(�T�� ) = F(���T ) by definition of F and �T�� .

Ascending disks

Since nondegeneracy of x is equivalent to a strictly positive spectral gap d, the
following two results are based on the Palais-Morse Lemma [12] and the Local
Stable Manifold Theorem [31, Theorem 3] whose neighbourhood assertion uses
the non-trivial fact that convergence implies exponential convergence.

Bρ0

O+

B+

W u

X+ X = W 1,2(S1, x∗TM)

0 X−

π+

π−

G(O+) = W s(0,N ) = W s(0,U) = W s

G(intB+)

G

⊂ W s(0,U)

U = W u ×O+

N

Figure 2.2. The local ascending disk Ws
" (0,U) is a graph and equal to Ws

" .

Lemma 2.9 (Ascending disks). Assume (H1) and (H2) of Hypothesis 2.2. The Lo-
cal Stable Manifold Theorem [31, Theorem 3] provides the closed ball B+ about
0 2 X+ of radius r > 0. Then there is a constant "0 = "0(r) > 0 such that the
following is true whenever " 2 (0, "0]:

(i) the local ascending disk defined by

Ws
" (0,U) := Ws(0,U) \ {S < S(0) + "},

is, firstly, a graph G1(O+

" ) over the subsetO+

" := ⇡+Ws
" (0,U) ⇢ B+ which,

secondly, is diffeomorphic to an open disk in X+. Thirdly, that graph also
coincides with the local stable manifold

Ws(0,N") :=

n
z 2 N" | �(s, z) 2 N" 8s > 0 and lim

s!1

�(s, z) = 0
o

,

of the setN" := int B⇢0 \ ⇡+

�1O+

" ⇢ U illustrated in Figure 2.2;
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(ii) any neighbourhoodW of 0 in Ws(0,U) contains a local ascending disk;
(iii) the local coordinate representative Ws

" := 8�1Ws
" (x) of the ascending disk

Ws
" (x) defined by (1.6) coincides with the local ascending disk Ws

" (0,U).

Corollary 2.10. In the notation of Lemma 2.9 assume that N ⇢ U is an open
subset which contains the hyperbolic fixed point 0. Then the local stable manifold
Ws(0,N ) is an open neighbourhood of 0 in Ws(0,U).

Proof of Lemma 2.9. (Ascending disks). By the Local Stable Manifold Theorem
[31, Theorem 3] a neighbourhood of 0 inWs(0,U), sayW ⇢ rangeG, is embedded
in3M and its tangent space at 0 is X+

= ⇡+(X). Observe that the restriction f :=

S| of the action to W is a Morse function. Apply the Palais-Morse Lemma [12]
to obtain a coordinate system onW (chooseW smaller if necessary) modelled on
T0W = X+ and such that

f (y) =

1X
j=1

�k+ j y2j

for every y 2 W . Here y =

P
1

j=1 y j⇠k+ j and 0 < �k+1 < �k+2 < . . . are the
positive eigenvalues of the Jacobi operator A associated to the critical point 0 of S
with corresponding normalized eigenvectors ⇠k+ j ; see, e.g. [31, (2)].

In these coordinates the local ascending disk Ws
" (0,U) takes the form of an

open ellipsoid in X+ which is given by

E" := E (a1, a2, . . .) =

⇢
y 2 X+

:

1X
j=1

�k+ j y2j < "

�
⇢ O+

R

a j :=

r
"

�k+ j

and contained in the open ball ˙B+

R ⇢ X+ of radius R = a1("). Since any neigh-
bourhood of 0 contains a ball of sufficiently small radius this proves part (ii).

To prove (i) fix the radius "0 > 0 sufficiently small such that the open ball ˙B+

"0
is contained, firstly, in the domain of our Palais-Morse parametrization, secondly,
in the Palais-Morse representative ofW and, thirdly, in the Palais-Morse represen-
tative of the ball B+

⇢ X+ of radius r > 0. The second assertion in part (i) follows
since ˙B+

"0 represents the manifold W
s
"0(0,U) which is diffeomorphic under ⇡+ to

O+

"0 := ⇡+Ws
"0(0,U) ⇢ B+.

Here the diffeomorphism property follows from the fact that Ws
"0(0,U) is tangent

to X+ at 0 and by choosing "0 > 0 smaller, if necessary. The tangency argument
also justifies the assumption that Ws

"0(0,U) ⇢ int B⇢0 , otherwise choose "0 > 0
smaller. The same arguments work for each " 2 (0, "0] and G(O+

" ) is well defined.
To prove the remaining assertions one and three in (i) we show that

G(O+

" ) ⇢ Ws(0,N") = Ws
" (0,U) ⇢ G(O+

" ), N" := int B⇢0\⇡+

�1O+

" , (2.4)
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whenever " 2 (0, "0]. To understand the middle identity observe that the inclusion
’⇢’ is obvious sinceN" ⇢ B⇢0 ⇢ U . To see the reverse ’�’ note that

Ws
" (0,U) ⇢

⇣
int B⇢0 \ ⇡+

�1⇡+Ws
" (0,U)

⌘
=: N".

By semi-flow invariance of local ascending disks the elements of Ws
" (0,U) con-

verge to 0 without leaving Ws
" (0,U), hence without leaving N". But this means

that Ws
" (0,U) ⇢ Ws

" (0,N"). To prove the second inclusion in (2.4) observe that
N := G(O+

"0) is a neighbourhood of 0 in W
s(0,U). Apply part (ii) proved above

and readjust "0, if necessary. This proves that Ws
" (0,U) ⇢ G(O+

" ). To prove the
first inclusion in (2.4) pick z 2 G(O+

" ), that is

z = (Gz+, z+) = G(z+) 2 G(O+

" ),

for some z+ 2 O+

" . To see that z 2 Ws
" (0,U) consider the (unique) element z⇤ of

Ws
" (0,U) which projects under the diffeomorphism ⇡+ : Ws

" (0,U) ! O+

" to z+.
Since we already know that Ws

" (0,U) ⇢ G(O+

" ) the point z⇤ 2 Ws
" (0,U) is of the

form z⇤ = G(z+). But G(z+) = z.
The key information to prove part (iii) is the fact shown above using the Palais-

Morse lemma, namely that the local ascending disk Ws
" (0,U) is contained in the

interior of the ball B⇢0 which itself is contained in the domain U of the parametriza-
tion 8. But 8 intertwines the local semi-flows �s on U and 's on 8(U) by its very
definition; cf. [31, (5)].

Proof of Corollary 2.10. Obviously 0 2 Ws(0,N ) ⇢ Ws(0,U). It remains to
show that the subset Ws(0,N ) of Ws(0,U) is open. Fix z 2 Ws(0,N ) ⇢ N . It
suffices to prove existence of an open ball O(z) ⇢ U about z such that the (open)
subset O(z) \ Ws(0,U) of Ws(0,U) is contained in Ws(0,N ). Assume by con-
tradiction that no such ball exists. In this case there is a sequence (zi ) contained in
Ws(0,U) and in N ,11 but disjoint to Ws(0,N ), and which converges to z in the
W 1,2 topology. Consequently for each zi there is a time si > 0 such that �si zi /2 N .
Taking subsequences, if necessary, we distinguish two cases:

In case one the sequence (si ) is contained in some bounded interval [0, T ].
Now � restricted to a sublevel set is uniformly Lipschitz on a fixed interval [0, T ] by
a slightly improved version of [28, Theorem 9.15] Thus the sequence of continuous
maps [0, T ] ! U : s 7! wzi (s) := �s zi converges uniformly to the map wz :

[0, T ] ! N ⇢ U . But this implies that the image of wzi is also contained inN for
all sufficiently large i which contradicts the fact that �si zi /2 N .

In case two si ! 1, as i ! 1. By openness of N there is a suffi-
ciently small open ball O⇢ of radius ⇢ about 0 2 U which is contained in N .
By Lemma 2.9 (ii) there is a local ascending disk Ws

" (0,U) contained in the open
neighbourhood W := Ws(0,U) \ O⇢ of 0 in Ws(0,U). Fix ⌧ > 0 large such
that �(⌧, z) 2 Ws

"/2(0,U). Then the following is true for every sufficiently large i :

11 We may assume that zi 2 N since z lies in the open subsetN of U .
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The point �(⌧, zi ) lies in Ws
" (0,U) by continuity of �. But Ws

" (0,U) is semi-flow
invariant and contained in O⇢ ⇢ N . So �(s, zi ) 2 N for s 2 [⌧,1) which
contradicts si ! 1.

Proof of Theorem C – intrinsic foliation

Properties (MI) and (Pre) enter. Assume Hypothesis 2.2 (H1–H4). In particu-
lar, by definition of µ in (H3) both the descending disk Wu

2µ(x) and the ascend-
ing disk Ws

2µ(x) are manifolds and lie in the coordinate patch 8(B⇢0) about the
nondegenerate critical point x of Morse index k. The Local Stable Manifold Theo-
rem [31, Theorem 3] provides the graph map G1

: B+
! X defined on the closed

ball B+
= B+

r about 0 2 X+ whose radius r we write in the form

r =: 2R. (2.5)

Again by [31, Theorem 3] the set N := G1( ˙B+

R ) is an open neighbourhood of 0
in the local stable manifold Ws(0,U). Thus N contains an ascending disk by the
ascending disk Lemma 2.9 (ii). Choosing µ > 0 smaller, if necessary, we assume
without loss of generality that there is the inclusion of the ascending disk coordinate
representative

Ws
µ ⇢ N := G1( ˙B+

R ). (2.6)

The coordinate representative D of the tubular neighbourhood D(x) intersects the
unstable manifold transversally in Su" . Use the implicit function theorem, if neces-
sary, to modify the coordinate system locally nearD to make sure thatD is an open
neighbourhood of Su" in Su" ⇥ X+. Pick a radius { 2 (0, ⇢0) sufficiently small such
that Su" ⇥ B+

{ is contained in D and in B⇢0 . Next diminish D setting

D := Su" ⇥ B+

{, D \ Crit = ;, (2.7)

where the latter observation holds by (H2). Since D is contained in an action level
set and � is a gradient semi-flow, the pair (D,�) has the no return property. Con-
sider the constant T0 = T0(x, �, ", {) > 0 and the graph maps GT� provided by
the Backward �-lemma [31, Theorem 1] for all T � T0 and elements � of the
descending (k � 1)-disk Su" ; see Figure 2.3.
Step 1. (Graphs) There is a constant T1 � T0 such that the following is true. As-
sume T 2 [T1,1] and � 2 Su" . Then the set GT� (B+)\{S < c+"} is diffeomorphic
to the open unit disk in X+.

Proof. Case 1. (T = 1) The graph G1(B+) – which is a neighbourhood of 0
in the local stable manifold Ws(0,U) by the Local Stable Manifold Theorem [31,
Theorem 3] – intersects the sublevel set {S < c + "} transversally in the ascending
disk Ws

" . But Ws
" is diffeomorphic to the open "-disk in X+ by the Palais-Morse

lemma using the fact that the positive part of the spectrum of the Jacobi operator
Ax is bounded away from zero (by its smallest positive eigenvector �k+1). For the
above assertions see Lemma 2.9.
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Figure 2.3. The disk GT� (B+) \ {S < c + "} =

�
�T

�1D� \ {S < c + "}
�
�T
.

Case 2. (T < 1) By the Backward �-lemma [31, Theorem 1] the family of disks
T 7! GT� (B+) is uniformly C1 close to the disk G1(B+). Transversality of the
intersection with {S < c+"} is automatic since the sublevel set is an open subset of
the loop space. However, since the graphs GT� (B+) are manifolds with boundaries
we need to make sure that these boundaries stay away from {S < c + "} in order
to conclude that any intersection GT� (B+) \ {S < c + "} is diffeomorphic to the
intersection G1(B+) \ {S < c + "} = Ws

" . But the latter is diffeomorphic to the
open unit disk in X+ by Case 1.

Concerning boundaries recall that ⇡+G1(B+) = ⇡+GT� (B+) = B+
= B+

2R .
Here the second identity holds by Step 5 in the proof of [31, Theorem 1]. On the
other hand, the topological boundary of Ws

" projects into B+

R by the choice of µ
in (2.6); see Figure 2.3. Thus the distance between the boundary of G1(B+) and
the intersection G1(B+) \ {S < c + "} = Ws

" is at least R. Since GT� ! G1, as
T ! 1, uniformly onB+ and uniformly in � 2 Su" , there is a time T1 > 0 such that
the distance between the boundary of GT� (B+) and the intersection GT� (B+)\ {S <
c + "} is at least R/2 for all � and T � T1.

Step 2. (Pre-Images) For all T � T1 and � 2 Su" the following is true:

a) the disk GT� (B+) \ {S < c+ "} =: D is a neighbourhood of �T in the pathwise
connected component P�T of the set P := �T

�1D� \ {S < c + "};
b) the disk GT� (B+) \ {S < c + "} equals P�T :=

�
�T

�1D� \ {S < c + "}
�
�T
.

