A new approach to the L^{p}-theory of $-\Delta+b \cdot \nabla$, and its applications to Feller processes with general drifts

Damir KinZebulatov

Abstract

We develop a detailed regularity theory of $-\Delta+b \cdot \nabla$ in $L^{p}\left(\mathbb{R}^{d}\right)$, for a wide class of vector fields. The L^{p}-theory allows us to construct associated strong Feller process in $C_{\infty}\left(\mathbb{R}^{d}\right)$. Our starting object is an operator-valued function, which, we prove, determines the resolvent of an operator realization of $-\Delta+b \cdot \nabla$, the generator of a holomorphic C_{0}-semigroup on $L^{p}\left(\mathbb{R}^{d}\right)$. Then the very form of the operator-valued function yields crucial information about smoothness of the domain of the generator.

Mathematics Subject Classification (2010): 35J15 (primary); 47D07, 35J75 (secondary).

1. Introduction

Let \mathcal{L}^{d} be the Lebesgue measure on $\mathbb{R}^{d}, L^{p}=L^{p}\left(\mathbb{R}^{d}, \mathcal{L}^{d}\right)$ and $W^{1, p}=$ $W^{1, p}\left(\mathbb{R}^{d}, \mathcal{L}^{d}\right)$ the standard (complex) Lebesgue and Sobolev spaces, $C^{0, \gamma}=$ $C^{0, \gamma}\left(\mathbb{R}^{d}\right)$ the space of Hölder continuous functions $(0<\gamma<1), C_{b}=C_{b}\left(\mathbb{R}^{d}\right)$ the space of bounded continuous functions endowed with the sup-norm, $C_{\infty} \subset C_{b}$ the closed subspace of functions vanishing at infinity, $\mathcal{W}^{\alpha, p}, \alpha>0$, the Bessel space endowed with norm $\|u\|_{p, \alpha}:=\|g\|_{p}, u=(1-\Delta)^{-\frac{\alpha}{2}} g, g \in L^{p}$, and $\mathcal{W}^{-\alpha, p^{\prime}}$, $p^{\prime}=p /(p-1)$, the anti-dual of $\mathcal{W}^{\alpha, p} . \mathcal{W}_{\text {loc }}^{\alpha, p}$ denotes the class of (distributions) u such that $(1-\Delta)^{\frac{\alpha}{2}}(u \varphi) \in L^{p}$ for any $\varphi \in C_{c}^{\infty}$. We denote by $\mathcal{B}(X, Y)$ the space of bounded linear operators between complex Banach spaces $X \rightarrow Y$, endowed with operator norm $\|\cdot\|_{X \rightarrow Y} ; \mathcal{B}(X):=\mathcal{B}(X, X)$. Set $\|\cdot\|_{p \rightarrow q}:=\|\cdot\|_{L^{p} \rightarrow L^{q}}$.

For each $p \geqslant 1$, by $\langle u, v\rangle$ we denote the ($L^{p}, L^{p^{\prime}}$) pairing, so that

$$
\langle u, v\rangle=\langle u \bar{v}\rangle:=\int_{\mathbb{R}^{d}} u \bar{v} d \mathcal{L}^{d} \quad\left(u \in L^{p}, v \in L^{p^{\prime}}\right)
$$

Received October 20, 2015; accepted in revised form February 3, 2016.
Published online June 2017.

Figure 1.1. General classes of vector fields $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ studied in the literature in connection with the operator $-\Delta+b \cdot \nabla$. Here \rightarrow stands for strict inclusion, and $\xrightarrow{*}$ reads "if $b=b_{1}+b_{2} \in\left[L^{d, \infty}+L^{\infty}\right]^{d}$, then $b \in \mathbf{F}_{\delta^{2}}$ with $\delta>0$ determined by the value of the $L^{d, \infty}$-norm of $\left|b_{1}\right|$ ", see Remark 1.2 below for details, $\mathbf{K}_{0}^{d+1}:=\bigcap_{\delta>0} \mathbf{K}_{\delta}^{d+1}$, $\mathbf{F}_{0}:=\bigcap_{\delta>0} \mathbf{F}_{\delta}$.

Let $d \geqslant 3$. Consider the following classes of vector fields:
(1) We say that a $b: \mathbb{R}^{d} \rightarrow \mathbb{C}^{d}$ belongs to the Kato class $\mathbf{K}_{\delta}^{d+1}$, and write $b \in$ $\mathbf{K}_{\delta}^{d+1}$, if b is \mathcal{L}^{d}-measurable, and there exists $\lambda=\lambda_{\delta}>0$ such that

$$
\left\|b(\lambda-\Delta)^{-\frac{1}{2}}\right\|_{1 \rightarrow 1} \leqslant \delta
$$

(2) We say that a $b: \mathbb{R}^{d} \rightarrow \mathbb{C}^{d}$ belongs to \mathbf{F}_{δ}, the class of form-bounded vector fields, and write $b \in \mathbf{F}_{\delta}$, if b is \mathcal{L}^{d}-measurable, and there exists $\lambda=\lambda_{\delta}>0$ such that

$$
\left\|b(\lambda-\Delta)^{-\frac{1}{2}}\right\|_{2 \rightarrow 2} \leqslant \sqrt{\delta} ;
$$

(3) We say that a $b: \mathbb{R}^{d} \rightarrow \mathbb{C}^{d}$ belongs to $\mathbf{F}_{\delta}^{\frac{1}{2}}$, the class of weakly form-bounded vector fields, and write $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$, if b is \mathcal{L}^{d}-measurable, and there exists $\lambda=$
$\lambda_{\delta}>0$ such that

$$
\left\||b|^{\frac{1}{2}}(\lambda-\Delta)^{-\frac{1}{4}}\right\|_{2 \rightarrow 2} \leqslant \sqrt{\delta} .
$$

Simple examples show:

$$
\mathbf{F}_{\delta_{1}}-\mathbf{K}_{\delta}^{d+1} \neq \varnothing, \quad \text { and } \quad \mathbf{K}_{0}^{d+1}-\mathbf{F}_{\delta} \neq \varnothing \quad \text { for any } \delta, \delta_{1}>0,
$$

for instance,

1) by the Hardy inequality, $b(x):=\sqrt{\delta_{1}} \frac{d-2}{2} x|x|^{-2} \in \mathbf{F}_{\delta_{1}}-\mathbf{K}_{\delta}^{d+1}$ for any $\delta, \delta_{1}>0$;
2) $b(x):=e \mathbf{1}_{\left|x_{1}\right|<1}\left|x_{1}\right|^{s-1}$, where $\frac{1}{2}<s<1$, $e=(1, \ldots, 1) \in \mathbb{R}^{d}, x=$ $\left(x_{1}, \ldots, x_{d}\right)$, is in $\mathbf{K}_{0}^{d+1}-\mathbf{F}_{\delta}$, for any $\delta>0$. (An example of a $b \in \mathbf{K}_{\delta}^{d+1}-\mathbf{K}_{0}^{d+1}$ can be obtained, e.g., by modifying [1, Example 1, page 250].)

The classes $\mathbf{F}_{\delta_{1}}, \mathbf{K}_{\delta}^{d+1}$ cover singularities of b of critical order ${ }^{1}$, at isolated points or along hypersurfaces, respectively. The classes \mathbf{F}_{0} and \mathbf{K}_{0}^{d+1} do not contain vector fields having critical order singularities.

Remark 1.1. The classes \mathbf{F}_{δ} and $\mathbf{K}_{\delta}^{d+1}$ have been intensely studied in the literature: after 1996, the Kato class $\mathbf{K}_{\delta}^{d+1}$, with $\delta>0$ sufficiently small (yet allowed to be non-zero), has been recognized as 'the right' class for the Gaussian upper and lower bounds on the fundamental solution of $-\Delta+b \cdot \nabla$, see [14], which, in turn, allow to construct an associated Feller process (in C_{b}). The class $\mathbf{F}_{\delta}, \delta<4$, is responsible for dissipativity of $\Delta-b \cdot \nabla$ in $L^{p}, p \geqslant \frac{2}{2-\sqrt{\delta}}$, needed to run the iterative procedure of [8] (taking $p \rightarrow \infty$, assuming additionally $\delta<\min \left\{4 /(d-2)^{2}, 1\right\}$), which produces an associated Feller process. We emphasize that, in general, the Gaussian bounds are not valid if $b \in \mathbf{F}_{\delta}$, while $b \in \mathbf{K}_{\delta}^{d+1}$, in general, destroys L^{p}-dissipativity.

The class $\mathbf{F}_{\delta}^{\frac{1}{2}}$ combines critical point and critical hypersurface singularities:

$$
\begin{gather*}
\mathbf{K}_{\delta}^{d+1} \subsetneq \mathbf{F}_{\delta}^{\frac{1}{2}}, \quad \mathbf{F}_{\delta_{1}} \subsetneq \mathbf{F}_{\delta}^{\frac{1}{2}} \quad \text { for } \delta=\sqrt{\delta_{1}}, \\
\left(b \in \mathbf{F}_{\delta_{1}} \text { and } \mathbf{f} \in \mathbf{K}_{\delta_{2}}^{d+1}\right) \Longrightarrow\left(b+\mathbf{f} \in \mathbf{F}_{\delta}^{\frac{1}{2}}, \sqrt{\delta}=\sqrt[4]{\delta_{1}}+\sqrt{\delta_{2}}\right) \tag{1.1}
\end{gather*}
$$

(for the proof, if needed, see Appendix B).
Remark 1.2. The inclusion $|b| \in L^{d} \Rightarrow b \in \mathbf{F}_{0}$ (cf. the diagram above) follows by the Sobolev embedding theorem. For $|b| \in L^{d, \infty}$, we can verify, using [7,

[^0]Proposition 2.5, 2.6, Corollary 2.9]:

$$
\begin{aligned}
b \in \mathbf{F}_{\delta}^{\frac{1}{2}}, \quad \text { with } \sqrt{\delta} & =\left\||b|^{\frac{1}{2}}(\lambda-\Delta)^{-\frac{1}{4}}\right\|_{2 \rightarrow 2} \leqslant\left\|\left(|b|^{*}\right)^{\frac{1}{2}}(\lambda-\Delta)^{-\frac{1}{4}}\right\|_{2 \rightarrow 2} \\
& \leqslant\left(\|b\|_{d, \infty} \Omega_{d}^{-\frac{1}{d}}\right)^{\frac{1}{2}}\left\||x|^{-\frac{1}{2}}(\lambda-\Delta)^{-\frac{1}{4}}\right\|_{2 \rightarrow 2} \\
& =\left(\|b\|_{d, \infty} \Omega_{d}^{-\frac{1}{d}}\right)^{\frac{1}{2}} 2^{-\frac{1}{2}} \frac{\Gamma\left(\frac{d-1}{4}\right)}{\Gamma\left(\frac{d+1}{4}\right)}
\end{aligned}
$$

where $\Omega_{d}=\pi^{\frac{d}{2}} \Gamma\left(\frac{d}{2}+1\right)$, and $|b|^{*}$ is the symmetric decreasing rearrangement of $|b|$. Similarly,

$$
\begin{aligned}
b \in \mathbf{F}_{\delta_{1}}, \quad \text { with } \sqrt{\delta_{1}} & =\left\||b|(\lambda-\Delta)^{-\frac{1}{2}}\right\|_{2 \rightarrow 2} \\
& \leqslant\|b\|_{d, \infty} \Omega_{d}^{-\frac{1}{d}}\left\||x|^{-1}(\lambda-\Delta)^{-\frac{1}{2}}\right\|_{2 \rightarrow 2} \\
& \leqslant\|b\|_{d, \infty} \Omega_{d}^{-\frac{1}{d}} 2^{-1} \frac{\Gamma\left(\frac{d-2}{4}\right)}{\Gamma\left(\frac{d+2}{4}\right)}=\|b\|_{d, \infty} \Omega_{d}^{-\frac{1}{d}} \frac{2}{d-2} .
\end{aligned}
$$

In particular, using [7, Corollary 2.9],

$$
\begin{array}{ll}
x|x|^{-2} \in \mathbf{F}_{\delta}^{\frac{1}{2}}, & \sqrt{\delta}=2^{-\frac{1}{2}} \frac{\Gamma\left(\frac{d-1}{4}\right)}{\Gamma\left(\frac{d+1}{4}\right)}, \\
x|x|^{-2} \in \mathbf{F}_{\delta_{1}}, & \sqrt{\delta_{1}}=\frac{2}{d-2},
\end{array}
$$

and so $\delta<\sqrt{\delta}_{1}(c f .(1.1))$.
Denote

$$
m_{d}:=\pi^{\frac{1}{2}}(2 e)^{-\frac{1}{2}} d^{\frac{d}{2}}(d-1)^{\frac{1-d}{2}}, \quad c_{p}:=p p^{\prime} / 4
$$

The following two theorems are the main results of our paper.
Theorem 1.3 (L^{p}-theory). Let $d \geqslant 3$ and $b: \mathbb{R}^{d} \rightarrow \mathbb{C}^{d}$. Assume that $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$, $m_{d} \delta<1$. Then, for every

$$
p \in \mathcal{I}:=\left(\frac{2}{1+\sqrt{1-m_{d} \delta}}, \frac{2}{1-\sqrt{1-m_{d} \delta}}\right)
$$

there exists a C_{0}-semigroup $e^{-t \Lambda_{p}(b)}$ in L^{p} such that:
(i) The resolvent set $\rho\left(-\Lambda_{p}(b)\right)$ contains the half-plane $\mathcal{O}:=\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta \geqslant$ $\left.\kappa_{d} \lambda_{\delta}\right\}, \kappa_{d}:=\frac{d}{d-1}$, and the resolvent admits the representation:

$$
\left(\zeta+\Lambda_{p}(b)\right)^{-1}=\Theta_{p}(\zeta, b), \quad \zeta \in \mathcal{O}
$$

where

$$
\begin{equation*}
\Theta_{p}(\zeta, b):=(\zeta-\Delta)^{-1}-Q_{p}\left(1+T_{p}\right)^{-1} G_{p} \tag{1.2}
\end{equation*}
$$

the operators $Q_{p}, G_{p}, T_{p} \in \mathcal{B}\left(L^{p}\right)$,

$$
\begin{gathered}
\left\|G_{p}\right\|_{p \rightarrow p} \leqslant C_{1}|\zeta|^{-\frac{1}{2 p^{\prime}}},\left\|Q_{p}\right\|_{p \rightarrow p} \leqslant C_{2}|\zeta|^{-\frac{1}{2}-\frac{1}{2 p}},\left\|T_{p}\right\|_{p \rightarrow p} \leqslant m_{d} c_{p} \delta<1 \\
G_{p} \equiv G_{p}(\zeta, b):=b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}, \quad b^{\frac{1}{p}}:=|b|^{\frac{1}{p}-1} b
\end{gathered}
$$

