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A new approach to the L p-theory of �1 + b · r,
and its applications to Feller processes with general drifts

DAMIR KINZEBULATOV

Abstract. We develop a detailed regularity theory of�1+b ·r in L p(Rd ), for a
wide class of vector fields. The L p-theory allows us to construct associated strong
Feller process in C1(Rd ). Our starting object is an operator-valued function,
which, we prove, determines the resolvent of an operator realization of�1+b·r,
the generator of a holomorphic C0-semigroup on L p(Rd ). Then the very form of
the operator-valued function yields crucial information about smoothness of the
domain of the generator.

Mathematics Subject Classification (2010): 35J15 (primary); 47D07, 35J75
(secondary).

1. Introduction

Let Ld be the Lebesgue measure on Rd , L p = L p(Rd ,Ld) and W 1,p
=

W 1,p(Rd ,Ld) the standard (complex) Lebesgue and Sobolev spaces, C0,� =

C0,� (Rd) the space of Hölder continuous functions (0 < � < 1), Cb = Cb(Rd) the
space of bounded continuous functions endowed with the sup-norm, C1 ⇢ Cb the
closed subspace of functions vanishing at infinity,W↵,p, ↵ > 0, the Bessel space
endowed with norm kukp,↵ := kgkp, u = (1 � 1)�

↵
2 g, g 2 L p, and W�↵,p0 ,

p0
= p/(p� 1), the anti-dual ofW↵,p.W↵,p

loc denotes the class of (distributions) u
such that (1�1)

↵
2 (u') 2 L p for any ' 2 C1

c . We denote by B(X,Y ) the space of
bounded linear operators between complex Banach spaces X ! Y , endowed with
operator norm k · kX!Y ; B(X) := B(X, X). Set k · kp!q := k · kL p!Lq .

For each p > 1, by hu, vi we denote the (L p, L p0

) pairing, so that

hu, vi = huv̄i :=

Z
Rd
uv̄dLd (u 2 L p, v 2 L p

0

).
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Figure 1.1. General classes of vector fields b : Rd
! Rd studied in the literature in

connection with the operator�1+b·r. Here! stands for strict inclusion, and ⇤

! reads
“if b = b1 + b2 2 [Ld,1

+ L1
]
d , then b 2 F�2 with � > 0 determined by the value

of the Ld,1-norm of |b1|”, see Remark 1.2 below for details, Kd+1
0 :=

T
�>0K

d+1
� ,

F0 :=

T
�>0 F� .

Let d > 3. Consider the following classes of vector fields:

(1) We say that a b : Rd
! Cd belongs to the Kato class Kd+1

� , and write b 2

Kd+1
� , if b is Ld -measurable, and there exists � = �� > 0 such that

kb(� � 1)�
1
2 k1!1 6 �;

(2) We say that a b : Rd
! Cd belongs to F� , the class of form-bounded vector

fields, and write b 2 F� , if b is Ld -measurable, and there exists � = �� > 0
such that

kb(� � 1)�
1
2 k2!2 6

p

�;

(3) We say that a b : Rd
! Cd belongs to F

1
2
� , the class of weakly form-bounded

vector fields, and write b 2 F
1
2
� , if b is Ld -measurable, and there exists � =
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�� > 0 such that
k|b|

1
2 (� � 1)�

1
4 k2!2 6

p

�.

Simple examples show:

F�1 �Kd+1
� 6= ?, and Kd+1

0 � F� 6= ? for any �, �1 > 0,

for instance,

1) by the Hardy inequality, b(x) :=

p

�1
d�2
2 x |x |�2 2 F�1�K

d+1
� for any �, �1 > 0;

2) b(x) := e1|x1|<1|x1|s�1, where 1
2 < s < 1, e = (1, . . . , 1) 2 Rd , x =

(x1, . . . , xd), is inKd+1
0 �F� , for any � > 0. (An example of a b 2 Kd+1

� �Kd+1
0

can be obtained, e.g., by modifying [1, Example 1, page 250].)

The classes F�1 ,K
d+1
� cover singularities of b of critical order1, at isolated points or

along hypersurfaces, respectively. The classes F0 and Kd+1
0 do not contain vector

fields having critical order singularities.

Remark 1.1. The classes F� and Kd+1
� have been intensely studied in the litera-

ture: after 1996, the Kato class Kd+1
� , with � > 0 sufficiently small (yet allowed to

be non-zero), has been recognized as ‘the right’ class for the Gaussian upper and
lower bounds on the fundamental solution of �1 + b · r, see [14], which, in turn,
allow to construct an associated Feller process (in Cb). The class F� , � < 4, is re-
sponsible for dissipativity of1�b ·r in L p, p > 2

2�
p

�
, needed to run the iterative

procedure of [8] (taking p ! 1, assuming additionally � < min{4/(d � 2)2, 1}),
which produces an associated Feller process. We emphasize that, in general, the
Gaussian bounds are not valid if b 2 F� , while b 2 Kd+1

� , in general, destroys
L p-dissipativity.

The class F
1
2
� combines critical point and critical hypersurface singularities:

Kd+1
� ( F

1
2
� , F�1 ( F

1
2
� for � =

p

�1,✓
b 2 F�1

and f 2 Kd+1
�2

◆
=)

✓
b + f 2 F

1
2
� ,

p

� =
4p�1 +

p

�2

◆ (1.1)

(for the proof, if needed, see Appendix B).

Remark 1.2. The inclusion |b| 2 Ld ) b 2 F0 (cf. the diagram above) follows
by the Sobolev embedding theorem. For |b| 2 Ld,1, we can verify, using [7,

1 In particular, the uniqueness of solution of Cauchy problem for �1 + b · r can fail if b 2 F�
is replaced with cb (2 Fc2�), for a sufficiently large constant c, cf. [8, Example 5].
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Proposition 2.5, 2.6, Corollary 2.9]:

b 2 F
1
2
� , with

p

� = k|b|
1
2 (� � 1)�

1
4 k2!2 6 k(|b|⇤)

1
2 (� � 1)�

1
4 k2!2

6
✓

kbkd,1�
�
1
d

d

◆ 1
2
k|x |�

1
2 (� � 1)�

1
4 k2!2

=

✓
kbkd,1�

�
1
d

d

◆ 1
2
2�

1
2
0
�d�1
4
�

0
�d+1
4
� ,

where �d = ⇡
d
20(d2 + 1), and |b|⇤ is the symmetric decreasing rearrangement of

|b|. Similarly,

b 2 F�1, with
p

�1 = k|b|(� � 1)�
1
2 k2!2

6 kbkd,1�
�
1
d

d k|x |�1(� � 1)�
1
2 k2!2

6 kbkd,1�
�
1
d

d 2�10
�d�2
4
�

0
�d+2
4
� = kbkd,1�

�
1
d

d
2

d � 2
.

In particular, using [7, Corollary 2.9],

x |x |�2 2 F
1
2
� ,

p

� = 2�
1
2
0
�d�1
4
�

0
�d+1
4
� ,

x |x |�2 2 F�1,
p

�1 =

2
d � 2

,

and so � <
p

�1 (cf. (1.1)).
Denote

md := ⇡
1
2 (2e)�

1
2 d

d
2 (d � 1)

1�d
2 , cp := pp0/4.

The following two theorems are the main results of our paper.