Proof. a) That �T is contained in P is obvious and that it is contained in D is
asserted by the Backward �-lemma [31, Theorem 1]. To see that D ⇢ P�T pick
z 2 D. Then the heat flow takes z in time T into D� by definition of GT� and the
identity [31, (31)]. Hence z 2 P and therefore D ⇢ P . Thus to prove that D ⇢ P�T
it suffices to show that z path connects to �T inside D. But this is trivial, because
D is diffeomorphic to a disk by Step 1. To see the neighbourhood property of D
pick z 2 P�T and connect z to �T inside P through a continuous path. Of course,
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since ⇡+�T = 0 the elements of the path near �T project under ⇡+ into B+ and are
therefore in the image of the map GT� defined by [31, (25)].

b) By part a) it remains to prove the inclusion ’�’. Pick z 2 P�T and connect
z to �T inside P through a continuous path. Note that all points on this path have
action strictly less than c+ ". Now if z was not in the disk D, this path would have
to cross the topological boundary of D by the neighbourhood property in a). But
@D is contained in the level set {S = c + "}. Contradiction.

Step 3. Set ⌧0 := 2T1. Assume from now on that ⌧ > ⌧0. Recall that Corollary 2.8
provides the codimension k foliation F = F",⌧

:= imG(⌧,1]. Then

A := F",⌧
\ {S < c + "} = N ",⌧

=: N ,

that is the part A below level c + " of the foliation F",⌧ is equal to the coordinate
representative of the set N ",⌧

x defined by (1.15); see Figure 2.4. The point is that A
is essentially the image of a family of maps, but the definition of N requires each
point being path connectable to 0.

0 = γ∞ γτ/2

I IIIIIII

γτ

II = {S ≥ c + } c := S(0)

A

Figure 2.4. The set A in step 3 with neighbourhood A [ I [ I I .

Proof. A ⇢ N : Pick z 2 A. Then S(z) < c + " and z is of the form GT� (z+) for
some time T 2 (⌧,1] and elements � 2 Su" and z+ 2 B+. But GT� (z+) = ⇠T� ,z+(0)
by [31, (31)] and therefore z runs under the heat flow in time T > ⌧ into the subset
D of the level set {S = c � "}. Thus S(�⌧ z) > c � " by the downward gradient
flow property and the fact that by (2.7) there is no critical point of S on D. To
conclude the proof that z 2 N it remains to show that there is a continuous path
in N between z and 0. By Step 1 the set GT� (B+) is a disk and therefore path
connected. Connect z and �T by a continuous path in this disk. Any point on this
path lies in {S < c+"}\{S(�⌧ ·) > c�"} by the argument just given for z. Connect
�T and �1 = 0 by the obvious backward flow line. Repeat the argument for the
points on this second path. Hence we have connected z and 0 by a continuous path
in N .

A � N : Assuming z /2 A we prove that z /2 N . To be not in A we distinguish
three cases; see Figure 2.4. In case one z lies in the set I := imG(⌧/2,⌧ ]

\ {S <
c + "}. But this means that z reaches level c � " in some time T  ⌧ . Hence
S(�⌧ )  c� " and therefore z /2 N . In case two z lies in the set I I := {S � c+ "}
which is obviously disjoint to N . In case three z lies in the set I I I := {S <
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c + "} \ {S(�⌧/2·)  c � "} shown in Figure 2.4. Assume by contradiction z 2 N .
Then z and 0 connect through a continuous path in N . Note that 0 2 A since
G1(0) = 0. Since A [ I [ I I is a neighbourhood of A, the path must run through
I [ I I which is impossible by cases one and two.

Proof of a). (Foliation). By Step 3 and Corollary 2.8 there are the inclusions N ",⌧
⇢

F",⌧
⇢ B⇢0 . But by (H2) the ball B⇢0 contains no critical point except the origin.

Thus Nx is an isolating block for x ; this also follows from part d).
By Corollary 2.8 the set F = F",⌧ carries the structure of a codimension k

foliation. By Step 3 the set N = N ",⌧ is an open subset of F and therefore inherits
the foliation structure of F . We define the leaves of N by N (0) := F(0) \ {S <
c + "} = G1(B+) \ {S < c + "} and by N (�T ) := F(�T ) \ {S < c + "} =

GT� (B+) \ {S < c + "} where T 2 (⌧,1) and � 2 Su" . The second identities are
just by definition of F(0) and F(�T ) in Corollary 2.8. Since the right hand sides
are disks by Step 1 the leaves of N are indeed parametrized by the disjoint union
of {0} and (⌧0,1) ⇥ Su" . Hence the leaves of N and F are in 1-1 correspondence.
They are of the asserted form by Step 2 b).

Proof of b). (Compatibility of leaves and semi-flow). That leaves and semi-flow are
compatible follows from Corollary 2.8 as soon as we prove that semi-flow tra-
jectories starting and ending in N = N ",⌧ cannot leave N (hence not F) at any
time in between. To see this decompose the (topological) boundary of the set
N = F \ {S < c+ "} into the top part @+N which lies in the level set {S = c+ "}
and its complement the side part @�N =

S
�2Su" G

⌧
� (B+) \ {S < c + "} as illus-

trated by Figure 2.5 below. The downward gradient property implies, firstly, that
@+N cannot be reached from lower action levels (thus not from N ) and, secondly,
that @�N cannot be crossed twice. To prove the latter assume by contradiction that
there are two elements z1 6= z2 of

@�N =

⇣
�⌧

�1D \ {S < c + "}
⌘

��⌧ Su"

that lie on the same semi-flow trajectory starting at, say z1. Now on one hand, the
time needed from either one element to D is ⌧ . On the other hand, getting from z1
to z2 requires the extra time T > 0. By uniqueness of the solution to the Cauchy
problem it follows that ⌧ + T = ⌧ which contradicts T > 0.

Proof of c). (Uniform convergence of leaves). Uniform and exponential conver-
gence of leaves follows from the exponential estimate in [31, Theorem 1], in which
we can actually eliminate the constant ⇢0 by choosing T0 larger, together with the
inclusion N (�T ) = GT� (B+) \ {SV < c + "} ⇢ GT� (B+) and the corresponding
one for T = 1; for the identity see proof of a). This proves (1.18). Given U as in
the second assertion, pick a �-neighbourhoodU� ⇢ 8�1(U) ofWs

" in B⇢0 for some
� 2 (0, 1). Estimate (1.18) shows that N ",⌧⇤

⇢ U� whenever ⌧⇤ > �
16
� ln �.
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Proof of d). (Localization of Nx ). The two key ingredients are that the ascending
disk Ws

" (x) localizes near x for small " by the Palais-Morse Lemma and that the
isolating block N ",⌧

x contracts onto Ws
" (x) by estimate (1.18) in part c).

Replacing the neighbourhood U of x in 3M by a smaller neighbourhood, if
necessary, we solve the problem in the local coordinate patch 8(B⇢0) about x .
Thus we assume that U is a neighbourhood of 0 in B⇢0 ⇢ X . By (2.5) the radius
of the ball B+ on which the stable manifold graph map G1 is defined is 2R > 0;
see Figure 2.3. Pick ⇢ 2 (0, R] sufficiently small such that the ball B2⇢(0) is
contained in U . By the ascending disk Lemma 2.9 (ii) the open neighbourhood
N := Ws

" \ int B⇢(0) of 0 in the ascending disk Ws
" contains an ascending disk

Ws
"⇤

for some "⇤ 2 (0, "). Note that Ws
"⇤

⇢ N ⇢ B⇢(0). Pick � 2 (0, ⇢) and apply
part c) for Ws

"⇤

and its �-neighbourhood U� to obtain a constant ⌧⇤ and the first of
the inclusions N "⇤,⌧⇤

⇢ U�(Ws
"⇤

) ⇢ U�(B⇢(0)) ⇢ B2⇢(0) ⇢ U .

This completes the proof of Theorem C.

2.3. Strong deformation retract

Proof of Theorem D (MI, Pre, PS). Assume Hypothesis 2.2. Our construction of
a strong deformation retraction ✓ of N onto its part A in the unstable manifold
is motivated by the following observation: On the stable manifold the semi-flow
{�s}s2[0,1] itself does the job. Indeed �1 pushes the whole leaf N (0), that is
the ascending disk Ws

" by Theorem C, into the origin – which lies in the unstable
manifold. Since �s restricted to the origin is the identity, the origin is a strong
deformation retract of N (0). If the Morse index k is zero, then N = N (0) and we
are done.

Assume from now on that k > 0. In this case the Backward �-lemma comes
in. It implies that N is a foliation whose leaves are C1 modelled on the ascending
disk Ws

" ; see Theorem C. The main and by now obvious idea is to use the graph
maps GT

� and G1 of Theorems 1 and 3 in [31], respectively, and their left inverse
⇡+ to extend the good retraction properties of �s on the ascending disk N (0) to all
the other leaves N (�T ) where �T := ��T � .

Definition 2.11 (Induced semi-flow). By Theorem C each z 2 N = N ",⌧ lies on
a leaf N (�T ) for some T > ⌧ and some � in the ascending disk Su" . Set

z+ := ⇡+z, � := G1(z+), z+(s) := ⇡+�s�,

for s � 0. Then the continuous map ✓ : [0,1] ⇥ N ! X given by

✓s z := GT� ⇡+�sG1⇡+z, (2.8)

is called the induced semi-flow on N; see Figure 2.5. It is of class C1 on (0,1)⇥N
and juxtaposition of maps means composition.
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{S = c + }

N(0) = W s ⊂ imG∞

γT := φ−T γ

GT
γ

π+
φs

z+(s)

∂−N

N(γT ) ⊂ imGT
γ

N

W u ⊂ X−

X+

θsz

z+
β

z

0

γτ

∂+N

Figure 2.5. Leaf preserving semi-flow ✓s z := GT� ⇡+�sG1⇡+z on foliation N .

Observe that ✓ takes values in the image F � N of the graph maps and that it
preserves the leaves of F ; see Corollary 2.8. Continuity on [0,1)⇥N follows from
continuity of the maps involved. Existence of the asymptotic limit �s� ! 0, as
s ! 1, for any � 2 Ws has the following two consequences. Assume z 2 N (�T ).
Then, firstly, the limit

✓1z := lim
s!1

✓s z = GT� ⇡+ lim
s!1

�s� = GT� (0) = �T ,

exists and lies in the unstable manifold indeed. Here we used continuity of GT� and
⇡+ and the fact that � = G1(z+) lies in the stable manifold of the origin. The final
identity holds by [31, Theorem 1]. Secondly, ✓s z ! ✓1z, as s ! 1. The first
consequence shows that

✓1 : N ! A, A := ��⌧Wu
"

⇠
= {0} [

�
(⌧,1) ⇥ Su"

�
, (2.9)

is a retraction and the second one extends continuity of ✓ to [0,1] ⇥ N . The fact
that the origin is a fixed point of �s implies that

✓s�T = GT� ⇡+�s0 = GT� (0) = �T ,

hence ✓s |A = idA, for every s 2 [0,1].
To conclude the proof it remains to show that ✓s preserves N . In fact, we show

that ✓s preserves the leaves of the foliation

N = N (0) [

[
T>⌧
�2Su"

N (�T ).

By Theorem C these leaves are infinite dimensional open disks. The idea is to
show that the function (0,1) 3 s 7! S(✓s z) strictly decreases whenever z lies
in the topological boundary of a leaf. This implies preservation of leaves as fol-
lows. Firstly, note that ✓ is actually defined on a neighbourhood of N (�T ) in
F(�T ) := GT� (B+). Secondly, the topological boundary of each leaf lies on action
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level c + " whereas the leaf itself lies strictly below that level. Thus the induced
semi-flow points inwards along the boundary. So ✓s preserves leaves and therefore
the foliation N . Thus A is a strong deformation retract of N .12

In the remaining part of the proof we show that the function s 7! S(✓s z)
strictly decreases in s > 0 whenever z lies in the topological boundary of a leaf.
To see this decompose the topological boundary, that is closure take away interior,
of the isolating block N = N ",⌧ in two parts. The upper boundary @+N is the part
which intersects the level set {S = c + "}. Similarly the lower boundary @�N is
the part on which the action is strictly less than c + "; see Figure 2.5. The lower
part is foliated by the leaves N (�⌧ ) where � 2 Su" .

Denote the L2-gradient of S as usual by gradS and note that it is defined only
on loops of regularity at least W 2,2. However, for s > 0 the loops �s z : S1 ! M
and, slightly less obvious, also ✓s z are C1 smooth and therefore of class W 2,2.
Figure 2.6 illustrates the closed neighbourhood

W := B⇢0 \ {S  c + "/2}

of 0 2 X .

Bρ0

{S = c + }

{S = c + 2}

0

∂+N

N

W

Figure 2.6. The complement ofW in B⇢0 is used to define ↵ > 0.

Note thatW is disjoint to the closed set @+N . Moreover, the constant

↵ = ↵(⇢0, ") := inf
z2

�
B⇢0\W

2,2�
\W

kgradS(z)k2 > 0,

is strictly positive. To see this assume ↵ = 0. Since S : W 1,2
! R satisfies the

Palais-Smale condition (PS) there is a sequence (zk) in
�
B⇢0 \ W 2,2�

\W converg-
ing in W 1,2 to a critical point of S in B⇢0 \W . This contradicts the fact that, by
choice of ⇢0, the only critical point in B⇢0 is the origin which lies inW .