Q_{p}, T_{p} are the extensions by continuity of densely defined (on $\mathcal{E}:=$ $\left.\bigcup_{\epsilon>0} e^{-\epsilon|b|} L^{p}\right)$ operators

$$
\begin{aligned}
\left.Q_{p}\right|_{\mathcal{E}} & \left.\equiv Q_{p}(\zeta, b)\right|_{\mathcal{E}}:=(\zeta-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}} \\
\left.T_{p}\right|_{\mathcal{E}} & \left.\equiv T_{p}(\zeta, b)\right|_{\mathcal{E}}:=b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}}
\end{aligned}
$$

(ii) It follows from (i) that $e^{-t \Lambda_{p}(b)}$ is holomorphic: there is a constant C_{p} such that

$$
\left\|\left(\zeta+\Lambda_{p}(b)\right)^{-1}\right\|_{p \rightarrow p} \leqslant C_{p}|\zeta|^{-1}, \quad \zeta \in \mathcal{O}
$$

(iii) For each $1 \leqslant r<p<q$ and $\zeta \in \mathcal{O}$, define

$$
\begin{aligned}
& G_{p}(r) \equiv G_{p}(r, \zeta, b):=b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-\frac{1}{2}-\frac{1}{2 r}}, \quad G_{p}(r) \in \mathcal{B}\left(L^{p}\right) \\
& Q_{p}(q) \equiv Q_{p}(q, \zeta, b):=(\zeta-\Delta)^{-\frac{1}{2 q^{\prime}}}|b|^{\frac{1}{p^{\prime}}} \text { on } \mathcal{E} .
\end{aligned}
$$

The extension of $Q_{p}(q)$ by continuity we denote again by $Q_{p}(q)$. Then, for each $\zeta \in \mathcal{O}$,
$\Theta_{p}(\zeta, b)=(\zeta-\Delta)^{-1}-(\zeta-\Delta)^{-\frac{1}{2}-\frac{1}{2 q}} Q_{p}(q)\left(1+T_{p}\right)^{-1} G_{p}(r)(\zeta-\Delta)^{-\frac{1}{2 r^{\prime}}} ;$
$\Theta_{p}(\zeta, b)$ extends by continuity to an operator in $\mathcal{B}\left(\mathcal{W}^{-\frac{1}{r^{\prime}}, p}, \mathcal{W}^{1+\frac{1}{q}, p}\right)$;
(iv) $B y$ (i) and (iii), $D\left(\Lambda_{p}(b)\right) \subset \mathcal{W}^{1+\frac{1}{q}, p}(q>p)$. In particular, if $m_{d} \delta<$ $4 \frac{d-2}{(d-1)^{2}}$, there exists $p \in \mathcal{I}, p>d-1$, so $D\left(\Lambda_{p}(b)\right) \subset C^{0, \gamma}, \gamma<1-\frac{d-1}{p}$;
(v) Let $u \in D\left(\Lambda_{p}(b)\right)$. Then

$$
\begin{aligned}
& \left\langle\Lambda_{p}(b) u, v\right\rangle=\langle u,-\Delta v\rangle+\langle b \cdot \nabla u, v\rangle, \quad v \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \\
& u \in \mathcal{W}_{\text {loc }}^{2,1}
\end{aligned}
$$

(vi) $e^{-t \Lambda_{p}\left(b_{n}\right)} \xrightarrow{s} e^{-t \Lambda_{p}(b)}$ in $L^{p}, \quad t>0$, where $b_{n}:=b$ if $|b| \leqslant n, b_{n}:=$ $n|b|^{-1} b$ if $|b|>n$, and $\Lambda_{p}\left(b_{n}\right):=-\Delta+b_{n} \cdot \nabla, D\left(\Lambda_{p}\left(b_{n}\right)\right)=\mathcal{W}^{2, p}$;
(vii) If b is real-valued, then $e^{-t \Lambda_{p}(b)}$ is positivity preserving;
(viii) By Theorem 3(b) below, $\left\|e^{-t \Lambda_{p}(b)}\right\|_{p \rightarrow r} \leqslant c_{p, r} t^{-\frac{d}{2}\left(\frac{1}{p}-\frac{1}{r}\right)}, 0<t \leqslant 1, p<r$.

Remark 1.4. Theorem 1.3 provides a complete description of $\Lambda_{p}(b)$, an operator realization of $-\Delta+b \cdot \nabla, b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$, generating a holomorphic C_{0}-semigroup on L^{p}.

Let

$$
\eta(x):= \begin{cases}c \exp \left(\frac{1}{|x|^{2}-1}\right) & \text { if }|x|<1 \\ 0 & \text { if }|x| \geqslant 1\end{cases}
$$

where c is adjusted to $\int_{\mathbb{R}^{d}} \eta(x) d x=1$. Define the standard mollifier

$$
\eta_{\varepsilon}(x):=\frac{1}{\varepsilon^{d}} \eta\left(\frac{x}{\varepsilon}\right), \quad \varepsilon>0, \quad x \in \mathbb{R}^{d} .
$$

Theorem 1.5 (C_{∞}-theory). Let $d \geqslant 3$. Assume that

$$
b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \quad b \in \mathbf{F}_{\delta}^{\frac{1}{2}}, \quad m_{d} \delta<4 \frac{d-2}{(d-1)^{2}}
$$

Then for every $\tilde{\delta}>\delta$ satisfying $m_{d} \tilde{\delta}<4 \frac{d-2}{(d-1)^{2}}$ there exists $\left\{\varepsilon_{n}\right\}, \varepsilon_{n} \downarrow 0$, such that

$$
\tilde{b}_{n}:=\eta_{\varepsilon_{n}} * b_{n} \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \cap \mathbf{F}_{\tilde{\delta}}^{\frac{1}{2}}, \quad n=1,2, \ldots
$$

and
(i) $e^{-t \Lambda_{C_{\infty}}(b)}:=s-C_{\infty}-\lim _{n} e^{-t \Lambda_{C}\left(\tilde{b}_{n}\right)}, \quad t>0$, determines a positivity-preserving contraction C_{0}-semigroup on C_{∞}, where the b_{n} 's were defined in Theorem 1.3, $\Lambda_{C_{\infty}}\left(\tilde{b}_{n}\right):=-\Delta+\tilde{b}_{n} \cdot \nabla, D\left(\Lambda_{C_{\infty}}\left(\tilde{b}_{n}\right)\right)=(1-\Delta)^{-1} C_{\infty} ;$
(ii) $\left(L^{p}\right.$-strong Feller property) $\left(\mu+\Lambda_{C_{\infty}}(b)\right)^{-1}\left[L^{p} \cap C_{\infty}\right] \subset C^{0, \alpha}, \mu>0$, $p \in\left(d-1, \frac{2}{1-\sqrt{1-m_{d} \delta}}\right), \alpha<1-\frac{d-1}{p}$;
(iii) The integral kernel $e^{-t \Lambda_{C_{\infty}}(b)}(x, y)\left(x, y \in \mathbb{R}^{d}\right)$ of $e^{-t \Lambda_{C_{\infty}}(b)}$ determines the (sub-Markov) transition probability function of a strong Feller process.

Remark 1.6.

1. In the proof of Theorem 1.5, we define

$$
\begin{aligned}
& \left(\mu+\Lambda_{C_{\infty}}(b)\right)^{-1} \mid \mathcal{S}:=s-C_{\infty}-\lim _{n}\left(\left(\mu+\Lambda_{p}\left(\tilde{b}_{n}\right)\right)^{-1} \mid \mathcal{S}, \quad \mu \geqslant \kappa_{d} \lambda,\right. \\
& p \in\left(d-1, \frac{2}{1-\sqrt{1-m_{d} \delta}}\right),
\end{aligned}
$$

appealing to Theorem 1.3(iv), which allows us to move the proof of convergence in C_{∞} to $L^{p}, p>d-1$, a space having much weaker topology (locally). Earlier proofs for a smaller class \mathbf{K}_{0}^{d+1} verified convergence in C_{∞} (in fact, in C_{b}) directly.
2. The problem of constructing a Feller process associated with $-\Delta+b \cdot \nabla$, for an unbounded $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ ("a diffusion with drift b "), has been thoroughly studied in the literature, see [9] and references therein, motivated by applications, as well as by the search for the maximal general class of vector fields b such that the associated process exists. To the author's knowledge, Theorem 1.5 is the first result on diffusion processes with drifts combining different kinds of singularities, e.g., $||x|-1|^{-\beta}, \beta<1$, and $|x|^{-1}$ (originally, the main motivation of this work).

1.1. On the existing results prior to our work

First, it had been known for a long time, see $[\mathrm{KS}]$, that, for $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, d \geqslant 3$, and $b \in \mathbf{F}_{\delta}$,
(i) (The basic fact) $D\left(\Lambda_{p}(b)\right) \subset W^{1, j p}$ for every $p \in(d-2,2 / \sqrt{\delta}), j=\frac{d}{d-2}$, provided that $0<\delta<\min \left\{1,\left(\frac{2}{d-2}\right)^{2}\right\}$;
(ii) If, in addition to the assumptions in (i), $|b| \in L^{2}+L^{\infty}$, then

$$
s-C_{\infty}-\lim _{n} e^{-t \Lambda_{C \infty}\left(b_{n}\right)}
$$

exists uniformly in each finite interval of $t \geqslant 0$, and hence determines a strongly Feller semigroup on C_{∞}.
Remark 1.7. The additional (to $|b| \in L_{\text {loc }}^{2}$) assumption $|b| \in L^{2}+L^{\infty}$ in (ii) was removed in [6] (albeit at expense of imposing a more restrictive assumption on the maximal admissible value of $\delta>0$).
Theorem 1.8 (Yu. A.Semenov). Let $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, d \geqslant 3$.
a) [12] If $b \in \mathbf{K}_{\delta}^{d+1}, m_{d} \delta<1$, then, for each $p \in[1, \infty)$, $s-L^{p}-\lim _{n} e^{-t \Lambda_{p}\left(b_{n}\right)}$ exists uniformly on each finite interval of $t \geqslant 0$, and hence determines a $C_{0}{ }^{-}$ semigroup $e^{-t \Lambda_{p}(b)}$.
$e^{-t \Lambda_{p}(b)}$ is a quasi-bounded positivity preserving L^{∞}-contraction C_{0} - semigroup;

$$
\left\|e^{-t \Lambda_{r}(b)}\right\|_{r \rightarrow q} \leqslant c_{d, \delta} t^{-\frac{d}{2}\left(\frac{1}{r}-\frac{1}{q}\right)} \text { for all } 0<t \leqslant 1,1 \leqslant r<q \leqslant \infty
$$

The resolvent set $\rho\left(-\Lambda_{p}(b)\right)$ contains the half-plane \mathcal{O},
$\left(\zeta+\Lambda_{p}(b)\right)^{-1}=\Theta_{p}(\zeta, b), \quad \zeta \in \mathcal{O}$,
$\Theta_{p}(\zeta, b):=(\zeta-\Delta)^{-1}-(\zeta-\Delta)^{-\frac{1}{2}} S_{p}\left(1+T_{p}\right)^{-1} G_{p}$,
$S_{p}:=(\zeta-\Delta)^{-\frac{1}{2}}|b|^{\frac{1}{p^{\prime}}}, G_{p}:=b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}, T_{p}:=b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}} ;$
$\Theta_{p}(\zeta, b) \in \mathcal{B}\left(L^{p}, \mathcal{W}^{1, p}\right) ;$
$D\left(\Lambda_{p}(b)\right) \subset \mathcal{W}^{1, p}$. In particular, for $p>d, D\left(\Lambda_{p}(b)\right) \subset C^{0, \alpha}, \alpha=1-\frac{d}{p}$;
$\left\langle\Lambda_{p}(b) f, g\right\rangle=\langle\nabla f, \nabla g\rangle+\langle b \cdot \nabla f, g\rangle, \quad f \in D\left(\Lambda_{p}(b)\right), g \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
b) [13, Theorem 5.1] If $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}, \delta<1$, then, for each $p \in[2, \infty), s-L^{p}-$ $\lim _{n} e^{-t \Lambda_{p}\left(b_{n}\right)}$ exists uniformly on each finite interval of $t \geqslant 0$, and hence determines a C_{0}-semigroup $e^{-t \Lambda_{p}(b)}$.
$e^{-t \Lambda_{p}(b)}$ is a quasi-bounded positivity preserving L^{∞}-contraction C_{0} - semigroup.

$$
\begin{aligned}
& \left\|e^{-t \Lambda_{r}(b)}\right\|_{r \rightarrow q} \leqslant c_{d, \delta} t^{-\frac{d}{2}\left(\frac{1}{r}-\frac{1}{q}\right)} \text { for all } 0<t \leqslant 1,2 \leqslant r<q \leqslant \infty \\
& D\left(\Lambda_{2}(b)\right) \subset W^{\frac{3}{2}, 2} \\
& \left\langle\Lambda_{2}(b) f, g\right\rangle=\langle\nabla f, \nabla g\rangle+\langle b \cdot \nabla f, g\rangle, \quad f \in D\left(\Lambda_{2}(b)\right), g \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

Remark 1.9. The additional (to $|b| \in L_{\mathrm{loc}}^{1}$) assumption $|b| \in L^{1}+L^{\infty}$ in [13, Theorem 5.1] is not essential for the proof, and can be eliminated.

For the sake of completeness, we now outline the proof of Theorem 1.8, with permission of its author.

Proof. a) Indeed, for all ζ with $\operatorname{Re} \zeta>0$,

$$
\left|\nabla(\zeta-\Delta)^{-1}(x, y)\right| \leqslant m_{d}\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{2}}(x, y) \text { pointwise on } \mathbb{R}^{d} \times \mathbb{R}^{d}
$$

(see (A.2) in the Appendix). Therefore, for $b \in \mathbf{K}_{\delta}^{d+1}$,

$$
\left\|b \cdot \nabla(\zeta-\Delta)^{-1}\right\|_{1 \rightarrow 1} \leqslant m_{d} \delta, \quad \operatorname{Re} \zeta \geqslant \kappa_{d} \lambda
$$

and so by the Miyadera perturbation theorem, the operator $-\Lambda_{1}(b):=\Delta-b \cdot \nabla$ of domain $D\left(\Lambda_{1}(b)\right)=\mathcal{W}^{2,1}$ is the generator of a quasi-bounded C_{0} semigroup on L^{1} whenever $m_{d} \delta<1$.