Theorem 1.3 (L p-theory). Let d > 3 and b : Rd
! Cd . Assume that b 2 F

1
2
� ,

md� < 1. Then, for every

p 2 I :=

✓
2

1+

p

1� md�
,

2
1�

p

1� md�

◆
,

there exists a C0-semigroup e�t3p(b) in L p such that:

(i) The resolvent set ⇢(�3p(b)) contains the half-plane O := {⇣ 2 C : Re ⇣ >
d��}, d :=

d
d�1 , and the resolvent admits the representation:

(⇣ + 3p(b))�1 = 2p(⇣, b), ⇣ 2 O,
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where
2p(⇣, b) := (⇣ � 1)�1 � Qp(1+ Tp)�1Gp, (1.2)

the operators Qp,Gp, Tp 2 B(L p),

kGpkp!p6C1|⇣ |

�
1
2p0 , kQpkp!p6C2|⇣ |

�
1
2�

1
2p , kTpkp!p6mdcp� < 1,

Gp ⌘ Gp(⇣, b) := b
1
p

· r(⇣ � 1)�1, b
1
p

:= |b|
1
p�1b,

Qp, Tp are the extensions by continuity of densely defined (on E :=S
✏>0 e�✏|b|L p) operators

Qp|E ⌘ Qp(⇣, b)|E := (⇣ � 1)�1|b|
1
p0 ,

Tp|E ⌘ Tp(⇣, b)|E := b
1
p

· r(⇣ � 1)�1|b|
1
p0

;

(ii) It follows from (i) that e�t3p(b) is holomorphic: there is a constant Cp such
that

k(⇣ + 3p(b))�1kp!p 6 Cp|⇣ |
�1, ⇣ 2 O;

(iii) For each 1 6 r < p < q and ⇣ 2 O, define

Gp(r) ⌘ Gp(r, ⇣, b) := b
1
p

· r(⇣ � 1)�
1
2�

1
2r , Gp(r) 2 B(L p),

Qp(q) ⌘ Qp(q, ⇣, b) := (⇣ � 1)
�

1
2q0

|b|
1
p0 on E .

The extension of Qp(q) by continuity we denote again by Qp(q). Then, for
each ⇣ 2 O,

2p(⇣, b) = (⇣ � 1)�1 � (⇣ � 1)
�
1
2�

1
2q Q p(q)(1+ Tp)�1Gp(r)(⇣ � 1)�

1
2r 0 ;

2p(⇣, b) extends by continuity to an operator in B
�
W�

1
r 0 ,p, W1+ 1

q ,p �
;

(iv) By (i) and (iii), D
�
3p(b)

�
⇢ W1+ 1

q ,p (q > p). In particular, if md� <

4 d�2
(d�1)2 , there exists p 2 I, p > d � 1, so D

�
3p(b)

�
⇢ C0,� , � < 1�

d�1
p ;

(v) Let u 2 D(3p(b)). Then

h3p(b)u, vi = hu,�1vi + hb · ru, vi, v 2 C1

c (Rd);

u 2 W2,1
loc ;

(vi) e�t3p(bn) s
! e�t3p(b) in L p, t > 0, where bn := b if |b| 6 n, bn :=

n|b|�1b if |b| > n, and 3p(bn) := �1 + bn · r, D(3p(bn)) = W2,p;
(vii) If b is real-valued, then e�t3p(b) is positivity preserving;
(viii) By Theorem 3(b) below, ke�t3p(b)

kp!r 6 cp,r t�
d
2 ( 1p�

1
r )

, 0 < t 6 1, p < r .
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Remark 1.4. Theorem 1.3 provides a complete description of 3p(b), an operator

realization of �1 + b · r, b 2 F
1
2
� , generating a holomorphic C0-semigroup on L

p.
Let

⌘(x) :=

(
c exp

⇣
1

|x |2�1

⌘
if |x | < 1

0 if |x | > 1,

where c is adjusted to
R
Rd ⌘(x)dx = 1. Define the standard mollifier

⌘"(x) :=

1
"d

⌘
⇣ x

"

⌘
, " > 0, x 2 Rd .

Theorem 1.5 (C1-theory). Let d > 3. Assume that

b : Rd
! Rd , b 2 F

1
2
� , md� < 4

d � 2
(d � 1)2

.

Then for every �̃ > � satisfying md �̃ < 4 d�2
(d�1)2 there exists {"n}, "n # 0, such that

b̃n := ⌘"n ⇤ bn 2 C1

⇣
Rd , Rd

⌘
\ F

1
2
�̃
, n = 1, 2, . . . ,

and

(i) e�t3C1
(b)

:= s-C1- limn e�t3C1
(b̃n), t > 0, determines a positivity-pre-

serving contraction C0-semigroup on C1, where the bn’s were defined in
Theorem 1.3, 3C1

(b̃n) := �1 + b̃n · r, D(3C1
(b̃n)) = (1� 1)�1C1;

(ii) (L p-strong Feller property) (µ + 3C1
(b))�1[L p \ C1] ⇢ C0,↵ , µ > 0,

p 2

⇣
d � 1, 2

1�
p

1�md�

⌘
, ↵ < 1�

d�1
p ;

(iii) The integral kernel e�t3C1
(b)(x, y) (x, y 2 Rd ) of e�t3C1

(b) determines the
(sub-Markov) transition probability function of a strong Feller process.

Remark 1.6.

1. In the proof of Theorem 1.5, we define

(µ + 3C1
(b))�1|S := s-C1- limn

�
(µ + 3p(b̃n))�1|S , µ > d�,

p 2

✓
d � 1,

2
1�

p

1� md�

◆
,

appealing to Theorem 1.3(iv), which allows us to move the proof of convergence
in C1 to L p, p > d � 1, a space having much weaker topology (locally).
Earlier proofs for a smaller class Kd+1

0 verified convergence in C1 (in fact, in
Cb) directly.
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2. The problem of constructing a Feller process associated with �1 + b · r, for
an unbounded b : Rd

! Rd (“a diffusion with drift b”), has been thoroughly
studied in the literature, see [9] and references therein, motivated by applica-
tions, as well as by the search for the maximal general class of vector fields b
such that the associated process exists. To the author’s knowledge, Theorem 1.5
is the first result on diffusion processes with drifts combining different kinds of
singularities, e.g.,

��
|x |� 1

���� , � < 1, and |x |�1 (originally, the main motivation
of this work).

1.1. On the existing results prior to our work

First, it had been known for a long time, see [KS], that, for b : Rd
! Rd , d > 3,

and b 2 F�,

(i) (The basic fact) D(3p(b)) ⇢ W 1, j p for every p 2 (d � 2, 2/
p

�), j =
d

d�2 ,

provided that 0 < � < min{1, ( 2
d�2 )

2
};

(ii) If, in addition to the assumptions in (i), |b| 2 L2 + L1, then
s-C1- limn e�t3C1

(bn)

exists uniformly in each finite interval of t > 0, and hence determines a
strongly Feller semigroup on C1.

Remark 1.7. The additional (to |b| 2 L2loc) assumption |b| 2 L2 + L1 in (ii) was
removed in [6] (albeit at expense of imposing a more restrictive assumption on the
maximal admissible value of � > 0).
Theorem 1.8 (Yu. A. Semenov). Let b : Rd

! Rd , d > 3.
a) [12] If b 2 Kd+1

� , md� < 1, then, for each p 2 [1,1), s-L p-limn e�t3p(bn)

exists uniformly on each finite interval of t > 0, and hence determines a C0-
semigroup e�t3p(b).
e�t3p(b) is a quasi-bounded positivity preserving L1-contraction C0- semi-
group;

ke�t3r (b)
kr!q 6 cd,� t�

d
2 ( 1r �

1
q ) for all 0 < t 6 1, 1 6 r < q 6 1;

The resolvent set ⇢(�3p(b)) contains the half-planeO,�
⇣ + 3p(b)

�
�1

= 2p(⇣, b), ⇣ 2 O,

2p(⇣, b) := (⇣ � 1)�1 � (⇣ � 1)�
1
2 Sp(1+ Tp)�1Gp,

Sp :=(⇣ � 1)�
1
2 |b|

1
p0 , Gp :=b

1
p

· r(⇣ � 1)�1, Tp :=b
1
p

· r(⇣ � 1)�1|b|
1
p0

;

2p(⇣, b) 2 B(L p,W1,p);

D(3p(b))⇢W1, p. In particular, for p > d, D(3p(b)) ⇢ C0, ↵, ↵=1�

d
p
;

h3p(b) f, gi = hr f,rgi + hb · r f, gi, f 2 D(3p(b)), g 2 C1

c (Rd).
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b) [13, Theorem 5.1] If b 2 F
1
2
� , � < 1, then, for each p 2 [2,1), s-L p-

limn e�t3p(bn) exists uniformly on each finite interval of t > 0, and hence deter-
mines a C0-semigroup e�t3p(b).
e�t3p(b) is a quasi-bounded positivity preserving L1-contraction C0- semi-
group.

ke�t3r (b)
kr!q 6 cd,� t�

d
2 ( 1r �

1
q ) for all 0 < t 6 1, 2 6 r < q 6 1.