12 A deformation retraction of a topological space N onto a subspace A is a homotopy between
the identity map on N and a retraction. More precisely, it is a continuous map ✓ : [0,1] ⇥ N !

N such that ✓0 = idN , ✓1|A = idA, (✓s |A = idA for every s 2 [0,1],) and ✓1 : N ! A is
called a (strong) deformation retraction. Here [0,1] denotes the one point compactification. In
this case we say A is a (strong) deformation retract of N .
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Assume z is in the closure of N , that is z is in the closure of a leaf N (�T ) for
some T � ⌧ and � 2 Su" . Recall from [31, (5)] that in our coordinates gradS is
represented by A� f where A = Ax is the Jacobi operator and f is the nonlinearity
defined by [31, (6)]. By [31, Proposition 1 (b)] the operator A preserves the vector
space X�

:= ⇡�X of dimension k > 0. The restriction A� lies in L(X�) and
satisfies kA�

k = |�1| where �1 < 0 denotes the smallest eigenvalue of A. By
definition of GT� and G1 in [31, Theorems 1 and 3] the difference

✓s z � �sq = GT� (z+(s)) � G1(z+(s)) =

⇣
GT

� (z+(s)) � G1(z+(s)), 0
⌘

lies in X�
⇢ C1. This implies the first identity in the estimate

kgradS(�sq) � gradS(✓s z)k2

=

��A�(�sq � ✓s z) + f (✓s z) � f (�sq)
��
2

 (|�1| + 0) k✓s z � �sqk1,4

= c1
���GT� (z+(s)) � G1(z+(s))

���
1,4

 ⇢0c1e�T
�
16 ,

(2.10)

which holds for every s > 0 and where c1 := (|�1| + 0). The first inequality also
uses the Lipschitz lemma [31, Le. 1] for f and p = 2 with constant 0 := (⇢0).
The final inequality is by [31, Theorem 1]. Choose ⌧ larger, if necessary, such that

⇢0c1e�⌧ �
16 

1
16

, 3⇢0c1e�⌧ �
16 

↵

100
, 12⇢0c1e�⌧ �

16 

↵2

8
, (2.11)

and abbreviate
v± = v±(s) := ⇡±gradS(✓s z).

Apply the identity ⇡� + ⇡+ = 1l and add twice zero to obtain the estimate

kv�k2 = kgradS(✓s z) � v+k2

 kgradS(✓s z) � 1l gradS(�sq)k2

+

��dG1

|z+(s)⇡+ (gradS(�sq) � gradS(✓s z))
��
2

+

��dG1

|z+(s)v+ � v+

��
2

 3 kgradS(✓s z) � gradS(�sq)k2 +

1
4

kv+k2

 3⇢0c1e�T
�
16 +

1
4

kv+k2 .

(2.12)
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To see the first zero which has been added recall that (by definition of G1) the
projection ⇡+ restricted to the image N (0) of G1 is the identity map on N (0).
Linearization at the point �sq 2 N (0) shows that dG1

|z+(s)⇡+ = 1lT�sq N (0). The
second inequality uses the two estimates provided by [31, Proposition 3]. The final
inequality is by (2.10).

From now on fix z 2 @+N = @+N ",⌧ . Observe that z lies on action level
c + " and in the image of a graph map GT� where � 2 Su" and T > ⌧ . (For
T = ⌧ there is nothing to prove.) By continuity of ✓ , the downward gradient
property, and openness of N there is a time Tz > 0 such that for each s 2 (0, Tz)
the following holds. The path s 7! ✓s z remains, firstly, in N and, secondly, above
level c+ "

2 . Thus ✓s z, firstly, satisfies estimates (2.10)–(2.12) and, secondly, remains
in the complement ofW used to define ↵. By (2.12) we get

kgradS(✓s z)k2  kv�k2 + kv+k2  3⇢0c1e�T
�
16 +

5
4

kv+k2 , (2.13)

which together with T > ⌧ and the second assumption in (2.11) implies that

kv+k2 >
4
5

⇣
kgradS(✓s z)k2 �

↵

100

⌘
>
3
4
↵, (2.14)

for every s 2 (0, Tz). The final step is by definition of ↵. Observe that

d
ds
S(✓s z) = dS|✓s z dGT� |z+(s) ⇡+

d
ds

�
�sG1⇡+z

�

= �

D
gradS|✓s z, dGT� |z+(s)⇡+gradS|�sq

E
L2

,

for every s 2 (0, Tz). Here the second identity uses the definition of the L2-gradient
and the fact that the semi-flow �s is generated by �gradS . Add three times zero to
obtain that

d
ds
S(✓s z) = �

D
gradS|✓s z, dGT� |z+(s)⇡+

�
gradS|�sq � gradS|✓s z

�E
L2

�

D
gradS|✓s z,

⇣
dGT� |z+(s) � dG1

|z+(s)
⌘

⇡+gradS|✓s z
E
L2

�

⌦
gradS|✓s z,

�
dG1

|z+(s) � 1l
�
⇡+gradS|✓s z

↵
L2

�

⌦
gradS|✓s z,⇡+gradS|✓s z

↵
L2 ,

(2.15)

for every s 2 (0, Tz). At this point the L2 extension of the linearized graph maps
enters. Namely, use the difference estimate (2.10), the uniform estimates for the
linearized graph maps provided by [31, Proposition 3] and [31, Theorem 2], and
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the identity gradS|✓s z = v� + v+ to get

d
ds
S(✓s z)  kgradS(✓s z)k2

⇣
2⇢0c1e�T

�
16 + e�T

�
16 kv+k2

⌘

+

�
kv�k2 + kv+k2

� kv+k2
4

� kv+k
2
2



✓
3⇢0c1e�T

�
16 +

5
4

kv+k2

◆⇣
2⇢0c1e�T

�
16 + e�T

�
16 kv+k2

⌘

+ 3⇢0c1e�T
�
16 �

✓
1�

1
4

�

1
16

◆
kv+k

2
2

 6⇢0c1e�T
�
16 + 6⇢0c1e�T

�
16 kv+k2 �

11
16

kv+k
2
2

 12⇢0c1e�T
�
16 �

1
2

kv+k
2
2

 �
1
4↵

2

for every s 2 (0, Tz). Consider the two lines after the first inequality. Line one
corresponds to the first two lines in (2.15) and line two corresponds to the last two
lines; in the last line orthogonality of ⇡± enters. Inequality two is by estimate (2.13)
for gradS and (2.12) for v�. To obtain inequality three we multiplied out the prod-
uct and used the first assumption in (2.11). Inequality four uses for the middle
term Young’s inequality ab 

1
2a
2

+
1
2b
2 for b = 2�1

kv+k2 together with the
first assumption in (2.11). The final step uses the third assumption in (2.11) and
estimate (2.14) for v+.

This proves that the induced semi-flow ✓s is inward pointing along the bound-
ary of each leaf N (�T ) and thereby completes the proof of Theorem D.

Remark 2.12. The downward L2-gradient nature of the heat equation (1.2) causes
the L2 norm to appear in estimates (2.10) and (2.15). The first estimate involves
the nonlinearity f of the heat equation. To make sure that f takes values in L2 the
domain W 1,4 is the right choice; see [31, (6)]. The second estimate leads to the L2
norms of the linearized graph maps. Cf. [31, Remark 1].

2.4. Conley pairs

Proof of Theorem 1.7. We need to verify properties (i–iv) in Definition 1.6.
(i) Since x is a fixed point of the heat flow ' and c := SV(x) = SV('2⌧ x)

it follows immediately that x 2 Nx and x /2 Lx . The latter conclusion also uses
continuity of the function SV � '2⌧ : 3M ! R. We only used ", ⌧ > 0.

(ii) For " 2 (0, µ] and ⌧ > ⌧0 with µ and ⌧0 as in (H4) of Hypothesis 2.2
assertion (ii) holds by Theorem C, that is Nx is an isolating block for x .



884 JOA WEBER

(iii) To prove that Lx is positively invariant in Nx it suffices to assume � 2 Lx
and 's� 2 Nx for some s � 0. 13 It follows that 's� 2 Lx , because

SV('2⌧ ('s� )) = SV('2⌧+s� )  SV('2⌧ � )  c � ".

Indeed the first step holds by the semigroup property and the second step by the
downward gradient flow property. The final step uses the assumption � 2 Lx .

(iv) Let " and ⌧ be as in (H4) Hypothesis 2.2. Then Theorem C applies, in
particular, there are no critical points other than x in the closure of Nx . We need
to verify that semi-flow trajectories can leave Nx only through Lx . If � 2 Lx
and 'T � /2 Nx the assertions follow immediately from openness of Nx , continuity
of ', and the fact that Lx is positively invariant in Nx by (iii). Now assume that
� 2 Nx \ Lx and 'T � /2 Nx for some time T > 0. Hence � 6= x and

SV(� ) < c + ", SV('2⌧ � ) > c � ", SV('⌧+T � )  c � ".

Inequality three excludes the case that � is in the ascending disk Ws
" (x). Thus by

Theorem C part a) the semi-flow trajectory through � reaches the action level c� "
in some finite time T⇤ > ⌧ . In fact T⇤ > 2⌧ by inequality two. Set a := T⇤�2⌧ > 0
to obtain that c� " = SV('T⇤

� ) = SV('2⌧+a� ). Set b := ⌧ + a > a to obtain that
T⇤ = 2⌧ + a = ⌧ + b. So the identity reads c � " = SV('⌧+b� ). Thus b  T by
inequality three. Next we show that a is the unique time at which the orbit through
� enters Lx and b is the unique time when it leaves Lx .

More precisely, we show that 's� 2 Nx if and only if s 2 [0, b) and that
's� 2 Lx if and only if s 2 [a, b). To see the first of these two statements pick
s 2 [0, b). Then SV('s� )  SV(� ) < c + " since � 2 Nx . Furthermore, note that
⌧+s < ⌧+b = 2⌧+a = T⇤. So SV('⌧ ('s� )) = SV('⌧+s� ) > SV('T⇤

� ) = c�".
The inequality is strict since � 6= x . Vice versa, assume 's� 2 Nx . Since this only
makes sense for s � 0 it remains to show s < b, equivalently s + ⌧ < T⇤. The
latter follows from the fact that SV('⌧+s� ) > c � " since 's� 2 Nx and the fact
that SV('T⇤

� ) = c � " together with the downward gradient flow property.
To see the second statement pick s 2 [a, b). Since [a, b) ⇢ [0, b), the first statement
tells 's� 2 Nx . So it remains to show SV('2⌧ ('s� ))  c � " which is equivalent
to 2⌧ + s � T⇤. Indeed 2⌧ + s � 2⌧ + a = T⇤ by our choice of s and definition of
a. Vice versa, assume 's� 2 Lx for some s > 0. Then we get the two inequalities
SV('⌧ ('s� )) > c � " and SV('2⌧ ('s� ))  c � " by definition of Lx . If s � b,
equivalently ⌧ + s � ⌧ + b = T⇤, we get SV('s+⌧ � )  SV('T⇤

� ) = c � "
which contradicts inequality one. In the case s 2 (0, a) we get SV('2⌧+s� ) >
SV('T⇤

� ) = c � " which contradicts inequality two.
Pick any � 2 [a, b) ⇢ (0, T ) to conclude the proof of (iv). Indeed '[0,� ]� ⇢

Nx by the first statement (and the assumption '0� 2 Lx ⇢ Nx ) and '�� 2 Lx by
the second statement. This concludes the proof of Theorem 1.7.

13 Using the downward gradient flow property this is equivalent to the usual hypothesis � 2 Lx
and '

[0,s]� ⇢ Nx for some s � 0. (Use that our Nx is path connected by definition.)
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Proposition 2.13 (Strong deformation retract). The Conley pair (Nx ,Lx ) in The-
orem 1.7 strongly deformation retracts to its part (Nu

x ,Lux ) in Wu(x), i.e.

(Nx , Lx ) '

�
Nu
x , Lux

�
=

�
'�⌧Wu

" (x),'[�2⌧,�⌧ )Su" (x)
�
.

Here the final pair of spaces consists of an open k-disk, see (2.3), and a (relatively)
closed annulus which arises by removing the smaller k-disk '�2⌧Wu

" (x).

Proof. The assertions for Nx = N ",⌧
x are true by Theorem D and (2.3). Concerning

Lx = L",⌧
x pick z 2 Nx \ {x}. By Theorem C part a) this means that

z 2 Nx (�T ) =

⇣
'T

�1D� (x) \ {S < c + "}
⌘

�T
, �T := '�T � ,

for some � 2 Su" (x) and T > ⌧ . Thus z reaches action level c � " under the
semi-flow in time T 2 (⌧, 2⌧ ] if and only if SV('2⌧ z)  c � ". This shows that

Lx =

[
(T,� )2(⌧,2⌧ ]⇥Su"

Nx (�T )

since Lx ⇢ Nx . Therefore Lx carries the structure of a foliation whose leaves are
given by the corresponding leaves of Nx . Thus the restriction to Lx of the (leaf
preserving) strong deformation retraction ✓ of Nx onto Nx \ Wu(x) given by (2.8)
is a strong deformation retraction of Lx onto its part in the unstable manifold. This
proves the first assertion. Intersect the second identity in (2.3) with Lx to obtain the
second assertion. Concerning dimensions note that the disks and the annulus are
open subsets of the unstable manifold Wu(x) whose dimension is the Morse index
k of x by [29, Theorem 18].

