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Birch’s theorem with shifts

SAM CHOW

Abstract. A famous result due to Birch (1961) provides an asymptotic formula
for the number of integer points in an expanding box at which given rational forms
of the same degree simultaneously vanish, subject to a geometric condition. We
present the first inequalities analogue of Birch’s theorem.
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1. Introduction

A famous result due to Birch [2, Theorem 1] provides an asymptotic formula for the
number of integer points in an expanding box at which given rational forms of the
same degree simultaneously vanish, subject to a geometric condition. This in par-
ticular implies the existence of a nontrivial solution to the system of homogeneous
equations, providing that a nonsingular solution exists in every completion of the
rationals. We present the following inequalities analogue of Birch’s theorem.

Theorem 1.1. Let f1, . . . , fR be rational forms of degree d > 2 in

n > � + R(R + 1)(d � 1)2d�1 (1.1)

variables, where � is the dimension of the affine variety cut out by the condition

rank
�
r fk

�R
k=1 < R.

Assume that the forms (1, . . . , 1) · r fk (1 6 k 6 R) are linearly independent. Let
⌧ 2 RR , and let ⌘ be a positive real number. Let µ be an irrational real number,
and write µ = (µ, . . . , µ) 2 Rn . Then the number N (P) = Nf(P;µ, ⌧ , ⌘) of
integer solutions x 2 [�P, P]

n to

| fk(x+ µ) � ⌧k | < ⌘ (1 6 k 6 R)
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satisfies
N (P) = (2⌘)RcPn�Rd

+ o
⇣
Pn�Rd

⌘
(1.2)

as P ! 1, where

c = cf =

Z
RR

Z
[�1,1]n

e(� · f(t)) dt d� . (1.3)

If f = 0 has a nonsingular real solution then c > 0.

The definition (1.3) of the singular integral c is the one given by Birch [2].
We can interpret c as the real density of points on the variety f = 0; we defer an
extended discussion until Section 8.

Theorem 1.1 implies that {f(x + µ) : x 2 Zn
} is dense in RR . The example

with R = 1 and

f1(x) = (x1 � x2)3 + . . . + (x99 � x100)3

shows that some condition, such as the linear independence of the forms (1, . . . , 1)·
r fk (1 6 k 6 R), is necessary in order for our statement to be true. Theorem 1.1
involves a ‘uniform’ shift µ = (µ, . . . , µ) 2 Rn . From our method it is not clear
how to handle an arbitrary shift µ = (µ1, . . . , µn) 2 Rn

\ Qn , as in [9, 10], since
many more simultaneous rational approximations would then be necessary.

In Theorem 1.1, we have used the ‘Birch singular locus’ to control the degen-
eracy of the system f. An alternative approach involves Schmidt’s h-invariant [37,
Section 1]. Quoting Schmidt, the h-invariant of a form F of degree d > 2 with
rational coefficients is the least h such that F ‘splits into h products’, i.e.

F = A1B1 + . . . + AhBh

for some forms Ai , Bi of positive degrees and rational coefficients. If f1, . . . , fR
are forms in n variables with rational coefficients and have the same degree d > 2,
then the h-invariant of the system f is the minimum h-invariant of any form in the
rational pencil. Writing h for the h-invariant of f, we note that h 6 n. Define 8(d)
by 8(2) = 8(3) = 1, 8(4) = 3, 8(5) = 13 and

8(d) =

d!

(log 2)d
(d > 6).

Theorem 1.2. We may replace the condition (1.1) in Theorem 1.1 by the hypothesis

h
8(d)

> R(R + 1)(d � 1)2d�1
+ R(R � 1)(d � 1), (1.4)

and the same conclusions hold.
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Cognoscenti will recall that in Schmidt’s work [37] the h-invariant needs to be
larger if one seeks to ensure positivity of the singular series. This is not necessary
for us: there is no singular series, since the main term comes from a single major
arc around 0.

Over its half century of fame, Birch’s theorem has been an extremely popular
result to improve and generalise. In fact it may be possible for one to incorporate
into Theorem 1.1 a recent improvement in Birch’s theorem due independently to
Dietmann [17] and Schindler [34]. Skinner [38] generalised Birch’s theorem to
number fields, and Lee [24] considered Birch’s theorem in a function field setting.
Other results related to Birch’s theorem are too numerous to honestly describe in a
confined space, but recent papers include those of Brandes, Browning, Dietmann,
Heath-Brown and Prendiville [3, 5–7].

The case where R = 1 and f1 is an indefinite quadratic form has been solved
in five variables by Margulis and Mohammadi [28], who generalised famous results
due to Götze [21], Margulis [25] and others; four variables suffice unless the signa-
ture is (2, 2), while three variables suffice to obtain a lower bound of the expected
strength. This present paper is a sequel to [9, 10]. The author was initially moti-
vated to study shifted forms by Marklof’s papers [26, 27], which dealt with shifted
quadratic forms in relation to the Berry–Tabor conjecture from quantum chaos; see
also [26].

To our knowledge, no author has previously considered inhomogeneous dio-
phantine inequalities of degree three or higher without assuming any additive struc-
ture, although inhomogeneous cubic equations were investigated by Davenport and
Lewis [16]. For previous results on additive inhomogeneous diophantine inequali-
ties see [9, 10], where the author built on work of Freeman [20], who applied im-
portant estimates due to Baker [1]. Some of these ideas were used by Parsell to
treat simultaneous diagonal inequalities in [29–31]. For homogeneous diophantine
inequalities without additive structure, there is Schmidt’s general result [35, The-
orem 1], as well as improved treatments of the cubic scenario due to Pitman [33]
and then Freeman [18]. The more specialised cases of split cubic forms and cubic
forms involving a norm form have been studied by the author [8] and Harvey [22],
respectively.

We now outline our proof of the asymptotic formula (1.2) in Theorem 1.1.
Our main weapon is Freeman’s variant [19] of the Davenport–Heilbronn method
[15]. We may assume that the coefficients of f1, . . . , fR are integer multiples of
d!. Indeed, we may if necessary rescale f, ⌧ , ⌘, and change variables in the outer
integral of (1.3). Our starting point is the Taylor expansion

fk(x+ µ) = fk(x) + fk(µ) +

d�1X
j=1

µd� j
X

|j|1= j
dk,jxj (1 6 k 6 R) (1.5)

about µ, where for j 2 Zn
>0 we write

xj = x j11 · · · x jnn , |j|1 = j1 + . . . + jn, j! = j1! · · · jn!
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and
dk,j = j!�1@ j fk(1, . . . , 1) 2 Z (1 6 k 6 R). (1.6)

Thus, we may regard our shifted forms as polynomials in x. Note that

fk(x) =

X
|j|1=d

dk,jxj (1 6 k 6 R). (1.7)

The pertinent exponential sums are

S(↵) =

X
|x|6P

e(↵ · f(x+ µ)) (↵ 2 RR).

From (1.5) we see that the highest degree component of fk(x+µ) is precisely fk(x).
We can therefore use Birch’s argument [2], which is based onWeyl differencing and
the geometry of f, to restrict consideration to a thin set of major arcs where ↵ is well
approximated.

Though the polynomials fk(x + µ) are of the particular shape (1.5), we shall
also need some exponential sum bounds in a more general inhomogeneous context.
There are

N j :=

✓
j + n � 1
n � 1

◆
(1.8)

monomials of degree j in n variables, or in other words there are N j vectors j 2

Zn
>0 such that |j|1 = j . For ↵ 2 RR and

!⇧ = (!j)16|j|16d�1 2 RN1+...+Nd�1, (1.9)

write

g(↵,!⇧) =

X
|x|6P

e

0
@↵ · f(x) +

X
16|j|16d�1

!jxj
1
A . (1.10)

Using (1.5), we shall view S(↵) as a special case of g(↵,!⇧), up to multiplication
by a constant of absolute value 1. Thanks to the early steps of our argument, this
will allow us to focus on the situation in which

|g(↵,!⇧)| > PnH�1, (1.11)

where H is at most a small power of P .
Let

Fk, j (x) =

X
|j|1= j

dk,jxj (1 6 k 6 R, 1 6 j 6 d), (1.12)

and note from (1.7) that

Fk,d = fk (1 6 k 6 R). (1.13)
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We now see from (1.5) that

fk(x+ µ) = fk(µ) +

X
16 j6d

µd� j Fk, j (x) (1 6 k 6 R) (1.14)

and

↵ · f(x+ µ) = ↵ · f(µ) + ↵ · f(x) +

X
k6R

↵k
X

16|j|16d�1
µd�|j|1dk,jxj.