D(32(b)) ⇢ W
3
2 ,2.

h32(b) f, gi = hr f,rgi + hb · r f, gi, f 2 D(32(b)), g 2 C1

c (Rd).

Remark 1.9. The additional (to |b| 2 L1loc) assumption |b| 2 L1 + L1 in [13,
Theorem 5.1] is not essential for the proof, and can be eliminated.

For the sake of completeness, we now outline the proof of Theorem 1.8, with
permission of its author.

Proof. a) Indeed, for all ⇣ with Re ⇣ > 0,

|r(⇣ � 1)�1(x, y)| 6 md(
�1
d Re ⇣ � 1)�

1
2 (x, y) pointwise on Rd

⇥ Rd

(see (A.2) in the Appendix). Therefore, for b 2 Kd+1
� ,

kb · r(⇣ � 1)�1k1!1 6 md�, Re ⇣ > d�,

and so by the Miyadera perturbation theorem, the operator �31(b) := 1 � b · r

of domain D(31(b)) = W2,1 is the generator of a quasi-bounded C0 semigroup on
L1 whenever md� < 1.

Clearly bn 2 Kd+1
� , kbn · r(⇣ � 1)�1k1!1 6 md�, and, for md� < 1 and

every f 2 D(31(b)), 31(bn) f
s

! 31(b) f by the Dominated Convergence Theo-
rem. (See, if needed, (A.1).) The latter easily implies the strong resolvent and the
semigroup convergence of 31(bn) to 31(b).

Then, for each n = 1, 2, . . . , the semigroups e�t31(bn), t > 0, are positivity
preserving L1-contractions, and so is e�t31(b). The bounds

ke�t31(b)k1!1 6 Met!, ! = d�, and ke�t31(b) f k1 6 k f k1, f 2 L1 \ L1,

yield via the Riesz interpolation theorem

ke�t31(b) f kp 6 M1/pet!/p
k f kp, f 2 L1 \ L1.

Therefore, we obtain a family {e�t3p(b)
}16p<1 of consistent C0-semigroups by

setting e�t3p(b)
:= the extension by continuity in L p of e�t31(b) | L1 \ L1.

Next, for each p 2 [1,1) and all f 2 E :=

S
✏>0 e�✏|b|L p, the inequality

k|b|
1
p (� � 1)�

1
2 |b|

1
p0 f kp 6 �k f kp
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as well as the inequality
���

|b| +

p

�
� 1
p (� � 1)�

1
2
�
|b| +

p

�
� 1
p0 f

��
p 6 (1+ �)

�� f ��p
follow from the very definition of Kd+1

� (e.g., by interpolating between k(|b| +

p

�)(��1)�
1
2 k1!1 6 1+ � and (by duality) k(��1)�

1
2 (|b| +

p

�)k1 6 1+ �).
The latter implies that

���|b| 1p (� � 1)�
1
2
���
p!p

6 (1+ �)�
�

1
2p0 ,

and the first inequality implies that, for every ⇣ 2 O, p 2 [1,1) and all f 2 E,����b 1p · r(⇣ � 1)�1 |b|
1
p0 f

����
p

6 md

����|b| 1p (� � 1)�
1
2 |b|

1
p0

| f |
����
p

6 md�k f kp.

Now, it is seen that for every p 2 [1,1) and ⇣ 2 O the operator Gp is bounded:

kGpkp!p 6 md

���b 1p (� � 1)�
1
2
���
p!p

6 md(1+ �)�
�

1
2p0 .

Sp and Tp are densely defined (on E) and, for all f 2 E,

kSp f kp 6 (1+ �)�1��
1
2p

k f kp and kTp f kp 6 md�k f kp.

Now, we denote again by Sp, Tp their extensions by continuity.
Next, we define an operator function 2p(⇣, b) in L p by

2p(⇣, b) := (⇣ � 1)�1 � (⇣ � 1)�
1
2 Sp (1+ Tp)�1 Gp ⇣ 2 O.

Obviously,
2p(⇣, b) 2 B(L p) and 2p(⇣, b) 2 B(L p,W 1,p).

It is also seen that

(⇣ + 31(b))�1 = 21(⇣, b), (⇣ + 3p(b))�1 | L1 \ L p = 2p(⇣, b) | L1 \ L p,

and so �
⇣ + 3p(b)

�
�1

= 2p(⇣, b), ⇣ 2 O.

The latter implies that D(3p(b)) ⇢ W 1,p, for all p 2 [1,1). The main assertion
is proved.

b) Let b 2 F
1
2
� , � < 1. Define H = |b|

1
2 (⇣ � 1)�

1
4 , S = b

1
2 · r(⇣ � 1)�

3
4 and

22(⇣, b) :=(⇣ � 1)�
3
4 (1+ H⇤S)�1(⇣ � 1)�

1
4

(⇤)
=(⇣ � 1)�1 � (⇣ � 1)�

3
4 H⇤(1+ SH⇤)�1S(⇣ � 1)�

1
4 , Re ⇣ > �.
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We represent S = Ĥr(⇣ � 1)�
1
2 , where the operator Ĥ defined by Ĥh := b

1
2 ·

(⇣ � 1)�
1
4 h, h : Rd

! Rd , with (⇣ � 1)�
1
4 acting on h component-wise, clearly

satisfies kĤhk2 6 k|b|
1
2 (Re ⇣ � 1)�

1
4 |h|k2 6

p

�khk2, Re ⇣ > �. Therefore,

kH⇤Sk2!2 6 kHk2!2kSk2!2

6 kHk2!2kĤk2!2kr(⇣ � 1)�
1
2 k2!2 6 �,

and
k22(⇣, b)k2!2 6 (1� �)�1|⇣ |

�1.

Note that D(32(bn)) = W 2,2 and, for all Re ⇣ > �, by the first representation of
22(⇣, bn),

22(⇣, bn)�1|W 2,2
= (⇣ + 32(bn))|W 2,2, 22(⇣, bn) = (⇣ + 32(bn))�1,

⇣22(⇣, bn)
s

! 1 as ⇣ " 1 by the second representation of 22(⇣, bn).

Therefore, 22(⇣, bn) is the resolvent of �32(bn).
Since k22(⇣, bn)k2!2 6 (1 � �)�1|⇣ |

�1, the semigroups e�t32(bn) are holo-
morphic and equi-bounded.

Finally, it is seen that 22(⇣, bn)
s

! 22(⇣, b) in L2 on Re ⇣ > �, and
µ 22(µ, bn)

s
! 1 in L2 as µ " 1 uniformly in n. Therefore, by the Trotter

approximation theorem s-L2-limn e�t32(bn) exists and determines a C0-semigroup
in L2. It is also clear that this semigroup is holomorphic and L1-contractive.

1.2. Comments

1. The fact that b : Rd
! Rd belongs toKd+1

� or F� allows us to construct operator
realizations of the formal differential operator�1+ b · r as (minus) generators
of strongly continuous semigroups in L p for some or all p 2 [1,1), C1 and/or
Cb, by means of general tools of the standard perturbation theory (e.g., theorems
of Miyadera [15] or Phillips [11], respectively);

2. Concerning the class F
1
2
� one can not appeal to the standard perturbation theory

(in contrast to Kd+1
� and F�) in order to properly characterize the domain of the

generator 3p(b). Indeed, the arguments in [13, p. 413–416] (repeated above in
the proof of Theorem 1.8b) say nothing aboutW↵,p-smoothness of D(3p(b))
for p 6= 2. The natural analogue of (⇤) in L p is valid only for a smaller class of
vector fields: |b| 2 Ld,1;

3. For |b| 2 Ld,1, the assertion of Theorem 1.3(iv) can be strengthened:

|b| 2 Ld,1
) D(3p(b)) ⇢ W1+ 1

p ,s
, s < dp. (1.3)
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Indeed, arguing as in Remark 1.2 (i.e., appealing to [7, Proposition 2.5, 2.6,
Corollary 2.9]), we can estimate, using (A.2), for every f 2 E ,

kb
1
p

· r(⇣ � 1)
�
1
2�

1
2p f ks 6 c1k f ks, c1 := md(�

�
1
d

d kbkd,1)
1
p c(p, d),

k(⇣ � 1)
�

1
2p0

|b|
1
p0 f ks 6 c2k f ks, c2 := (�

�
1
d

d kbkd,1)
1
p0 c(p0, d),

where c(p, d) := 2�
1
p

0
�

d
2p0
�

0
�
d
2p

� 0
�
d�1
2p

�
0
�
1
2p+

d
2p0
� , so

kb
1
p

· r(⇣ � 1)�1|b|
1
p0 f ks6c3k f ks, c3 :=md�

�
1
d

d kbkd,1c(p, d)c(p0, d).