Homology of Conley pairs

Definition 2.14 (Canonical orientations). Given k � 1 we denote by Dk the
closed unit disk in Rk . The canonical orientations of Rk and Dk are provided
by the (ordered) canonical basis E = (e1, . . . , ek) of Rk . The induced orientation
of the boundary @Dk

= Sk�1, called canonical boundary orientation, is given by
putting the outward normal in slot one, that is by declaring the sum

Rk
= R⇠ � T⇠Sk�1 (2.16)

an oriented sum for each ⇠ 2 Sk�1 ⇢ Rk . By definition an orientation of a point is
a sign. With this convention the canonical orientation of each point of the 0-sphere
S0 = {�1,+1} ⇢ R1 is provided by its own sign. By definition D0 = {0} = R0
and S�1

= @D0 = ;. For k � 1 the positive generators

ak = [Dk
hcani] 2 Hk(Dk, Sk�1), bk�1 = [Sk�1

hcani] 2 Hk�1(Sk�1),

are given, respectively, by the class of the relative cycleDk equipped with its canon-
ical orientation and the class of Sk�1 with its canonical orientation . The 0-sphere
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S0 = {q, p} ⇢ R1, where q = �1 and p = +1, is canonically oriented by the
boundary orientation of D1 = [�1, 1]. The connecting homomorphism @ maps a1
to b0 = [p � q] 2 H0(S0) ⇠

= Z2.

Theorem 2.15 (Homology of Conley pairs). Given a nondegenerate critical point
x of Morse index k and one of the Conley pairs (Nx , Lx ) = (N ",⌧

x , L",⌧
x ) provided

by Theorem 1.7. Fix a diffeomorphism14

# x
: Dk

! Du
x := '�2⌧Wu

" (x) (2.17)

between the closed unit disk Dk
⇢ Rk and the disk Du

x which is contained in Nx \

Wu(x) and whose boundary is given by Sux := @Du
x = '�2⌧ Su" (x) and lies in the

exit set Lx ; see Figure 2.7. Then there are the isomorphisms

H⇤(Dk, Sk�1)
# x

⇤

⇠
=

// H⇤(Du
x , Sux )

◆⇤
⇠
=

// H⇤(Nx , Lx ) (2.18)

which are non-trivial only in degree k = indV(x) and where ◆ denotes inclusion.
Furthermore, it holds that (◆ � # x )⇤ : [Dk

] 7! [Du
x ] 7! [Du

x ].

Su(x)

τ2τ 2τ

W s(x)

Lx ⊂ Nx

W u(x)
D(x)

{SV = c + }

W u(x)

x

{SV = c − }

Su
x

∼=

τ ∞

Dk

Du
x

ϑx

Rk

Figure 2.7. The k-disk Du
x ⇢ Nx and its bounding sphere Sux ⇢ Lx .

Proof. Since # x
: Dk

! Du
x is a diffeomorphism which maps @Dk to Sux it in-

duces an isomorphism on relative homology. Thus the image Du
x of the relative

cycle Dk represents one of two generators of H⇤(Du
x , Sux ) ⇠

= Z. To distinguish
them one needs to specify an orientation of Du

x ; see Definition 2.16. By (2.3) the
boundary Sux of Du

x is '�2⌧ Su" (x) and it lies in Lx by Proposition 2.13. Hence
the inclusion ◆ : (Du

x , Sux ) ,! (Nx , Lx ) provides an element of Hk(Nx , Lx ) de-
noted by ◆⇤[Du

x ] = [◆(Du
x )] or simply by [Du

x ]. To see that ◆⇤[Du
x ] is actually a

14 Use the Morse Lemma to define a diffeomorphism Dk ⇠
= Wu

" (x) and recall from Remark 2.1
that restricted to the unstable manifold Wu(x) the heat flow turns into a genuine flow, then apply
the diffeomorphism '

�2⌧ |Wu(x).
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basis – in other words, that the inclusion ◆ induces an isomorphism – recall that
(Nu

x , Lux ) = (Nx \ Wu(x), Lx \ Wu(x)) and consider the homomorphisms

H⇤(Du
x , Sux )

◆⇤ // H⇤(Nx , Lx )
✓⇤

⇠
=

// H⇤(Nu
x , Lux )

r⇤
⇠
=

// H⇤(Du
x , Sux ). (2.19)

Here ✓ := ✓1
: Nx ! Nu

x is the strong deformation retraction (2.8) referred
to by Theorem D and r = h1 : Nu

x ! Du
x is the strong deformation retrac-

tion to be defined below. Because both deformation retractions are strong, we get
that r⇤✓⇤◆⇤[Du

x ] = [id(id(◆(Du
x ))] = [Du

x ]. But [Du
x ] generates H⇤(Du

x , Sux ) and
so ◆⇤ has to be injective. Moreover, since isomorphisms map bases to bases and
✓⇤

�1r⇤�1([Du
x ]) = ◆⇤[Du

x ] it follows that ◆⇤ is surjective, thus an isomorphism.
It remains to construct a map h : [0, 1] ⇥ Nu

x ! Nu
x , (�, � ) 7! h�(� ),

providing a homotopy between h0 = idNu
x and r := h1 : Nu

x ! Du
x and such that

h�|Du
x = idDu

x for every � 2 [0, 1]. Consider the annuli X � A given by

X := Wu(x) \ int Du
x = Wu(x) \ '�2⌧Wu

" (x), A := Wu(x) \ Wu
" (x),

and the entrance time function TA : X 7! [0, 2⌧ ] as defined by (3.13) below while
constructing the third isomorphism in the proof of Theorem B. By arguments anal-
ogous to the ones used during that construction TA is lower semi-continuous by
closedness of A ⇢ X and upper semi-continuous by (forward) semi-flow invari-
ance of A in X . Then the map defined by

h�(� ) :=

(
� � 2 Du

x
'�(TA(� )�2⌧ )� � 2 Nu

x \ int Du
x ,

has all the desired properties. It is well defined since TA vanishes on @Du
x .

Definition 2.16. (i) In the setting of Theorem 2.15 assumeDk carries the canonical
orientation. Pick an orientation hxi of Wu(x). Then

�hxi :=

(
+1 if # x

: Dk
! Wu(x) preserves orientation

�1 otherwise,
(2.20)

is called the sign of # x with respect to hxi.
(ii) Consider the linear transformation µ := diag(�1, 1, . . . , 1) 2 Rk⇥k . It is

an orientation reversing diffeomorphism of Rk and of Dk . With the conventions

µ0 = 1l, hxi =
1
2
�
1+ �hxi

�
2 {0, 1}, (2.21)

we get the identity of induced isomorphisms

�hxi#
x
⇤

= (# x
� µhxi)k : H⇤(Dk, Sk�1) ! Hk

�
Du
x , S

u
x
�
, (2.22)

which map the positive generator ak = [Dk
hcani] is to the generator [Du

hxi] of
Hk

�
Du
x , Sux

�
⇠
= Z. Here Du

hxi denotes the relative cycle D
u
x oriented by hxi.
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3. Morse filtration and natural isomorphism

In Section 3 we construct the natural isomorphism in Theorem A, in other words,
we calculate singular homology of the sublevel set 3aM in terms of the homol-
ogy of the Morse complex

�
CMa

⇤
(V ), @M

⇤
(V, va)

�
defined in Subsection 1.1. Recall

that the chain group CMa
⇤
(V ) is the free Abelian group generated by oriented crit-

ical points hxi 2 Crita of the Morse function SV – without assigning the role of a
distinct generator to one of the two possible orientations since we divide out sub-
sequently by the relation (1.3). The Morse boundary operator counts heat flow
trajectories u between critical points of Morse index difference one according to
how the corresponding push-forward orientations u⇤hxi match at the lower end.

The key idea is to consider an intermediate chain complex associated to a cel-
lular filtration which, on the level of homology, is already known to be naturally
isomorphic to singular homology. On the other hand, the additional geometric data
provided by the Morse-Smale function SV given by (1.5) gives rise to a very par-
ticular filtration, namely, a Morse filtration whose associated cellular chain com-
plex equals the Morse complex up to natural identification. In the case of a finite
dimensional manifold this idea has been used by Milnor [9] in the context of a
self-indexing15 Morse function f : M ! R in which case just the sublevel sets
Fk := f �1��

� 1, k +
1
2
⇤�
itself provide a Morse filtration. For a Banach man-

ifold with a genuine flow generated by a C1 vector field a suitable filtration has
been constructed by Abbondandolo and Majer [1] who, moreover, provide full de-
tails of their construction of an isomorphism (depending on choices of orientations)
between Morse and singular homology.

Obviously the Hilbert manifold of W 1,2 loops in M is the natural domain of
the action functional SV and its Hilbert manifold structure facilitates the analysis.
Moreover, the space 3aM of W 1,2 loops in M whose action is less or equal than
a is homotopy equivalent to its subset LaM of smooth loops (see, e.g. [8, Section
17] or footnote16). Thus singular homology of both spaces is naturally isomorphic
and Theorem A covers [19, Theorem A.7]. Furthermore, it is not necessary that the
potential V is a sum (1.4) of a geometric potential V and an abstract perturbation
va . All we need is that V satisfies axioms (V0)–(V3) in [29] and is Morse-Smale
below the regular level a in the functional analytic sense of [29, Section 1]. Any V
that satisfies (V0)–(V3) gives rise to a C1 semi-flow

' : (0,1) ⇥ 3aM ! 3aM, 3aM := {SV  a}, (3.1)

which extends continuously to zero; see, e.g. [28].
In what follows we construct the natural isomorphism for the semi-flow (3.1).

For simplicity think of V as given by (1.4). To avoid overusing the word ’continu-
ous’ all maps are assumed to be continuous unless specified differently.

15 Self-indexing means that f (x) = k whenever x is a critical point of f of Morse index k.
16 Theorem (Palais, [11, Theorem 16]). Given a Banach space 3, a dense subspace L, and an
open subset 3a

⇢ 3, then the inclusion 3a
\ L ,! 3a is a homotopy equivalence.
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3.1. Morse filtration

AssumeV is a perturbation that satisfies axioms (V0)–(V3) in [29] andSV is Morse-
Smale below the regular level a. We construct a Morse filtration F = (Fk) associ-
ated to SV : 3aM ! R such that, in addition, each set Fk is open and semi-flow
invariant. We use all properties from (M) to (MS)nb.

Consider the closed ball B⇢
x of radius ⇢ > 0 about x with respect to the W 1,2

metric on 3M . Since a is a regular value and the critical points are nondegenerate
there is a sufficiently small radius ⇢ = ⇢(a) > 0 such that

B⇢
x ⇢ 3aM, B⇢

x \ B⇢
y = ;, (3.2)

for any two distinct elements x and y of the finite set Crita . The Morse-Smale con-
dition guarantees that there are no flow lines from one critical point to another one
of equal or larger Morse index. The following lemma generalizes this principle,
firstly, to small neighbourhoods (cf. [1, Lemma 2.5]) and, secondly, to semi-flows.
More precisely, the lemma guarantees that the Morse index strictly decreases when-
ever there is a flow trajectory from B⇢

x to B⇢
y and ⇢ > 0 is sufficiently small. We

postpone proofs.

Lemma 3.1 (Morse-Smale on neighbourhoods-(MS)nb). There is a constant ⇢ =

⇢(a) > 0 such that the pre-images 's
�1B⇢

y satisfy

B⇢
x \ 's

�1B⇢
y = ;, 8s � 0, (3.3)

for all pairs of distinct critical points x, y 2 Crita with indV(x)  indV(y).

Hypothesis 3.2. Assume the perturbation V satisfies (V0)–(V3) in [29] and the
Morse-Smale condition holds below the regular level a of SV .
(H5) Fix a constant ⇢ = ⇢(a) > 0 sufficiently small such that (3.2) and (3.3)

hold true and such that for each critical point x 2 Crita the local coordinate
chart (8,8(Bu ⇥ B+)) about x 2 3M covers the ball B2⇢x . Here Bu ⇥

B+
⇢ X�

� X+ is a product of balls contained in B⇢0 with Bu ⇢ Wu ;
see Hypothesis 2.2 (H1). Pick constants " > 0 sufficiently small and ⌧ >
0 sufficiently large17 such that for each x 2 Crita Theorem C (Invariant
stable foliation) and Theorem 1.7 (Conley pair) hold true. In particular, every
x 2 Crita admits a Conley pair, namely (Nx , Lx ) = (N ",⌧

x , L",⌧
x ) defined

by (1.15) and (1.16). By Theorem C part d) we assume that Nx ⇢ B⇢
x .

Consequently Nx \ Ny = ; whenever x 6= y.