Clearly $b_{n} \in \mathbf{K}_{\delta}^{d+1},\left\|b_{n} \cdot \nabla(\zeta-\Delta)^{-1}\right\|_{1 \rightarrow 1} \leqslant m_{d} \delta$, and, for $m_{d} \delta<1$ and every $f \in D\left(\Lambda_{1}(b)\right), \Lambda_{1}\left(b_{n}\right) f \xrightarrow{s} \Lambda_{1}(b) f$ by the Dominated Convergence Theorem. (See, if needed, (A.1).) The latter easily implies the strong resolvent and the semigroup convergence of $\Lambda_{1}\left(b_{n}\right)$ to $\Lambda_{1}(b)$.

Then, for each $n=1,2, \ldots$, the semigroups $e^{-t \Lambda_{1}\left(b_{n}\right)}, t>0$, are positivity preserving L^{∞}-contractions, and so is $e^{-t \Lambda_{1}(b)}$. The bounds

$$
\left\|e^{-t \Lambda_{1}(b)}\right\|_{1 \rightarrow 1} \leqslant M e^{t \omega}, \omega=\kappa_{d} \lambda, \text { and }\left\|e^{-t \Lambda_{1}(b)} f\right\|_{\infty} \leqslant\|f\|_{\infty}, f \in L^{1} \cap L^{\infty}
$$

yield via the Riesz interpolation theorem

$$
\left\|e^{-t \Lambda_{1}(b)} f\right\|_{p} \leqslant M^{1 / p} e^{t \omega / p}\|f\|_{p}, \quad f \in L^{1} \cap L^{\infty}
$$

Therefore, we obtain a family $\left\{e^{-t \Lambda_{p}(b)}\right\}_{1 \leqslant p<\infty}$ of consistent C_{0}-semigroups by setting $e^{-t \Lambda_{p}(b)}:=$ the extension by continuity in L^{p} of $e^{-t \Lambda_{1}(b)} \mid L^{1} \cap L^{\infty}$.

Next, for each $p \in[1, \infty)$ and all $f \in \mathcal{E}:=\bigcup_{\epsilon>0} e^{-\epsilon|b|} L^{p}$, the inequality

$$
\left\||b|^{\frac{1}{p}}(\lambda-\Delta)^{-\frac{1}{2}}|b|^{\frac{1}{p^{\prime}}} f\right\|_{p} \leqslant \delta\|f\|_{p}
$$

as well as the inequality

$$
\left\|(|b|+\sqrt{\lambda})^{\frac{1}{p}}(\lambda-\Delta)^{-\frac{1}{2}}(|b|+\sqrt{\lambda})^{\frac{1}{p^{\prime}}} f\right\|_{p} \leqslant(1+\delta)\|f\|_{p}
$$

follow from the very definition of $\mathbf{K}_{\delta}^{d+1}$ (e.g., by interpolating between $\|(|b|+$ $\sqrt{\lambda})(\lambda-\Delta)^{-\frac{1}{2}} \|_{1 \rightarrow 1} \leqslant 1+\delta$ and (by duality) $\left.\left\|(\lambda-\Delta)^{-\frac{1}{2}}(|b|+\sqrt{\lambda})\right\|_{\infty} \leqslant 1+\delta\right)$. The latter implies that

$$
\left\||b|^{\frac{1}{p}}(\lambda-\Delta)^{-\frac{1}{2}}\right\|_{p \rightarrow p} \leqslant(1+\delta) \lambda^{-\frac{1}{2 p^{\prime}}}
$$

and the first inequality implies that, for every $\zeta \in \mathcal{O}, p \in[1, \infty)$ and all $f \in \mathcal{E}$,

$$
\left\|b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}} f\right\|_{p} \leqslant m_{d}\left\||b|^{\frac{1}{p}}(\lambda-\Delta)^{-\frac{1}{2}}|b|^{\frac{1}{p^{\prime}}}|f|\right\|_{p} \leqslant m_{d} \delta\|f\|_{p}
$$

Now, it is seen that for every $p \in[1, \infty)$ and $\zeta \in \mathcal{O}$ the operator G_{p} is bounded:

$$
\left\|G_{p}\right\|_{p \rightarrow p} \leqslant m_{d}\left\|b^{\frac{1}{p}}(\lambda-\Delta)^{-\frac{1}{2}}\right\|_{p \rightarrow p} \leqslant m_{d}(1+\delta) \lambda^{-\frac{1}{2 p^{\prime}}} .
$$

S_{p} and T_{p} are densely defined (on \mathcal{E}) and, for all $f \in \mathcal{E}$,

$$
\left\|S_{p} f\right\|_{p} \leqslant(1+\delta)^{-1} \lambda^{-\frac{1}{2 p}}\|f\|_{p} \text { and }\left\|T_{p} f\right\|_{p} \leqslant m_{d} \delta\|f\|_{p}
$$

Now, we denote again by S_{p}, T_{p} their extensions by continuity.
Next, we define an operator function $\Theta_{p}(\zeta, b)$ in L^{p} by

$$
\Theta_{p}(\zeta, b):=(\zeta-\Delta)^{-1}-(\zeta-\Delta)^{-\frac{1}{2}} S_{p}\left(1+T_{p}\right)^{-1} G_{p} \quad \zeta \in \mathcal{O}
$$

Obviously,

$$
\Theta_{p}(\zeta, b) \in \mathcal{B}\left(L^{p}\right) \text { and } \Theta_{p}(\zeta, b) \in \mathcal{B}\left(L^{p}, W^{1, p}\right)
$$

It is also seen that

$$
\left(\zeta+\Lambda_{1}(b)\right)^{-1}=\Theta_{1}(\zeta, b), \quad\left(\zeta+\Lambda_{p}(b)\right)^{-1}\left|L^{1} \cap L^{p}=\Theta_{p}(\zeta, b)\right| L^{1} \cap L^{p}
$$

and so

$$
\left(\zeta+\Lambda_{p}(b)\right)^{-1}=\Theta_{p}(\zeta, b), \quad \zeta \in \mathcal{O}
$$

The latter implies that $D\left(\Lambda_{p}(b)\right) \subset W^{1, p}$, for all $p \in[1, \infty)$. The main assertion is proved.
b) Let $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}, \delta<1$. Define $H=|b|^{\frac{1}{2}}(\zeta-\Delta)^{-\frac{1}{4}}, S=b^{\frac{1}{2}} \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}}$ and

$$
\begin{align*}
\Theta_{2}(\zeta, b) & :=(\zeta-\Delta)^{-\frac{3}{4}}\left(1+H^{*} S\right)^{-1}(\zeta-\Delta)^{-\frac{1}{4}} \\
& =(\zeta-\Delta)^{-1}-(\zeta-\Delta)^{-\frac{3}{4}} H^{*}\left(1+S H^{*}\right)^{-1} S(\zeta-\Delta)^{-\frac{1}{4}}, \quad \operatorname{Re} \zeta \geqslant \lambda \tag{*}
\end{align*}
$$

We represent $S=\hat{H} \nabla(\zeta-\Delta)^{-\frac{1}{2}}$, where the operator \hat{H} defined by $\hat{H} h:=b^{\frac{1}{2}}$. $(\zeta-\Delta)^{-\frac{1}{4}} h, h: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, with $(\zeta-\Delta)^{-\frac{1}{4}}$ acting on h component-wise, clearly satisfies $\|\hat{H} h\|_{2} \leqslant\left\||b|^{\frac{1}{2}}(\operatorname{Re} \zeta-\Delta)^{-\frac{1}{4}}|h|\right\|_{2} \leqslant \sqrt{\delta}\|h\|_{2}, \operatorname{Re} \zeta \geqslant \lambda$. Therefore,

$$
\begin{aligned}
\left\|H^{*} S\right\|_{2 \rightarrow 2} & \leqslant\|H\|_{2 \rightarrow 2}\|S\|_{2 \rightarrow 2} \\
& \leqslant\|H\|_{2 \rightarrow 2}\|\hat{H}\|_{2 \rightarrow 2}\left\|\nabla(\zeta-\Delta)^{-\frac{1}{2}}\right\|_{2 \rightarrow 2} \leqslant \delta
\end{aligned}
$$

and

$$
\left\|\Theta_{2}(\zeta, b)\right\|_{2 \rightarrow 2} \leqslant(1-\delta)^{-1}|\zeta|^{-1}
$$

Note that $D\left(\Lambda_{2}\left(b_{n}\right)\right)=W^{2,2}$ and, for all $\operatorname{Re} \zeta \geqslant \lambda$, by the first representation of $\Theta_{2}\left(\zeta, b_{n}\right)$,

$$
\begin{aligned}
& \Theta_{2}\left(\zeta, b_{n}\right)^{-1}\left|W^{2,2}=\left(\zeta+\Lambda_{2}\left(b_{n}\right)\right)\right| W^{2,2}, \quad \Theta_{2}\left(\zeta, b_{n}\right)=\left(\zeta+\Lambda_{2}\left(b_{n}\right)\right)^{-1} \\
& \zeta \Theta_{2}\left(\zeta, b_{n}\right) \xrightarrow{s} 1 \text { as } \zeta \uparrow \infty \text { by the second representation of } \Theta_{2}\left(\zeta, b_{n}\right)
\end{aligned}
$$

Therefore, $\Theta_{2}\left(\zeta, b_{n}\right)$ is the resolvent of $-\Lambda_{2}\left(b_{n}\right)$.
Since $\left\|\Theta_{2}\left(\zeta, b_{n}\right)\right\|_{2 \rightarrow 2} \leqslant(1-\delta)^{-1}|\zeta|^{-1}$, the semigroups $e^{-t \Lambda_{2}\left(b_{n}\right)}$ are holomorphic and equi-bounded.

Finally, it is seen that $\Theta_{2}\left(\zeta, b_{n}\right) \xrightarrow{s} \Theta_{2}(\zeta, b)$ in L^{2} on $\operatorname{Re} \zeta \geqslant \lambda$, and $\mu \Theta_{2}\left(\mu, b_{n}\right) \xrightarrow{s} 1$ in L^{2} as $\mu \uparrow \infty$ uniformly in n. Therefore, by the Trotter approximation theorem s - L^{2} - $\lim _{n} e^{-t \Lambda_{2}\left(b_{n}\right)}$ exists and determines a C_{0}-semigroup in L^{2}. It is also clear that this semigroup is holomorphic and L^{∞}-contractive.

1.2. Comments

1. The fact that $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ belongs to $\mathbf{K}_{\delta}^{d+1}$ or \mathbf{F}_{δ} allows us to construct operator realizations of the formal differential operator $-\Delta+b \cdot \nabla$ as (minus) generators of strongly continuous semigroups in L^{p} for some or all $p \in[1, \infty), C_{\infty}$ and/or C_{b}, by means of general tools of the standard perturbation theory (e.g., theorems of Miyadera [15] or Phillips [11], respectively);
2. Concerning the class $\mathbf{F}_{\delta}^{\frac{1}{2}}$ one can not appeal to the standard perturbation theory (in contrast to $\mathbf{K}_{\delta}^{d+1}$ and \mathbf{F}_{δ}) in order to properly characterize the domain of the generator $\Lambda_{p}(b)$. Indeed, the arguments in [13, p. 413-416] (repeated above in the proof of Theorem 1.8b) say nothing about $\mathcal{W}^{\alpha, p_{-s}}$-smoothness of $D\left(\Lambda_{p}(b)\right)$ for $p \neq 2$. The natural analogue of $(*)$ in L^{p} is valid only for a smaller class of vector fields: $|b| \in L^{d, \infty}$;
3. For $|b| \in L^{d, \infty}$, the assertion of Theorem 1.3(iv) can be strengthened:

$$
\begin{equation*}
|b| \in L^{d, \infty} \quad \Rightarrow \quad D\left(\Lambda_{p}(b)\right) \subset \mathcal{W}^{1+\frac{1}{p}, s}, \quad s<d p \tag{1.3}
\end{equation*}
$$

Indeed, arguing as in Remark 1.2 (i.e., appealing to [7, Proposition 2.5, 2.6, Corollary 2.9]), we can estimate, using (A.2), for every $f \in \mathcal{E}$,

$$
\begin{aligned}
\left\|b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-\frac{1}{2}-\frac{1}{2 p}} f\right\|_{s} \leqslant c_{1}\|f\|_{s}, & c_{1}:=m_{d}\left(\Omega_{d}^{-\frac{1}{d}}\|b\|_{d, \infty}\right)^{\frac{1}{p}} c(p, d) \\
\left\|(\zeta-\Delta)^{-\frac{1}{2 p^{\prime}}}|b|^{\frac{1}{p^{\prime}}} f\right\|_{s} \leqslant c_{2}\|f\|_{s}, & c_{2}:=\left(\Omega_{d}^{-\frac{1}{d}}\|b\|_{d, \infty}\right)^{\frac{1}{p^{\prime}}} c\left(p^{\prime}, d\right)
\end{aligned}
$$

where $c(p, d):=2^{-\frac{1}{p}} \frac{\Gamma\left(\frac{d}{2 p^{\prime}}\right)}{\Gamma\left(\frac{d}{2 p}\right)} \frac{\Gamma\left(\frac{d-1}{2 p}\right)}{\Gamma\left(\frac{1}{2 p}+\frac{d}{2 p^{\prime}}\right)}$, so

$$
\left\|b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}} f\right\|_{s} \leqslant c_{3}\|f\|_{s}, \quad c_{3}:=m_{d} \Omega_{d}^{-\frac{1}{d}}\|b\|_{d, \infty} c(p, d) c\left(p^{\prime}, d\right)
$$

Now, we can estimate in Theorem 1.3(iii):

$$
\left\|Q_{p}(p)\right\|_{s \rightarrow s},\left\|G_{p}(p)\right\|_{s \rightarrow s},\left\|T_{p}\right\|_{s \rightarrow s}<\infty
$$

to conclude that $\left\|\Theta_{p}(\zeta, b)\right\|_{s \rightarrow s}<\infty, 1<s<d p$. In view of Theorem 1.3(i), the last estimate implies the required;
4. Theorem 1.8 can be obtained as a side product of the proof of Theorem 1.3. Indeed, the constraints on p and δ in Theorem 1.3 come solely from the estimate on $\left\|T_{p}\right\|_{p \rightarrow p}$. Now, if $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}, \delta<1$, then (representing $S=\hat{H} \nabla(\zeta-\Delta)^{-\frac{1}{2}}$)

$$
\left\|T_{2}\right\|_{2 \rightarrow 2} \leqslant\|\hat{H}\|_{2 \rightarrow 2}\left\|H^{*}\right\|_{2 \rightarrow 2}\left\|\nabla(\zeta-\Delta)^{-\frac{1}{2}}\right\|_{2 \rightarrow 2} \leqslant \delta<1
$$