Now, we can estimate in Theorem 1.3(iii):

kQp(p)ks!s, kGp(p)ks!s, kTpks!s < 1,

to conclude that k2p(⇣, b)ks!s < 1, 1 < s < dp. In view of Theorem 1.3(i),
the last estimate implies the required;

4. Theorem 1.8 can be obtained as a side product of the proof of Theorem 1.3.
Indeed, the constraints on p and � in Theorem 1.3 come solely from the estimate
on kTpkp!p. Now, if b 2 F

1
2
� , � < 1, then (representing S = Ĥr(⇣ � 1)�

1
2 )

kT2k2!2 6 kĤk2!2kH⇤

k2!2kr(⇣ � 1)�
1
2 k2!2 6 � < 1.

And if b 2 Kd+1
� , md� < 1, then kTpkp!p < 1 for all p 2 [1,1), so that

the interval I 3 p transforms into [1,1), and a possible causal dependence of
the properties of D(3p(b)) on � gets lost. The latter indicates the smallness of

Kd+1
� as a subclass of F

1
2
� ;

5. Both proofs of Theorem 1.3 and Theorem 1.8 are based on similar operator-
valued functions, although the arguments involved differ considerably;

6. Note that for b 2 Kd+1
� , md� < 1, D(31(b)) = W2,1; for b 2 F� , � < 1,

D(32(b)) = W 2,2, while for b 2 F
1
2
� , � < 1, D(32(b)) ⇢ W2,1

loc ;

7. Let b : Rd
! Rd , b 2 F

1
2
� , md� < 1. Theorem 1.3(i), (vi) and the argument in

the proof of Theorem 1.8a (using the Riesz interpolation theorem) yield a con-
sistent family of positivity preserving quasi-boundedC0-semigroups e�t3p(b) on
L p, for all p 2

⇣
2

1+
p

1�md�
,1

⌘
;

8. The author considers the assertion (iv) of Theorem 1.3 (the W1+ 1
q , p-smooth-

ness) as the main result of the paper. Theorem 1.3, compared to [8] and Theorem
1.8a, covers the larger class of vector fields, and at the same time establishes
stronger smoothness properties of D(3p(b)): D(3p(b)) ⇢ W1+ 1

q , p, p 2 I
(q > p), while in [8] D(3p(b)) ⇢ W 1, j p, j p 2 (d, 2 j/

p

�), and in Theorem
1.8a D(3p(b)) ⇢ W1,p, p 2 [1,1);
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9. The C1-theory of operator �1 + b · r, b 2 F
1
2
� (Theorem 1.5) follows almost

automatically from the L p-theory (Theorem 1.3) (with p > d � 1), in contrast
to [8], where the C1-theory is obtained from the L p-theory by running a specif-
ically tailored iterative procedure (see also [6]).

ACKNOWLEDGEMENTS. I am deeply grateful to Yu. A. Semenov for many impor-
tant suggestions, and constant attention throughout this work. I am also thankful to
the anonymous referee for a number of valuable comments that helped to improve
the presentation.

2. Proof of Theorem 1.3

The method of the proof. We start with an operator-valued function

2p(⇣, b) := (⇣ � 1)�1 � Qp(1+ Tp)�1Gp, ⇣ 2 O,

defined in L p for each p from the interval

I :=

�
2

1+

p

1� md�
,

2
1�

p

1� md�


, md� < 1,

and step by step prove that, for n = 1, 2, . . . ,

k2p(⇣, bn)kp!p, k2p(⇣, b)kp!p 6 c|⇣ |
�1

;

2p(⇣, bn) is a pseudo-resolvent;
2p(⇣, bn) coincides with the resolvent R(⇣,�3p(bn)) = (⇣ + 3p(bn))�1 onO;

2p(⇣, bn)
s

! 2p(⇣, b) in L p as n " 1;

µ 2p(µ, bn)
s

! 1 as µ " 1 in L p uniformly in n.

All this combined leads to the conclusion: for each p 2 I there is a holomorphic
semigroup e�t3p(b) in L p such that the resolvent R(⇣,�3p(b)) on ⇣ 2 O has the
representation 2p(⇣, b);

2p(⇣, b) can be written as (⇣ � 1)�1 + ABC , where C 2 B(W�
1
r 0 , p, L p),

B 2 B(L p), A 2 B(L p,W1+ 1
q , p

), r < p < q, r 0
= r/(r � 1).

Propositions 2.1-2.6 below constitute the core of the proof of Theorem 1.3.
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Proposition 2.1. Let p 2 I.

(i) For every 1 6 r < p < q 6 1 and ⇣ 2 O (= {⇣ 2 C : Re ⇣ > d�}, � =

��) define operators on L p

Qp(q) = (⇣ � 1)
�

1
2q0

|b|
1
p0 , Gp(r) = b

1
p

· r(⇣ � 1)�
1
2�

1
2r ,

Tp = b
1
p

· r(⇣ � 1)�1|b|
1
p0 .

Then Gp(r) is bounded: kGp(r)kp!p 6 K1,r . Qp(q) and Tp are densely
defined (on E), and for all f 2 E ,

kQp(q) f kp 6 K2,qk f kp,

kTp f kp 6 mdcp�k f kp, mdcp� < 1, cp = pp0/4. (2.1)

Their extensions by continuity we denote again by Qp(q), Tp.

(ii) Set Gp = b
1
p
·r(⇣ �1)�1, Qp = (⇣ �1)�1|b|

1
p0 , Pp = |b|

1
p (⇣ �1)�1. The

operator Qp is densely defined on E . There exist constants Ci , i = 1, 2, 3,
such that

kGpkp!p 6 C1|⇣ |

�
1
2p0 , kPpkp!p 6 C3|⇣ |

�
1
2�

1
2p0 ,

kQp f kp 6 C2|⇣ |
�
1
2�

1
2p

k f kp ( f 2 E), ⇣ 2 O.

(2.2)

We denote again by Qp the extension of Qp by continuity.

Remark 2.2. The proof of Proposition 2.1 uses ideas from [2, 10], and appeals to
the L p-inequalities between the operator (� � 1)

1
2 and the “potential” |b|.

Proof. (i) Let r 2 (1,1). Then

(a) µ > � ) k|b|
1
r (µ�1)�

1
2 kr!r 6 Cr,�µ�

1
2r 0 , Cr,� = (cr�)

1
r , cr = rr 0/4.

Indeed, define in L2 A = (µ�1)
1
2 , D(A) = W 1,2. Then�A+µ

1
2 is a symmetric

Markov generator. Therefore (see, e.g., [10, Theorem 2.1]), for any r 2 (1,1),

0 6 u 2 D(Ar ) ) v := u
r
2 2 D(A

1
2 ) and c�1r

���A 1
2 v
���2
2

6 hAru, ur�1i.

Now let u be the solution of Aru = | f |, with f 2 Lr . Note that kukr 6 µ�
1
2 k f kr

(using k(µ � 1)�1kr!r 6 µ�1 in (A.6) with ↵ =
1
2 ).

Since b 2 F
1
2
� , we have

(cr�)�1
���|b| 12 v���2

2
6 hAru, ur�1i,
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and so k|b|
1
r ukrr 6 cr�k f krkukr�1r , k|b|

1
r A�1

r | f |krr 6 cr�µ�
r�1
2 k f krr . Therefore

(a) is proved.

(b) µ > � ) k|b|
1
r (µ � 1)�

1
2 |b|

1
r 0 f kr 6 cr�k f kr , f 2 E .

Indeed, let u be the solution of Au = |b|
1
r 0 | f |, f 2 E . Then, arguing as in (a), we

have ���|b| 1r u���r
r

6 cr�k f kr
���|b| 1r u���r�1

r
,

or k|b|
1
r ukr 6 cr�k f kr . So (b) is proved.