From now on we assume Hypothesis 3.2 and use the notation

Nk :=

[
x2Critak

Nx , Lk :=

[
x2Critak

Lx , k 2 Z. (3.4)

17 In the notation of Theorem 1.7 pick " 2 (0, µ(a)] and ⌧ > ⌧0(a).
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By definition a union over the empty set is the empty set. Since Nx ⇢ B⇢
x both

unions are unions of disjoint sets by (3.2). Using (MI) we denote the maximal
Morse index among the critical points below level a by

m = m(a) := max
x2Crita

indV(x). (3.5)

Observe that Crita0 6= ; since SV is bounded below (BB). For such a critical point
x of Morse index 0 the Conley index pair (Nx , Lx ) consists of the ascending disk
Nx = Nx (x) = Ws

" (x) by Theorem C part a) and the empty exit set Lx = ;.
Note that the ascending disk Ws

" (x) := Ws(x) \ {SV < SV(x) + "} is open and
semi-flow invariant. Hence N0 is a finite union of (open and semi-flow invariant)
disjoint ascending disks and L0 = ;. Next observe that for each T > 0 the pre-
image F0 = F0(T ) := 'T

�1N0 is semi-flow invariant. By continuity of 'T it is
also open. Assume k > 0 is the next larger realized Morse index, that is k is the
minimal Morse index among the elements of Crita \ Crita0. Consider the unstable
manifold of a critical point xk of Morse index k. Each element � 6= xk moves in
finite time T� into the neighbourhood N0 of Crit0 by existence of the asymptotic
forward limit [28, Theorem 9.14]. The Morse-Smale condition (MS) guarantees
that the Morse index of the asymptotic forward limit is strictly less than k, thus
indeed zero by minimality of k. Hence � 2 'T�

�1N0. In fact, a much stronger
statement is true: there is a time Tk > 0 such that the pre-image 'Tk

�1N0 contains
all elements � of the infinite dimensional exit set Lk of Nk .

Proposition 3.3 (Uniform time). Given Hypothesis 3.2, suppose A is an open
semi-flow invariant subset of 3aM containing all critical points of Morse index
less or equal to k and no others. In the case k < m(a) there is a time Tk+1 � 0
such that Lk+1 ⇢ 'Tk+1

�1A. If Lk+1 = ;, set Tk+1 := 0. In the case k = m(a) of
maximal Morse index there is a time Tm+1 � 0 such that 3aM = 'Tm+1

�1A.

Definition of the Morse filtration

The first step in the construction of the Morse filtration F = (Fk)k2Z associated to
SV : 3aM ! R is to set Fk := ; whenever k < 0. Now consider the time T1 given
by Proposition 3.3 for A = N0. It provides the crucial inclusion

L1 ⇢ 'T1
�1N0 =: F0

illustrated by Figure 3.1. Because the exit set L1 of N1 is contained in the semi-flow
invariant set F0, the union N1[ F0 is semi-flow invariant as well. Trivially it is also
open. Next consider the time T2 provided by Proposition 3.3 for A = N1 [ F0.
Hence

L2 ⇢ 'T2
�1 (N1 [ F0) =: F1

and F1 is open and semi-flow invariant by the same reasoning as above. Note that
if there are no critical points of Morse index 1, then F1 = '0�1(; [ F0) = F0.
Proceeding iteratively we obtain a sequence of open semi-flow invariant subsets

; = F�1 ⇢ F0 ⇢ F1 ⇢ . . . ⇢ Fm = 3aM.
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x1

x0 L0 = ∅

N1

N0

exit set L1 ⊂ ϕT1
−1 (N0 ∪ F−1) =: F0

F−1 := ∅

Figure 3.1. Morse filtration F = (; ⇢ F0 ⇢ F1 ⇢ · · · ⇢ Fm = 3aM).

More precisely, recalling that 'T : 3aM ! 3aM for any T � 0 we set

Fk := 'Tk+1
�1 (Nk [ Fk�1) � Lk+1, k = 0, . . . ,m � 1, (3.6)

and
Fm := 'Tm+1

�1 (Nm [ Fm�1) = 3aM. (3.7)

Here Tk+1 is the time associated by Proposition 3.3 to the set A = Nk [ Fk�1. Note
that if there are no critical points whose Morse index is k or k + 1, then Fk = Fk�1
and Fk+1 = 'Tk+2

�1(Fk�1). Set F` := 3aM whenever ` > m.

Proofs

The proof of Theorem B uses Proposition 3.3 (Uniform time) which relies on
Lemma 3.1, that is (MS)nb. So we start with the

Proof of Lemma 3.1 (Morse-Smale on neighbourhoods). Assume the lemma is not
true. Then there are critical points x 6= y below level a with indV(x)  indV(y),
sequences of constants ⇢⌫ & 0 and s⌫ � 0, and a sequence of loops � ⌫

2 B⇢⌫
x such

that 's⌫ � ⌫
2 B⇢⌫

y . Thus � ⌫ converges to x and 's⌫ �
⌫ to y in the W 1,2 topology, as

⌫ ! 1. Moreover, it follows that s⌫ ! 1, as ⌫ ! 1. To see the latter assume
by contradiction that the sequence s⌫ is bounded. Then there is a subsequence, still
denoted by s⌫ , such that s⌫ converges to a constant T � 0. By continuity of the
semi-flow ' we conclude that 's⌫ � ⌫ converges in W 1,2 to 'T x , as ⌫ ! 1. But
'T x = x since critical points are fixed points. Since 's⌫ �

⌫ converges also to y in
W 1,2 we obtain the contradiction x = y.

Now consider the sequence of heat flow trajectories u⌫
: [0, s⌫] ⇥ S1 ! M ,

u⌫(s, t) :=

�
's�

⌫
�
(t).

Since the action is nonincreasing along heat flow trajectories and since � ⌫
2 B⇢⌫

x ⇢

3aM it follows that

max
s2[0,s⌫ ]

SV
�
u⌫(s, ·)

�
 SV

�
� ⌫

�
 a.
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So we have a uniform action bound on compact subcylinders of [0,1) ⇥ S1 for
the sequence u⌫ of heat flow trajectories. By the arguments used to prove [29,
Proposition 3] (Convergence on compact sets) and [29, Le. 4] (Compactness up to
broken trajectories) we obtain critical points x = x0, . . . , x` = y, where ` � 1,
and for each k 2 {1, . . . , `} a connecting trajectory uk 2 M(xk�1, xk;V) with
@suk 6⌘ 0. By the Morse-Smale condition (MS) the Morse index of xk is strictly
smaller than the one of xk�1. Thus indV(x0) > indV(xm). Contradiction.

Remark 3.4. The action functional SV : 3M ! R, � 7!
1
2k�̇ k

2
2 � V(� ), is

continuously differentiable. To see this observe that

dSV(� )⇠ = h�̇ ,rt⇠iL2 � hgradV(� ), ⇠iL2,

for all � 2 3M and ⇠ 2 W 1,2(S1, � ⇤T M). Continuity of the first term is obvious
and for the second term it follows from axioms (V0)–(V1). By definition the L2-
gradient of SV is determined by the identity dSV(� )⇠ = hgradSV(� ), ⇠iL2 for all
� 2 3M and ⇠ 2 W 1,2(S1, � ⇤T M). If � is of higher regularity W 2,2, then we
can carry out integration by parts and gradSV becomes a continuous section of the
Hilbert space bundle over W 2,2(S1,M) whose fiber over � is given by the Hilbert
space L2(S1, � ⇤T M) of L2 vector fields along � . In this case we obtain the explicit
representation

gradSV(� ) = �rt@t� � gradV(� )

whenever � 2 W 2,2(S1, � ⇤T M).

Proof of Proposition 3.3 (Uniform time). Apart from (M) and (MI), key ingredi-
ents are Palais-Smale (PS), Morse-Smale on neighbourhoods (MS)nb, and bound-
edness from below (BB). In Hypothesis 3.2 we chose V , ⇢, ", and ⌧ .

Fix k < m(a) and pick an open semi-flow invariant subset A ⇢ 3aM which
contains Crita

k but no other critical points. Assume Lk+1 6= ;, otherwise we are
done by setting Tk+1 = 0. Now assume by contradiction that there is no time T � 0
such that 'T Lk+1 ⇢ A. In this case there are sequences of positive reals s⌫ ! 1

and of elements � ⌫ of Lk+1 such that 's⌫ �
⌫ /2 A for every ⌫ 2 N. Choosing

subsequences, still denoted by s⌫ and � ⌫ , we may assume that all � ⌫ lie in the same
path connected component Lx of Lk+1 for some x 2 Critak+1. Here we use that
Critak+1 is a finite set since SV is Morse below level a; see [27].

Now consider the open neighbourhood of Crita in 3aM defined by

U := A [ (Nx \ Lx ) [

[
y2Crita

�k+1\{x}
Ny .

Indeed A is open by assumption and so are the neighbourhoods Nx and Nx \ Lx of
x by Theorem 1.7 and Definition 1.6 of a Conley pair. Note that

 := inf
�23aM\U

kgradSV(� )k2 > 0,
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is strictly positive. To see this assume by contradiction that  = 0. Then there is a
sequence zi in 3aM \ U such that kgradSV(zi )k2 ! 0, as i ! 1. So by Palais-
Smale a subsequence converges to some critical point in the closed set 3aM \ U .
But all critical points below level a lie in the open set U . Contradiction.

None of the elements 's⌫ �
⌫ of 3aM lies in U : Indeed 's⌫ �

⌫ /2 A by assump-
tion. Furthermore, such an element cannot lie in the union of the Ny’s, because
otherwise we would have a flow line from Nx ⇢ B⇢

x to Ny ⇢ B⇢
y thereby contra-

dicting Lemma 3.1 (Morse-Smale on neighbourhoods) since indV(x)  indV(y). It
remains to check that 's⌫ � ⌫ /2 Nx \ Lx . To see this set c := SV(x) and recall that
� ⌫ lies in Lx which is positively invariant in Nx by Definition 1.6 (iii). Assume
that the semi-flow trajectory through � ⌫ leaves Lx , thus simultaneously Nx , say at
a time s⇤. (Otherwise, if it stayed inside Lx forever, we are done.) By definition of
Nx = N ",⌧

x and the downward gradient property the point 's⇤� ⌫ reaches the action
level c � " precisely after time ⌧ , that is SV('⌧ ('s⇤�

⌫)) = c � ". Since the action
decreases along heat flow trajectories we conclude that SV('⌧ ('s⇤+s�

⌫))  c � "
whenever s � 0. Thus the semi-flow line through 's⇤�

⌫ cannot re-enter Nx (nor its
subset Lx ). To summarize we know that '[0,s⇤)�

⌫
⇢ Lx and '[s⇤,1)�

⌫
\ Nx = ;.

But this proves that '[0,1)�
⌫

\ (Nx \ Lx ) = ;.
More generally, it even holds that 's� ⌫ /2 U whenever s 2 [0, s⌫] and ⌫ 2 N:

Indeed 's�
⌫ cannot lie in A, since A is semi-flow invariant by assumption and

's⌫ �
⌫ /2 A. That 's� ⌫ /2 Nx \ Lx has been proved in the previous paragraph. The

statement for the union of the Ny’s follows by the same Morse-Smale argument
given in the previous paragraph for s = s⌫ .

To finally derive a contradiction use the fact that 's is the semi-flow generated
by the negative L2-gradient of SV to obtain that

SV(� ⌫) � SV('s⌫ �
⌫) =

Z 0

s⌫

d
ds
SV('s�

⌫) ds

=

Z 0

s⌫
dSV |'s(� ⌫) �

✓
d
ds

's�
⌫

◆
ds

=

Z s⌫

0

��gradSV �
's�

⌫
���2
2 ds

� 2s⌫,

where the inequality uses the definition of  and the fact that 's� ⌫ /2 U whenever
s 2 [0, s⌫]. Since  > 0, we get that

SV('s⌫ �
⌫)  SV(� ⌫) � 2s⌫  a � 2s⌫ �! �1, as ⌫ ! 1.

But this contradicts the fact that SV is bounded from below by�C0 where C0 is the
constant in axiom (V0). This concludes the proof of the case k < m.

In the case k = m pick an open semi-flow invariant subset A ⇢ 3aM which
contains Crita . Assume by contradiction that there is no time T � 0 such that
'T (3aM) ⇢ A. Then there are sequences s⌫ ! 1 and � ⌫ in (3aM) \ A such
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that 's⌫ � ⌫ /2 A for ⌫ 2 N. Now repeat for the much simpler U := A the argument
given in the case k < m. This proves Proposition 3.3.

Proof of Theorem B (Morse filtration and chain group isomorphism). We use all
properties (M)–(MS)nb. First pick an integer k 2 {0, . . . ,m(a)} where m(a) is the
maximal Morse index (3.5) among the (finitely many) elements of Crita . Observe
that a set A is semi-flow invariant, that is 'T A ⇢ A for every time T � 0, if and
only if A ⇢ 'T

�1(A) for every time T � 0. This observation for A = Nk [ Fk�1
and the definition of Fk , see (3.6) and (3.7), show that

Fk�1 ⇢ (Nk [ Fk�1) ⇢ 'Tk+1
�1 (Nk [ Fk�1) =: Fk . (3.8)

This proves (i) in Definition 1.3 of a cellular filtration. Because Fm = 3aM
by (3.7), condition (ii) is obviously true. Thus to prove that F(3aM) = (Fk)
is a cellular filtration of 3aM it remains to verify condition (iii) in Definition 1.3.

Putting together the individual isomorphisms given by (2.18) for each critical
point x provides the isomomorphism

2k : CMa
k (SV) !