Thus, with (1.9) and the specialisation

!j :=

X
k6R

dk,j↵kµd�|j|1 (1 6 |j|1 6 d), (1.15)

we have
S(↵) = e(↵ · f(µ))g(↵,!⇧). (1.16)

Throughout, we define !j (|j|1 = d) in terms of ↵ by

!j =

X
k6R

dk,j↵k (|j|1 = d). (1.17)

This is consistent with (1.15). Though !⇧ does not depend on those !j for which
|j|1 = d, it will be convenient to also consider them.

Ideally, we would like to have good rational approximations to ↵kµd� j

for all k 2 {1, 2, . . . , R} and all j 2 {1, 2, . . . , d}. We could then use the pro-
cedure demonstrated in [4, Chapter 8] to decompose S(↵) into archimedean and
non-archimedean components. We are only able to achieve this ideal for j 2 S ,
where S is the set of j 2 {1, 2, . . . , d} such that F1, j , F2, j , . . . , FR, j are linearly
independent. For all j 2 {1, 2, . . . , d}, we are nonetheless able to rationally ap-
proximate those linear combinations of ↵1µd� j , . . . ,↵Rµd� j that are needed at
this stage of the argument, namely the !j.

These rational approximations are a nontrivial consequence of (1.11). The key
idea is to fix all but one of the variables, and to regard the summation thus obtained
as a univariate exponential sum. We can then use the simultaneous approximation
methods of Baker [1].

Finally, we use the irrationality of µ to obtain nontrivial cancellation on
Davenport–Heilbronn minor arcs m (this is where |↵| is of ‘intermediate’ size).
We need the information that d, d � 1 2 S . These facts follow from our geometric
assumptions. Indeed, to see that d � 1 2 S one may compare (1.14) to the Taylor
expansion

fk(x+ µ) = fk(x) + fk(µ) +

d�1X
i=1

µi
X
|i|1=i

i!�1@ i fk(x)
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about x, which shows that

Fk,d�1 = (1, . . . , 1) · r fk (1 6 k 6 R).

We thus have good rational approximations to ↵ and µ↵, and their strength may be
used to contradict the irrationality of µ unless we have a nontrivial estimate on m.

The proof of Theorem 1.2 is almost the same, with the only substantial change
being a suitable analogue of Lemma 2.1. It transpires that such an analogue can
be deduced without much work from Schmidt’s seminal paper [37]. Further details
shall be provided in Section 9.

We organise thus. In Section 2, we use Freeman’s kernel functions to relate
N (P) to exponential sums; see [19, Section 2]. Using Birch’s argument, we then
obtain good simultaneous rational approximations to the ↵k (1 6 k 6 R) in the
case that g(↵,!⇧) is ‘large’; see [2, Lemma 4.3]. In Section 3, we simultaneously
approximate the !j (1 6 |j|1 6 d). In Section 4, we use S(↵) to obtain simultane-
ous rational approximations to the ↵k, j (1 6 k 6 R, j 2 S). In Section 5, we adapt
classical bounds to the present context. In Section 6, we exploit the irrationality ofµ
by using a simplification of the methods of Bentkus, Götze and Freeman, similarly
to [40, Section 2]. The lemmas therein motivate our precise Davenport–Heilbronn
trisection, which we present in Section 7. We then resolve the asymptotic formula
(1.2). We complete the proof of Theorem 1.1 in Section 8 by establishing the final
statement of the theorem. It is then that we provide Schmidt’s interpretation [36,37]
of the singular integral c as a real density. Finally, we prove Theorem 1.2 in Sec-
tion 9.

We adopt the convention that " denotes an arbitrarily small positive number, so
its value may differ between instances. For x 2 R and r 2 N, we put e(x) = e2⇡ i x
and er (x) = e2⇡ i x/r . Bold face will be used for vectors, for instance we shall
abbreviate (x1, . . . , xn) to x, and define |x| = max(|x1|, . . . , |xn|). For a vector
x of length n, and for j 2 Zn

>0, we define x
j

= x j11 · · · x jnn , |j|1 = j1 + . . . + jn
and j! = j1! · · · jn!. If M is a matrix then we write |M| for the maximum of the
absolute values of its entries. We will use the unnormalised sinc function, given by
sinc(x) = sin(x)/x for x 2 R \ {0} and sinc(0) = 1.

We regard ⌧ , µ and ⌘ as constants. The word large shall mean in terms of
f, " and constants, together with any explicitly stated dependence. Similarly, the
implicit constants in Vinogradov and Landau notation may depend on f, " and con-
stants, and any other dependence will be made explicit. The pronumeral P denotes
a large positive real number. The word small will mean in terms of f and constants.
We sometimes use such language informally, for the sake of motivation; we make
this distinction using quotation marks.

ACKNOWLEDGEMENTS. The author thanks Trevor Wooley very much for his en-
thusiastic supervision, and for suggesting such an agreeable research programme.
Special thanks go to Adam Morgan for an elegant proof of Lemma 3.1. Finally,
thanks to the anonymous referees for doing a thorough job and making several
helpful suggestions.
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2. Approximations of Birch type

We deploy the kernel functions introduced by Freeman [19, Section 2.1]; see also
[32, Section 2]. We shall define T : [1,1) ! [1,1) in due course. For now, it
suffices to note that

T (P) 6 P, (2.1)
and that T (P) ! 1 as P ! 1. Put

L(P) = max(1, log T (P)), ⇢ = ⌘L(P)�1 (2.2)

and
K±(↵) =

sin(⇡↵⇢) sin(⇡↵(2⌘ ± ⇢))

⇡2↵2⇢
. (2.3)

From [19, Lemma 1] and its proof, we have

K±(↵) ⌧ min(1, L(P)|↵|
�2) (2.4)

and
0 6

Z
R
e(↵t)K�(↵) d↵ 6 U⌘(t) 6

Z
R
e(↵t)K+(↵) d↵ 6 1, (2.5)

where

U⌘(t) =

(
1, if |t | < ⌘

0, if |t | > ⌘.

For ↵ 2 RR , write
K±(↵) =

Y
k6R

K±(↵k). (2.6)

The inequalities (2.5) give

R�(P) 6 N (P) 6 R+(P),

where
R±(P) =

Z
RR

S(↵)e(�↵ · ⌧ )K±(↵) d↵.

In order to prove (1.2), it therefore remains to show that

R±(P) = (2⌘)RcPn�Rd
+ o(Pn�Rd) (2.7)

as P ! 1, where c is given by (1.3).
In this section we employ some classical bounds of Davenport [11–14] and

Birch [2]; see also [4, Chapter 8]. These results apply directly to Weyl sums asso-
ciated to ↵ · f, and are proved by Weyl differencing down to degree one. As such,
they are unaffected by the presence of terms of degree lower than d. The idea that
lower order terms are irrelevant when establishingWeyl-type bounds is well known;
Birch himself notes this in [2, Section 2], and it was also used to prove [16, Lemma
1]. From (1.10), we see that the polynomial associated to the Weyl sum g(↵,!⇧)
has ↵ · f as its highest degree component. Exploiting this, we may deduce these
classical bounds for g(↵,!⇧).
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Lemma 2.1. Let 0 < ✓ 6 1. Suppose

|g(↵,!⇧)| > Pn�(n�� )✓/2d�1
+". (2.8)

Then there exist integers q, a1, . . . , aR such that

1 6 q 6 PR(d�1)✓ , gcd(a1, . . . , aR, q) = 1 (2.9)

and
2|q↵ � a| 6 PR(d�1)✓�d . (2.10)

In particular, if |S(↵)| > Pn�(n�� )✓/2d�1
+" then there exist q 2 N and a 2 ZR

satisfying (2.9) and (2.10). We may replace g(↵,!⇧) by

X
16x1,...,xn6P

e

0
@↵ · f(x) +

X
16|j|16d�1

!jxj
1
A ,

and the same conclusions hold.
Proof. For the first statement we may imitate Birch’s proof of [2, Lemma 4.3]. We
have removed the implied constant from (2.8) by redefining " and recalling that P
is large. Now (1.16) gives rise to our second claim. The third assertion follows in
the same way as the first.

