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The rational sectional category of certain maps

JOSÉ GABRIEL CARRASQUEL-VERA

Abstract. We give a simple algebraic characterisation of the sectional category
of rational maps admitting a homotopy retraction. As a particular case we get the
Felix-Halperin theorem for the rational Lusternik-Schnirelmann category and we
prove the conjecture of Jessup-Murillo-Parent on rational topological complexity.
We also give a characterisation for relative categories in the sense of Doeraene-El
Haouari.

Mathematics Subject Classification (2010): 55M30 (primary); 55P62 (sec-
ondary).

1. Introduction

Throughout this work we consider all spaces to be of the homotopy type of simply
connected CW-complexes of finite type and we use the standard rational homotopy
techniques which are explained in the excellent text [13]. The sectional category
is an invariant of the homotopy type of maps introduced by Schwarz in [21]. If
f : X ! Y is a continuous map, its sectional category is the smallest m for which
there are m + 1 local homotopy sections for f whose sources form an open cover
of Y . Its most studied particular case is the well-known Lusternik-Schnirelmann
(LS) category of a space X introduced in [18] as a lower bound for the number of
critical points on any smooth map defined on a smooth manifold X . Namely, the
LS category of a pointed space X , cat(X), is the sectional category of the base point
inclusion map, ⇤ ,! X .

A remarkable theorem of Félix-Halperin [12, Theorem 4.7] gives an algebraic
characterisation of the LS category of rational spaces in terms of their Sullivan
models. Explicitly, if X is a space modelled by (3V, d) and X0 is its rationalisation
(see [13,23]) then cat(X0) is the smallest m for which the commutative differential

This work was partially supported by FEDER through the Ministerio de Educación y Cien-
cia project MTM2013-41768-p and the Belgian Interuniversity Attraction Pole (IAP) within the
framework “Dynamics, Geometry and Statistical Physics” (DYGEST P7/18).
The author acknowledges the Belgian Interuniversity Attraction Pole (IAP) for support within the
framework “Dynamics, Geometry and Statistical Physics” (DYGEST).
Received October 30, 2015; accepted in revised form February 26, 2016.
Published online June 2017.
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graded algebra (cdga) projection

⇢m : (3V, d)!

✓
3V

3>mV
, d

◆

admits a homotopy retraction, that is, a strict retraction for a relative Sullivan model
for ⇢m .

Let f : X ! Y be a map such that its rationalisation f0 admits a homo-
topy retraction r . Then, through standard rational homotopy techniques f can be
modelled by a retraction ' : (B ⌦ 3W, D) ! (B, d) of a relative Sullivan alge-
bra (B, d) ⇢ (B ⌦ 3W, D) modeling r . For simplicity in the notation, write
' : A! B and call it from now on an s-model of f .

Theorem 1.1. The sectional category of the rationalisation of f , secat( f0), is the
smallest m for which the cdga projection

A!
A

(ker')m+1

admits a homotopy retraction.

Observe that, choosing ' : (3V, d) ! Q, this theorem reduces to the Félix-
Halperin theorem for rational LS-category. On the other hand, it also generalises the
Murillo-Jessup-Parent conjecture on rational topological complexity [16]. Indeed,
in his famous paper [9] M. Farber introduced the concept of topological complexity
of a space X , TC(X), which can be seen as the sectional category of the diago-
nal map 1 : X ! X ⇥ X . This invariant is used to estimate the motion planning
complexity of a mechanical system and also has applications to other fields of math-
ematics [10]. As a direct generalisation of this invariant, Rudyak introduced in [20]
the concept of higher topological n-complexity of a space, TCn(X), as the sectional
category of the n-diagonal map 1n : X ! Xn . Several explicit computations of
topological complexity of rational spaces have been performed in [2, 15–17]. In-
spired by the Félix-Halperin theorem, Jessup, Murillo and Parent, conjectured that
TC(X0) is the smallest m such that the projection

(3V ⌦3V, d) �!

✓
3V ⌦3V
Km+1 , d

◆

admits a homotopy retraction, where K denotes the kernel of the multiplication
morphism µ2 : 3V ⌦3V ! 3V .

Theorem 1.1 applied to higher topological complexity is a bit more general
than the Murillo-Jessup-Parent conjecture. Namely, if A is any cdga model for
a space X , then 1n admits an s-model of the form ' = (IdA, ⌘, . . . , ⌘) : A ⌦
(3V )⌦n�1 ! A where ⌘ : 3V '

�! A is a Sullivan model for A. From Theorem
1.1 we immediately deduce:
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Theorem 1.2. Let X be a topological space. Then TCn(X0) is the smallest m such
that the projection

A⌦ (3V )⌦n�1 �!
A⌦ (3V )⌦n�1

(ker ')m+1

admits a homotopy retraction.