M
x2Critak

Hk(Nx , Lx )

hxi 7!

⇣
0, . . . , 0,

�
◆ � # x�

⇤
(�hxiak)| {z }

= [Du
hxi] by (2.22)

, 0, . . . , 0
⌘
,

between Abelian groups. It is well defined since �hxi 2 {±1} defined by (2.20)
changes sign when replacing the orientation hxi of the unstable manifold of x by
the opposite orientation �hxi.

By (3.8) and (3.6) there is the inclusion of pairs ◆ : (Nk, Lk) ,! (Fk, Fk�1).
Further below we will prove that it induces an isomorphism on homology

◆⇤ : H⇤(Nk, Lk)
⇠
=

�! H⇤(Fk, Fk�1). (3.9)

Recall from (3.4) that Nk = [x Nx is a union of disjoint subsets. Therefore

�◆x
⇤

:

M
x2Critak

H`(Nx , Lx )
⇠
=

�! H`(Nk, Lk),

is an isomorphism for each ` 2 Z; see, e.g. [5, III, Proposition 4.12]. Now if
` 6= k, then (each summand of) the left hand side is zero by Theorem 2.15. Hence
H`(Fk, Fk�1) = 0 by (3.9), that is condition (iii) in Definition 1.3 holds true, and
F(3aM) = (Fk) is a cellular filtration of 3aM . If ` = k, then again by Theo-
rem 2.15 each group Hk(Nx , Lx ) is generated by the homology class of the disk
Du
x ⇢ Wu(x). By (3.9) this shows that F(3aM) is a Morse filtration.
Next assume b  a is also a regular value. It’s a first impulse to take as

F(3bM) = (Fbk ) the sequence of intersections (Fk \ 3bM). But then how to
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calculate H`(Fk \ 3bM, Fk�1 \ 3bM)? Let’s start differently with the simple ob-
servations that Critb ⇢ Crita and that the sets Nk and Lk defined by (3.4)a contain,
respectively, the sets Nb

k and L
b
k given by (3.4)b. Now define the sets

F(3bM) =

⇣
Fbk

⌘
, (3.10)

iteratively by (3.6)b using the sets Nb
k and F

b
k�1 and taking pre-images with respect

to the semi-flow on 3bM . However, concerning the new times T bk+1 observe that
setting T bk+1 equal to the old time Tk+1 = Tk+1(a) is absolutely fine to satisfy the
crucial condition Fbk � Lbk+1. The proof that F(3bM) defined this way is a Morse
filtration is no different from the proof for F(3aM).18

To complete the proof it remains to establish the isomorphism (3.9). Similarly
as in (2.19) the idea is to establish a number of consecutive isomorphisms

H`(Fk, Fk�1)
1
⇠
= H`(Nk [ Fk�1, Fk�1)
2
⇠
= H`(Nk, Nk \ Fk�1)
3
⇠
= H`(Nk, Lk),

(3.11)

and show that each generator [Du
x ] is invariant under the composition of these iso-

morphisms. So the image under ◆⇤ of any basis of H⇤(Nk, Lk) consisting of such
elements [Du

x ], one for each x 2 Critak , is an isomorphic image of that same basis.
Hence ◆⇤ takes bases in bases and therefore it is an isomorphism; cf. (2.19).

The first isomorphism uses the fact that the open semi-flow invariant sets

X := Fk := 'Tk+1
�1(Nk [ Fk�1), A := Nk [ Fk�1,

are homotopy equivalent: reciprocal homotopy equivalences are given by

r : X ! A, � 7! 'Tk+1� , ◆ : A ,! X = 'Tk+1
�1(A), (3.12)

where ◆ denotes inclusion. Indeed ◆ � r is homotopic to idX via the homotopy
{h� : X ! X, � 7! '�Tk+1� }�2[0,1] and r � ◆ is homotopic to idA via the homo-
topy { f� : A ! A, � 7! '�Tk+1� }�2[0,1]. Now by homotopy equivalence of the
sets X and A their singular homology groups are isomorphic; see, e.g. [5, Corol-
lary 5.3, III]. Hence H⇤(X, A) = 0 by the homology sequence of the pair (X, A),
see loc. cit. (3.2), and this implies the first isomorphism (use the homology sequence
of the triple B ⇢ A ⇢ X for B = Fk�1; loc. cit. (3.4)).

Alternatively, observe that ◆ and r are reciprocal homotopy equivalences as
maps of pairs r : (X, B) ! (A, B) and ◆ : (A, B) ! (X, B) since both homotopies

18 Note that the sets Fbk are equal to the intersections Fk \ 3bM ...
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h� and f� preserve the semi-flow invariant set B = Fk�1. Thus the induced map
on homology r⇤ : H⇤(X, B) ! H⇤(A, B) is an isomorphism with inverse ◆⇤; see,
e.g. [5, Corollary 5.3, Chapter III].

Since r = 'Tk+1 leaves the parts int Du
x of the disks Du

x outside Lk invariant
(as sets) it holds that [r(Du

x )] = [Du
x ] as elements of H⇤(Nk, Lk).

The second isomorphism uses the excision axiom. Consider the topological
space X := Nk [ Fk�1 and its subset A := Fk�1 which is open in X by openness of
Fk�1 in 3aM . For the same reason Nk is open in X . Therefore Nk \ Fk�1 is open
in X . Observe that

X = Nk \ (Nk \ Fk�1) [ (Nk \ Fk�1) [ Fk�1 \ (Nk \ Fk�1)

is a union of three disjoint sets of which the second one is open. Thus the com-
plement of set two is closed and consists of the disjoint sets one and three. Hence
each of them is closed in X . Note that set three is equal to B := Fk�1 \ Nk . Since
cl B = B ⇢ A = int A we are in position to apply the excision axiom in order to
cut off B from X and from A without changing relative homology; see Figure 3.2
and, e.g. [5, Corollary 7.4, III].

Lk ⊂ ϕTk
−1 (Nk−1 ∪ Fk−2) =: Fk−1exit set

Nkx

Fk−1 ∩ Crit = Crita0 ∪ . . . ∪ Crita
k−1 =: Crita

≤k−1

Fk−1

Figure 3.2. The sets Lk ⇢ Nk and Fk�1.

Note that all disks Du
x are disjoint from the cut off set B. Therefore excision

does not affect any of these disks.
The third isomorphism is based on the fact that there is a strong deforma-

tion retraction r : A := Nk \ Fk�1 ! Lk =: B as illustrated by Figure 3.2.
Hence the singular homology groups of A and B are isomorphic; see, e.g. [5, Corol-
lary 5.3, III]. Thus H⇤(A, B) = 0 by the homology sequence of the pair (A, B),
see loc. cit. (3.2), which implies existence of the third isomorphism H⇤(Nk, A) ⇠

=

H⇤(Nk, B) in (3.11) – to see this use the homology sequence of the triple B ⇢ A ⇢

Nk ; see loc. cit. (3.4). Because r is defined (below) by flowing points forward until
Lk is reached, the disks Du

x ⇢ Wu(x) are invariant (as sets) under r and therefore
[r(Du

x )] = [Du
x ] as elements of H⇤(Nk, Lk).

To construct the strong deformation retraction r : A ! B consider the en-
trance time function

T = TLk : Nk \ Fk�1 ! [0,1)

� 7! inf{s � 0 | 's� 2 Lk},
(3.13)

associated to the subset Lk of Nk \ Fk�1. We use the convention inf; = 1. Con-
cerning the target [0,1) as opposed to [0,1] observe that the semi-flow moves



STABLE FOLIATIONS AND SEMI-FLOW MORSE HOMOLOGY 897

any element � 2 Nk \ Fk�1 into Lk in some finite time: By [28, Theorem 9.14]
which uses that SV is Morse below level a, the asymptotic forward limit

�1 := lim
s!1

's� 2 Crita \ Fk�1 = Crita
k�1,

exists and is some critical point below level a. Concerning the right hand side
we used that Fk�1 is semi-flow invariant and contains precisely the critical points
(below level a) of Morse index less or equal to k � 1. Hence �1 /2 Nk , because the
critical points inside Nk are of Morse index k. This shows that the trajectory with
initial point � leaves Nk . But doing so it has to run through the exit set Lk of Nk by
Definition 1.6 (iv). Thus the entrance time T (� ) in Lk is finite.

Note that the infimum in (3.13) is actually taken on by (relative) closedness of
Lk . Below we prove that T is continuous. Consequently the map defined by

r : A = Nk \ Fk�1 ! Lk = B
� 7! 'T (� )� ,

takes values in B and is continuous. But r � ◆ = idB and ◆ � r = h1 is homotopic
to idA = h0 via the homotopy {h� : A ! A, � 7! '�T (� )� }�2[0,1]. Thus r is a
strong deformation retraction and it only remains to check continuity of T .19

The entrance time function T is continuous: in [1, Lemma 2.10] tells that
the entrance time function associated to a closed/open subset is lower/upper semi-
continuous. Thus T = TLk is lower semi-continuous by closedness of Lk in Nk \

Fk�1. So it remains to prove upper semi-continuity. Although Lk is not open, it
behaves like an open set under the forward semi-flow. Namely, any element of Lk
remains inside Lk for sufficiently small times by openness of Nk and because Lk is
positively invariant in Nk . More precisely, choose �0 2 Nk\Fk�1 and � > 0. Recall
from (3.4) that �0 2 Nx \ Fk�1 for some path connected component Nx = N ",⌧

x
of Nk . As we saw above T (�0) is finite and 'T (�0)�0 lies in the boundary of Lx
relative Nx , that is

'T (�0)�0 2 @Lx =

⇣
('2⌧ )

�1
{SV = c � "}

⌘
\ {SV < c + "}, c := SV(x),

although not yet in its interior

int Lx =

⇣�
'(⌧,2⌧ )

�
�1

{SV = c � "}
⌘

\ {SV < c + "}.

By continuity of ' there is a time T 2 (T (�0),T (�0) + �) such that (the possibly
small) forward flow segment '[0,T ]�0 is still contained in the open subset Nx ⇢

3aM .20 Thus 'T �0 2 Lx by positive invariance of Lx in Nx , see Definition 1.6 (iii),
and 'T �0 2 int Lx since T (�0) < T < T (�0) + ⌧ . Thus by continuity of ' in the

19 In such situations the Katětov-Tong insertion Theorem [7,24] can be very useful: Given func-
tions u  ` : X ! R on a normal topological space with u upper and ` lower semi-continuous.
Then there exists a continuous function f : X ! R in between, that is u  f  `.
20 Necessarily T < T (�0) + ⌧ since already 'T (�0)+⌧ �0 = '⌧ ('T (�0)�0) lies outside Nx .
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loop variable � there is a neighbourhood U of �0 in the open subset Nk \ Fk�1 ⇢

3aM such that its image 'T (U) is contained in the open neighbourhood int Lx of
'T �0 in3aM . Thus, given any � 2 U , time T lies in the set whose infimum (3.13)
is T (� ) and therefore T (� )  T < T (�0) + �. (3.14)

This shows that T is upper semi-continuous at any �0 2 Nk \ Fk�1 and concludes
the proof that T is continuous. The proof of Theorem B is complete.

3.2. Cellular and singular homology

Theorem 3.5. Assume SV is Morse-Smale below regular values b  a and con-
sider the Morse filtrations F(3bM) ,! F(3aM) provided by Theorem B. Then
there are natural isomorphisms

H⇤F
⇣
3bM

⌘
⇠
= H⇤

⇣
3bM

⌘
, H⇤F

�
3aM

�
⇠
= H⇤

�
3aM

�
(3.15)

which commute with the inclusion induced homomorphisms H⇤F
�
3bM

�
!

H⇤F (3aM) and H⇤

�
3bM

�
! H⇤ (3aM).

Proof. Apply [5, V Proposition 1.3] to the cellular map provided by inclusion.

Remark 3.6. Obviously for k negative or larger than the maximal Morse index
m(a) on 3aM there are no critical points of Morse index k. Thus there are no
generators of CkF(3aM) by Theorem B and therefore Hk(3aM) is trivial for such
k by (3.15).

3.3. Cellular and Morse chain complexes

In Theorem B we established isomorphisms
2k = 2k(#) : CMa

k (SV) ! CkF := Hk (Fk, Fk�1) , k 2 {0, . . . ,m(a)},

between the Morse complex associated to the Morse function SV on 3aM and the
cellular complex associated to the Morse filtration F = (Fk)mk=�1 of 3

aM defined
by (3.6). On the other hand, by (3.15) there is a natural isomorphism between cellu-
lar homology and singular homology of 3aM . So in order to establish the isomor-
phism in Theorem A between Morse homology and singular homology it suffices
to prove that the isomorphisms 2k intertwine the Morse and the triple boundary
operators.21 Remarkably, in this very last step also the forward �-lemma enters.
Proof of Theorem 1.5. For k = 0 both boundary operators are trivial. Fix k 2

{1, . . . ,m(a)}. Given the key Theorem B that relies on all properties (M)–(MS)nb,
the proof of [1, Theorem 2.11] essentially carries over modulo the little new twists
caused by the present use of push-forward orientations and the forward �-lemma.
For convenience of the reader we recall the proof and add further details.