Throughout, put
 =

n � �

R(d � 1)2d�1 . (2.11)

It follows from (1.1) that
 > R + 1. (2.12)

The argument of the corollary to [2, Lemma 4.3] now produces the following.
Corollary 2.2. For ↵ 2 RR with |↵| < P�d/2, and for !⇧ as in (1.9), we have

g(↵,!⇧) ⌧ Pn+"(Pd |↵|)� . (2.13)

Fix a small positive real number ✓0. LetN be the set of ↵ 2 RR satisfying (2.9) and
(2.10) with ✓ = ✓0, for some integers q, a1, . . . , aR . Given ↵ 2 N, such integers
would be unique. Indeed, if we also had

1 6 t 6 PR(d�1)✓0, (b1, . . . , bR, t) = 1

and
2|t↵ � b| 6 PR(d�1)✓0�d

for some integers t, b1, . . . , bR , then

|q�1a� t�1b| 6 |↵ � q�1a| + |↵ � t�1b|
< (1/q + 1/t)PR(d�1)✓0�d < (qt)�1;

this would imply that t�1b = q�1a, and hence that t = q and b = a.
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Let U be an arbitrary unit hypercube in R dimensions. Using Lemma 2.1, the
argument of [2, Lemma 4.4] shows that

Z
(RR

\N)\U
|S(↵)| d↵ ⌧ Pn�Rd�". (2.14)

Put
N⇤

= N⇤

P =

n
↵ 2 N : |S(↵)| > Pn�R(R+1)d✓0

o
. (2.15)

The measure ofN \ U is O(PR(R+1)(d�1)✓0�Rd), so
Z

(N\N⇤)\U
|S(↵)| d↵ ⌧ Pn�Rd�R(R+1)✓0 .

Combining this with (2.14) yields
Z

(RR
\N⇤)\U

|S(↵)| d↵ ⌧ Pn�Rd�".

Now (2.1), (2.2), (2.4) and (2.6) give
Z

RR
\N⇤

|S(↵)K±(↵)| d↵ ⌧ L(P)R Pn�Rd�"
= o

⇣
Pn�Rd

⌘
.

In view of the discussion surrounding (2.7), it remains to show that
Z

N⇤

S(↵)e(�↵ · ⌧ )K±(↵) d↵ = (2⌘)RcPn�Rd
+ o

⇣
Pn�Rd

⌘
(2.16)

as P ! 1, with c as in (1.3).

3. Approximations of Baker type

By (1.10), (1.12), (1.13) and (1.17), we have

g(↵,!⇧) =

X
|x|6P

e

0
@ X
16|j|16d

!jxj
1
A . (3.1)

In the case that g(↵,!⇧) is ‘large’, we shall use [1, Theorem 5.1] to obtain simul-
taneous rational approximations to the !j. The idea is to fix x2, . . . , xn , so as to
consider

P
!jxj as a polynomial in x1. If we simply do this, we are only able to

approximate certain linear combinations of the !j, and we do not acquire enough
information. However, if we first change variables, then we can approximate dif-
ferent linear combinations of the !j. The point is to use several carefully selected
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changes of variables. We never actually make these changes of variables; we merely
incorporate them into our summations.

Suppose we were to put x = y+ x1m, regarding m1 = 1,m2, . . . ,mn 2 N and
y1 = 0 as being fixed. For some y, will be able to simultaneously approximate the
coefficients of the x j1 in

P
j !j(y+ x1m)j. By the binomial theorem, the coefficient

of x j1 in (y+ x1m)i is

z j,i = z j,i(m, y) :=

X
j6 i:|j|1= j

✓
i
j

◆
mjyi�j, (3.2)

where ✓
i
j

◆
=

Y
v6n

✓
iv
jv

◆
,

and j 6 i means that jv 6 iv (1 6 v 6 n). Hence, the coefficient of x j1 inP
j !j(y+ x1m)j is X

|j|1= j
mj!j +

X
j<|i|16d

z j,i!i. (3.3)

Since we wish to approximate the !j, the first sum in (3.3) motivates the need for
our next lemma. Recall (1.8).

Lemma 3.1. There exist m1, . . . ,mNd 2 Nn such that the first entry of mt is 1
(1 6 t 6 Nd) and the square matrices

Mj =

⇣
mjt

⌘
16t6N j ,|j|1= j

(1 6 j 6 d) (3.4)

are invertible over Q.

Proof. Put
mt =

⇣
⌫t�11 , . . . , ⌫t�1n

⌘
(1 6 t 6 Nd)

with ⌫1 = 1 and ⌫s = 2(d+1)s�2 (2 6 s 6 n). Let j 2 {1, 2, . . . , d}, and note that
the order of the vectors j does not affect whether or not the matrix is invertible. We
have

mjt = (⌫j)t�1 (1 6 t 6 N j , |j|1 = j),

so Mj is a square Vandermonde matrix with parameters ⌫j (|j|1 = j), and it remains
to show that if |i|1 = |j|1 = j and i 6= j then ⌫i 6= ⌫j. We may assume that i > j in
reverse lexicographic order, so that there exists r 2 {2, 3, . . . , n} such that ir > jr
and is = js (r + 1 6 s 6 n). Now

⌫i/⌫j > ⌫r/⌫
j
r�1 > 1.
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Henceforth, we letm1, . . . ,mNd be fixed vectors as in Lemma 3.1. Baker’s work [1,
Theorem 5.1] shows that if a Weyl sum in one variable is ‘large’ then its non-
constant coefficients admit good simultaneous rational approximations. There is
currently no close analogue in many variables. However, since we have already
restricted attention to a thin set of major arcs, we obtain a satisfactory analogue by
fixing all but one variable and then using Baker’s result. For the time being, we
work with the more general Weyl sum g(↵,!⇧). Put

N = N1 + . . . + Nd . (3.5)

Lemma 3.2. Let H > 0 be such that

H2
d N+1 6 P, (3.6)

and assume (1.11). Then there exist unique r 2 N and

a† = (aj)16|j|16d 2 ZN

such that
r ⌧ HNd P", gcd(r, a†) = 1 (3.7)

and
r!j � aj ⌧ HNd P"�|j|1 (j 2 Zn

>0 : 1 6 |j|1 6 d), (3.8)

where gcd(r, a†) denotes the greatest common divisor of r and the entries of a†.

Proof. Let t 2 {1, 2, . . . , Nd}, and set y1 = 0. By (3.1), we have

g(↵,!⇧) =

X
y2,...,yn :

|y|6(|mt |+1)P

X
x12It (y)

e

0
@ X
16|j|16d

!j(y+ x1mt )
j

1
A ,

where
It (y) =

�
x1 2 Z : |y+ x1mt | 6 P

 
is a discrete subinterval of [�P, P] \ Z. More precisely, given t and y as above,
there exists a real subinterval [a, b] of [�P, P] such that It (y) = [a, b] \ Z. By
(1.11) and the triangle inequality, there exists yt 2 Zn such that |yt | ⌧ P and

������
X

x12It (yt )
e

0
@ X
16|j|16d

!j(yt + x1mt )
j

1
A
������ � PH�1.

Now [1, Theorem 5.1] and the calculation (3.3) imply the existence of integers
qt , vt,d , . . . , vt,1 such that

0 < qt ⌧ Hd P"
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and

qt

0
@ X

|j|1= j
mjt!j +

X
j<|i|16d

z j,i,t!i

1
A � vt, j ⌧ Hd P"� j (1 6 j 6 d), (3.9)

where
z j,i,t = z j,i(mt , yt ).

With (3.4), put
1 j = det(Mj ) (1 6 j 6 d). (3.10)

In order for this to be well defined, we need to fix an ordering of the j (|j|1 = j), and
we can do this by writing {j1, j , . . . , jN j , j } for the set of j 2 Zn

>0 such that |j|1 = j .
Explicitly, we now have

Mj =

0
BBB@
mj1, j1 . . . m

jN j , j
1

...
...

mj1, jN j
. . . m

jN j , j
N j

1
CCCA (1 6 j 6 d). (3.11)

Note that the matrices 1 j M�1
j have integer entries. For j = 1, 2, . . . , d, write

� j =

0
B@
!j1, j

...
!jN j , j

1
CA , Vj =

0
B@

v1, j
...

vN j , j

1
CA ,

and also letQ j = diag(q1, . . . , qN j ). Let

Q j = q1 · · · qN j (1 6 j 6 d)

and

⇠ j =

dY
i= j

1i Qi (1 6 j 6 d).