We remark that, since secat( f0)  secat( f ) [2], we get algebraic lower bounds
for integral sectional category which are better than nil ker f ⇤. Some of the ideas
in this paper come from [4].

ACKNOWLEDGEMENTS. The author is grateful to the referee for his or her helpful
remarks.

2. Fibrewise pointed cdgas and relative nilpotency

In this section we develop some technical tools that will be needed later on. Let
C be a J-category in the sense of Doeraene [5, 6] or a closed model category in
the sense of Quillen [19] and fix an object B of C. Consider the fibrewise pointed
category over B [1, page 30], denoted by C(B), whose objects are factorisations of
IdB , B

sX
�! X

pX
�! B, and whose morphism are morphisms in C, f : X ! Y , such

that f � sX = sY and pY � f = pX . Such a morphism is said to be a fibration (⇣),
cofibration (⇢) or weak equivalence ( '�!) if the underlying morphism f is such in
C. With these definitions C(B) is also either a J-category or a closed model category
(note that this structure is not the same as that of [14]). We denote by [X,Y ]B the
homotopy classes of morphism in C(B) from the fibrant-cofibrant object X into Y .

Now, and for the rest of the paper, we particularise on C = cdga. Remark
that the fibrant-cofibrant objects of cdga(B) are precisely the relative Sullivan al-
gebras (B ⌦3W, D) with the natural inclusion B ,! (B ⌦3W, D) and endowed
with a given retraction. In this context, the general property [19] by which weak
equivalences induce bijections on homotopy classes reads:

Lemma 2.1. Suppose ✓ : A ! C is a quasi-isomorphism in cdga(B) and
(B ⌦3V, D) a fibrant-cofibrant object of cdga(B), then composition with ✓ in-
duces a bijection ✓# : [B ⌦3V, A]B ! [B ⌦3V,C]B .

Definition 2.2. Let A 2 cdga(B), its relative nilpotency index, nilB(A), is the
nilpotency index nil ker pA of the ideal ker pA.

The following lemma is crucial. It tells us that we can control the relative
nilpotency index of certain homotopy pullbacks of cdga(B).
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Lemma 2.3. Let i : C ⇢ (C ⌦3V, D) be a cofibration in cdga(B) such that
D(V ) ⇢ (ker pC) � (C ⌦ 3+V ) and pC⌦3V (V ) = 0. Then there is an object
N 2 cdga(B) weakly equivalent to the homotopy pullback of i and sC⌦3V for
which nilB N = nilB C + 1.

Proof. In cdga(B), factor sC⌦3V as B
↵

,! S
h
⇣ C ⌦3V where

S = B �
�
C ⌦3V ⌦3+(t, dt)

�
,

in which t has degree 0, b(c⌦v⌦⇠) = sC(b)c⌦v⌦⇠ , and h(c⌦v⌦ t) = c⌦v. As
C ⌦3V ⌦3+(t, dt) is acyclic, ↵ is a quasi-isomorphism and thus, the homotopy
pullback of i and sC⌦3V is the pullback

M 0

✏✏

h // C
✏✏
i

✏✏
S h

// // C ⌦3V

of i and h. This is in fact a pullback in cdga(B) by choosing pM 0 = pC � h
and sM 0 = (↵, sC). To finish, we will construct an object N of cdga(B) weakly
equivalent to M 0 with nilB N = nilB C + 1.

Write K✏ = ker ✏ where ✏ : 3+(t, dt) ! Q is the augmentation sending t to
1, and consider the cdga(B) isomorphism

⌘ : M
⇠
=

�! M 0,

in which:
M = B �

�
C ⌦3+(t, dt)

�
�

�
C ⌦3+V ⌦ K✏

�
,

sM(b) = b, pM(b) = b, pM(c⌦ ⇠) = pC(c)✏(⇠), pM(c⌦ v ⌦ !) = 0,
⌘(b) = (b, sC(b)), ⌘(c⌦⇠) = (c⌦1⌦⇠, c✏(⇠)), ⌘(c⌦v⌦!)= (c⌦v⌦!, 0),
with b 2 B, c 2 C , ⇠ 2 3+(t, dt), v 2 V and ! 2 K✏ .