21 In this case both chain complexes – the Morse complex of SV and the cellular complex of the
Morse filtration F – are equal (under the identifications provided by 2k ).
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Idea of proof (cf. Figure 3.3). In the unstable manifold Wu(x) one picks a certain
disk Du

x about x with bounding sphere Sux = ↵x (Sk�1) in the exit set Lx ⇢ Fk�1.
For large times T the forward flow 'T Sux = �x (Sk�1) largely enters Fk�2 – ex-
cept for center parts of embedded balls BT1 , . . . , BTN which get stuck near critical
points y of Morse index k � 1. The center of each ball corresponds to a connecting
trajectory u` from x to some y. In this case the center is u`(T ) and y = u`(1).
Homologically the splitting of the (k � 1)-sphere provided by isolated flow lines
emanating from x is encoded by identity (3.24). A relevant part of each thickened
flow line BT` is isotopic to the disk Du

y = # y(Dk�1) thereby transporting a given
orientation hxi of Wu(x) down to an orientation of Wu(y) denoted by u⇤hxi.

Fix an oriented critical point hxi of Morse index k and below level a and con-
sider the commutative diagram in which all maps whose notation involves ◆ or i are
inclusion induced.

H⇤(Nx , Lx )
◆x
⇤ // H⇤(Nk, Lk)

◆⇤⇠
=

✏✏
Hk(Dk, Sk�1)

�hxi[Dk
hcani]

# x
⇤

⇠
=

//

@ ⇠
=

✏✏

Hk(Du
x , Sux )

◆⇤ ⇠
=

OO

@ ⇠
=

✏✏

i x
⇤ //

Hk(Fk, Fk�1)
2khxi=[Du

hxi]

@

✏✏
Hk�1(Sk�1)

�hxi[Sk�1
hcani]

↵x
⇤
=(# x

|)⇤

⇠
=

//

J⇤

✏✏

�x
⇤
=('T ↵x )⇤

((QQQQQQQQQQQQQQQQ

Hk�1(Sux )
(i x |)⇤ //

('T )⇤ ⇠
=

✏✏

Hk�1(Fk�1)
[Su

hxi]=['T Su
hxi]

j⇤

✏✏

Hk�1('T Sux )

◆⇤

55llllllllllllllllll

j⇤

✏✏Hk�1(Sk�1, S⇤)

(3.24)
= �hxi

P
`[B`]

�x
⇤

⇠
=

// Hk�1('T Sux ,'T S⇤

x )
◆⇤ //

�hxi
P

`['T ↵x (B`)]

Hk�1(Fk�1, Fk�2)
=

P
`[Du

u`
⇤
hxi

]=

P
` 2(u`

⇤
hxi)

L
`Hk�1(B`, @B`)

�hxi[B`]

�` ◆`
⇤

⇠
=

OO

L
`Hk�1(Dk�1, Sk�2)

�hxiak�1=�hxi[Dk�1
hcani]

diag(✓`
⇤
)

⇠
=

oo

�` #̄
y(`)
⇤

88ppppppppppp

, y = y(`) := u`(+1)

u`(0)=↵x (⇠`), ⇠`2B`⇢Sk�1
.

The elements of the homology groups shown above/below the horizontal brackets
are mapped to one another by the maps labelling the arrows. The diffeomorphism
# x

: Dk
! Du

x := '�2⌧Wu
" (x) ⇢ Nx , see (2.18) and Figures 2.7 and 3.3, is the one
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y

Du
y ⊂ W u(y)

Su
x

ϕT Su
x

αx(B )

Fk−1

Fk−2

=: BT

Du
x

x ∈ Critk

u (T )
ϕT αx(B )

u

Figure 3.3. Isolated flow lines u` and embedded balls ↵x (B`).

corresponding to x in the sequence # chosen to define 2k and ↵x = # x
| denotes

restriction to the boundary Sk�1. The maps j and J are the usual projection maps in
their respective short exact sequence of pairs. The rectangle in row one commutes,
simply because all maps are inclusions. The two squares in row two commute
by naturality of long exact sequences of pairs and so do the two (nonrectangular)
squares in row three. The left triangle commutes by definition of �x in (3.17) and
the right one as the embedded (k � 1)-spheres

Sux := ↵x (Sk�1) ⇢ Lx ⇢ Lk ⇢ Fk�1 := 'Tk
�1(Nk�1 [ Fk�2), (3.16)

and 'T Sux of Wu(x) are not only diffeomorphic but even isotopic inside the (semi-
flow invariant) set Fk�1. Commutativity of the final row uses an isotopy provided
by the forward �-lemma; see (3.25).

For now ignore the last two lines of the diagram. However, for later use let us
mention right away that we abbreviated relevant ball complements by

S⇤

:= Sk�1 \ [` int B`, S⇤

x := Sux \ [` ↵x (int B`).

These punched spheres are given by the complement of open balls int B` in Sk�1
and the complement of the corresponding open balls ↵x (int B`) in the correspond-
ing sphere ↵x (Sk�1) = Sux , respectively.

Recall the canonical orientations of Dk and Sk�1 and the positive generators
ak = [Dk

hcani] and bk�1 = [Sk�1
hcani] of Hk(Dk, Sk�1) and Hk�1(Sk�1), respectively,

introduced in Definition 2.14. With these conventions the connecting homomor-
phism @ : Hk(Dk, Sk�1) ! Hk�1(Sk�1) maps ak to [@Dk

hcani] = bk�1.
The task at hand is to express the action of the triple boundary operator on a
generator

2khxi := #̄ x
⇤
(�hxiak) = [Du

hxi] 2 Hk(Fk, Fk�1) = CkF
of CkF in terms of generators [Du

y ] 2 Ck�1F where the Du
y ⇢ Wu(y) are appropri-

ately oriented disks – one for each flow trajectory connecting x to some y 2 Critak�1.
Recall that ↵x = # x

| : Sk�1 ! Sux is a diffeomorphism. Abbreviate

↵̄x := i x � ↵x : Sk�1 ! Sux ,! Fk�1,
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and

�x := 'T � ↵x , �̄x := ◆ � �x : Sk�1 ! 'T Sux ,! Fk�1, (3.17)

where T � 1 will be defined in (3.21) below. Use the definition (1.14) of 2k , the
identity (1.13) for @ tripk , and commutativity of the huge diagram above to obtain the
following identities⇣

@
trip
k 2k

⌘
hxi =

�
j⇤@i x⇤# x

⇤

�
(�hxiak)

= �hxi
�
j⇤↵̄x⇤

�
(bk�1)

= �hxi
�
j⇤�̄x⇤

�
(bk�1)

= �hxi
�
�̄x

⇤
J⇤
�
(bk�1)

=

X
y2Critak�1

X
u2mxy

�
i y
⇤
#
y
⇤

� �
�u⇤hxiak�1

�
| {z }

2k�1(u⇤hxi)

(3.18)

among which only the final one remains to be proved. To start with observe that by
the Morse-Smale condition together with index difference one the pre-image

{⇠1, . . . , ⇠N } := (↵x )�1

0
@ [
y2Critak�1

Ws(y)

1
A ⇠

=

[
y2Critak�1

mxy,

is a finite subset of Sk�1 which parametrizes22 the set of (unparametrized) heat flow
lines running from x to some critical point of Morse index k � 1; cf. (1.9) and [29,
Proposition 1]. We denote by u` the (unique) heat flow trajectory which passes at
time s = 0 through the point ↵x (⇠`) 2 Wu(x) \ Ws(y) where y = y(`) := u`(1)
is the corresponding critical point of Morse index k � 1; see Figure 3.3. Pick a
time s` > 0 such that the point u`(s`) = 's`↵

x (⇠`) already lies in the ball B⇢/2
y

about y where the radius ⇢ > 0 only depends on the action value a; see Lemma 3.1
(Morse-Smale on neighbourhoods).

By asymptotic forward existence [28, Theorem 9.14] and strictly decreasing
Morse index along connecting orbits due to theMorse-Smale condition, Lemma 3.1,
all elements of the punctured sphere Sk�1 \ {⇠1, . . . , ⇠N } are mapped under ↵x to
points of Wu(x) which asymptotically converge in forward time to some critical
point z below level a and of Morse index strictly smaller than k � 1. But such criti-
cal points are contained in Fk�2; see Definition 1.4. Fix N pairwise disjoint closed
balls ◆` : B` ,! Sk�1 centered in ⇠` 2 Sk�1 and sufficiently small such that

's`↵
x (B`) ⇢ B⇢

y(`) , ` = 1, . . . , N =

X
y2Critak�1

|mxy|. (3.19)

22 Note that ↵x (Sk�1) \ Ws(y) = Sux \ Ws(y) ⇠
= '2⌧ Sux \ Ws(y) = Su" (x) \ Ws(x) ⇠

= mxy
where Su" (x) is contained in a level set; both diffeomorphisms arise by restricting the heat flow to
unstable manifolds; cf. Remark 2.1.
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The canonical orientation of Sk�1 induces a canonical orientation of B`.23
Throughout we denote by B` the ball equipped with its canonical orientation.

Associated to the closed subset Fk�2 ⇢ 3aM , see (3.13), there is the continu-
ous24 entrance time function TFk�2 : 3aM ! [0,1]. The function

f : S⇤

= Sk�1 \ [` int B` ! [0,1),

⇠ 7! TFk�2
�
↵x (⇠)

� (3.20)

is continuous and also pointwise finite.25 Hence by compactness of its domain, that
is the punched sphere S⇤, the function f admits a maximum. (Note that Fk�2 =

F�1 = ; in the case k = 1.) Consider the instants of time

T := max {Tk, sx , 1+max f } , sx := max{s1, . . . , sN }, (3.21)

which come with the following consequences. Firstly, by (3.16) there is the crucial
inclusion 'T Sux ⇢ Nk�1 [ Fk�2. This inclusion, together with (3.2), (3.3), (3.19),
and the facts that Nk�1 = [z Nz and Nz ⇢ B⇢

z , implies that

u`(T ) 2 Ny(`), BT` := 'T↵x (B`) ⇢ Ny(`) [ Fk�2. (3.22)

Secondly, the image 'T (Sux ) of the map �̄x largely lies downtown in Fk�2 ex-
cept for (small neighbourhoods of) the points u`(T ) each of which gets stuck at
a critical point y = y(`) := u`(+1) 2 Critak�1; see Figure 3.3. Via the isotopy
{'�T �↵̄x }�2[0,1] the map ↵̄x is homotopic to �̄x in Fk�1. Thus [Sux ] = ↵̄x

⇤
([Sk�1]) =

�̄x
⇤
([Sk�1]) = ['T Sux ] as elements of Hk�1(Fk�1) by the homotopy axiom of sin-

gular homology. Most importantly, the map �̄x is well defined as a map between
the pairs of spaces indicated in the following diagram.

Fix for every ` an orientation preserving diffeomorphism ✓`
: Dk�1

hcani ! B`

and consider the commutative diagram of maps of pairs

(Dk�1, Sk�2)

✓`

✏✏

Sk�1

J
✏✏

�̄x=◆'T ↵x // Fk�1

j
✏✏

(B`, @B`)
◆` //

�
Sk�1, Sk�1 \ [` int B`

� �̄x // (Fk�1, Fk�2).

(3.23)

Here J and j denote inclusions of pairs X = (X,;) 7! (X, A). The identity

J⇤(bk�1) =

NX
`=1

✓̄ `
⇤
(ak�1), ✓̄ `

:= ◆`✓`, (3.24)

23 For k = 1 the sphere S0 consists precisely of the N = 2 points ⇠1 = �1 and ⇠2 = +1, whose
complement is empty. The two 0-balls are given by B` = {⇠`} and Fk�1 = F

�1 = ;.
24 Lower semi-continuity holds by closedness of the subset and upper semi-continuity follows
from the fact that Fk�1 is positively invariant by the arguments which led to (3.14).
25 As observed earlier for each ⇠ 2 S⇤ the point ↵x (⇠) lies on a trajectory which connects x with
some z 2 Crita

k�2 ⇢ Fk�2. Thus ↵x (⇠) reaches the open set Fk�2 in finite time.
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provided by [1, Exercise 2.12] proves the first of the two identities

�hxi ·

�
�̄x

⇤
J⇤
�
(bk�1) = �hxi ·

NX
`=1

⇣
�̄x ✓̄ `

⌘
⇤

(ak�1)

=

NX
`=1

�u`
⇤
hxi · #̄

y
⇤
(ak�1).

(3.25)

To conclude the proof of (3.25), thus of (3.18), hence of Theorem 1.5, it remains to
prove that the maps

�hxi · (�̄x ✓̄ `)⇤ and �u`
⇤
hxi · #̄

y
⇤

: Hk�1(Dk�1, Sk�2) ! Hk�1(Fk�1, Fk�2) (3.26)

coincide on the positive generator ak�1. By definition (2.21) of the orientation
reversing diffeomorphism µ = diag(�1, 1, . . . , 1) 2 L(Rk�1) and hxi 2 {0, 1}
this holds true if the by µ pre-composed maps of pairs26 (illustrated by Figure 3.4)

�̄x ✓̄ `µhxi and #̄ yµ`
: (Dk�1, Sk�2) ! (Fk�1, Fk�2), ` := u`

⇤
hxi,

are isotopic, thus homotopic among orientation preserving maps.27

ϕT

ϑx ◦ µκ x

chosen or.
preserving

κ := κu∗ x

ϑy ◦ µκ

2..k

u (T )

αx ◦ µκ x
1

1..k-1

2..k

(βx := ϕT ◦ αx)

1

2..k

2..k

θ1

B

y

Rk−1

Du
y =u∗ x

⊂ W u(y)

ξ

x ∈ Critak

αx(B )BN

B1

BT

Du
x

Su
xDk

θ

Dk−1

Sk−1

u (0)

u

Figure 3.4. All maps are orientation preserving by choice of the exponents  .