For j = 1, 2, . . . , d, put

 t, j =

X
j<|i|16d

z j,i,t!i, 9 j =

0
B@
 1, j

...
 N j , j

1
CA .

We proceed, by induction on |i|1 from d down to 1, to show that there exist integers
vi (1 6 |i|1 6 d) such that

⇠|i|1!i � vi ⌧ (Hd P")N|i|1+...+Nd P�|i|1 . (3.12)
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From (3.9), we have
|QdMd�d � Vd | ⌧ Hd P"�d .

Left multiplication by the integer matrix

1d QdM�1
d Q�1

d =

⇣
1dM�1

d

⌘
·

⇣
QdQ

�1
d

⌘

gives
|1d Qd�d �1d QdM�1

d Q�1
d Vd | ⌧

⇣
Hd P"

⌘Nd
P�d ,

since qt ⌧ Hd P" (1 6 t 6 Nd ). In particular, there exist vj 2 Z (|j|1 = d) such
that

1d Qd!j � vj ⌧

⇣
Hd P"

⌘Nd
P�d (|j|1 = d).

We have confirmed (3.12) whenever |i|1 = d.
Next let j 2 {1, 2, . . . , d � 1}, and suppose that for i 2 { j + 1, j + 2, . . . , d}

there exist vi 2 Z (|i|1 = i) satisfying (3.12). Put

Z j =

0
B@
z1, j
...

zN j , j

1
CA ,

where for 1 6 t 6 N j we write

zt, j =

dX
i= j+1

1 j+1 · · ·1i�1Q j+1 · · · Qi�1
X
|i|1=i

z j,i,tvi.

From (3.9), we see that

|Q j (Mj� j +9 j ) � Vj | ⌧ Hd P"� j .

Noting that

|1 j Q j M�1
j Q�1

j | = |(1 j M�1
j ) · (Q jQ

�1
j )| ⌧ (Hd P")N j�1,

we now have

|1 j Q j� j �1 j Q j M�1
j Q�1

j (Vj � Q j9 j )| ⌧ (Hd P")N j P� j .

Hence

⇠ j� j = ⇠ j+11 j Q j M�1
j Q�1

j (Vj � Q j9 j ) + O((Hd P")N j+...+Nd P� j )

= X j �1 j Q j M�1
j ⇠ j+19 j + O((Hd P")N j+...+Nd P� j ),

(3.13)
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where X j = ⇠ j+11 j Q j M�1
j Q�1

j V j has integer entries and we have used Landau’s
notation entry-wise. By our inductive hypothesis and the bound

z j,i,t ⌧ P |i|1� j ,

we have
⇠ j+19 j = Z j + O

⇣
(Hd P")N j+1+...+Nd P� j

⌘
. (3.14)

Substituting (3.14) into (3.13) yields

⇠ j� j = X j �1 j Q j M�1
j Z j + O

⇣
(Hd P")N j+...+Nd P� j

⌘
.

In particular, there exist vj 2 Z (|j|1 = j) such that

⇠ j!j � vj ⌧ (Hd P")N j+...+Nd P� j (|j|1 = j).

The induction has shown that there exist integers vi (1 6 |i|1 6 d) satisfying (3.12).
Our existence statement follows by redefining ", and choosing r, aj (1 6 |j|1 6 d)
by rescaling the integers ⇠1, (⇠1/⇠|j|1)vj in such a way that r > 0 and gcd(r, a†) = 1.

Next suppose (3.7) and (3.8) also hold with s 2 N and

b† = (bj)16|j|16d 2 ZN

in place of r and a†. Then, by the triangle inequality, we have

|aj/r � bj/s| ⌧ (1/r + 1/s)HNd P"�1 (1 6 |j|1 6 d).

Since P is large and r, s ⌧ HNd P", we may now recall (3.6) to see that

|aj/r � bj/s| < (rs)�1 (1 6 |j|1 6 d).

Hence aj/r = bj/s (1 6 |j|1 6 d). The conditions

gcd(r, a†) = gcd(s,b†) = 1

now imply that (r, a†) = (s,b†). We have demonstrated uniqueness.

It may be possible to obtain the inequalities (3.7) and (3.8) with a smaller
power of H , but we do not require this. Using an argument similar to that of the
corollary to [2, Lemma 4.3], we now deduce the following estimate for g(↵,!⇧).
Corollary 3.3. Let ⇠ be a small positive real number. Let ↵ 2 RR , and let

!⇧ = (!j)16|j|16d�1 2 RN1+...+Nd�1

be such that

P |j|1
|!j| 6 (P⇠+(2d N+1)�1)Nd (1 6 |j|1 6 d � 1).

Then

g(↵,!⇧) ⌧⇠ Pn+⇠
✓

max
16|j|16d�1

P |j|1
|!j|

◆
�(Nd)�1

. (3.15)
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Proof. Let j 2 Zn
>0 be such that 1 6 |j|1 = j 6 d � 1, and determine H > 0 by

P j
|!j| = (HP⇠ )Nd . (3.16)

Note that we have (3.6). Assume for a contradiction that

|g(↵,!⇧)| > Pn+⇠ (P j
|!j|)

�(Nd)�1,

for some P that is large in terms of ⇠ . Then |g(↵,!⇧)| > PnH�1, so by Lemma
3.2 there exist r, aj 2 Z satisfying 0 < r ⌧ HNd P⇠ and

r!j � aj ⌧ HNd P⇠� j . (3.17)

The triangle inequality and (3.16) now give

aj ⌧ HNd P⇠� j
+ (HNd P⇠ ) · (HNd PNd⇠� j ).

By (3.6), we must now have aj = 0. Substituting this into (3.17) yields

!j ⌧ HNd P⇠� j ,

contradicting (3.16). We must therefore have (3.15).

Put
� = (R(R + 1)Nd2 + 1)✓0. (3.18)

Recall (1.6) and (2.15). We henceforth define the !j (1 6 |j|1 6 d) in terms of ↵
by (1.15). The following is another consequence of Lemma 3.2.

Corollary 3.4. Let ↵ 2 N⇤. Then there exist unique

r 2 Z, a† = (aj)16|j|16d 2 ZN

such that
1 6 r < P�, gcd(r, a†) = 1 (3.19)

and
|r!j � aj| < P��|j|1 (1 6 |j|1 6 d). (3.20)

There also exist unique integers q, a1, . . . , aR such that

1 6 q 6 PR(d�1)✓0, gcd(a1, . . . , aR, q) = 1 (3.21)

and
2|q↵ � a| 6 PR(d�1)✓0�d . (3.22)

Proof. Recall that (1.16) holds with the specialisation (1.15). For existence of sat-
isfactory r and a†, apply Lemma 3.2 with H = PR(R+1)d✓0 . Our first uniqueness
assertion follows in the same way as the uniqueness statement in Lemma 3.2. Ex-
istence and uniqueness of q, a1, . . . , aR follow from the definition of N and the
subsequent discussion, since ↵ 2 N⇤

✓ N.
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4. Special approximations

Recall (1.8), and that the !j are now defined in terms of ↵ by (1.15). Recall (1.12),
and that S is the set of j 2 {1, 2, . . . , d} such that F1, j , F2, j , . . . , FR, j are linearly
independent.

Lemma 4.1. Let j 2 S and ↵ 2 RR . Let r, aj 2 Z (|j|1 = j). Then there exist
integers Dj 6= 0 and ak, j (1 6 k 6 R) such that

Djr↵kµd� j
� ak, j ⌧ max

|j|1= j
|r!j � aj| (1 6 k 6 R)

and Dj is bounded in terms of f.

Proof. As in the proof of Lemma 3.2, we fix an ordering of the j (|j|1 = j) by
writing {j1, j , . . . , jN j , j } for the set of j 2 Zn

>0 such that |j|1 = j . From (1.15), we
have

� j = C jY j ,

where

� j =

0
B@
!j1, j

...
!jN j , j

1
CA , C j =

0
B@
d1,j1, j . . . dR,j1, j

...
...

d1,jN j , j . . . dR,jN j , j

1
CA , Y j =

0
B@
↵1µd� j

...