(c) µ > � ) k(µ � 1)�
1
2 |b|

1
r 0 f kr 6 Cr 0,� µ�

1
2r k f kr , f 2 E .

Indeed, (c) follows from (a) by duality.

Let us prove (2.1). Let ⇣ 2 O. Using (A.2) + (b) with r = p 2 I, µ = �, we
obtain:

kTp f kp 6 md

����b 1p (�1
d Re ⇣ � 1)�

1
2 |b|

1
p0

| f |
����
p

6 mdcp�k f kp, f 2 E .

mdcp� < 1 since p 2 I.
Next, we estimate kQp(q)kp!p, kGp(r)kp!p. Let Re ⇣ > �, p < q. We

obtain:

kQp(q) f kp 6
����(Re ⇣ � 1)

�
1
2q0

|b|
1
p0

| f |
����
p

6
����(� � 1)

�
1
2q0

|b|
1
p0

| f |
����
p

(here we are using (A.6) with ↵ = 1/2q 0)

6 kq 0

Z
1

0
t�

1
2q0

����(t + � � 1)�1|b|
1
p0

| f |
����
p
dt

 
kq 0 :=

sin ⇡
2q 0

⇡

!

6 kq 0

Z
1

0
t�

1
2q0 (t + �)�

1
2

����(t + � � 1)�
1
2 |b|

1
p0

| f |
����
p
dt

(here we are using (c) with r = p 2 I, µ = t + �)

6 kq 0Cp0,�

Z
1

0
t�

1
2q0 (t + �)

�
1
2�

1
2p dt k f kp = K2,qk f kp, f 2 E,

where, clearly, K2,q < 1 because q > p.
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Let ⇣ 2 O, 1 6 r < p. Using (A.3), we obtain

kGp(r) f kp 6 mr,d

���|b| 1p (�1
d Re ⇣ � 1)�

1
2r | f |

���
p

6 mr,d

���|b| 1p (� � 1)�
1
2r | f |

���
p

(here we are using (A.6) with ↵ = 1/2r)

6 mr,dkr
Z

1

0
t�

1
2r k|b|

1
p (t + � � 1)�1| f |kpdt

6 mr,dkr
Z

1

0
t�

1
2r
���|b| 1p (t + � � 1)�

1
2
���
p!p

���(t + � � 1)�
1
2 | f |

���
p
dt

(here we are using (a) with r = p 2 I, µ = t + �)

6 mr,dkrCp,�

Z
1

0
t�

1
2r (t + �)

�
1
2p0 �

1
2 dt k f kp = K1,rk f kp, f 2 E,

where, clearly, K1,r < 1 because r < p.
The proof of (i) is complete.

(ii) Let Re ⇣ > �. We have

kQp(2⇣, b) f kp 6
���(2⇣ � 1)�

1
2
���
p!p

����(2⇣ � 1)�
1
2 |b|

1
p0 f

����
p

(here we are applying (A.5) twice + (c) with r= p 2 I, µ=|⇣ |)

6 2
d
4+

1
4 2�

1
2 |⇣ |

�
1
2Cp0,�2

d
4+

1
4 |⇣ |

�
1
2p

k f kp, f 2 E .

Now, using the identity (⇣ � 1)�1 =

�
1+ ⇣(⇣ � 1)�1

�
(2⇣ � 1)�1, we obtain:

kQp(⇣, b) f kp 6 k1+ ⇣(⇣ � 1)�1kp!pkQp(2⇣, b) f kp

6 2
1
2 |⇣ |

�
1
2Cp0,�2

d
2+

1
2 |⇣ |

�
1
2p

k f kp

= C2|⇣ |
�
1
2�

1
2p

k f kp, f 2 E .

Let Re ⇣ > �. We have:

kPp(2⇣, b)kp!p 6
���|b| 1p (2⇣ � 1)�

1
2
���
p!p

���(2⇣ � 1)�
1
2
���
p!p

(here we are applying (A.5) twice)

6 2
d
2+

1
2 k|b|

1
p (|⇣ | � 1)�

1
2 kp!p|⇣ |

�
1
2

(here we are using (a) with r = p 2 I, µ = |⇣ |)

6 Cp,�2
d
2+

1
2 |⇣ |

�
1
2�

1
2p0 .
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Now, using the identity (⇣ � 1)�1 = (2⇣ � 1)�1
�
1+ ⇣(⇣ � 1)�1

�
, we obtain:

kPp(⇣, b)kp!p 6 2Cp,�2
d
2+

1
2 |⇣ |

�
1
2�

1
2p0

= C3|⇣ |

�
1
2�

1
2p0 .

Let ⇣ 2 O. Using (A.4) + (a) with r = p 2 I, µ = |⇣ |, we obtain:

kGp(2d⇣, b)kp!p 6 mdCp,�2
d
4 |⇣ |

�
1
2p0 .

Now, using the identity (⇣ � 1)�1 = (2d⇣ � 1)�1
�
1 + (2d � 1)⇣(⇣ � 1)�1

�
,

we obtain:

kGp(⇣, b)kp!p 6 2dmdCp,�2
d
4 |⇣ |

�
1
2p0

= C1|⇣ |

�
1
2p0 .

The proof of (ii) is complete.

Remark 2.3. Since |bn| 6 |b| a.e., Proposition 2.1 is valid for bn , n = 1, 2, . . . ,
with the same constants.

Proposition 2.4. For every p 2 I, and n = 1, 2, . . . , the operator-valued function
2p(⇣, bn) is a pseudo-resolvent onO, i.e.,

2p(⇣, bn) � 2p(⌘, bn) = (⌘ � ⇣ )2p(⇣, bn)2p(⌘, bn), ⇣, ⌘ 2 O.

Proof. Define Sk⇣ := (�1)k(⇣ � 1)�1bn · r(⇣ � 1)�1 . . . bn · r(⇣ � 1)�1, k :=

# bn’s. Obviously,

2p(⇣, bn) := (⇣ � 1)�1 � Q
�
1+ T

�
�1G

= (⇣ � 1)�1 � Q
1X
k=0

(�1)kT k G

=

1X
k=0

Sk⇣ (absolutely convergent in L p),

2p(⇣, bn)2p(⌘, bn) =

1X
`=0

X̀
i=0

Si⇣ S
`�i
⌘ , ⇣, ⌘ 2 O. (2.3)

Define

I kj,m(⇣, ⌘) := (⇣ � 1)�1bn · r(⇣ � 1)�1 . . . bn · r(⇣ � 1)�1

bn · r(⌘ � 1)�1bn · r(⌘ � 1)�1 . . . bn · r(⌘ � 1)�1,

j := #⇣ ’s, m := #⌘’s, k := #bn’s.
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Substituting the identity (⇣ �1)�1(⌘�1)�1 = (⌘�⇣ )�1
�
(⇣ �1)�1�(⌘�1)�1

�
inside the product

Sk⇣ S
j
⌘ = (�1)k+ j (⇣ � 1)�1bn · r(⇣ � 1)�1 . . . bn

· r (⇣ � 1)�1(⌘ � 1)�1| {z }
(⌘�⇣ )�1((⇣�1)�1�(⌘�1)�1)

bn · r(⌘ � 1)�1 . . . bn · r(⌘ � 1)�1,

we obtain Sk⇣ S
j
⌘ = (⌘ � ⇣ )�1(�1)k+ j ⇥I k+ j

k+1, j � I k+ j
k, j+1

⇤
. Therefore,

X̀
i=0

Si⇣ S
`�i
⌘ = (⌘ � ⇣ )�1(�1)`

h
I `1,` � I `0,`+1 + I `2,`�1 � I `1,` + · · · + I ``+1,0 � I ``,1

i

= (⌘ � ⇣ )�1(�1)`
�
I ``+1,0 � I `0,`+1

�
.

Substituting the last identity in the right-hand side of (2.3), we obtain

2p(⇣, bn)2(⌘, bn) = (⌘ � ⇣ )�1
1X

`=0
(�1)`

�
I ``+1,0 � I `0,`+1

�

= (⌘ � ⇣ )�1
�
2p(⇣, bn)h � 2p(⌘, bn)

�
.