And if $b \in \mathbf{K}_{\delta}^{d+1}, m_{d} \delta<1$, then $\left\|T_{p}\right\|_{p \rightarrow p}<1$ for all $p \in[1, \infty)$, so that the interval \mathcal{I} э p transforms into $[1, \infty)$, and a possible causal dependence of the properties of $D\left(\Lambda_{p}(b)\right)$ on δ gets lost. The latter indicates the smallness of $\mathbf{K}_{\delta}^{d+1}$ as a subclass of $\mathbf{F}_{\delta}^{\frac{1}{2}} ;$
5. Both proofs of Theorem 1.3 and Theorem 1.8 are based on similar operatorvalued functions, although the arguments involved differ considerably;
6. Note that for $b \in \mathbf{K}_{\delta}^{d+1}, m_{d} \delta<1, D\left(\Lambda_{1}(b)\right)=\mathcal{W}^{2,1}$; for $b \in \mathbf{F}_{\delta}, \delta<1$, $D\left(\Lambda_{2}(b)\right)=W^{2,2}$, while for $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}, \delta<1, D\left(\Lambda_{2}(b)\right) \subset \mathcal{W}_{\text {loc }}^{2,1} ;$
7. Let $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, b \in \mathbf{F}_{\delta}^{\frac{1}{2}}, m_{d} \delta<1$. Theorem 1.3(i), (vi) and the argument in the proof of Theorem 1.8a (using the Riesz interpolation theorem) yield a consistent family of positivity preserving quasi-bounded C_{0}-semigroups $e^{-t \Lambda_{p}(b)}$ on L^{p}, for all $p \in\left(\frac{2}{1+\sqrt{1-m_{d} \delta}}, \infty\right) ;$
8. The author considers the assertion (iv) of Theorem 1.3 (the $\mathcal{W}^{1+\frac{1}{q}, p}$-smoothness) as the main result of the paper. Theorem 1.3, compared to [8] and Theorem 1.8 a , covers the larger class of vector fields, and at the same time establishes stronger smoothness properties of $D\left(\Lambda_{p}(b)\right): D\left(\Lambda_{p}(b)\right) \subset \mathcal{W}^{1+\frac{1}{q}, p}, p \in \mathcal{I}$ $(q>p)$, while in [8] $D\left(\Lambda_{p}(b)\right) \subset W^{1, j p}, j p \in(d, 2 j / \sqrt{\delta})$, and in Theorem 1.8a $D\left(\Lambda_{p}(b)\right) \subset \mathcal{W}^{1, p}, p \in[1, \infty)$;
9. The C_{∞}-theory of operator $-\Delta+b \cdot \nabla, b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$ (Theorem 1.5) follows almost automatically from the L^{p}-theory (Theorem 1.3) (with $p>d-1$), in contrast to [8], where the C_{∞}-theory is obtained from the L^{p}-theory by running a specifically tailored iterative procedure (see also [6]).

Acknowledgements. I am deeply grateful to Yu. A. Semenov for many important suggestions, and constant attention throughout this work. I am also thankful to the anonymous referee for a number of valuable comments that helped to improve the presentation.

2. Proof of Theorem 1.3

The method of the proof. We start with an operator-valued function

$$
\Theta_{p}(\zeta, b):=(\zeta-\Delta)^{-1}-Q_{p}\left(1+T_{p}\right)^{-1} G_{p}, \quad \zeta \in \mathcal{O}
$$

defined in L^{p} for each p from the interval

$$
\mathcal{I}:=] \frac{2}{1+\sqrt{1-m_{d} \delta}}, \frac{2}{1-\sqrt{1-m_{d} \delta}}\left[, \quad m_{d} \delta<1\right.
$$

and step by step prove that, for $n=1,2, \ldots$,

$$
\begin{gathered}
\left\|\Theta_{p}\left(\zeta, b_{n}\right)\right\|_{p \rightarrow p},\left\|\Theta_{p}(\zeta, b)\right\|_{p \rightarrow p} \leqslant c|\zeta|^{-1} \\
\Theta_{p}\left(\zeta, b_{n}\right) \text { is a pseudo-resolvent }
\end{gathered}
$$

$\Theta_{p}\left(\zeta, b_{n}\right)$ coincides with the resolvent $R\left(\zeta,-\Lambda_{p}\left(b_{n}\right)\right)=\left(\zeta+\Lambda_{p}\left(b_{n}\right)\right)^{-1}$ on \mathcal{O};

$$
\begin{aligned}
& \Theta_{p}\left(\zeta, b_{n}\right) \xrightarrow{s} \Theta_{p}(\zeta, b) \text { in } L^{p} \text { as } n \uparrow \infty \\
& \mu \Theta_{p}\left(\mu, b_{n}\right) \xrightarrow{s} 1 \text { as } \mu \uparrow \infty \text { in } L^{p} \text { uniformly in } n .
\end{aligned}
$$

All this combined leads to the conclusion: for each $p \in \mathcal{I}$ there is a holomorphic semigroup $e^{-t \Lambda_{p}(b)}$ in L^{p} such that the resolvent $R\left(\zeta,-\Lambda_{p}(b)\right)$ on $\zeta \in \mathcal{O}$ has the representation $\Theta_{p}(\zeta, b)$;
$\Theta_{p}(\zeta, b)$ can be written as $(\zeta-\Delta)^{-1}+A B C$, where $C \in \mathcal{B}\left(\mathcal{W}^{-\frac{1}{r^{\prime}}, p}, L^{p}\right)$, $B \in \mathcal{B}\left(L^{p}\right), A \in \mathcal{B}\left(L^{p}, \mathcal{W}^{1+\frac{1}{q}, p}\right), r<p<q, r^{\prime}=r /(r-1)$.

Propositions 2.1-2.6 below constitute the core of the proof of Theorem 1.3.

Proposition 2.1. Let $p \in \mathcal{I}$.
(i) For every $1 \leqslant r<p<q \leqslant \infty$ and $\zeta \in \mathcal{O}\left(=\left\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta \geqslant \kappa_{d} \lambda\right\}\right.$, $\lambda=$ λ_{δ}) define operators on L^{p}

$$
\begin{gathered}
Q_{p}(q)=(\zeta-\Delta)^{-\frac{1}{2 q^{\prime}}}|b|^{\frac{1}{p^{\prime}}}, \quad G_{p}(r)=b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-\frac{1}{2}-\frac{1}{2 r}} \\
T_{p}=b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}}
\end{gathered}
$$

Then $G_{p}(r)$ is bounded: $\left\|G_{p}(r)\right\|_{p \rightarrow p} \leqslant K_{1, r} . Q_{p}(q)$ and T_{p} are densely defined (on \mathcal{E}), and for all $f \in \mathcal{E}$,

$$
\begin{gather*}
\left\|Q_{p}(q) f\right\|_{p} \leqslant K_{2, q}\|f\|_{p}, \\
\left\|T_{p} f\right\|_{p} \leqslant m_{d} c_{p} \delta\|f\|_{p}, \quad m_{d} c_{p} \delta<1, \quad c_{p}=p p^{\prime} / 4 . \tag{2.1}
\end{gather*}
$$

Their extensions by continuity we denote again by $Q_{p}(q), T_{p}$.
(ii) Set $G_{p}=b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}, Q_{p}=(\zeta-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}}, P_{p}=|b|^{\frac{1}{p}}(\zeta-\Delta)^{-1}$. The operator Q_{p} is densely defined on \mathcal{E}. There exist constants $C_{i}, i=1,2,3$, such that

$$
\begin{gather*}
\left\|G_{p}\right\|_{p \rightarrow p} \leqslant C_{1}|\zeta|^{-\frac{1}{2 p^{\prime}}}, \quad\left\|P_{p}\right\|_{p \rightarrow p} \leqslant C_{3}|\zeta|^{-\frac{1}{2}-\frac{1}{2 p^{\prime}}} \tag{2.2}\\
\left\|Q_{p} f\right\|_{p} \leqslant C_{2}|\zeta|^{-\frac{1}{2}-\frac{1}{2 p}}\|f\|_{p} \quad(f \in \mathcal{E}), \quad \zeta \in \mathcal{O}
\end{gather*}
$$

We denote again by Q_{p} the extension of Q_{p} by continuity.
Remark 2.2. The proof of Proposition 2.1 uses ideas from [2,10], and appeals to the L^{p}-inequalities between the operator $(\lambda-\Delta)^{\frac{1}{2}}$ and the "potential" $|b|$.

Proof. (i) Let $r \in(1, \infty)$. Then
(a) $\quad \mu \geqslant \lambda \Rightarrow\left\||b|^{\frac{1}{r}}(\mu-\Delta)^{-\frac{1}{2}}\right\|_{r \rightarrow r} \leqslant C_{r, \delta} \mu^{-\frac{1}{2 r^{\prime}}}, C_{r, \delta}=\left(c_{r} \delta\right)^{\frac{1}{r}}, c_{r}=r r^{\prime} / 4$. Indeed, define in $L^{2} A=(\mu-\Delta)^{\frac{1}{2}}, D(A)=W^{1,2}$. Then $-A+\mu^{\frac{1}{2}}$ is a symmetric Markov generator. Therefore (see, e.g., [10, Theorem 2.1]), for any $r \in(1, \infty)$,

$$
0 \leqslant u \in D\left(A_{r}\right) \Rightarrow v:=u^{\frac{r}{2}} \in D\left(A^{\frac{1}{2}}\right) \text { and } c_{r}^{-1}\left\|A^{\frac{1}{2}} v\right\|_{2}^{2} \leqslant\left\langle A_{r} u, u^{r-1}\right\rangle
$$

Now let u be the solution of $A_{r} u=|f|$, with $f \in L^{r}$. Note that $\|u\|_{r} \leqslant \mu^{-\frac{1}{2}}\|f\|_{r}$ (using $\left\|(\mu-\Delta)^{-1}\right\|_{r \rightarrow r} \leqslant \mu^{-1}$ in (A.6) with $\alpha=\frac{1}{2}$).

Since $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$, we have

$$
\left(c_{r} \delta\right)^{-1}\left\||b|^{\frac{1}{2}} v\right\|_{2}^{2} \leqslant\left\langle A_{r} u, u^{r-1}\right\rangle
$$

and so $\left\||b|^{\frac{1}{r}} u\right\|_{r}^{r} \leqslant c_{r} \delta\|f\|_{r}\|u\|_{r}^{r-1},\left\||b|^{\frac{1}{r}} A_{r}^{-1}|f|\right\|_{r}^{r} \leqslant c_{r} \delta \mu^{-\frac{r-1}{2}}\|f\|_{r}^{r}$. Therefore (a) is proved.
(b) $\quad \mu \geqslant \lambda \Rightarrow\left\||b|^{\frac{1}{r}}(\mu-\Delta)^{-\frac{1}{2}}|b|^{\frac{1}{r^{\prime}}} f\right\|_{r} \leqslant c_{r} \delta\|f\|_{r}, f \in \mathcal{E}$.

Indeed, let u be the solution of $A u=|b|^{\frac{1}{r^{\prime}}}|f|, f \in \mathcal{E}$. Then, arguing as in (a), we have

$$
\left\||b|^{\frac{1}{r}} u\right\|_{r}^{r} \leqslant c_{r} \delta\|f\|_{r}\left\||b|^{\frac{1}{r}} u\right\|_{r}^{r-1},
$$

or $\left\||b|^{\frac{1}{r}} u\right\|_{r} \leqslant c_{r} \delta\|f\|_{r}$. So (b) is proved.
(c) $\quad \mu \geqslant \lambda \Rightarrow\left\|(\mu-\Delta)^{-\frac{1}{2}}|b|^{\frac{1}{r^{\prime}}} f\right\|_{r} \leqslant C_{r^{\prime}, \delta} \mu^{-\frac{1}{2 r}}\|f\|_{r}, f \in \mathcal{E}$.

Indeed, (c) follows from (a) by duality.
Let us prove (2.1). Let $\zeta \in \mathcal{O}$. Using (A.2) + (b) with $r=p \in \mathcal{I}, \mu=\lambda$, we obtain:

$$
\left\|T_{p} f\right\|_{p} \leqslant m_{d}\left\|b^{\frac{1}{p}}\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{2}}|b|^{\frac{1}{p^{\prime}}}|f|\right\|_{p} \leqslant m_{d} c_{p} \delta\|f\|_{p}, \quad f \in \mathcal{E}
$$

$m_{d} c_{p} \delta<1$ since $p \in \mathcal{I}$.
Next, we estimate $\left\|Q_{p}(q)\right\|_{p \rightarrow p},\left\|G_{p}(r)\right\|_{p \rightarrow p}$. Let $\operatorname{Re} \zeta \geqslant \lambda, p<q$. We obtain:

$$
\begin{aligned}
\left\|Q_{p}(q) f\right\|_{p} & \leqslant\left\|(\operatorname{Re} \zeta-\Delta)^{-\frac{1}{2 q^{\prime}}}|b|^{\frac{1}{p^{\prime}}}|f|\right\|_{p} \\
& \leqslant\left\|(\lambda-\Delta)^{-\frac{1}{2 q^{\prime}}}|b|^{\frac{1}{p^{\prime}}}|f|\right\|_{p}
\end{aligned}
$$

(here we are using (A.6) with $\alpha=1 / 2 q^{\prime}$)

$$
\begin{aligned}
& \leqslant k_{q^{\prime}} \int_{0}^{\infty} t^{-\frac{1}{2 q^{\prime}}}\left\|(t+\lambda-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}}|f|\right\|_{p} d t \quad\left(k_{q^{\prime}}:=\frac{\sin \frac{\pi}{2 q^{\prime}}}{\pi}\right) \\
& \leqslant k_{q^{\prime}} \int_{0}^{\infty} t^{-\frac{1}{2 q^{\prime}}}(t+\lambda)^{-\frac{1}{2}}\left\|(t+\lambda-\Delta)^{-\frac{1}{2}}|b|^{\frac{1}{p^{\prime}}}|f|\right\|_{p} d t
\end{aligned}
$$

(here we are using (c) with $r=p \in \mathcal{I}, \mu=t+\lambda$)

$$
\leqslant k_{q^{\prime}} C_{p^{\prime}, \delta} \int_{0}^{\infty} t^{-\frac{1}{2 q^{\prime}}}(t+\lambda)^{-\frac{1}{2}-\frac{1}{2 p}} d t\|f\|_{p}=K_{2, q}\|f\|_{p}, f \in \mathcal{E}
$$

where, clearly, $K_{2, q}<\infty$ because $q>p$.