↵Rµd� j

1
CA .

We note from (1.1) and (1.8) that N j > R. The condition j 2 S ensures that the
R columns of C j are linearly independent, and it follows from linear algebra that
C j contains R linearly independent rows, indexed say by Tj ✓ {1, 2, . . . , N j } (row
rank equals column rank). Form C 0

j by assembling these rows of C j to form an
invertible R ⇥ R matrix, and let A0

j = (ajt, j )t2Tj be the R ⇥ 1 matrix formed by
assembling the same rows of (ajt, j )16t6N j . We put Dj = det(C 0

j ) and
0
B@
a1, j
...

aR, j

1
CA = Dj (C 0

j )
�1A0

j .

Define the R ⇥ 1 matrix �0

j = (!jt, j )t2Tj . Now �0

j = C 0

j Y j , so

DjrY j �

0
B@
a1, j
...

aR, j

1
CA = Dj (C 0

j )
�1(r�0

j � A0

j ),

completing the proof.
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As d, d � 1 2 S , we have the following corollary.

Corollary 4.2. Let ↵ 2 N⇤. Let the integers r and aj (1 6 |j|1 6 d) be as
determined by Corollary 3.4. Then there exists Cf > 1, depending only on f, as well
as D, E 2 Z \ {0} and a1, a2 2 ZR such that

|D|, |E | 6 Cf, (4.1)

|Dr↵ � a1| ⌧ max
|j|1=d

|r!j � aj| (4.2)

and
|Erµ↵ � a2| ⌧ max

|j|1=d�1
|r!j � aj|. (4.3)

The choice of (D, E, a1, a2) is unique if we impose the further conditions

D, E > 0, gcd(D, a1) = gcd(E, a2) = 1. (4.4)

Proof. For existence, apply Lemma 4.1 with j = d and then with j = d � 1. For
uniqueness, suppose we also have (4.1), (4.2), (4.3) and (4.4) with D0, E 0, a01, a

0

2
in place of D, E, a1, a2. Combining these bounds with (3.20) and the triangle in-
equality gives

|D�1a1 � (D0)�1a01| < (DD0)�1

and
|E�1a2 � (E 0)�1a02| < (EE 0)�1,

so D�1a1 = (D0)�1a01 and E
�1a2 = (E 0)�1a02. Having made the assumptions

(4.4) and
D0, E 0 > 0, gcd(D0, a01) = gcd(E 0, a02) = 1,

we must now have (D0, E 0, a01, a
0

2) = (D, E, a1, a2).

Henceforth, fix Cf to be as in Corollary 4.2. Recall (3.5). For r, D, E, q 2 N,

a† = (aj)16|j|16d 2 ZN , a1, a2, a 2 ZR,

write
X = (r, D, E, q, a†, a1, a2, a), (4.5)

and let R(X ) = RP(X ) be the set of ↵ 2 RR satisfying (3.19), (3.20), (3.21),
(3.22), (4.1), (4.2), (4.3) and (4.4). Let R = RP be the union of these sets. This
union is disjoint, as with uniqueness in Corollaries 3.4 and 4.2. These corollaries
also tell us that

N⇤

✓ R. (4.6)

Recall (1.6).
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Lemma 4.3. Suppose RP(X ) 6= ;. Then

(Dr)�1a1 = q�1a, (4.7)

and q divides Dr . We must also have

r�1aj = q�1
X
k6R

dk,jak (|j|1 = d). (4.8)

Proof. Let ↵ 2 RP(X ). From (3.20), (3.22), (4.2) and the triangle inequality, we
see that

|(Dr)�1a1 � q�1a| ⌧ q�1PR(d�1)✓0�d
+ r�1P��d .

By (3.19), (3.21) and (4.1), we now have

|(Dr)�1a1 � q�1a| < (Drq)�1,

which implies (4.7). Hence q divides Dr , since gcd(a1, . . . , aR, q) = 1. Now let
j 2 Zn

>0 be such that |j|1 = d. We see from (1.15) and (3.20) that
�����
X
k6R

dk,j↵k � aj/r

����� < r�1P��d .

Combining this with (3.22) and the triangle inequality yields

r�1aj � q�1
X
k6R

dk,jak ⌧ r�1P��d + q�1PR(d�1)✓0�d .

In light of (3.19) and (3.21), we now have�����r�1aj � q�1
X
k6R

dk,jak

����� < (qr)�1,

which establishes (4.8).

5. Adaptations of known bounds

In this section we consider S(↵) for ↵ 2 R. Let r, D, q 2 N, where D 6 Cf and q
divides Dr . Assume that Dr 6 P . Let a 2 ZR and

a† = (aj)16|j|16d 2 ZN , (5.1)

where we recall (1.8) and (3.5). Recall that the !j are defined in terms of ↵ by
(1.15), and put

↵ = q�1a+ z, !j = r�1aj + zj (1 6 |j|1 6 d � 1). (5.2)
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Recall (1.10) and (1.16). Our starting point is the calculation

g(↵,!⇧) =

X
x mod Dr

e

0
@q�1a · f(x) + r�1

X
16|j|16d�1

ajxj
1
A SDr (x), (5.3)

where

SDr (x) =

X
|y|6P

y⌘x mod Dr

e

0
@z · f(y) +

X
16|j|16d�1

zjyj
1
A .

For � 2 RR and
�

⇧
= (�j)16|j|16d�1 2 RN1+...+Nd�1, (5.4)

write

I (� , �
⇧
) =

Z
[�1,1]n

e

0
@� · f(t) +

X
16|j|16d�1

�jtj
1
A dt. (5.5)

By [4, Lemma 8.1] and a change of variables, we have

SDr (x) = (P/(Dr))n I (� , �
⇧
) + O((P/r)n�1(1+ |� | + |�

⇧
|)) (5.6)

with
� = Pdz, �j = P |j|1zj (1 6 |j|1 6 d � 1). (5.7)

Let

Sr,D,q(a, a†) =

X
x mod Dr

e

0
@q�1a · f(x) + r�1

X
16|j|16d�1

ajxj
1
A . (5.8)

Since D 6 Cf, substituting (5.6) into (5.3) shows that

g(↵,!⇧) � Pn(Dr)�nSr,D,q(a, a†)I (� , �
⇧
) ⌧ r Pn�1(1+ |� | + |�

⇧
|), (5.9)

with (5.7). Specialising r = D = q = 1, a = 0, and a† = 0 yields

g(↵,!⇧) = Pn I (� , �
⇧
) + O(Pn�1(1+ |� | + |�

⇧
|)) (5.10)

with
� = Pd↵, �j = P |j|1!j (1 6 |j|1 6 d � 1). (5.11)

Emulating [2, Lemma 5.2] or [4, Lemma 8.8], we combine (2.13), (3.15) and (5.10)
in order to bound I (� , �

⇧
), uniformly for � 2 RR and �

⇧
2 RN1+...+Nd�1 .

Lemma 5.1. Let � be a small positive real number. Then for � 2 RR and �
⇧

2

RN1+N2+...+Nd�1 , we have

I (� , �
⇧
) ⌧� (1+ |� |

��
+ |�

⇧
|
(Nd)�1��)�1. (5.12)
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Proof. As I (� , �
⇧
) ⌧ 1, we may assume that |� |+|�

⇧
| is large. Recall that (5.10)

holds with (5.11). This, (2.13) and (3.15) show that

I (� , �
⇧
) ⌧

P�n�2N�1

|� |


+ |�
⇧
|
(Nd)�1

+

1+ |� | + |�
⇧
|

P

whenever |� | < Pd/2 and |�
⇧
| 6 (P�n�2N�1

+(2d N+1)�1)Nd . Recall (1.1). As
|� | + |�

⇧
| is large and I (� , �

⇧
) does not depend on P , we are free to choose

P = (|� | + |�
⇧
|)n , which gives

I (� , �
⇧
) ⌧

(|� | + |�
⇧
|)�(Nn)

�1

|� |


+ |�
⇧
|
(Nd)�1

.

Recall (2.11). By cross-multiplying and considering cases, we may now deduce
that

I (� , �
⇧
) ⌧ (|� |

��
+ |�

⇧
|
(Nd)�1��)�1.

As |� | + |�
⇧
| > 1, this yields (5.12).

In analogy with [14, Lemma 15.3], we deduce the following bound. We note
from Lemma 4.3 that the conditions below are necessarily met whenever
RP(X ) 6= ;.