Next, write C = ker pC � R and consider

N = B �
�
ker pC ⌦3+(t, dt)

�
�

�
ker pC ⌦3+V ⌦ K✏

�
�

�
R ⌦3+V ⌦ dt

�
which, since D(V ) ⇢ (ker pC)� (C ⌦ 3+V ), is a sub cdga(B) of M . More-
over, the inclusion N ,! M is a weak equivalence in cdga(B) as the subcom-
plexes

�
ker pC ⌦ 3+(t, dt)

�
�

�
ker pC ⌦3+V ⌦ K✏

�
and

�
C ⌦ 3+(t, dt)

�
��

ker pC ⌦3+V ⌦ K✏

�
are quasi-isomorphic and the inclusion of quotient com-

plexes B �
�
R ⌦3+V ⌦ dt

�
,! B �

�
R ⌦3+V ⌦ K✏

�
is a quasi-isomorphism.

Finally, we have that

ker pN =

�
ker pC ⌦3+(t, dt)

�
�

�
ker pC ⌦3+V ⌦ K✏

�
�

�
R ⌦3+V ⌦ dt

�
,

and thus, a non-trivial product of maximal length in this ideal is given by z(1⌦ v⌦
dt) where z is a non-trivial product of maximal length in ker pC ⌦ 3+(t). This
proves that nilBN = nilBC + 1.
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3. The main result

Let f : X ! Y be a continuous map. Recall from [1, 3, 11] that, by iterated joins,
one can construct an m-Ganea map for f , Gm( f ), fitting into a commutative dia-
gram

X
◆

{{xx
xx

xx
xx

x
f

��@
@

@
@

@
@

@

Pm( f )
Gm( f )

// Y,

(3.1)

and that secat( f )  m if and only if Gm( f ) admits a homotopy section. Also, if
' : A ⇣ B is a surjective model for f , then Diagram (3.1) can be modelled by a
diagram

A

'
��?

?
?

?
?

?
?

?

m // Cm

pm~~}}
}}

}}
}}

B ,

where m models Gm( f ) and can be constructed inductively by taking the homo-
topy pullback of the induced maps by the homotopy pushout of ' and any model,
g : A! D, of Gm�1( f ). Standard arguments show that secat( f0)  m if and only
if m admits a homotopy retraction. One can extend this to:
Definition 3.1. Let f : X ! Y be a continuous map. Then:

(i) msecat( f )  m if and only if m admits a homotopy retraction as A-module;
(ii) Hsecat( f )  m if and only if m is homology injective.

We now give the key model for the m-Ganea map Gm( f ):

Proposition 3.2. Let f be a map such that f0 admits a homotopy retraction and let
' : A ⇣ B be an s-model for f . Then there is a model �m for Gm( f ) which is a
morphism in cdga(B),

B
��

s

����
�
�
�
�
� sm

  A
AA

AA
AA

A

A
�m //

' �� ��?
?

?
?

?
?

?
?

Cm

pm~~~~}}
}}

}}
}}

B ,

with nilB Cm = m.

Proof. We will proceed by induction. For m = 0 the assertion holds since p0 =

IdB . Suppose �m�1 exists. Since ' is surjective, one can take a relative Sullivan
model for ', ✓ : (A⌦3V, D)

'

�! B, such that D(V ) ⇢ (ker') �
�
A⌦3+V

�
and ✓(V ) = 0. Now take the homotopy pushout
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A
✏✏

j
✏✏

�m�1 // Cm�1
✏✏
i

✏✏
pm�1

��

A⌦3V

✓
22

�n�1⌦Id
// Cm�1 ⌦3V

(✓,pm�1)

))R
R

R
R

R
R

R
R

B

and factor �n�1⌦Id as q �w with q : E ⇣ Cm�1⌦3V a surjective cdga morphism
andw : A⌦3V '

�! E a weak equivalence. Then the pullback’s universal property

A
g

��?
?

?
?

w� j

((

�m�1

��
T

✏✏

q // Cm�1
✏✏
i

✏✏
E q

// // Cm�1 ⌦3V,

gives a model g for Gm( f ) which can be seen as a morphism in cdga(B) by taking
pT = pm�1 � q and sT = g � s. Now, define � = i � sm�1 : B ! Cm�1 ⌦3V and
consider the factorisation of � = q � (w � j � s) as a quasi-isomorphism followed
by a fibration. On the other hand, consider also the factorisation of � = h � ↵ as in
the proof of Lemma 2.3. Applying [6, Lemma 1.8] to previous factorisations and
the following commutative square in cdga(B),

B

IdB
✏✏

sm�1 // Cm�1
✏✏
i

✏✏
B

�
// Cm�1 ⌦3V,

we get quasi-isomorphisms M 0 '

 � •

'