Let $\zeta \in \mathcal{O}, 1 \leqslant r<p$. Using (A.3), we obtain

$$
\begin{aligned}
\left\|G_{p}(r) f\right\|_{p} \leqslant & m_{r, d}\left\||b|^{\frac{1}{p}}\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{2 r}}|f|\right\|_{p} \\
\leqslant & m_{r, d}\left\||b|^{\frac{1}{p}}(\lambda-\Delta)^{-\frac{1}{2 r}}|f|\right\|_{p} \\
& \text { (here we are using (A.6) with } \alpha=1 / 2 r) \\
\leqslant & m_{r, d} k_{r} \int_{0}^{\infty} t^{-\frac{1}{2 r}}\left\||b|^{\frac{1}{p}}(t+\lambda-\Delta)^{-1}|f|\right\|_{p} d t \\
\leqslant & m_{r, d} k_{r} \int_{0}^{\infty} t^{-\frac{1}{2 r}}\left\||b|^{\frac{1}{p}}(t+\lambda-\Delta)^{-\frac{1}{2}}\right\|_{p \rightarrow p}\left\|(t+\lambda-\Delta)^{-\frac{1}{2}}|f|\right\|_{p} d t
\end{aligned}
$$

$$
\text { (here we are using (a) with } r=p \in \mathcal{I}, \mu=t+\lambda \text {) }
$$

$$
\leqslant m_{r, d} k_{r} C_{p, \delta} \int_{0}^{\infty} t^{-\frac{1}{2 r}}(t+\lambda)^{-\frac{1}{2 p^{\prime}}-\frac{1}{2}} d t\|f\|_{p}=K_{1, r}\|f\|_{p}, f \in \mathcal{E}
$$

where, clearly, $K_{1, r}<\infty$ because $r<p$.
The proof of (i) is complete.
(ii) Let $\operatorname{Re} \zeta \geqslant \lambda$. We have

$$
\begin{aligned}
\left\|Q_{p}(2 \zeta, b) f\right\|_{p} \leqslant & \left\|(2 \zeta-\Delta)^{-\frac{1}{2}}\right\|_{p \rightarrow p}\left\|(2 \zeta-\Delta)^{-\frac{1}{2}}|b|^{\frac{1}{p^{\prime}}} f\right\|_{p} \\
& \text { (here we are applying (A.5) twice }+(\mathbf{c}) \text { with } r=p \in \mathcal{I}, \mu=|\zeta|) \\
\leqslant & 2^{\frac{d}{4}+\frac{1}{4}} 2^{-\frac{1}{2}}|\zeta|^{-\frac{1}{2}} C_{p^{\prime}, \delta} 2^{\frac{d}{4}+\frac{1}{4}}|\zeta|^{-\frac{1}{2 p}}\|f\|_{p}, \quad f \in \mathcal{E} .
\end{aligned}
$$

Now, using the identity $(\zeta-\Delta)^{-1}=\left(1+\zeta(\zeta-\Delta)^{-1}\right)(2 \zeta-\Delta)^{-1}$, we obtain:

$$
\begin{aligned}
\left\|Q_{p}(\zeta, b) f\right\|_{p} & \leqslant\left\|1+\zeta(\zeta-\Delta)^{-1}\right\|_{p \rightarrow p}\left\|Q_{p}(2 \zeta, b) f\right\|_{p} \\
& \leqslant 2^{\frac{1}{2}}|\zeta|^{-\frac{1}{2}} C_{p^{\prime}, \delta} 2^{\frac{d}{2}+\frac{1}{2}}|\zeta|^{-\frac{1}{2 p}}\|f\|_{p} \\
& =C_{2}|\zeta|^{-\frac{1}{2}-\frac{1}{2 p}}\|f\|_{p}, \quad f \in \mathcal{E}
\end{aligned}
$$

Let $\operatorname{Re} \zeta \geqslant \lambda$. We have:

$$
\begin{aligned}
\left\|P_{p}(2 \zeta, b)\right\|_{p \rightarrow p} \leqslant & \left\||b|^{\frac{1}{p}}(2 \zeta-\Delta)^{-\frac{1}{2}}\right\|_{p \rightarrow p}\left\|(2 \zeta-\Delta)^{-\frac{1}{2}}\right\|_{p \rightarrow p} \\
& \text { (here we are applying (A.5) twice) } \\
\leqslant & 2^{\frac{d}{2}+\frac{1}{2}}\left\||b|^{\frac{1}{p}}(|\zeta|-\Delta)^{-\frac{1}{2}}\right\|_{p \rightarrow p}|\zeta|^{-\frac{1}{2}} \\
& \quad \text { here we are using (a) with } r=p \in \mathcal{I}, \mu=|\zeta|) \\
\leqslant & C_{p, \delta} 2^{\frac{d}{2}+\frac{1}{2}}|\zeta|^{-\frac{1}{2}-\frac{1}{2 p^{\prime}}} .
\end{aligned}
$$

Now, using the identity $(\zeta-\Delta)^{-1}=(2 \zeta-\Delta)^{-1}\left(1+\zeta(\zeta-\Delta)^{-1}\right)$, we obtain:

$$
\begin{aligned}
\left\|P_{p}(\zeta, b)\right\|_{p \rightarrow p} & \leqslant 2 C_{p, \delta} 2^{2 \frac{d}{2}+\frac{1}{2}}|\zeta|^{-\frac{1}{2}-\frac{1}{2 p^{\prime}}} \\
& =C_{3}|\zeta|^{-\frac{1}{2}-\frac{1}{2 p^{\prime}}}
\end{aligned}
$$

Let $\zeta \in \mathcal{O}$. Using (A.4) + (a) with $r=p \in \mathcal{I}, \mu=|\zeta|$, we obtain:

$$
\left\|G_{p}\left(2 \kappa_{d} \zeta, b\right)\right\|_{p \rightarrow p} \leqslant m_{d} C_{p, \delta} 2^{\frac{d}{4}}|\zeta|^{-\frac{1}{2 p^{\prime}}}
$$

Now, using the identity $(\zeta-\Delta)^{-1}=\left(2 \kappa_{d} \zeta-\Delta\right)^{-1}\left(1+\left(2 \kappa_{d}-1\right) \zeta(\zeta-\Delta)^{-1}\right)$, we obtain:

$$
\begin{aligned}
\left\|G_{p}(\zeta, b)\right\|_{p \rightarrow p} & \leqslant 2 \kappa_{d} m_{d} C_{p, \delta} 2^{\frac{d}{4}}|\zeta|^{-\frac{1}{2 p^{\prime}}} \\
& =C_{1}|\zeta|^{-\frac{1}{2 p^{\prime}}}
\end{aligned}
$$

The proof of (ii) is complete.
Remark 2.3. Since $\left|b_{n}\right| \leqslant|b|$ a.e., Proposition 2.1 is valid for $b_{n}, n=1,2, \ldots$, with the same constants.

Proposition 2.4. For every $p \in \mathcal{I}$, and $n=1,2, \ldots$, the operator-valued function $\Theta_{p}\left(\zeta, b_{n}\right)$ is a pseudo-resolvent on \mathcal{O}, i.e.,

$$
\Theta_{p}\left(\zeta, b_{n}\right)-\Theta_{p}\left(\eta, b_{n}\right)=(\eta-\zeta) \Theta_{p}\left(\zeta, b_{n}\right) \Theta_{p}\left(\eta, b_{n}\right), \quad \zeta, \eta \in \mathcal{O}
$$

Proof. Define $S_{\zeta}^{k}:=(-1)^{k}(\zeta-\Delta)^{-1} b_{n} \cdot \nabla(\zeta-\Delta)^{-1} \ldots b_{n} \cdot \nabla(\zeta-\Delta)^{-1}, k:=$ \# b_{n} 's. Obviously,

$$
\begin{align*}
& \Theta_{p}\left(\zeta, b_{n}\right):=(\zeta-\Delta)^{-1}-Q(1+T)^{-1} G \\
&=(\zeta-\Delta)^{-1}-Q \sum_{k=0}^{\infty}(-1)^{k} T^{k} G \\
&\left.=\sum_{k=0}^{\infty} S_{\zeta}^{k} \quad \text { (absolutely convergent in } L^{p}\right), \\
& \Theta_{p}\left(\zeta, b_{n}\right) \Theta_{p}\left(\eta, b_{n}\right)=\sum_{\ell=0}^{\infty} \sum_{i=0}^{\ell} S_{\zeta}^{i} S_{\eta}^{\ell-i}, \quad \zeta, \eta \in \mathcal{O} \tag{2.3}
\end{align*}
$$

Define

$$
\begin{gathered}
I_{j, m}^{k}(\zeta, \eta):=(\zeta-\Delta)^{-1} b_{n} \cdot \nabla(\zeta-\Delta)^{-1} \ldots b_{n} \cdot \nabla(\zeta-\Delta)^{-1} \\
b_{n} \cdot \nabla(\eta-\Delta)^{-1} b_{n} \cdot \nabla(\eta-\Delta)^{-1} \ldots b_{n} \cdot \nabla(\eta-\Delta)^{-1} \\
j:=\# \zeta \prime s, \quad m:=\# \eta ' s, \quad k:=\# b_{n} \prime s
\end{gathered}
$$

Substituting the identity $(\zeta-\Delta)^{-1}(\eta-\Delta)^{-1}=(\eta-\zeta)^{-1}\left((\zeta-\Delta)^{-1}-(\eta-\Delta)^{-1}\right)$ inside the product

$$
\begin{aligned}
S_{\zeta}^{k} S_{\eta}^{j}= & (-1)^{k+j}(\zeta-\Delta)^{-1} b_{n} \cdot \nabla(\zeta-\Delta)^{-1} \ldots b_{n} \\
& \cdot \nabla \underbrace{(\zeta-\Delta)^{-1}(\eta-\Delta)^{-1}}_{(\eta-\zeta)^{-1}\left((\zeta-\Delta)^{-1}-(\eta-\Delta)^{-1}\right)} b_{n} \cdot \nabla(\eta-\Delta)^{-1} \ldots b_{n} \cdot \nabla(\eta-\Delta)^{-1}
\end{aligned}
$$

we obtain $S_{\zeta}^{k} S_{\eta}^{j}=(\eta-\zeta)^{-1}(-1)^{k+j}\left[I_{k+1, j}^{k+j}-I_{k, j+1}^{k+j}\right]$. Therefore,

$$
\begin{aligned}
\sum_{i=0}^{\ell} S_{\zeta}^{i} S_{\eta}^{\ell-i} & =(\eta-\zeta)^{-1}(-1)^{\ell}\left[I_{1, \ell}^{\ell}-I_{0, \ell+1}^{\ell}+I_{2, \ell-1}^{\ell}-I_{1, \ell}^{\ell}+\cdots+I_{\ell+1,0}^{\ell}-I_{\ell, 1}^{\ell}\right] \\
& =(\eta-\zeta)^{-1}(-1)^{\ell}\left(I_{\ell+1,0}^{\ell}-I_{0, \ell+1}^{\ell}\right)
\end{aligned}
$$

Substituting the last identity in the right-hand side of (2.3), we obtain

$$
\begin{aligned}
\Theta_{p}\left(\zeta, b_{n}\right) \Theta\left(\eta, b_{n}\right) & =(\eta-\zeta)^{-1} \sum_{\ell=0}^{\infty}(-1)^{\ell}\left(I_{\ell+1,0}^{\ell}-I_{0, \ell+1}^{\ell}\right) \\
& =(\eta-\zeta)^{-1}\left(\Theta_{p}\left(\zeta, b_{n}\right) h-\Theta_{p}\left(\eta, b_{n}\right)\right)
\end{aligned}
$$

Proposition 2.5. For every $p \in \mathcal{I}$, and $n=1,2, \ldots$,
(i) $\left\|\Theta_{p}\left(\zeta, b_{n}\right)\right\|_{p \rightarrow p} \leqslant C_{p}|\zeta|^{-1}, \zeta \in \mathcal{O}$, for a constant C_{p} independent of n;
(ii) $\mu \Theta_{p}\left(\mu, b_{n}\right) \xrightarrow{s} 1$ in L^{p} as $\mu \uparrow \infty$ (uniformly in n).

Proof of (i). Put $Q_{p} \equiv Q_{p}\left(\zeta, b_{n}\right), T_{p} \equiv T_{p}\left(\zeta, b_{n}\right), G_{p} \equiv G_{p}\left(\zeta, b_{n}\right)$. By the definition of $\Theta_{p}\left(\zeta, b_{n}\right)$, see (1.2), for every $\zeta \in \mathcal{O}$,

$$
\left\|\Theta_{p}\left(\zeta, b_{n}\right)\right\|_{p \rightarrow p} \leqslant\left\|(\zeta-\Delta)^{-1}\right\|_{p \rightarrow p}+\left\|Q_{p}\right\|_{p \rightarrow p}\left\|\left(1+T_{p}\right)^{-1}\right\|_{p \rightarrow p}\left\|G_{p}\right\|_{p \rightarrow p}
$$

(here we are using (2.1), (2.2) in Proposition 2.1)

$$
\begin{aligned}
& \leqslant|\zeta|^{-1}+C_{2}|\zeta|^{-\frac{1}{2}-\frac{1}{2 p^{\prime}}}\left(1-m_{d} c_{p} \delta\right)^{-1} C_{1}|\zeta|^{-\frac{1}{2 p}} \\
& \leqslant C_{p}|\zeta|^{-1}, \quad C_{p}:=1+C_{1} C_{2}\left(1-m_{d} c_{p} \delta\right)^{-1}
\end{aligned}
$$

Proof of (ii). Put $\Theta_{p} \equiv \Theta_{p}\left(\mu, b_{n}\right), Q_{p} \equiv Q_{p}\left(\mu, b_{n}\right), T_{p} \equiv T_{p}\left(\mu, b_{n}\right), P_{p} \equiv$ $P_{p}\left(\mu, b_{n}\right)$. Since $\mu(\mu-\Delta)^{-1} \xrightarrow{s} 1$, it suffices to show that $\mu \Theta_{p}-\mu(\mu-\Delta)^{-1} \xrightarrow{s} 0$ in L^{p}. Since by (i) $\mu \Theta_{p}$ is uniformly (in μ) bounded in $\mathcal{B}\left(L^{p}\right)$, and C_{c}^{∞} is dense in L^{p}, it suffices to show that $\mu \Theta_{p} h-\mu(\mu-\Delta)^{-1} h \rightarrow 0$ in L^{p} for every $h \in C_{c}^{\infty}$. Write

$$
\Theta_{p} h-(\mu-\Delta)^{-1} h=-Q_{p}\left(1+T_{p}\right)^{-1} b_{n}^{\frac{1}{p}} \cdot(\mu-\Delta)^{-1} \nabla h
$$