Lemma 5.2. Let  > 0, q 2 N and a 2 ZR be such that gcd(a1, . . . , aR, q) = 1.
Let D 2 N with D 6 Cf. Let r 2 N be such that q divides Dr , and let a† be as in
(5.1). Then

Sr,D,q(a, a†) ⌧ rnq � . (5.13)

Proof. We may assume without loss that  < 1. Since |Sr,D,q(a, a†)| 6 (Dr)n ,
we may assume q to be large in terms of  . Suppose for a contradiction that

|Sr,D,q(a, a†)| > (Dr)nq � .

Break Sr,D,q(a, a†) into (Dr/q)n sums, parametrised by v 2 {1, 2, . . . , Dr/q}
n .

The sum associated to a given v is

X
16y1,...,yn6q

e

0
@q�1a · f(y+ qv) +

X
16|j|16d�1

r�1aj(y+ qv)j
1
A (5.14)

and, by the triangle inequality, at least one such sum must exceed qn+ � in abso-
lute value. Fix v 2 {1, 2, . . . , Dr/q}

n so that the expression (5.14) exceeds qn+ �

in absolute value.
The polynomial in the Weyl sum (5.14) is of the shape q�1a · f(y) plus lower

degree terms. By (2.11), we may apply Lemma 2.1 with P = q and ✓ = R�1(d �

1)�1 �  /n. This shows that there exist integers s, b1, . . . , bR such that

1 6 s < q, |sak/q � bk | < q�1 (1 6 k 6 R).
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Hence ak/q = bk/s (1 6 k 6 R). This is impossible, since 0 < s < q and
gcd(a1, . . . , aR, q) = 1. This contradiction implies (5.13).

In view of (4.6), we may restrict attention toR. With (5.9) as the harbinger of
our endgame, we perceive the need to obtain a nontrivial upper bound for
Sr,D,q(a, a†) · I (� , � †) on Davenport–Heilbronn minor arcs. From (2.12), (5.2)
and (5.7), we see that the inequalities (5.12) and (5.13) save a ‘large’ power of
Pd |q↵ � a| onR. We shall also need to save a power of Pd�1

|Erµ↵ � a2|. If |↵|

is somewhat large, the irrationality of µ will force one of |q↵ �a| and |Erµ↵ �a2|
to be somewhat large, leading to a nontrivial estimate.

From (4.3), (5.2), (5.4) and (5.7), we see that (5.12) saves a power of
Pd�1

|Eµ↵�r�1a2| over a trivial estimate for I (� , �
⇧
). Thus, our final task for this

stage of the analysis is to save a power of r over a trivial estimate for Sr,D,q(a, a†).
Roughly speaking, we achieve this by fixing x2, . . . , xn and then using [39, Theo-
rem 7.1] to bound the resulting univariate exponential sum. This entails bounding
the greatest common divisor of the coefficients of this latter sum, which leads us to
consider several notional changes of variables, much like in the proof of Lemma 3.2.

Lemma 5.3. Let D 2 N with D 6 Cf. Let r, q 2 N, and let  > 0. Let a 2 ZR ,
and let a† be as in (5.1). Assume (4.8), and that gcd(r, a†) = 1. Then

Sr,D,q(a, a†) ⌧ rn�(Ndd)�1+ . (5.15)

Proof. By (1.7), (4.8), (5.8) and periodicity, we have

Sr,D,q(a, a†) = Dn
X
x mod r

er

0
@ X
16|j|16d

ajxj
1
A . (5.16)

Set y1 = 0, and recall that we have fixed m1, . . . ,mNd 2 Nn as in Lemma 3.1.
Write

mt = (mt,1, . . . ,mt,n) (1 6 t 6 Nd),

where mt,1 = 1 (1 6 t 6 Nd ). Equation (5.16) and the triangle inequality give

|Sr,D,q(a, a†)| 6 Dn
X

y2,...,yn :
|y|6(|mt |+1)r

|S(mt , y)| (1 6 t 6 Nd), (5.17)

where

S(mt , y) =

X
x12Ir (mt ,y)

er

0
@ X
16|j|16d

aj(y+ x1mt )
j

1
A ;

here
Ir (mt , y) =

�
x1 2 Z : 1 6 y1 + mt,1x1, . . . , yn + mt,nx1 6 r
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is a discrete subinterval of {1, 2, . . . , r}. More precisely, given t and y as above,
there exists a real subinterval [a, b] of [1, r] such that Ir (mt , y) = [a, b] \ Z.
Suppose for a contradiction that

|Sr,D,q(a, a†)| > Dnrn�(Ndd)�1+ 
Y
t6Nd

(2|mt | + 3)n�1,

and that r is large in terms of  . Then, by (5.17), there exist y1, . . . , yNd 2 Zn such
that

|S(mt , yt )| > r1�(Ndd)�1+ (1 6 t 6 Nd). (5.18)

In view of the calculation (3.2), we see that if 1 6 t 6 Nd and 1 6 j 6 d then the
coefficient of x j1 in X

16|j|16d
aj(yt + x1mt )

j

is
ct, j :=

X
|j|1= j

ajmjt +

X
j<|i|16d

aiz j,i(mt , yt ). (5.19)

At this point we apply [39, Theorem 7.1]. It is necessary to remove any common
divisors of r, ct,1, . . . , ct,d . Moreover, since [39, Theorem 7.1] deals with complete
exponential sums, we use an estimate due to Hua [23, Section 3] to compare our
incomplete exponential sum to the corresponding complete exponential sum. Thus,
it follows that

S(mt , yt ) ⌧ gcd(r, ct,1, . . . , ct,d)1/d�"r1�1/d+" (1 6 t 6 Nd).

Coupling this with (5.18), we deduce that

gcd(r, ct,1, . . . , ct,d) � r1�1/Nd+ (1 6 t 6 Nd),

so Y
t6Nd

gcd(r, ct,1, . . . , ct,d) > r Nd�1+ . (5.20)

By induction using the inequality

(a, b)(a, c) 6 a · gcd(a, b, c) (a, b, c 2 Z, a > 0),

one can show that Y
t6Nd

gcd(r, ct,1, . . . , ct,d) 6 r Nd�1G,

where G is the greatest common divisor of r and the ct, j (1 6 t 6 Nd , 1 6 j 6 d).
This and (5.20) give

G > r . (5.21)
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Note that
G 6 gcd(r, g1, . . . , gd), (5.22)

where
g j = gcd(c1, j , . . . , cN j , j ) (1 6 j 6 d).

We adopt the notation of (3.10), (3.11) and the discussion in between. Write

C j =

0
B@
c1, j
...

cN j , j

1
CA , A j =

0
B@
aj1, j

...
ajN j , j

1
CA (1 6 j 6 d).

We shall show by induction from d down to 1 that if 1 6 j 6 d then

gcd(g j , . . . , gd)|1 j · · ·1dG j , (5.23)

where G j is the greatest common divisor of the aj ( j 6 |j|1 6 d). Let D0 be a
common divisor of c1,d , . . . , cNd ,d . From (5.19) we have

Cd = Md Ad .

Hence
1d Ad = 1dM�1

d Cd ,
and so D0 divides 1daj (|j|1 = d). We thus conclude that gd |1dGd , thereby
establishing the case j = d of (5.23).

Now let j 2 {1, 2, . . . , d � 1}, and assume that

gcd(gi , . . . , gd)|1i · · ·1dGi ( j + 1 6 i 6 d).

Let D be a common divisor of g j , . . . , gd . Then D divides ct, j (1 6 t 6 N j ), and
our inductive hypothesis shows that

D|1 j+1 · · ·1dai ( j < |i|1 6 d). (5.24)

Equations (5.19) and (5.24) yield

1 j+1 · · ·1dC j ⌘ 1 j+1 · · ·1dM j A j mod D,

so

1 j · · ·1d A j ⌘ (1 j M�1
j )1 j+1 · · ·1dC j ⌘

0
B@
0
...
0

1
CA mod D.

Coupling this with (5.24) yields D|1 j · · ·1dG j . Hence gcd(g j , . . . , gd) divides
1 j · · ·1dG j , and our induction is complete. We now have (5.23), in particular for
j = 1. Substituting this into (5.22) gives

G ⌧ gcd(r,G1) = gcd(r, a†) = 1.