�! T . Now, applying Lemma 2.3 to
Cm�1 ⇢ Cm�1 ⌦ 3V , with sCm�1⌦3V = � and pCm�1⌦3V = (✓, pm�1) we get
an object Cm of cdga(B), with nilB Cm = m, which is weakly equivalent M 0. Ob-
serve that we cannot use the pullback’s universal property to get a model of Gm( f )
because, in general, � � ' does not coincide with i � �m�1. We get then a diagram
in cdga(B)

A
g // T •

'oo ' // M 0 Cm .
'oo

Since A is a fibrant-cofibrant object of cdga(B), we can apply Lemma 2.1 to get a
model for Gm( f ) in cdga(B), �m : A! Cm , with nilB Cm = m.
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Given ' : A ⇣ B a surjective cdga morphism, consider, for each m � 0, the
cdga projection

⇢m : A!
A

(ker')m+1 .

Then Theorem 1.1 is just statement (i) in the following:

Theorem 3.3. Let ' : A ⇣ B be an s-model for a map f such that f0 admits a
homotopy retraction. Then:

(i) secat( f0) is the smallest m for which ⇢m admits a homotopy retraction;
(ii) msecat( f0) is the smallest m for which ⇢m admits a homotopy retraction as

A-module;
(iii) Hsecat( f ) is the smallest m such that H(⇢m) is injective.

Proof. Take from Proposition 3.2 a morphism of cdga(B), �m : A ! Cm , mod-
elling Gm( f )with nilB Cm = m. Since �m((ker ')m+1) = 0 we get a commutative
diagram

A
�m //

⇢m
✏✏

Cm

pm
✏✏A

(ker ')m+1

�m

;;wwwwwwwww

'
// B

and the result follows by standard rational homotopy techniques and [2, Proposition
12].

Observe that [2, Example 10] shows that the hypothesis s is a cofibration is
necessary.

In [22] D. Stanley gives an example of a map f for which f0 does not admit a
homotopy retraction and msecat( f ) < secat( f0). Here we state:
Conjecture 3.4. If f is a map and f0 admits a homotopy retraction, then

msecat( f ) = secat( f0).

Concerning the rational topological complexity of a given space X and, with the
notation in Theorem 1.2, we may define mTC(X) as the smallest integer m for
which the projection

A⌦3V !
A⌦3V

(ker')m+1

admits a homotopy retraction as A⌦3V -module. Then Theorem 3.3 (ii) combined
with [16, Theorem 1.6] gives the Ganea conjecture for mTC.

Theorem 3.5. Given any space X then mTC(X ⇥ Sn) = mTC(X) +mTC(Sn).
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We finish by presenting, via Theorem 3.3, an algebraic description of the ra-
tional relative category. Recall [7] that the relative category, relcat f , of a map f
is the smallest m for which Gm( f ) of Diagram (3.1) admits a homotopy section s
such that s � f ' ◆. Also, in [7], Doeraene and El Haouari proved that secat( f )
and relcat( f ) differ at most by one and conjectured in [8] that they agree on maps
admitting a homotopy retraction. Consider then such a map f and ' : A! B and
s-model for f . This gives a diagram

(A⌦3Zm, D)

✓m
' ''OOOOOOOOOOO

A

'
%%KKKKKKKKKKKKK

99

im
99sssssssssss ⇢m // A

(ker ')m+1

'
wwoooooooooooo

B,

where im is a relative Sullivan model for ⇢m .

Theorem 3.6. With the previous notation, relcat( f0) is the smallest m such that im
admits a retraction r verifying ' � r ' ' � ✓m rel A.

Proof. Consider the commutative diagram in the proof of Theorem 3.3, where pm
is a model for ◆ in Diagram (3.1). Taking jm a relative model of �m and applying
Lemma 2.1 we get a diagram in cdga(B)

(A⌦3Zm, D)

w

))RRRRRRRRRRRRRR

A
88

im
88rrrrrrrrrrr

//
jm

// (A⌦3Wm, D) .

If jm admits a retraction r 0 such that ' � r 0 ' pm rel A then im admits a retraction
r := r 0 �w such that ' � r = ' � r 0 �w ' pm � ! = ' � ✓m rel A.
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[3] J. G. CARRASQUEL-VERA, J. M. GARCÍA-CALCINES and L. VANDEMBROUCQ, Relative
category and monoidal topological complexity, Topology Appl. 171 (2014), 41–53.

[4] O. CORNEA, Cone-length and Lusternik-Schnirelmann category, Topology 33 (1994), 95–
111.



THE RATIONAL SECTIONAL CATEGORY OF CERTAIN MAPS 813

[5] J.-P. DOERAENE, “LS-catégorie dans une catégorie à modèles”, PhD thesis, Université
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