$\operatorname{By}(2.1),\left\|\left(1+T_{p}\right)^{-1}\right\|_{p \rightarrow p} \leqslant \frac{1}{1-\left\|T_{p}\right\|_{p \rightarrow p}} \leqslant \frac{1}{1-m_{d} c_{p} \delta}<\infty$, by (2.2), $\left\|Q_{p}\right\|_{p \rightarrow p} \leqslant$ $C_{2} \mu^{-\frac{1}{2}-\frac{1}{2 p}}$. Again, by (2.2),

$$
\begin{aligned}
\left\|b_{n}^{\frac{1}{p}} \cdot(\mu-\Delta)^{-1} \nabla h\right\|_{p} & \leqslant\left\|\left|b_{n}\right|^{\frac{1}{p}}(\mu-\Delta)^{-1}|\nabla h|\right\|_{p} \\
& \leqslant\left\|P_{p}\right\|_{p \rightarrow p}\|\nabla h\|_{p} \\
& \leqslant C_{3} \mu^{-\frac{1}{2}-\frac{1}{2 p^{\prime}}}\|\nabla h\|_{p}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|\Theta_{p} h-(\mu-\Delta)^{-1} h\right\|_{p} & \leqslant\left\|Q_{p}\right\|_{p \rightarrow p}\left\|\left(1+T_{p}\right)^{-1}\right\|_{p \rightarrow p}\left\|b_{n}^{\frac{1}{p}} \cdot(\mu-\Delta)^{-1} \nabla h\right\|_{p} \\
& \leqslant C_{0} \mu^{-\frac{3}{2}}\|\nabla h\|_{p}
\end{aligned}
$$

for some $C_{0}<\infty$ independent of n, which clearly implies (ii).
Proposition 2.6. For every $p \in \mathcal{I}$, and $n=1,2, \ldots$, we have $\mathcal{O} \subset \rho\left(-\Lambda_{p}\left(b_{n}\right)\right)$, the resolvent set of $-\Lambda_{p}\left(b_{n}\right)$. The operator-valued function $\Theta_{p}\left(\zeta, b_{n}\right)$ is the resolvent of $-\Lambda_{p}\left(b_{n}\right)$:

$$
\Theta_{p}\left(\zeta, b_{n}\right)=\left(\zeta+\Lambda_{p}\left(b_{n}\right)\right)^{-1}, \quad \zeta \in \mathcal{O}
$$

and

$$
\left\|\left(\zeta+\Lambda_{p}\left(b_{n}\right)\right)^{-1}\right\|_{p \rightarrow p} \leqslant C_{p}|\zeta|^{-1}, \quad \zeta \in \mathcal{O}
$$

Proof. By definition, we need to verify that, for every $\zeta \in \mathcal{O}, \Theta_{p}\left(\zeta, b_{n}\right)$ has dense image, and is the left and the right inverse of $\zeta+\Lambda_{p}\left(b_{n}\right)$. Indeed, Proposition $2.5(\mathrm{ii})$ implies that $\Theta_{p}\left(\zeta, b_{n}\right)$ has dense image. $\Lambda_{p}\left(b_{n}\right):=-\Delta+b_{n} \cdot \nabla$, $D\left(\Lambda_{p}\left(b_{n}\right)\right)=W^{2, p}$, is the generator of a C_{0}-semigroup $e^{-t \Lambda_{p}\left(b_{n}\right)}$ on L^{p}. Clearly, $\Theta_{p}\left(\zeta_{n}, b_{n}\right)=\left(\zeta_{n}+\Lambda_{p}\left(b_{n}\right)\right)^{-1}$ for all sufficiently large $\zeta_{n}\left(=\zeta\left(\left\|b_{n}\right\|_{\infty}\right)\right)$, therefore, by Proposition 2.4,

$$
\Theta_{p}\left(\zeta, b_{n}\right)=\left(\zeta_{n}+\Lambda_{p}\left(b_{n}\right)\right)^{-1}\left(1+\left(\zeta_{n}-\zeta\right) \Theta_{p}\left(\zeta, b_{n}\right)\right), \quad \zeta \in \mathcal{O}
$$

so $\Theta_{p}\left(\zeta, b_{n}\right) L^{p} \subset D\left(\Lambda_{p}\left(b_{n}\right)\right)=W^{2, p}$, and $\left(\zeta+\Lambda_{p}\left(b_{n}\right)\right) \Theta_{p}\left(\zeta, b_{n}\right) g=g, g \in$ L^{p}, i.e., $\Theta_{p}\left(\zeta, b_{n}\right)$ is the right inverse of $\zeta+\Lambda_{p}\left(b_{n}\right)$ on \mathcal{O}. Similarly, it is seen that $\Theta\left(\zeta, b_{n}\right)$ is the left inverse of $\zeta+\Lambda_{p}\left(b_{n}\right)$ on \mathcal{O}.
Remark 2.7. Alternatively, we could verify conditions of the Kato theorem [5]: in the reflexive space L^{p}, the pseudo-resolvent $\Theta_{p}\left(\zeta, b_{n}\right)$ (see Proposition 2.4) satisfying $\mu \Theta_{p}\left(\mu, b_{n}\right) \xrightarrow{s} 1$ in L^{p} as $\mu \uparrow \infty$ (see Proposition 2.5 (ii)) is the resolvent of a densely defined closed operator on L^{p}. This operator coincides with $-\Lambda_{p}\left(b_{n}\right)$ $\left(\right.$ since $\Theta_{p}\left(\zeta_{n}, b_{n}\right)=\left(\zeta_{n}+\Lambda_{p}\left(b_{n}\right)\right)^{-1}$ for all large $\left.\zeta_{n}\right)$.

Now, $\left\|\left(\zeta+\Lambda_{p}\left(b_{n}\right)\right)^{-1}\right\|_{p \rightarrow p} \leqslant C_{p}|\zeta|^{-1}, \zeta \in \mathcal{O}$, follows from Proposition 2.5(i).

Proposition 2.8. For every $\zeta \in \mathcal{O}$ and $p \in \mathcal{I}$,

$$
\Theta_{p}\left(\zeta, b_{n}\right) \xrightarrow{s} \Theta_{p}(\zeta, b) \text { in } L^{p}
$$

Proof. Put $\Theta_{p}(b) \equiv \Theta_{p}(\zeta, b), Q_{p}(b) \equiv Q_{p}(\zeta, b), T_{p}(b) \equiv T_{p}(\zeta, b), G_{p}(b) \equiv$ $G_{p}(\zeta, b)$ (similarly for b_{n} 's). It suffices to prove that

$$
Q_{p}\left(b_{n}\right)\left(1+T\left(b_{n}\right)\right)^{-1} G_{p}\left(b_{n}\right) \xrightarrow{s} Q_{p}(b)\left(1+T_{p}(b)\right)^{-1} G_{p}(b) .
$$

Thus it suffices to prove consecutively that

$$
G_{p}\left(b_{n}\right) \xrightarrow{s} G_{p}(b),\left(1+T_{p}\left(b_{n}\right)\right)^{-1} \xrightarrow{s}\left(1+T_{p}(b)\right)^{-1}, Q_{p}\left(b_{n}\right) \xrightarrow{s} Q_{p}(b)
$$

In turn, since $\left(1+T_{p}\left(b_{n}\right)\right)^{-1}-\left(1+T_{p}(b)\right)^{-1}=\left(1+T_{p}\left(b_{n}\right)\right)^{-1}\left(T_{p}(b)-T_{p}\left(b_{n}\right)\right)(1+$ $\left.T_{p}(b)\right)^{-1}$, it suffices to prove that $T_{p}\left(b_{n}\right) \xrightarrow{s} T_{p}(b)$. Finally,
$T_{p}\left(b_{n}\right)-T_{p}(b)=T_{p}\left(b_{n}\right)-b_{n}^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}}+b_{n}^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}}-T_{p}(b)$,
and hence we have to prove that

$$
b_{n}^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}}-T_{p}(b):=J_{n}^{(1)} \xrightarrow{s} 0
$$

and

$$
T_{p}\left(b_{n}\right)-b_{n}^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}}:=J_{n}^{(2)} \xrightarrow{s} 0
$$

Now, by the Dominated Convergence Theorem (cf. the argument in the proof of (A.1)), $G_{p}\left(b_{n}\right) \xrightarrow{s} G_{p}(b), J_{n}^{(1)} \mid \mathcal{E} \xrightarrow{s} 0$. Also

$$
\begin{aligned}
\left\|J_{n}^{(2)} f\right\|_{p} & =\left\|G_{p}\left(b_{n}\right)\left(\left|b_{n}\right|^{\frac{1}{p^{\prime}}}-|b|^{\frac{1}{p^{\prime}}}\right) f\right\|_{p} \\
& \leqslant\left\|G_{p}\left(b_{n}\right)\right\|_{p \rightarrow p}\left\|\left(\left|b_{n}\right|^{\frac{1}{p^{\prime}}}-|b|^{\frac{1}{p^{\prime}}}\right) f\right\|_{p} \\
& \leqslant m_{d}(1+\delta)|\zeta|^{-\frac{1}{2 p^{\prime}}}\left\|\left(\left|b_{n}\right|^{\frac{1}{p^{\prime}}}-|b|^{\frac{1}{p^{\prime}}}\right) f\right\|_{p}, \quad(f \in \mathcal{E}) .
\end{aligned}
$$

Thus, $J_{n}^{(2)} \mid \mathcal{E} \xrightarrow{s} 0$. Since $\left\|J_{n}^{(2)}\right\|_{p \rightarrow p},\left\|J_{n}^{(1)}\right\|_{p \rightarrow p} \leqslant m_{d} \delta$, we conclude that $T_{p}\left(b_{n}\right)$ $\xrightarrow{s} T_{p}(b)$. It is clear now that $Q_{p}\left(b_{n}\right) \xrightarrow{s} Q_{p}(b)$.

Now we are going to prove Theorem 1.3 using the Trotter approximation theorem [4, IX.2.5]. Recall its conditions (in terms of $\Theta_{p}\left(\zeta, b_{n}\right)$ on the base of Proposition 2.6):

1) $\sup _{n \geqslant 1}\left\|\Theta_{p}\left(\zeta, b_{n}\right)\right\|_{p \rightarrow p} \leqslant C_{p}|\zeta|^{-1}, \zeta \in \mathcal{O} ;$
2) $\mu \Theta_{p}\left(\mu, b_{n}\right) \xrightarrow{s} 1$ in L^{p} as $\mu \uparrow \infty$ uniformly in n;
3) There exists $s-L^{p}-\lim _{n} \Theta_{p}\left(\zeta, b_{n}\right)$ for some $\zeta \in \mathcal{O}$.

Now, 1) is the content of Proposition 2.5(i). 2) is Proposition 2.5(ii). Proposition 2.8 implies 3).

Therefore, by the Trotter approximation theorem, $\Theta_{p}(\zeta, b)=\left(\zeta+\Lambda_{p}(b)\right)^{-1}$, $\zeta \in \mathcal{O}$, where $\Lambda_{p}(b)$ is the generator of the holomorphic C_{0}-semigroup $e^{-t \Lambda_{p}(b)}$ on L^{p}. (Note that, by Proposition 2.8, $\left\|\Theta_{p}(\zeta, b)\right\|_{p \rightarrow p} \leqslant C_{p}|\zeta|^{-1}, \zeta \in \mathcal{O}$. Hence, $\Theta_{p}(\zeta, b)$ can be extended to $\mathcal{O} \cup\left\{\zeta \in \mathbb{C}:|\operatorname{Arg} \zeta|<\frac{\pi}{2}+\varepsilon,|\zeta|>R\right\}, \varepsilon>0$, for a sufficiently large $R>0$, where it satisfies $\left\|\Theta_{p}(\zeta, b)\right\|_{p \rightarrow p} \leqslant C_{p}^{\prime}|\zeta|^{-1}$, see the corresponding argument in [16, IX.10].)

Hence, the assertions (i), (vi) of Theorem 1.3 follow. (ii) follows from Proposition 2.5(i) and Proposition 2.8. (iii) is obvious from the definitions of the operators involved, $c f$. Proposition 2.1.
(iii) \Rightarrow (iv). In particular, if $p>d-1$, given a $0<\gamma<1-\frac{d-1}{p}$, we can select $q>p$ sufficiently close to p so that by the Sobolev embedding theorem the Bessel space $\mathcal{W}^{1+\frac{1}{q}, p}$ is embedded into $C^{0, \gamma}$.
(v) Let $\zeta \in \mathcal{O}$. By Proposition 2.8, $\Lambda_{p}\left(b_{n}\right)\left(\zeta+\Lambda_{p}\left(b_{n}\right)\right)^{-1} \xrightarrow{s} \Lambda_{p}(b)(\zeta+$ $\left.\Lambda_{p}(b)\right)^{-1}$ in L^{p}. Put $Q_{p}(b) \equiv Q_{p}(\zeta, b), T_{p}(b) \equiv T_{p}(\zeta, b), G_{p}(b) \equiv G_{p}(\zeta, b)$ (similarly for b_{n} 's). Since $\left(\zeta+\Lambda_{p}(b)\right)^{-1}=(\zeta-\Delta)^{-1}-Q_{p}(b)\left(1+T_{p}(b)\right)^{-1} G_{p}(b)$, we have

$$
b^{\frac{1}{p}} \cdot \nabla\left(\zeta+\Lambda_{p}(b)\right)^{-1}=G_{p}(b)-T_{p}(b)\left(1+T_{p}(b)\right)^{-1} G_{p}(b)
$$

(similarly for the b_{n} 's). Since $G_{p}\left(b_{n}\right) \xrightarrow{s} G_{p}(b), T_{p}\left(b_{n}\right) \xrightarrow{s} T_{p}(b)$ in L^{p} (see the proof of Proposition 2.8),

$$
\begin{equation*}
b_{n}^{\frac{1}{p}} \cdot \nabla\left(\zeta+\Lambda_{p}\left(b_{n}\right)\right)^{-1} \xrightarrow{s} b^{\frac{1}{p}} \cdot \nabla\left(\zeta+\Lambda_{p}(b)\right)^{-1} \text { in } L^{p} . \tag{**}
\end{equation*}
$$