The proof takes two steps. First we isotop (a relevant part of) the map �̄x ✓̄ ` to #̄ y ,
then in step two we verify that all chosen orientations are preserved.

26 Changing the sign of the image of a homology class corresponds to pre-composing the map
with an orientation preserving diffeomorphism such as µ. Certainly µ = µ1 and µ0 := 1l.
27 It suffices to show that the first map takes the canonically oriented disk Dk�1 to a disk isotopic
to Duy(`) endowed with the transported orientation u

`
⇤
hxi as the latter is #̄ yµ`(Dk�1

hcani).
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Step 1 (Isotopy). We construct an isotopy of maps of pairs

(Dk�1, Sk�2) ! (Ny [ Fk�2, Fk�2) ⇢ (Fk�1, Fk�2),

between (relevant parts of) the embedded disks

�̄x ✓̄ `(Dk�1) = 'T↵x (B`) =: BT` and #̄ y(Dk�1) = Du
y where y = u`(1).

Remarkably at this very late stage of the whole project eventually the forward ana-
logue of the Backward �-lemma [31, Theorem 1] enters as a crucial tool.28 This is a
local result valid in a neighbourhood of a hyperbolic fixed point.29 We assume with-
out loss of generality that the forward �-lemma applies on the whole domain of our
usual local coordinates8�1 near any of the finitely many critical points on3aM .30
From now on we fix a local parametrization 8 : Ty3M = X = X�

� X+
�

Bu ⇥ B+
! 3M near y = y(`) and use our usual conventions concerning local

notations; see Hypothesis 2.2 and Figure 3.5. In particular, the local flow is denoted
by � and Su" abbreviates the descending sphere Su" (y). However, we will not change
notations such as Ny , Lk�1, Fk�2 etc.

BuDu
y

W u ⊂ X−

BT

∂uVr ⊂ Fk−2

Ly

Ny

B+

Su

X+

0

B+
r

Vr = Bu × B+
r

V = Bu × B+

W s

graph GT = DT

Figure 3.5. Isotopy {graph �GT
}�2[0,1] between DT

` and B
u

� Du
y .

Observe that ��2⌧ Su" ⇢ Ly ⇢ Lk�1 ⇢ Fk�2 where the three inclusions hold by
Proposition 2.13, (3.4), and (3.6), respectively. Thus

Wu
\ Du

y = �(�2⌧,1)Su" = �(0,1)(��2⌧ Su" ) ⇢ Fk�2, (3.27)

by semi-flow invariance of Fk�2. Because Ny ⇢ B⇢
y ⇢ B2⇢y ⇢ Bu ⇥ B+ by

Hypothesis 3.2, the (k � 1)-sphere Su := @Bu ⇢ Wu is disjoint to Ny , thus to
Du
y . In fact, the distance between Su and Ny is at least ⇢. Consequently Su ⇢

Wu
\ Du

u ⇢ Fk�2 by (3.27). Therefore by openness of Fk�2 and compactness of its

28 Since all dynamics takes place locally near y in the closure of the unstable manifold of x even
the standard finite dimensional �-lemma, see, e.g. [14, Chapter 2, Section 7], serves our purposes.
29 Alternatively, apply the hyperbolic tools used in [1, Proof of Theorem 2.11].
30 Otherwise, start with a smaller radius ⇢0 in Hypothesis 3.2.
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subset Su there is a radius r 2 (0, 1) such that the family Su ⇥ B+

r of radius r balls
B+

r about 0 2 X+ is contained in Fk�2. To summarize

@uVr := Su ⇥ B+

r ⇢ Fk�2, @uVr \ Ny = ;. (3.28)

The forward �-lemma asserts that for every sufficiently large time T the part

DT
` := BT` \

�
Bu ⇥ B+

�
= graph GT , GT

2 C1(Bu, B+),

of the disk BT` = 'T↵x (B`) = �x✓`(Dk�1) inside Bu ⇥ B+ is the graph of a C1
map GT

: Bu ! B+ whose C1 norm converges to zero, as T ! 1. Thus choose
T in (3.21) larger, if necessary, to obtain that kGT

kC1 < r . Then, as elements of
Hk�1(Fk�1, Fk�2), the following classes are equal

⇣
�̄x ✓̄ `

⌘
⇤

h
Dk�1

i
=

h
BT`

i
=

h
DT

`

i
=

⇥
Bu

⇤
=

h
Du
y

i
=

�
#̄ y�

⇤

h
Dk�1

i
.

Here the first identity is just by definition of the maps. The class of BT` is well
defined in relative homology by (3.23) building on definition (3.21) of T . The part
of the disk BT` in V is D

T
` = GT (Bu) whose boundary lies in @uVr , hence in Fk�2

by (3.28). So DT
` is a cycle relative Fk�2. On the other hand, its complement B

T
` \

DT
` lies outside V , hence outside Ny , and therefore in Fk�2 by (3.22). Consequently

the classes of BT` and D
T
` coincide relative Fk�2. Concerning identity three observe

that DT
` and B

u are isotopic through the embedded disks graph�GT , for � 2 [0, 1],
whose boundaries lie in @uVr ⇢ Fk�2. Identity four uses that Bu\Du

y ⇢ Wu
\Du

y ⇢

Fk�2 by (3.27). The final identity five holds by choice of the diffeomorphism # x

in (2.17).
This proves (3.26) modulo signs. So it only remains to study orientations.

Step 2 (Orientations). To prove (3.26) recall the definition of the transport u`
⇤
hxi

of the orientation hxi ofWu(x) along the heat flow trajectory u` between the critical
points x and y := u`(+1) towards an orientation of Wu(y). By Lemma 2.9 for
small " > 0 the ascending disk Ws

" (y) is a codimension (k � 1) submanifold of
3aM . Choosing T larger, if necessary, the point p` := u`(T ) which anyway lies
on the trajectory u` from x to y moves closer to y and eventually lies in Ws

" (y). By
the Morse-Smale condition the orthogonal31 complement Tp`Ws

" (y)? is a subspace
of Tp`Wu(x). The latter splits as a direct sum of subspaces

Tp`W
u(x) = R

� d
ds's p`

�
� Tp`W

s
" (y)?, p` := u`(T ). (3.29)

Since two of the three vector spaces are oriented, namely by hxi and by the down-
ward flow, the third space inherits an orientation as well. Thereby providing a
co-orientation along all of the (contractible) ascending disk Ws

" (y), in particular, at

31 With respect to the Hilbert structure of 3M .
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the point y itself. But TyWs
" (y)? = TyWu(y), so the co-orientation determines an

orientation of the unstable manifold Wu(y) called the push-forward orientation of
hxi along the flow line u` and denoted by u`

⇤
hxi.

On the other hand, the boundary orientation of Sk�1 is determined by an out-
ward pointing vector field and the canonical orientation ofDk . Given the orientation
hxi of Wu(x), the boundary orientation of the (k � 1)-sphere Sux = @Du

x ⇢ Wu(x)
arises the same way using the (outward pointing) downward gradient vector field.
But the sign �hxi of the diffeomorphism # x has been chosen in (2.20) precisely to
make # x

� µhxi and its restriction to the boundary preserve these orientations. In
particular, there is the oriented direct sum

⌦
Tp`W

u(x)
↵
hxi =

⌦
R
� d
ds's p`

�↵
flow �

D
Tp`B

T
`

E
'T ↵xµ

hxi
. (3.30)

Compare these orientations with the ones in (3.29), which determine u`
⇤
hxi, to ob-

tain that ('T ↵̄xµhxi)⇤(Dk
hcani) = u`

⇤
hxi = (#̄ yµ`)⇤(Dk

hcani) where ` = u`
⇤
hxi and

where the second identity holds by the very definition of the sign �u`
⇤
hxi.

3.4. The natural isomorphism on homology

Theorem 3.7. Suppose M is simply connected. Assume V : LM ! R is a per-
turbation that satisfies (V0)–(V3) in [29] and SV is Morse-Smale below a regular
value a 2 R. Then there is a natural isomorphism

9a
⇤

: HMa
⇤
(3M,SV) ! H⇤(3

aM)

which commutes with the homomorphisms HMb
⇤
(3M,SV) ! HMa

⇤
(3M,SV) and

H⇤(3
bM) ! H⇤(3

aM) for b < a.

Proof of Theorem 3.7. Suppose SV is Morse-Smale below level a and b  a are
regular values. Consider the Morse filtrations F(3bM) ,! F(3aM) provided
by (3.6) and (3.10). Then the desired natural isomorphism is the composition of the
two horizontal natural isomorphisms in the following diagram.

9a
⇤

: HMa
⇤
(3M,SV)

⇠
=

[2a
⇤
]

// H⇤F (3aM)
⇠
=

(3.15) // H⇤({SV  a})

9b
⇤

: HMb
⇤
(3M,SV)

◆⇤

OO

⇠
=

[2b
⇤
]

// H⇤F
�
3bM

�
⇠
=

(3.15) //

◆⇤

OO

H⇤({SV  b})

◆⇤

OO

Concerning the left rectangle observe that already both chain complexes, underlying
HM⇤ and H⇤F , are naturally identified for each regular level b  a by the chain
complex isomorphism 2b

⇤
– see Theorem B and Theorem 1.5 – which we actually

established above for the present class of abstract potentials V . Each of the two
vertical maps ◆⇤ is induced by the inclusion of the subcomplex associated to b.
Thus the left rectangle already commutes on the chain level. The right rectangle is
due to and commutes by Theorem 3.5.
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Above and below Theorem B enters which uses all properties (M)–(MS)nb.

Proof of Theorem A. Consider theMorse functionSV in TheoremA and pick a reg-
ular value a. Then the transversality theorem [29, Section 1.2, Theorem 8] provides,
for each regular perturbation v 2 Oa

reg, the second of the two natural isomorphisms

HMa
⇤
(3M,SV+v)

9a
⇤

⇠
= H⇤({SV+v  a}) ⇠

= H⇤({SV  a}), (3.31)

where, of course, the notation SV+v is slightly abusive. The first isomorphism
9a

⇤
is due to Theorem 3.7 and the second one to [29, Section 5.2, Proposition 8].

Concerning 9a
⇤
it is crucial that SV+v is Morse-Smale below level a – which holds

by regularity of v – and concerning the second isomorphism that v lies in the radius
ra ballOa defined by [29, (63)]. This proves (1.12), thus the first part of TheoremA.

Now assume that a < b are regular values of SV . The set of admissible per-
turbations Ob given by [29, (63)] is a closed ball about zero in a separable Banach
space. Pick a regular perturbation v 2 Ob

reg ⇢ Ob whose norm is bounded from
above by the constant �a/2 given by [29, (61)]. In this case v is in the setOa by [29,
Section 5.2 Remark 4] and therefore enjoys the properties stated in [29, Section 5.2,
Proposition 8] for both values a and b; see also the transversality theorem [29, Sec-
tion 1.2, Theorem 8]. Of course, as the perturbed action SV+v is Morse-Smale
below level b, it is so below level a. Hence v 2 Oa

reg \ Ob
reg and therefore we

obtain, just as above, the horizontal isomorphisms in the diagram

HMb
⇤
(3M,SV+v)

9b
⇤ // H⇤({SV+v  b}) (3.33)b // H⇤({SV  b})

HMa
⇤
(3M,SV+v)

9a
⇤ //

◆⇤

OO

H⇤({SV+v  a})(3.33)a //

◆⇤

OO

H⇤({SV  a}).

◆⇤

OO
(3.32)

Here the left rectangle commutes by Theorem 3.7. To see that the rectangle on the
right commutes use commutativity of diagram (3.33) for a and for b together with
the inclusion induced homomorphisms between both diagrams and functoriality of
singular homology. This proves Theorem Awhen a < 1. The case a = 1 follows
from functoriality and a direct limit argument.

Remark 3.8. Consider part II) of the proof of [29, Section 5.2, Proposition 8]. The
resulting two homomorphisms – one injection and one surjection – fit into the (by
functoriality of singular homology) commutative rectangle

H⇤(
�
SV+v�  a

 
)

◆⇤

surj.
//

((RRRRRRRRRRRRRR
H⇤({SV  a+})

H⇤(
�
SV+v�  a�

 
)

⇠
=

◆⇤

OO

◆⇤

inj.
// H⇤({SV  a}).

⇠
=

◆⇤

OO

(3.33)
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of four inclusion induced homomorphisms, all denoted by ◆⇤. Consequently both
horizontal maps are isomorphisms and this defines the isomorphism indicated by
the diagonal arrow which divides the square into two commutative triangles.
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