This contradicts (5.21), thereby completing the proof the lemma.
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With (5.2), we now specialise (5.7). Define S⇤
: R ! C as follows: if

↵ 2 R(X ) then

S⇤(↵) = Pn(Dr)�nSr,D,q(a, a†)I (� , �
⇧
)e(↵ · f(µ)). (5.25)

We note from (3.18), (3.19), (3.20) and (3.22) that

r < P�, r |� | < P2�, r |�
⇧
| < P�.

By (1.16) and (5.9), we now have

S(↵) = S⇤(↵) + O(Pn�1+2�) (↵ 2 R). (5.26)

Let U be an arbitrary unit hypercube in R dimensions. The measure of N⇤
\ U is

O(PR(R+1)(d�1)✓0�Rd), so (3.18), (4.6) and (5.26) show that
Z

N⇤
\U

|S(↵) � S⇤(↵)| d↵ ⌧ Pn�Rd�1+3�.

Since � is small, we now see from (2.1), (2.2), (2.4) and (2.6) that
Z

N⇤

S(↵)e(�↵ · ⌧ )K±(↵) d↵ =

Z
N⇤

S⇤(↵)e(�↵ · ⌧ )K±(↵) d↵

+ o(Pn�Rd).

(5.27)

Let ↵ 2 R(X ). Equations (5.2) and (5.7) give q� = Pd(q↵ � a) and

r�j = Pd�1(r!j � aj) (|j|1 = d � 1).

Thus, by (4.3), (5.12), (5.13), (5.15) and (5.25), we have

S⇤(↵) ⌧ Pn(q + Pd |q↵ � a|)"�

and
S⇤(↵) ⌧ Pn(r + Pd�1

|Erµ↵ � a2|)"�(Nd)�1 .

In light of (2.12) and the bound E 6 Cf, we now have

S⇤(↵) ⌧ Pn(q + Pd |q↵ � a|)�R�1�"F(↵)", (5.28)

where

F(↵) = F(↵; P)

= (q + Pd |q↵ � a|)�1(Er + Pd�1
|Erµ↵ � a2|)�1

(5.29)

is well defined onR = RP .
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6. Lemmas of Freeman type

The saving of (q + Pd |q↵ � a|)R+1+" in (5.28) suffices to obtain an upper bound
for Z

N⇤

S⇤(↵)e(�↵ · ⌧ )K±(↵) d↵

of the correct order of magnitude. On Davenport–Heilbronn minor arcs, however,
we shall need to save slightly more. Using the methods of Bentkus, Götze and
Freeman, as exposited in [40, Lemmas 2.2 and 2.3], we will show that F(↵) = o(1)
in the case that |↵| is of ‘intermediate’ size, where F(↵) is as in (5.29). The set on
which we are able to prove this estimate will define our Davenport–Heilbronn minor
arcs. The success of our endeavour depends crucially on the irrationality of µ.

For the argument to work, we need to essentially replace F by a function de-
fined on all of RR . For ↵ 2 RR , let F(↵; P) be the supremum of the quantity

(q + Pd |q↵ � a|)�1(s + Pd�1
|sµ↵ � b|)�1

over q, s 2 N and a,b 2 ZR satisfying q 6 Cfs. It follows from Lemma 4.3 and
the bound D 6 Cf that

F(↵; P) 6 F(↵; P) (↵ 2 RP). (6.1)

Lemma 6.1. Let V and W be fixed real numbers such that 0 < V 6 W . Then

sup{F(↵; P) : V 6 |↵| 6 W } ! 0 (P ! 1). (6.2)

Proof. Suppose for a contradiction that (6.2) is false. Then there exist  > 0 and

(↵(m), Pm, qm, sm, a(m),b(m)) 2 RR
⇥ [1,1) ⇥ N2 ⇥ (ZR)2 (m 2 N)

such that (i) the sequence (Pm) increases monotonically to infinity, (ii)

V 6 |↵(m)
| 6 W (m 2 N)

and (iii) if m 2 N then

(qm + Pdm |qm↵(m)
� a(m)

|) · (sm + Pd�1
m |smµ↵(m)

� b(m)
|) <  �1. (6.3)

Now qm, sm <  �1
⌧ 1, so |a(m)

|, |b(m)
| ⌧ 1. In particular, there are only finitely

many possible choices for the tuple (qm, sm, a(m),b(m)), so this tuple must take a
particular value infinitely often, say (q, s, a,b). Note that a 6= 0, for if m is large
then (6.3) and the condition |↵(m)

| > V ensure that a(m)
6= 0.

Let k 2 {1, 2, . . . , R} be such that ak 6= 0. From (6.3) we have

↵
(m)
k � q�1

m a(m)
k ⌧ P�d

m , µ↵
(m)
k � s�1m b(m)

k ⌧ P1�dm .



474 SAM CHOW

Hence
µq�1

m a(m)
k � s�1m b(m)

k ⌧ P1�dm ! 0 (m ! 1).

We conclude that
µ =

qbk
sak

,

contradicting the irrationality of µ. This contradiction establishes (6.2).

Corollary 6.2. There exists T : [1,1) ! [1,1), increasing monotonically to
infinity, such that

T (P) 6 P� (6.4)

and, for large P ,

sup{F(↵; P) : ↵ 2 N⇤

P , P��d 6 |↵| 6 T (P)} 6 T (P)�1. (6.5)

Proof. Recall (4.6) and (6.1). We shall prove, a fortiori, that

sup{F(↵; P) : P��d 6 |↵| 6 T (P)} 6 T (P)�1.

Lemma 6.1 yields a sequence (Pm) of positive real numbers such that if

1/m 6 |↵| 6 m

then F(↵; Pm) 6 1/m. We may choose this sequence to be increasing, and such
that if m 2 N then P�m > m. We define T by T (P) = 1 (1 6 P < P1) and
T (P) = m (Pm 6 P < Pm+1). We note (6.4), and that T increases monotonically
to infinity. Now

sup{F(↵; P) : T (P)�1 6 |↵| 6 T (P)} 6 T (P)�1,

for if P > Pm then F(↵; P) 6 F(↵; Pm).
It remains to show that if P is large and

|↵| < T (P)�1 < F(↵; P) (6.6)

then |↵| < P��d . Suppose P is large and ↵ 2 RR satisfies (6.6). Then

(q + Pd |q↵ � a|) · (s + Pd�1
|sµ↵ � b|) < T (P) (6.7)

for some q, s 2 N and some a,b 2 ZR satisfying q 6 Cfs. We must therefore have
q + Pd |q↵ � a| < T (P)1/2 or s + Pd�1

|sµ↵ � b| < T (P)1/2.

Case: q + Pd |q↵ � a| < T (P)1/2. Now q < T (P)1/2 and

|q↵ � a| < P�dT (P)1/2.
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Combining these with (6.4), (6.6) and the triangle inequality yields

|a| < T (P)�1/2 + P�dT (P)1/2 ! 0 (P ! 1).

Hence a = 0, so
|↵| < P�dT (P)1/2 6 P��d ,

as desired.
Case: s + Pd�1

|sµ↵ � b| < T (P)1/2. In this case s < T (P)1/2 and

|sµ↵ � b| < P1�dT (P)1/2.

By (6.4), (6.6) and the triangle inequality, we now have

|b| ⌧ T (P)�1/2 + P1�dT (P)1/2 ! 0 (P ! 1),

so b = 0. Thus

|q↵| 6 Cfs|↵| ⌧ |sµ↵| ⌧ P1�dT (P)1/2.

Combining this with (6.4), (6.7) and the triangle inequality yields

|a| ⌧ P1�dT (P)1/2 + P�dT (P) ! 0 (P ! 1),

so a = 0. Substituting this into (6.7) and using (6.4) gives

|↵| 6 |q↵| < P�dT (P) 6 P��d ,

completing the proof.

7. The Davenport–Heilbronn method

In this section we finish the proof of the asymptotic formula (1.2). Recall that it
remains to prove (2.16). By (5.27), it now suffices to show thatZ

N⇤

S⇤(↵)e(�↵ · ⌧ )K±(↵) d↵ = (2⌘)RcPn�Rd
+ o

⇣
Pn�Rd

⌘
(7.1)

as P ! 1, where c is given by (1.3). With T (P) as in Corollary 6.2, we define
our Davenport–Heilbronn major arc by

M1 =

n
↵ 2 RR

: |↵| < P��d
o

,

our minor arcs by

m =

n
↵ 2 RR

: P��d 6 |↵| 6 T (P)
o
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and our trivial arcs by

t =

n
↵ 2 RR

: |↵| > T (P)
o

.