Clearly, $|b|^{\frac{1}{p^{\prime}}} \in L_{\text {loc }}^{p^{\prime}}$, for $|b| \in L_{\text {loc }}^{1}$ by the definition of class $\mathbf{F}_{\delta}^{\frac{1}{2}}$. Now, given $u \in D\left(\Lambda_{p}(b)\right)$, we have $u=\left(\zeta+\Lambda_{p}(b)\right)^{-1} g$ for some $g \in L^{p}$, and so, for every
$v \in C_{c}^{\infty}$,

$$
\begin{aligned}
\left\langle\Lambda_{p}(b) u, v\right\rangle= & \left\langle\Lambda_{p}(b)\left(\zeta+\Lambda_{p}(b)\right)^{-1} g, v\right\rangle \\
= & \lim _{n}\left\langle\Lambda_{p}\left(b_{n}\right)\left(\zeta+\Lambda_{p}\left(b_{n}\right)\right)^{-1} g, v\right\rangle \\
= & \lim _{n}\left\langle\left(\zeta+\Lambda_{p}\left(b_{n}\right)\right)^{-1} g,-\Delta v\right\rangle \\
& \left.+\left.\lim _{n}\left\langle b_{n}^{\frac{1}{p}} \cdot \nabla\left(\zeta+\Lambda_{p}\left(b_{n}\right)\right)^{-1} g,\right| b_{n}\right|^{\frac{1}{p^{\prime}}} v\right\rangle
\end{aligned}
$$

$$
\text { (here we are using }(* *) \text { and the fact that }\left|b_{n}\right|^{\frac{1}{p^{\prime}}} v \rightarrow|b|^{\frac{1}{p^{\prime}}} v \text { in } L^{p^{\prime}} \text {) }
$$

$$
\left.=\left\langle\left(\zeta+\Lambda_{p}(b)\right)^{-1} g,-\Delta v\right\rangle+\left.\left\langle b^{\frac{1}{p}} \cdot \nabla\left(\zeta+\Lambda_{p}(b)\right)^{-1} g,\right| b\right|^{\frac{1}{p^{\prime}}} v\right\rangle
$$

$$
\left.=\langle u,-\Delta v\rangle+\left.\left\langle b^{\frac{1}{p}} \cdot \nabla u,\right| b\right|^{\frac{1}{p^{\prime}}} v\right\rangle
$$

Next, since for $u \in D\left(\Lambda_{p}(b)\right), b^{\frac{1}{p}} \cdot \nabla u \in L^{p}$, it follows that $b \cdot \nabla u=|b|^{\frac{1}{p^{\prime}}} b^{\frac{1}{p}} \cdot \nabla u \in$ L_{loc}^{1}. Also, $\Lambda_{p}(b) u \in L^{p}$, and hence $\left\langle\Lambda_{p}(b) u, v\right\rangle=\langle u,-\Delta v\rangle+\langle b \cdot \nabla u, v\rangle$. Therefore, Δu (understood in the sense of distributions) $=-\Lambda_{p}(b) u+b \cdot \nabla u \in$ $L_{\text {loc }}^{1}$, i.e. $u \in \mathcal{W}_{\text {loc }}^{2,1}$. The proof of (v) is completed.

For the proof of (viii) see the argument in [13, p. 415-416].
The proof of Theorem 1.3 is complete.

3. Proof of Theorem 1.5

It is easily seen that, due to the strict inequality $m_{d} \delta<4 \frac{d-2}{(d-1)^{2}}$, for every $\tilde{\delta}>\delta$ such that $m_{d} \tilde{\delta}<4 \frac{d-2}{(d-1)^{2}}$ there exists $\left\{\varepsilon_{n}\right\}, \varepsilon_{n} \downarrow 0$, such that

$$
\tilde{b}_{n}:=\eta_{\varepsilon_{n}} * b_{n} \in \mathbf{F}_{\tilde{\delta}}^{\frac{1}{2}}, \quad n=1,2, \ldots
$$

(i) We verify conditions of the Trotter approximation theorem:
$\left.1^{\circ}\right) \sup _{n}\left\|\left(\mu+\Lambda_{C_{\infty}}\left(\tilde{b}_{n}\right)\right)^{-1}\right\|_{\infty \rightarrow \infty} \leqslant \mu^{-1}, \mu \geqslant \kappa_{d} \lambda$.
$\left.2^{\circ}\right) \mu\left(\mu+\Lambda_{C_{\infty}}\left(\tilde{b}_{n}\right)\right)^{-1} \rightarrow 1$ in C_{∞} as $\mu \uparrow \infty$ uniformly in n.
3°) There exists $s-C_{\infty^{-}} \lim _{n}\left(\mu+\Lambda_{C_{\infty}}\left(\tilde{b}_{n}\right)\right)^{-1}$ for some $\mu \geqslant \kappa_{d} \lambda$.
The condition 1°) is immediate. In view of 1°), it suffices to verify 2°), 3°) on \mathcal{S}, the L. Schwartz space of test functions. Fix $p \in \mathcal{I}, p>d-1$ (such p exists since $\left.m_{d} \tilde{\delta}<4 \frac{d-2}{(d-1)^{2}}\right)$.

Proposition 3.1. For every $\mu \geqslant \kappa_{d} \lambda, n=1,2, \ldots, \Theta_{p}\left(\mu, \tilde{b}_{n}\right) \mathcal{S} \subset \mathcal{S}$, and

$$
\left.\left(\mu+\Lambda_{C_{\infty}}\left(\tilde{b}_{n}\right)\right)^{-1}\right|_{\mathcal{S}}=\left.\Theta_{p}\left(\mu, \tilde{b}_{n}\right)\right|_{\mathcal{S}}
$$

Proof. The inclusion $\Theta_{p}\left(\mu, \tilde{b}_{n}\right) \mathcal{S} \subset \mathcal{S}$ is obvious. Also, $\left.\Theta_{p}\left(\mu_{n}, \tilde{b}_{n}\right)\right|_{\mathcal{S}}=\left(\mu_{n}+\right.$ $\left.\Lambda_{C_{\infty}}\left(\tilde{b}_{n}\right)\right)\left.^{-1}\right|_{\mathcal{S}}$ for all sufficiently large $\mu_{n}\left(=\mu\left(\left\|\tilde{b}_{n}\right\|_{\infty}\right)\right)$. By $\Theta_{p}\left(\mu, \tilde{b}_{n}\right) \mathcal{S} \subset \mathcal{S}$ and Proposition 2.4, $\left.\Theta_{p}\left(\mu, \tilde{b}_{n}\right)\right|_{\mathcal{S}}$ satisfies the resolvent identity on $\mu \geqslant \kappa_{d} \lambda$,

$$
\left.\Theta_{p}\left(\mu, \tilde{b}_{n}\right)\right|_{\mathcal{S}}=\left.\left(\mu_{n}+\Lambda_{C_{\infty}}\left(\tilde{b}_{n}\right)\right)^{-1}\left(1+\left(\mu_{n}-\mu\right) \Theta_{p}\left(\mu, \tilde{b}_{n}\right)\right)\right|_{\mathcal{S}}, \quad \mu \geqslant \kappa_{d} \lambda
$$

so $\left.\Theta_{p}\left(\mu, \tilde{b}_{n}\right)\right|_{\mathcal{S}}$ is the right inverse of $\mu+\left.\Lambda_{C_{\infty}}\left(\tilde{b}_{n}\right)\right|_{\mathcal{S}}$ on $\mu \geqslant \kappa_{d} \lambda$. Similarly, it is seen that $\left.\Theta_{p}\left(\mu, \tilde{b}_{n}\right)\right|_{\mathcal{S}}$ is the left inverse of $\mu+\left.\Lambda_{C_{\infty}}\left(\tilde{b}_{n}\right)\right|_{\mathcal{S}}$ on $\mu \geqslant \kappa_{d} \lambda$.

Proposition 3.2. For every $\mu \geqslant \kappa_{d} \lambda, \Theta_{p}(\mu, b) \mathcal{S} \subset C_{\infty}$, and

$$
\Theta_{p}\left(\mu, \tilde{b}_{n}\right) \xrightarrow{s} \Theta_{p}(\mu, b) \text { in } C_{\infty}
$$

Proof. By Theorem 1.3(iv), since $p>d-1, \Theta_{p}(\mu, b) L^{p} \subset C_{\infty}$. Put

$$
Q_{p}(q, b) \equiv Q_{p}(q, \mu, b), \quad T_{p}(b) \equiv T_{p}(\mu, b), \quad G_{p}(b) \equiv G_{p}(\mu, b)
$$

To establish the required convergence, it suffices to prove that

$$
\begin{aligned}
&(\mu-\Delta)^{-\frac{1}{2}-\frac{1}{2 q}} Q_{p}\left(q, \tilde{b}_{n}\right)\left(1+T_{p}\left(\tilde{b}_{n}\right)\right)^{-1} G_{p}\left(\tilde{b}_{n}\right) \\
& \xrightarrow{s}(\mu-\Delta)^{-\frac{1}{2}-\frac{1}{2 q}} Q_{p}(q, b)\left(1+T_{p}(b)\right)^{-1} G_{p}(b) \quad \text { in } C_{\infty} .
\end{aligned}
$$

We choose $q(>p)$ close to $d-1$ so that $(\mu-\Delta)^{-\frac{1}{2}-\frac{1}{2 q}} L^{p} \hookrightarrow C_{\infty}$. Thus it suffices to prove that
$G_{p}\left(\tilde{b}_{n}\right) \xrightarrow{s} G_{p}(b),\left(1+T_{p}\left(\tilde{b}_{n}\right)\right)^{-1} \xrightarrow{s}\left(1+T_{p}(b)\right)^{-1}, Q_{p}\left(q, \tilde{b}_{n}\right) \xrightarrow{s} Q_{p}(q, b)$ in L^{p},
which can be done by repeating the arguments in the proof of Proposition 2.8.

Proposition 3.3.

$$
\begin{equation*}
\mu \Theta_{p}\left(\mu, \tilde{b}_{n}\right) \xrightarrow{s} 1 \text { as } \mu \uparrow \infty \text { in } C_{\infty} \text { uniformly in } n . \tag{3.1}
\end{equation*}
$$

Proof. Put $\Theta_{p} \equiv \Theta_{p}\left(\mu, \tilde{b}_{n}\right), T_{p} \equiv T_{p}\left(\mu, \tilde{b}_{n}\right)$. Since $\mu(\mu-\Delta)^{-1} \xrightarrow{s} 1$ in C_{∞}, and \mathcal{S} is dense in C_{∞}, it suffices to show that $\left\|\mu \Theta_{p} f-\mu(\mu-\Delta)^{-1} f\right\|_{\infty} \rightarrow 0$ for every $f \in \mathcal{S}$. For each $f \in \mathcal{S}$ there is $h \in \mathcal{S}$ such that $f=(\lambda-\Delta)^{-\frac{1}{2}} h$, where $\lambda=\lambda_{\delta}>0$. Let $q>p$. Write

$$
\Theta_{p} f-(\mu-\Delta)^{-1} f=-(\mu-\Delta)^{-\frac{1}{2}-\frac{1}{2 q}} Q_{p}(q)\left(1+T_{p}\right)^{-1} b^{\frac{1}{p}}(\lambda-\Delta)^{-\frac{1}{2}} \cdot(\mu-\Delta)^{-1} \nabla h
$$

Now, arguing as in the proof of Proposition 2.5(i), but using the estimates

$$
\left\|(\mu-\Delta)^{-\frac{1}{2}-\frac{1}{2 q}}\right\|_{p \rightarrow \infty} \leqslant c \mu^{-\frac{1}{2}+\frac{d}{2 p}-\frac{1}{2 q}}, \quad c<\infty
$$

and

$$
\left\|Q_{p}(q)\right\|_{p \rightarrow p} \leqslant \tilde{K}_{2, q}<\infty \quad(\operatorname{see}(2.2))
$$

we obtain

$$
\left\|\Theta_{p} f-(\mu-\Delta)^{-1} f\right\|_{\infty} \leqslant C \mu^{-\frac{1}{2}+\frac{d}{2 p}-\frac{1}{2 q}} \mu^{-1}\|\nabla h\|_{p}
$$

Since $p>d-1$, choosing q sufficiently close to p, we obtain

$$
-\frac{1}{2}+\frac{d}{2 p}-\frac{1}{2 q}-1<-1
$$

so $\mu \Theta_{p}-\mu(\mu-\Delta)^{-1} \xrightarrow{s} 0$ in C_{∞}, as needed.
Now, Proposition 3.2 verifies condition 3°), and Proposition 3.3 verifies condition 2°). Assertion (i) of Theorem 1.5 now follows from the Trotter approximation theorem.

Assertion (ii) of Theorem 1.5 follows from Theorem 1.3(iii).
The proof of assertion (iii) is standard, and is omitted.
Remark 3.4. We could construct $e^{-t \Lambda_{C_{\infty}}(b)}$ alternatively as follows:

$$
e^{-t \Lambda_{C_{\infty}}(b)}:=\left(e^{-t \Lambda_{p}(b)} \mid C_{\infty} \cap L^{p}\right)_{C_{\infty}}^{\mathrm{clos}}
$$

(after a change on a set of measure zero), $\quad t>0$,
where $p \in\left(d-1, \frac{2}{1-\sqrt{1-m_{d} \delta}}\right)$.

A. Appendix

Define $I_{n}:=\left\|\left(b-b_{n}\right) \cdot \nabla(\zeta-\Delta)^{-1} f\right\|_{1}$.