Proposition 2.5. For every p 2 I, and n = 1, 2, . . . ,

(i) k2p(⇣, bn)kp!p 6 Cp|⇣ |
�1, ⇣ 2 O, for a constant Cp independent of n;

(ii) µ2p(µ, bn)
s

! 1 in L p as µ " 1 (uniformly in n).

Proof of (i). Put Qp ⌘ Qp(⇣, bn), Tp ⌘ Tp(⇣, bn), Gp ⌘ Gp(⇣, bn). By the
definition of 2p(⇣, bn), see (1.2), for every ⇣ 2 O,

k2p(⇣, bn)kp!p 6 k(⇣ � 1)�1kp!p + kQpkp!pk(1+ Tp)�1kp!pkGpkp!p

(here we are using (2.1), (2.2) in Proposition 2.1)

6 |⇣ |
�1

+ C2|⇣ |

�
1
2�

1
2p0 (1� mdcp�)�1C1|⇣ |

�
1
2p

6 Cp|⇣ |
�1, Cp := 1+ C1C2(1� mdcp�)�1.

Proof of (ii). Put 2p ⌘ 2p(µ, bn), Qp ⌘ Qp(µ, bn), Tp ⌘ Tp(µ, bn), Pp ⌘

Pp(µ, bn). Sinceµ(µ�1)�1
s

! 1, it suffices to show thatµ2p�µ(µ�1)�1
s

! 0
in L p. Since by (i) µ2p is uniformly (in µ) bounded in B(L p), and C1

c is dense in
L p, it suffices to show that µ2ph � µ(µ � 1)�1h ! 0 in L p for every h 2 C1

c .
Write

2ph � (µ � 1)�1h = �Qp
�
1+ Tp

�
�1 b

1
p
n · (µ � 1)�1rh.
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By (2.1), k
�
1+Tp

�
�1

kp!p 6 1
1�kTpkp!p

6 1
1�mdcp� < 1, by (2.2), kQpkp!p 6

C2µ�
1
2�

1
2p . Again, by (2.2),

����b
1
p
n · (µ � 1)�1rh

����
p

6
���|bn| 1p (µ � 1)�1|rh|

���
p

6 kPpkp!pkrhkp

6C3µ
�
1
2�

1
2p0

krhkp.

Therefore,

k2ph � (µ � 1)�1hkp 6 kQpkp!p

����1+ Tp
�
�1
���
p!p

����b
1
p
n · (µ � 1)�1rh

����
p

6 C0µ�
3
2 krhkp

for some C0 < 1 independent of n, which clearly implies (ii).

Proposition 2.6. For every p 2 I, and n = 1, 2, . . . , we have O ⇢ ⇢(�3p(bn)),
the resolvent set of �3p(bn). The operator-valued function 2p(⇣, bn) is the resol-
vent of �3p(bn):

2p(⇣, bn) = (⇣ + 3p(bn))�1, ⇣ 2 O,

and
k(⇣ + 3p(bn))�1kp!p 6 Cp|⇣ |

�1, ⇣ 2 O.

Proof. By definition, we need to verify that, for every ⇣ 2 O, 2p(⇣, bn) has
dense image, and is the left and the right inverse of ⇣ + 3p(bn). Indeed, Propo-
sition 2.5(ii) implies that 2p(⇣, bn) has dense image. 3p(bn) := �1 + bn · r,
D(3p(bn)) = W 2,p, is the generator of a C0-semigroup e�t3p(bn) on L p. Clearly,
2p(⇣n, bn) = (⇣n + 3p(bn))�1 for all sufficiently large ⇣n (= ⇣(kbnk1)), there-
fore, by Proposition 2.4,

2p(⇣, bn) = (⇣n + 3p(bn))�1
�
1+ (⇣n � ⇣ )2p(⇣, bn)

�
, ⇣ 2 O,

so 2p(⇣, bn)L p ⇢ D(3p(bn)) = W 2,p, and (⇣ + 3p(bn))2p(⇣, bn)g = g, g 2

L p, i.e.,2p(⇣, bn) is the right inverse of ⇣ +3p(bn) onO. Similarly, it is seen that
2(⇣, bn) is the left inverse of ⇣ + 3p(bn) onO.
Remark 2.7. Alternatively, we could verify conditions of the Kato theorem [5]: in
the reflexive space L p, the pseudo-resolvent 2p(⇣, bn) (see Proposition 2.4) satis-
fying µ2p(µ, bn)

s
! 1 in L p as µ " 1 (see Proposition 2.5(ii)) is the resolvent

of a densely defined closed operator on L p. This operator coincides with �3p(bn)
(since 2p(⇣n, bn) = (⇣n + 3p(bn))�1 for all large ⇣n).
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Now, k(⇣ + 3p(bn))�1kp!p 6 Cp|⇣ |
�1, ⇣ 2 O, follows from Proposition

2.5(i).

Proposition 2.8. For every ⇣ 2 O and p 2 I,

2p(⇣, bn)
s

! 2p(⇣, b) in L p.

Proof. Put 2p(b) ⌘ 2p(⇣, b), Qp(b) ⌘ Qp(⇣, b), Tp(b) ⌘ Tp(⇣, b), Gp(b) ⌘

Gp(⇣, b) (similarly for bn’s). It suffices to prove that

Qp(bn)(1+ T (bn))�1Gp(bn)
s

! Qp(b)(1+ Tp(b))�1Gp(b).

Thus it suffices to prove consecutively that

Gp(bn)
s

! Gp(b), (1+ Tp(bn))�1
s

! (1+ Tp(b))�1, Qp(bn)
s

! Qp(b).

In turn, since (1+Tp(bn))�1�(1+Tp(b))�1= (1+Tp(bn))�1(Tp(b)�Tp(bn))(1+
Tp(b))�1, it suffices to prove that Tp(bn)

s
! Tp(b). Finally,

Tp(bn)�Tp(b) = Tp(bn)�b
1
p
n ·r(⇣ �1)�1|b|

1
p0

+b
1
p
n ·r(⇣ �1)�1|b|

1
p0

�Tp(b),

and hence we have to prove that

b
1
p
n · r(⇣ � 1)�1|b|

1
p0

� Tp(b) := J (1)
n

s
! 0

and
Tp(bn) � b

1
p
n · r(⇣ � 1)�1|b|

1
p0

:= J (2)
n

s
! 0.

Now, by the Dominated Convergence Theorem (cf. the argument in the proof of
(A.1)), Gp(bn)

s
! Gp(b), J (1)

n |E
s

! 0. Also

kJ (2)
n f kp =

����Gp(bn)
✓

|bn|
1
p0

� |b|
1
p0
◆
f
����
p

6 kGp(bn)kp!p

����
✓

|bn|
1
p0

� |b|
1
p0
◆
f
����
p

6 md(1+ �)|⇣ |

�
1
2p0

����
✓

|bn|
1
p0

� |b|
1
p0
◆
f
����
p
, ( f 2 E).

Thus, J (2)
n |E

s
! 0. Since kJ (2)

n kp!p, kJ (1)
n kp!p 6 md�, we conclude that Tp(bn)

s
! Tp(b). It is clear now that Qp(bn)

s
! Qp(b).
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Now we are going to prove Theorem 1.3 using the Trotter approximation the-
orem [4, IX.2.5]. Recall its conditions (in terms of2p(⇣, bn) on the base of Propo-
sition 2.6):

1) supn>1 k2p(⇣, bn)kp!p 6 Cp|⇣ |
�1, ⇣ 2 O;

2) µ2p(µ, bn)
s

! 1 in L p as µ " 1 uniformly in n;

3) There exists s-L p- limn 2p(⇣, bn) for some ⇣ 2 O.

Now, 1) is the content of Proposition 2.5(i). 2) is Proposition 2.5(ii). Proposition 2.8
implies 3).

Therefore, by the Trotter approximation theorem,2p(⇣, b) = (⇣ + 3p(b))�1,
⇣ 2 O, where 3p(b) is the generator of the holomorphic C0-semigroup e�t3p(b)

on L p. (Note that, by Proposition 2.8, k2p(⇣, b)kp!p 6 Cp|⇣ |
�1, ⇣ 2 O. Hence,

2p(⇣, b) can be extended to O [ {⇣ 2 C : |Arg ⇣ | < ⇡
2 + ", |⇣ | > R}, " > 0, for

a sufficiently large R > 0, where it satisfies k2p(⇣, b)kp!p 6 C 0

p|⇣ |
�1, see the

corresponding argument in [16, IX.10].)

Hence, the assertions (i), (vi) of Theorem 1.3 follow. (ii) follows from Proposi-
tion 2.5(i) and Proposition 2.8. (iii) is obvious from the definitions of the operators
involved, cf. Proposition 2.1.

(iii) ) (iv). In particular, if p > d � 1, given a 0 < � < 1 �
d�1
p , we can

select q > p sufficiently close to p so that by the Sobolev embedding theorem the
Bessel spaceW1+ 1

q ,p is embedded into C0,� .

(v) Let ⇣ 2 O. By Proposition 2.8, 3p(bn)(⇣ + 3p(bn))�1
s

! 3p(b)(⇣ +

3p(b))�1 in L p. Put Qp(b) ⌘ Qp(⇣, b), Tp(b) ⌘ Tp(⇣, b), Gp(b) ⌘ Gp(⇣, b)
(similarly for bn’s). Since (⇣+3p(b))�1 = (⇣�1)�1�Qp(b)(1+Tp(b))�1Gp(b),
we have

b
1
p

· r(⇣ + 3p(b))�1 = Gp(b) � Tp(b)(1+ Tp(b))�1Gp(b)

(similarly for the bn’s). Since Gp(bn)
s

! Gp(b), Tp(bn)
s

! Tp(b) in L p (see the
proof of Proposition 2.8),

b
1
p
n · r(⇣ + 3p(bn))�1

s
! b

1
p

· r(⇣ + 3p(b))�1 in L p. (⇤⇤)

Clearly, |b|
1
p0

2 L p
0

loc, for |b| 2 L1loc by the definition of class F
1
2
� . Now, given

u 2 D(3p(b)), we have u = (⇣ + 3p(b))�1g for some g 2 L p, and so, for every
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v 2 C1

c ,

h3p(b)u, vi = h3p(b)(⇣ + 3p(b))�1g, vi

= lim
n

h3p(bn)(⇣ + 3p(bn))�1g, vi

= lim
n

h(⇣ + 3p(bn))�1g,�1vi

+ lim
n

hb
1
p
n · r(⇣ + 3p(bn))�1g, |bn|

1
p0 vi

(here we are using (⇤⇤) and the fact that |bn|
1
p0 v ! |b|

1
p0 v in L p

0

)

= h(⇣ + 3p(b))�1g,�1vi + hb
1
p

· r(⇣ + 3p(b))�1g, |b|
1
p0 vi

= hu,�1vi + hb
1
p

· ru, |b|
1
p0 vi.

Next, since for u 2 D(3p(b)), b
1
p
·ru 2 L p, it follows that b·ru = |b|

1
p0 b

1
p
·ru 2

L1loc. Also, 3p(b)u 2 L p, and hence h3p(b)u, vi = hu,�1vi + hb · ru, vi.
Therefore, 1u (understood in the sense of distributions) = �3p(b)u + b · ru 2

L1loc, i.e. u 2 W2,1
loc . The proof of (v) is completed.

For the proof of (viii) see the argument in [13, p. 415-416].
The proof of Theorem 1.3 is complete.

3. Proof of Theorem 1.5

It is easily seen that, due to the strict inequality md� < 4 d�2
(d�1)2 , for every �̃ > �

such that md �̃ < 4 d�2
(d�1)2 there exists {"n}, "n # 0, such that

b̃n := ⌘"n ⇤ bn 2 F
1
2
�̃
, n = 1, 2, . . .

(i) We verify conditions of the Trotter approximation theorem:
1�) supn k(µ + 3C1

(b̃n))�1k1!1 6 µ�1, µ > d�.
2�) µ(µ + 3C1

(b̃n))�1 ! 1 in C1 as µ " 1 uniformly in n.
3�) There exists s-C1- limn(µ + 3C1

(b̃n))�1 for some µ > d�.
The condition 1�) is immediate. In view of 1�), it suffices to verify 2�), 3�) on S ,
the L. Schwartz space of test functions. Fix p 2 I, p > d � 1 (such p exists since
md �̃ < 4 d�2

(d�1)2 ).

Proposition 3.1. For every µ > d�, n = 1, 2, . . . , 2p(µ, b̃n)S ⇢ S, and

(µ + 3C1
(b̃n))�1|S = 2p(µ, b̃n)|S .
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Proof. The inclusion 2p(µ, b̃n)S ⇢ S is obvious. Also, 2p(µn, b̃n)|S = (µn +

3C1
(b̃n))�1|S for all sufficiently large µn (= µ(kb̃nk1)). By 2p(µ, b̃n)S ⇢ S

and Proposition 2.4, 2p(µ, b̃n)|S satisfies the resolvent identity on µ > d�,

2p(µ, b̃n)|S = (µn + 3C1
(b̃n))�1

�
1+ (µn � µ)2p(µ, b̃n)

�
|S , µ > d�,

so 2p(µ, b̃n)|S is the right inverse of µ + 3C1
(b̃n)|S on µ > d�. Similarly, it is

seen that 2p(µ, b̃n)|S is the left inverse of µ + 3C1
(b̃n)|S on µ > d�.

Proposition 3.2. For every µ > d�, 2p(µ, b)S ⇢ C1, and

2p(µ, b̃n)
s

! 2p(µ, b) in C1.

Proof. By Theorem 1.3(iv), since p > d � 1, 2p(µ, b)L p ⇢ C1. Put

Qp(q, b) ⌘ Qp(q, µ, b), Tp(b) ⌘ Tp(µ, b), Gp(b) ⌘ Gp(µ, b).

To establish the required convergence, it suffices to prove that

(µ � 1)
�
1
2�

1
2q Q p(q, b̃n)(1+ Tp(b̃n))�1Gp(b̃n)

s
! (µ � 1)

�
1
2�

1
2q Q p(q, b)(1+ Tp(b))�1Gp(b) in C1.

We choose q (> p) close to d�1 so that (µ�1)
�
1
2�

1
2q L p ,! C1. Thus it suffices

to prove that

Gp(b̃n)
s

!Gp(b), (1+Tp(b̃n))�1
s

! (1+Tp(b))�1, Qp(q,b̃n)
s

!Qp(q,b) in L p,

which can be done by repeating the arguments in the proof of Proposition 2.8.

Proposition 3.3.

µ2p(µ, b̃n)
s

! 1 as µ " 1 in C1 uniformly in n. (3.1)

Proof. Put 2p ⌘ 2p(µ, b̃n), Tp ⌘ Tp(µ, b̃n). Since µ(µ � 1)�1
s

! 1 in C1,
and S is dense in C1, it suffices to show that kµ2p f �µ(µ�1)�1 f k1 ! 0 for
every f 2 S . For each f 2 S there is h 2 S such that f = (� � 1)�

1
2 h, where

� = �� > 0. Let q > p. Write

2p f �(µ�1)�1 f=�(µ�1)
�
1
2�

1
2q Q p(q)

�
1+Tp

�
�1b

1
p (��1)�

1
2 ·(µ�1)�1rh.

Now, arguing as in the proof of Proposition 2.5(i), but using the estimates

k(µ � 1)
�
1
2�

1
2q

kp!1 6 cµ�
1
2+

d
2p�

1
2q , c < 1,
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and
kQp(q)kp!p 6 K̃2,q < 1 (see (2.2)),

we obtain

k2p f � (µ � 1)�1 f k1 6 Cµ
�
1
2+

d
2p�

1
2q µ�1

krhkp.

Since p > d � 1, choosing q sufficiently close to p, we obtain

�

1
2

+

d
2p

�

1
2q

� 1 < �1,

so µ2p � µ(µ � 1)�1
s

! 0 in C1, as needed.

Now, Proposition 3.2 verifies condition 3�), and Proposition 3.3 verifies condi-
tion 2�). Assertion (i) of Theorem 1.5 now follows from the Trotter approximation
theorem.

Assertion (ii) of Theorem 1.5 follows from Theorem 1.3(iii).
The proof of assertion (iii) is standard, and is omitted.

Remark 3.4. We could construct e�t3C1
(b) alternatively as follows:

e�t3C1
(b)

:=

�
e�t3p(b)

|C1\L p
�clos
C1

(after a change on a set of measure zero), t > 0,

where p 2

�
d � 1, 2

1�
p

1�md�

�
.