1. Let $b \in \mathbf{K}_{\delta}^{d+1}$. For every $f \in L^{1}$ and $\operatorname{Re} \zeta \geqslant \kappa_{d} \lambda$,

$$
\begin{equation*}
I_{n} \rightarrow 0 \text { as } n \uparrow \infty \tag{A.1}
\end{equation*}
$$

Proof of (A.1). Since $I_{n} \leqslant 2 m_{d}\left\||b|(\lambda-\Delta)^{-\frac{1}{2}}|f|\right\|_{1} \leqslant 2 m_{d} \delta\|f\|_{1}$, it suffices to prove (A.1) for each $f \in L^{1} \cap L^{\infty}$. Let $f \in L^{1} \cap L^{\infty}, \lambda>0$ and b be fixed. Since $|b|(\lambda-\Delta)^{-\frac{1}{2}}|f| \in L^{1}$, for a given $\epsilon>0$, there exists \mathcal{K}, a compact, such that

$$
\left\|\left(\mathbf{1}-\mathbf{1}_{\mathcal{K}}\right)|b|(\lambda-\Delta)^{-\frac{1}{2}}|f|\right\|_{1} \leqslant \epsilon,
$$

where $\mathbf{1}_{\mathcal{K}}$ is the characteristic function of \mathcal{K}. Define $I_{\mathcal{K}, n}:=\| \mathbf{1}_{\mathcal{K}}\left|b-b_{n}\right|(\lambda-$ $\Delta)^{-\frac{1}{2}}|f| \|_{1}$. Clearly,

$$
I_{\mathcal{K}, n} \leqslant \lambda^{-\frac{1}{2}}\|f\|_{\infty}\left\|\mathbf{1}_{\mathcal{K}}\left|b-b_{n}\right|\right\|_{1}
$$

Since $|b| \in L_{\text {loc }}^{1}$ and \mathcal{K} independent of $n=1,2, \ldots$,

$$
\left\|\mathbf{1}_{\mathcal{K}}\left|b-b_{n}\right|\right\|_{1} \leqslant\left\|\mathbf{1}_{|b| \geqslant n}\left(\mathbf{1}_{\mathcal{K}}|b|\right)\right\|_{1} \rightarrow 0 \text { as } n \uparrow \infty .
$$

Therefore, for a given ϵ, there exists $n_{0}=n_{0}(\epsilon) \geqslant 1$, such that $I_{\mathcal{K}, n} \leqslant \epsilon$ whenever $n \geqslant n_{0}$, and so

$$
I_{n} \leqslant 3 m_{d} \epsilon \quad \forall n \geqslant n_{0}
$$

We use the following pointwise estimates $\left(x, y \in \mathbb{R}^{d}, x \neq y\right)$.
2. For every $\operatorname{Re} \zeta>0$,

$$
\begin{equation*}
\left|\nabla(\zeta-\Delta)^{-1}(x, y)\right| \leqslant m_{d}\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{2}}(x, y) \tag{A.2}
\end{equation*}
$$

where $m_{d}^{2}:=\pi(2 e)^{-1} d^{d}(d-1)^{1-d}, \kappa_{d}:=\frac{d}{d-1}$.
For every $r \in(1, \infty]$ there exists a constant $m_{r, d}<\infty$ such that for all $\operatorname{Re} \zeta>0$,

$$
\begin{equation*}
\left|\nabla(\zeta-\Delta)^{-1+\frac{1}{2 r}}(x, y)\right| \leqslant m_{r, d}\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{2}+\frac{1}{2 r}}(x, y) \tag{A.3}
\end{equation*}
$$

3. For every $\operatorname{Re} \zeta>0$,

$$
\begin{gather*}
\left|\nabla(\zeta-\Delta)^{-1}(x, y)\right| \leqslant 2^{\frac{d}{4}} m_{d}\left(\kappa_{d}^{-1} 2^{-1}|\zeta|-\Delta\right)^{-\frac{1}{2}}(x, y) \tag{A.4}\\
\left|(\zeta-\Delta)^{-\frac{1}{2}}(x, y)\right| \leqslant 2^{\frac{d}{4}+\frac{1}{4}}\left(2^{-1}|\zeta|-\Delta\right)^{-\frac{1}{2}}(x, y) \tag{A.5}
\end{gather*}
$$

Proof of (A.2). Let $\alpha \in(0,1)$. Set

$$
c(\alpha):=\sup _{\xi>0} \xi e^{-(1-\alpha) \xi^{2}}\left(=\frac{1}{\sqrt{2}}(1-\alpha)^{-\frac{1}{2}} e^{-\frac{1}{2}}\right),
$$

so that

$$
\xi e^{-\xi^{2}} \leqslant c(\alpha) e^{-\alpha \xi^{2}} \quad \text { for all } \xi>0
$$

We use the well known formula

$$
(\zeta-\Delta)^{-\frac{\gamma}{2}}(x, y)=\frac{1}{\Gamma\left(\frac{\gamma}{2}\right)} \int_{0}^{\infty} e^{-\zeta t} t^{\frac{\gamma}{2}-1}(4 \pi t)^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{4 t}} d t, \quad 0<\gamma \leqslant 2
$$

first with $\gamma=2$, and then with $\gamma=1$, to obtain:

$$
\begin{aligned}
\left|\nabla(\zeta-\Delta)^{-1}(x, y)\right| \leqslant & \int_{0}^{\infty} e^{-t \operatorname{Re} \zeta}(4 \pi t)^{-\frac{d}{2}} \frac{|x-y|}{2 t} e^{-\frac{|x-y|^{2}}{4 t}} d t \\
\leqslant & c(\alpha) \int_{0}^{\infty} e^{-t \operatorname{Re} \zeta} t^{-\frac{1}{2}}(4 \pi t)^{-\frac{d}{2}} e^{-\alpha \frac{|x-y|^{2}}{4 t}} d t \\
& \left(\operatorname{By}(\star) \text { with } \xi:=\frac{|x-y|}{2 \sqrt{t}}\right) \\
\leqslant & c(\alpha) \alpha^{-\frac{1}{2}-\frac{d}{2}+1} \int_{0}^{\infty} e^{-(\operatorname{Re} \zeta) \alpha t} t^{-\frac{1}{2}}(4 \pi t)^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{4 t}} d t \\
& (\operatorname{change} t / \alpha \operatorname{to} t) \\
= & c(\alpha) \alpha^{\frac{1}{2}-\frac{d}{2}} \Gamma\left(\frac{1}{2}\right)(\alpha \operatorname{Re} \zeta-\Delta)^{-\frac{1}{2}}(x, y)
\end{aligned}
$$

Now, we minimize $c(\alpha) \alpha^{\frac{1}{2}-\frac{d}{2}} \Gamma\left(\frac{1}{2}\right)$ in $\alpha \in(0,1)$. The minimum is attained at $\alpha_{d}=\frac{d-1}{d}\left(=: \kappa_{d}^{-1}\right)$, and is equal to m_{d}.

The proof of (A.3) is similar.
Proof of (A.4). First, suppose that $\operatorname{Im} \zeta \leqslant 0$. By the Cauchy theorem,

$$
\begin{aligned}
(\zeta-\Delta)^{-1}(x, y) & =\int_{0}^{\infty} e^{-\zeta t}(4 \pi t)^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{4 t}} d t \\
& =\int_{0}^{\infty} e^{-\zeta r e^{i \frac{\pi}{4}}} e^{-i \frac{\pi}{4} \frac{d}{2}}(4 \pi r)^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{4 r e^{i \frac{\pi}{4}}}} e^{i \frac{\pi}{4}} d r
\end{aligned}
$$

(i.e., we have changed the contour of integration from $\{t: t \geqslant 0\}$ to $\left\{r e^{i \frac{\pi}{4}}: r \geqslant 0\right\}$). Thus,

$$
\left|\nabla(\zeta-\Delta)^{-1}(x, y)\right| \leqslant \int_{0}^{\infty}\left|e^{-\zeta r e^{i \frac{\pi}{4}}}\right|(4 \pi r)^{-\frac{d}{2}}\left|\frac{x-y}{2 r}\right|\left|e^{-\frac{|x-y|^{2}}{4 r e^{i \frac{\pi}{4}}}}\right| d r
$$

We have

$$
\left|e^{-\zeta r e^{i \frac{\pi}{4}}}\right| \leqslant e^{-r \frac{1}{\sqrt{2}}(\operatorname{Re} \zeta-\operatorname{Im} \zeta)}, \quad\left|e^{-\frac{|x-y|^{2}}{4 r e^{i \frac{\pi}{4}}}}\right| \leqslant e^{-\frac{|x-y|^{2}}{4 r} \frac{1}{\sqrt{2}}}, \quad \operatorname{Re} \zeta-\operatorname{Im} \zeta \geqslant|\zeta|
$$

Therefore,

$$
\begin{aligned}
&\left|\nabla(\zeta-\Delta)^{-1}(x, y)\right| \leqslant \int_{0}^{\infty} e^{-r \frac{1}{\sqrt{2}}|\zeta|}(4 \pi r)^{-\frac{d}{2}}\left|\frac{x-y}{2 r}\right| e^{-\frac{|x-y|^{2}}{4 r} \frac{1}{\sqrt{2}}} d r \\
&\quad \text { (change } r \sqrt{2} \text { to } r) \\
&= 2^{\frac{d}{4}} \int_{0}^{\infty} e^{-r \frac{1}{2}|\zeta|}(4 \pi r)^{-\frac{d}{2}}\left|\frac{x-y}{2 r}\right| e^{-\frac{|x-y|^{2}}{4 r}} d r \\
& \leqslant \frac{2^{\frac{d}{4}} m_{d}}{\Gamma\left(\frac{1}{2}\right)} \int_{0}^{\infty} e^{-r \kappa_{d}^{-1} \frac{1}{2}|\zeta|}(4 \pi r)^{-\frac{d}{2}} r^{-\frac{1}{2}} e^{-\frac{|x-y|^{2}}{4 r}} d r \\
& \quad(c f . \text { proof of }(\mathrm{A} .2)) \\
&= 2^{\frac{d}{4}} m_{d}\left(\kappa_{d}^{-1} 2^{-1}|\zeta|-\Delta\right)^{-\frac{1}{2}}(x, y)
\end{aligned}
$$

which yields (A.4) for $\operatorname{Im} \zeta \leqslant 0$. The case $\operatorname{Im} \zeta>0$ is treated analogously.
Proof of (A.5). First, suppose that $\operatorname{Im} \zeta \leqslant 0$. By the Cauchy theorem,

$$
\begin{aligned}
(\zeta-\Delta)^{-\frac{1}{2}}(x, y) & =\int_{0}^{\infty} e^{-\zeta t} t^{-\frac{1}{2}}(4 \pi t)^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{4 t}} d t \\
& =\int_{0}^{\infty} e^{-\zeta r e^{i \frac{\pi}{4}} r^{-\frac{1}{2}} e^{-i \frac{\pi}{8}} e^{-i \frac{\pi}{4} \frac{d}{2}}(4 \pi r)^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{4 r e^{i \frac{\pi}{4}}} e^{i \frac{\pi}{4}} d r}} .
\end{aligned}
$$

so we estimate as above:

$$
\begin{aligned}
\left|(\zeta-\Delta)^{-\frac{1}{2}}(x, y)\right| & \leqslant \int_{0}^{\infty} e^{-r \frac{1}{\sqrt{2}}|\zeta|} r^{-\frac{1}{2}}(4 \pi r)^{-\frac{d}{2}} e^{-\frac{|x-y|^{2}}{4 r} \frac{1}{\sqrt{2}}} d r \\
& =2^{\frac{d}{4}+\frac{1}{4}}\left(2^{-1}|\zeta|-\Delta\right)^{-\frac{1}{2}}(x, y)
\end{aligned}
$$

The case $\operatorname{Im} \zeta>0$ is treated analogously.
4. In the proof of Proposition 2.1 we need the following formula: for every $0<$ $\alpha<1, \operatorname{Re} \zeta>0$,

$$
\begin{equation*}
(\zeta-\Delta)^{-\alpha}=\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} t^{-\alpha}(t+\zeta-\Delta)^{-1} d t \tag{A.6}
\end{equation*}
$$

B. Appendix

Proof of (1.1). Let $b \in \mathbf{K}_{\delta}^{d+1}$, i.e., $\left\||b|(\lambda-\Delta)^{-\frac{1}{2}}\right\|_{1 \rightarrow 1} \leqslant \delta,\left\|(\lambda-\Delta)^{-\frac{1}{2}}|b|\right\|_{\infty} \leqslant$ $\delta \quad$ (by duality). Then, using, e.g., interpolation, $\left\||b|^{\frac{1}{2}}(\lambda-\Delta)^{-\frac{1}{2}}|b|^{\frac{1}{2}}\right\|_{2 \rightarrow 2} \leqslant \delta$, i.e., $b \in \mathbf{F}_{\delta}^{\frac{1}{2}}$. The first inclusion is proved. (Here, the proof depends crucially of the fact that $(\lambda-\Delta)^{-\frac{1}{2}}$ is an integral operator with a symmetric kernel.)

The second inclusion $\mathbf{F}_{\delta_{1}} \subsetneq \mathbf{F}_{\delta}^{\frac{1}{2}}, \delta=\sqrt{\delta_{1}}$, follows, e.g., by Heinz inequality [3]. The last assertion now follows from

$$
b \in \mathbf{F}_{\sqrt{\delta_{1}}}^{\frac{1}{2}}, \mathbf{f} \in \mathbf{F}_{\delta_{2}}^{\frac{1}{2}} \Rightarrow b+\mathbf{f} \in \mathbf{F}_{\delta}^{\frac{1}{2}}
$$

where we have used $(|b|+|f|)^{\frac{1}{2}} \leqslant|b|^{\frac{1}{2}}+|f|^{\frac{1}{2}}$.

References

[1] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure. Appl. Math. 35 (1982), 209-273.
[2] A. G. Belyi and Yu. A. Semenov, On the L^{p}-theory of Schrödinger semigroups. II, Sibirsk. Math. J. 31 (1990), 16-26; English transl. in Siberian Math. J. 31 (1991), 540-549.
[3] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951) 415-438.
[4] T. Kato, "Perturbation Theory for Linear Operators", Springer-Verlag, Berlin, Heidelberg, 1995.
[5] T. Kato, Remarks on pseudo-resolvents and infinitesimal generators, Proc. Japan. Acad. 35 (1959), 467-468.
[6] D. Kinzebulatov, Feller evolution families and parabolic equations with form-bounded vector fields, Osaka J. Math., to appear
[7] V. F. Kovalenko, M. A. Perelmuter, and Yu. A. Semenov, Schrödinger operators with $L_{W}^{1 / 2}\left(R^{l}\right)$-potentials, J. Math. Phys. 22 (1981), 1033-1044.
[8] V. F. Kovalenko and Yu. A. Semenov, C_{0}-semigroups in $L^{p}\left(\mathbb{R}^{d}\right)$ and $C_{\infty}\left(\mathbb{R}^{d}\right)$ spaces generated by differential expression $\Delta+b \cdot \nabla$, (Russian) Teor. Veroyatn. Primen. 35 (1990), 449-458; translation in Theory Probab. Appl. 35 (1991), 443-453.
[9] N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields 131 (2005), 154-196.
[10] V. A. Liskevich and Yu. A. Semenov, Some problems on Markov semigroups, In: "Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras" M. Demuth et al. (eds.), Mathematical Topics: Advances in Partial Differential Equations, Vol. 11, Akademie Verlag, Berlin, 1996, 163-217.
[11] R. S. Phillips, Semigroups of positive contraction operators, Czechoslovak Math. J. 12 (1962), 294-313.
[12] Yu. A. Semenov, unpublished.
[13] Yu. A. SEmENOv, Regularity theorems for parabolic equations, J. Funct. Anal. 231 (2006), 375-417.
[14] Yu. A. Semenov, On perturbation theory for linear elliptic and parabolic operators; the method of Nash, Contemp. Math. 221 (1999), 217-284.
[15] J. Voigt, On the perturbation theory for strongly continuous semigroups, Math. Ann. 229 (1977), 163-171.
[16] K. Yosida, "Functional Analysis", Springer-Verlag, Berlin, Heidelberg, 1980.

Department of Mathematics
University of Toronto 40 St. George Str. Toronto, ON, M5S2E4, Canada damir.kinzebulatov@utoronto.ca

[^0]: ${ }^{1}$ In particular, the uniqueness of solution of Cauchy problem for $-\Delta+b \cdot \nabla$ can fail if $b \in \mathbf{F}_{\delta}$ is replaced with $c b\left(\in \mathbf{F}_{c^{2} \delta}\right)$, for a sufficiently large constant $c, c f$. [8, Example 5].