A. Appendix

Define In := k(b � bn) · r(⇣ � 1)�1 f k1.

1. Let b 2 Kd+1
� . For every f 2 L1 and Re ⇣ > d�,

In ! 0 as n " 1. (A.1)

Proof of (A.1). Since In 6 2mdk|b|(� � 1)�
1
2 | f |k1 6 2md�k f k1, it suffices to

prove (A.1) for each f 2 L1 \ L1. Let f 2 L1 \ L1, � > 0 and b be fixed. Since
|b|(� � 1)�

1
2 | f | 2 L1, for a given ✏ > 0, there exists K, a compact, such that���(1� 1K)|b|(� � 1)�

1
2 | f |

���
1

6 ✏,

where 1K is the characteristic function of K. Define IK,n := k1K|b � bn|(� �

1)�
1
2 | f |k1. Clearly,

IK,n 6 ��
1
2 k f k1k1K|b � bn|k1.
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Since |b| 2 L1loc and K independent of n = 1, 2, . . . ,

k1K|b � bn|k1 6 k1|b|>n(1K|b|)k1 ! 0 as n " 1.

Therefore, for a given ✏, there exists n0 = n0(✏) > 1, such that IK,n 6 ✏ whenever
n > n0, and so

In 6 3md✏ 8n > n0.

We use the following pointwise estimates (x, y 2 Rd , x 6= y).

2. For every Re ⇣ > 0,

|r(⇣ � 1)�1(x, y)| 6 md(
�1
d Re ⇣ � 1)�

1
2 (x, y), (A.2)

where m2d := ⇡(2e)�1dd(d � 1)1�d , d :=
d

d�1 .

For every r 2 (1,1] there exists a constant mr,d < 1 such that for all
Re ⇣ > 0,

|r(⇣ � 1)�1+
1
2r (x, y)| 6 mr,d(

�1
d Re ⇣ � 1)�

1
2+

1
2r (x, y). (A.3)

3. For every Re ⇣ > 0,

|r(⇣ � 1)�1(x, y)| 6 2
d
4md

✓
�1
d 2�1

|⇣ | � 1

◆
�
1
2
(x, y), (A.4)

|(⇣ � 1)�
1
2 (x, y)| 6 2

d
4+

1
4

✓
2�1

|⇣ | � 1

◆
�
1
2
(x, y). (A.5)

Proof of (A.2). Let ↵ 2 (0, 1). Set

c(↵) := sup
⇠>0

⇠e�(1�↵)⇠2
✓

=

1
p

2
(1� ↵)�

1
2 e�

1
2

◆
,

so that
⇠e�⇠2 6 c(↵)e�↵⇠2 for all ⇠ > 0. (?)

We use the well known formula

(⇣ � 1)�
�
2 (x, y) =

1
0
��
2
�
Z

1

0
e�⇣ t t

�
2�1(4⇡ t)�

d
2 e�

|x�y|2
4t dt, 0 < � 6 2,
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first with � = 2, and then with � = 1, to obtain:

|r(⇣ � 1)�1(x, y)| 6
Z

1

0
e�tRe ⇣ (4⇡ t)�

d
2
|x � y|
2t

e�
|x�y|2
4t dt

6 c(↵)

Z
1

0
e�tRe ⇣ t�

1
2 (4⇡ t)�

d
2 e�↵ |x�y|2

4t dt

✓
By (?) with ⇠ :=

|x � y|
2
p

t

◆

6 c(↵)↵�
1
2�

d
2+1

Z
1

0
e�(Re ⇣ )↵t t�

1
2 (4⇡ t)�

d
2 e�

|x�y|2
4t dt

✓
change t/↵ to t

◆

= c(↵)↵
1
2�

d
20

✓
1
2

◆ �
↵Re ⇣ � 1

�
�
1
2 (x, y).

Now, we minimize c(↵)↵
1
2�

d
20(12 ) in ↵ 2 (0, 1). The minimum is attained at

↵d =
d�1
d (=: �1

d ), and is equal to md .
The proof of (A.3) is similar.

Proof of (A.4). First, suppose that Im ⇣ 6 0. By the Cauchy theorem,

(⇣ � 1)�1(x, y) =

Z
1

0
e�⇣ t (4⇡ t)�

d
2 e�

|x�y|2
4t dt

=

Z
1

0
e�⇣rei

⇡
4 e�i

⇡
4
d
2 (4⇡r)�

d
2 e

�
|x�y|2

4rei
⇡
4 ei

⇡
4 dr,

(i.e., we have changed the contour of integration from {t : t > 0} to {rei
⇡
4 : r > 0}).

Thus,

|r(⇣ � 1)�1(x, y)| 6
Z

1

0

����e�⇣rei
⇡
4
���� (4⇡r)� d

2

���� x � y
2r

����
����e�

|x�y|2

4rei
⇡
4

����dr.
We have

|e�⇣rei
⇡
4
| 6 e�r

1
p

2
(Re ⇣�Im ⇣ )

,
��e� |x�y|2

4rei
⇡
4
�� 6 e�

|x�y|2
4r

1
p

2 , Re ⇣ � Im ⇣ > |⇣ |.
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Therefore,

|r(⇣ � 1)�1(x, y)| 6
Z

1

0
e�r

1
p

2
|⇣ |

(4⇡r)�
d
2

���� x � y
2r

���� e�
|x�y|2
4r

1
p

2 dr
�
change r

p

2 to r
�

= 2
d
4

Z
1

0
e�r

1
2 |⇣ |(4⇡r)�

d
2

���� x � y
2r

���� e� |x�y|2
4r dr

6
2
d
4md

0
�1
2
�
Z

1

0
e�r

�1
d

1
2 |⇣ |(4⇡r)�

d
2 r�

1
2 e�

|x�y|2
4r dr

�
cf. proof of (A.2)

�
= 2

d
4md

⇣
�1
d 2�1

|⇣ | � 1
⌘

�
1
2
(x, y)

which yields (A.4) for Im ⇣ 6 0. The case Im ⇣ > 0 is treated analogously.

Proof of (A.5). First, suppose that Im ⇣ 6 0. By the Cauchy theorem,

(⇣ � 1)�
1
2 (x, y) =

Z
1

0
e�⇣ t t�

1
2 (4⇡ t)�

d
2 e�

|x�y|2
4t dt

=

Z
1

0
e�⇣rei

⇡
4 r�

1
2 e�i

⇡
8 e�i

⇡
4
d
2 (4⇡r)�

d
2 e

�
|x�y|2

4rei
⇡
4 ei

⇡
4 dr,

so we estimate as above:���(⇣ � 1)�
1
2 (x, y)

��� 6
Z

1

0
e�r

1
p

2
|⇣ |r�

1
2 (4⇡r)�

d
2 e�

|x�y|2
4r

1
p

2 dr

= 2
d
4+

1
4
⇣
2�1

|⇣ | � 1
⌘

�
1
2
(x, y).

The case Im ⇣ > 0 is treated analogously.

4. In the proof of Proposition 2.1 we need the following formula: for every 0 <
↵ < 1, Re ⇣ > 0,

(⇣ � 1)�↵
=

sin⇡↵

⇡

Z
1

0
t�↵(t + ⇣ � 1)�1dt. (A.6)

B. Appendix

Proof of (1.1). Let b 2 Kd+1
� , i.e., k|b|(� � 1)�

1
2 k1!1 6 �, k(� � 1)�

1
2 |b|k1 6

� (by duality). Then, using, e.g., interpolation, k|b|
1
2 (� � 1)�

1
2 |b|

1
2 k2!2 6 �,

i.e., b 2 F
1
2
� . The first inclusion is proved. (Here, the proof depends crucially of the

fact that (� � 1)�
1
2 is an integral operator with a symmetric kernel.)
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The second inclusion F�1 ( F
1
2
� , � =

p

�1, follows, e.g., by Heinz inequality
[3]. The last assertion now follows from

b 2 F
1
2
p

�1
, f 2 F

1
2
�2

) b + f 2 F
1
2
� ,

where we have used (|b| + |f|) 12 6 |b|
1
2 + |f| 12 .
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