Recall that to any ↵ 2 N⇤ we have uniquely assigned q 2 N and a 2 ZR via (3.21)
and (3.22). For any unit hypercube U in R dimensions, we haveZ

N⇤
\U

Pn
⇣
q + Pd |q↵ � a|

⌘
�R�1�"

d↵ ⌧ PnX1Y1,

where
X1 =

X
q2N

q�1�"
⌧ 1

and

Y1 =

Z
RR

⇣
1+ Pd |�|

⌘
�R�1

d� 6
✓Z

R
(1+ Pd |�|)�1�1/R d�

◆R
⌧ P�Rd .

Hence Z
N⇤

\U
Pn

⇣
q + Pd |q↵ � a|

⌘
�R�1�"

d↵ ⌧ Pn�Rd . (7.2)

Combining this with (5.28) and (6.5) givesZ
N⇤

\m\U
|S⇤(↵)| d↵ ⌧ sup

↵2N⇤
\m

F(↵)" · Pn�Rd
⌧ T (P)�"Pn�Rd .

In view of (2.2), (2.4) and (2.6), we now haveZ
N⇤

\m
|S⇤(↵)K±(↵)| d↵ ⌧ L(P)RT (P)�"Pn�Rd

= o
⇣
Pn�Rd

⌘
. (7.3)

Note that
0 < F(↵) 6 1. (7.4)

Together with (2.2), (2.4), (2.6), (5.28) and (7.2), this gives
Z

N⇤
\t

|S⇤(↵)K±(↵)| d↵ ⌧ Pn�Rd L(P)R
1X
n=0

(T (P) + n)�2

⌧ L(P)RT (P)�1Pn�Rd
= o(Pn�Rd).

(7.5)

Recalling (2.15), we claim that

N⇤

\ M1 = {↵ 2 RR
: 2|↵| 6 PR(d�1)✓0�d , |S(↵)| > Pn�R(R+1)d✓0

}. (7.6)

It is clear from (3.18) that if 2|↵| 6 PR(d�1)✓0�d and |S(↵)| > Pn�R(R+1)d✓0 then
↵ 2 N⇤

\ M1. Conversely, let ↵ 2 N⇤
\ M1. Then |S(↵)| > Pn�R(R+1)d✓0 .
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Further, as ↵ 2 N we have 2|↵ � q�1a| 6 PR(d�1)✓0�d for some q 2 N and
a 2 ZR satisfying q 6 PR(d�1)✓0 . Since ↵ 2 M1, the triangle inequality now gives

|q�1a| < P��d + PR(d�1)✓0�d < q�1,

so a = 0. Hence 2|↵| 6 PR(d�1)✓0�d , and we have verified (7.6).
Put

M =

n
↵ 2 RR

: 2|↵| 6 PR(d�1)✓0�d
o

and

M2 =

n
↵ 2 RR

: 2|↵| 6 PR(d�1)✓0�d , |S(↵)| 6 Pn�R(R+1)d✓0
o

.

From (7.6), we see thatM is the disjoint union ofM2 andN⇤
\ M1.

Lemma 7.1. We have

M ✓ R(1, 1, 1, 1, 0, 0, 0, 0) ✓ R. (7.7)

Proof. Let ↵ 2 M, and recall (4.5). WithX = (1, 1, 1, 1, 0, 0, 0, 0), the conditions
(3.19), (3.21), (3.22), (4.1), and (4.4) are plainly met, while the bound (3.20) follows
from (1.15) and (3.18). It therefore remains to show that

|↵| ⌧ max
|j|1= j

|!j| ( j = d, d � 1). (7.8)

Recall that d, d � 1 2 S . Lemma 4.1 reveals that there exist nonzero integers D0

and E 0, bounded in terms of f, as well as a01, a
0

2 2 ZR , satisfying

|D0↵ � a01| ⌧ max
|j|1=d

|!j|, |E 0µ↵ � a02| ⌧ max
|j|1=d�1

|!j|. (7.9)

By (3.20), we now have

|D0↵ � a01|, |E
0µ↵ � a02| ⌧ P��1.

Since ↵ 2 M, the triangle inequality now gives |a01|, |a
0

2| < 1, so a01 = a02 = 0.
Substituting this information into (7.9) confirms (7.8).

Now (2.4), (2.6) and (5.26) yieldZ
M2

|S⇤(↵)K±(↵)| d↵ ⌧ PR2(d�1)✓0�Rd Pn�R(R+1)d✓0
= o

⇣
Pn�Rd

⌘
,

so Z
N⇤

\M1

S⇤(↵)e(�↵ · ⌧ )K±(↵) d↵ =

Z
M
S⇤(↵)e(�↵ · ⌧ )K±(↵) d↵

+ o
⇣
Pn�Rd

⌘
.

(7.10)
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By (2.3), we have

K±(↵) = (2⌘ ± ⇢) · sinc(⇡↵⇢) · sinc (⇡↵(2⌘ ± ⇢))

for ↵ 2 R. Now (2.1), (2.2) and the Taylor expansion of sinc(·) yield

K±(↵) = 2⌘ + O
�
L(P)�1

� �
|↵| < P�1�.

Substituting this into (2.6) gives

K±(↵) = (2⌘)R + O
�
L(P)�1

�
(↵ 2 M). (7.11)

By (5.28), (7.4) and (7.7), we also haveZ
M

|S⇤(↵)| d↵ ⌧ Pn
Z

RR

⇣
1+ Pd |↵|

⌘
�R�1

d↵ ⌧ Pn�Rd . (7.12)

From (7.11) and (7.12), we infer thatZ
M
S⇤(↵)e(�↵ · ⌧ )K±(↵) d↵ = (2⌘)R

Z
M
S⇤(↵)e(�↵ · ⌧ ) d↵ + o

⇣
Pn�Rd

⌘
.

Combining this with (7.3), (7.5) and (7.10) yieldsZ
N⇤

S⇤(↵)e(�↵ · ⌧ )K±(↵) d↵ = (2⌘)R
Z

M
S⇤(↵)e(�↵ · ⌧ ) d↵

+ o
⇣
Pn�Rd

⌘
.

(7.13)

Let ↵ 2 M. Recall (5.5) and (5.8). By (5.25) and (7.7), we have

S⇤(↵) = Pne(↵ · f(µ))

Z
[�1,1]n

e

0
@� · f(t) +

X
16|j|16d�1

�jtj
1
A dt,

with (1.15) and (5.11). Using (5.11) and the change of variables y = Pt gives

S⇤(↵) =

Z
[�P,P]

n
e

0
@↵ · f(y) + ↵ · f(µ) +

X
16|j|16d�1

!jyj
1
A dy.

By (1.5) and (1.15), we now have

S⇤(↵) =

Z
[�P,P]

n
e
�
↵ · f(y+ µ)

�
dy = S1(↵) + O

⇣
Pn�1

⌘
,

where
S1(↵) =

Z
[�P,P]

n
e(↵ · f(x)) dx.
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HenceZ
M
S⇤(↵)e(�↵ · ⌧ ) d↵ �

Z
M
S1(↵)e(�↵ · ⌧ ) d↵ ⌧ Pn�1+R2(d�1)✓0�Rd

= o
⇣
Pn�Rd

⌘
.

(7.14)

Note that S1(↵) = Pn I (Pd↵, 0). In light of (2.12), the bound (5.12) now yields

S1(↵) ⌧ Pn(1+ Pd |↵|)�R�1
⌧ Pn

Y
k6R

(1+ Pd |↵k |)�1�1/R,

so Z
RR

\M
|S1(↵)| d↵ ⌧ Pn�(R�1)d

Z
1

PR"�d

⇣
1+ Pd↵

⌘
�1�1/R

d↵ ⌧ Pn�Rd�".

In particularZ
M
S1(↵)e(�↵ · ⌧ ) d↵ =

Z
RR

S1(↵)e(�↵ · ⌧ ) d↵ + o
⇣
Pn�Rd

⌘
. (7.15)

To apply [2, Lemma 5.3] directly, we need to work with a box of side length less
than 1. Changing variables with x = 3Pu and z = (3P)d↵ shows thatZ

RR
S1(↵)e(�↵ · ⌧ ) d↵ =

Z
RR

Z
[�P,P]

n
e(↵ · f(x))e(�↵ · ⌧ ) dx d↵

= (3P)n�Rd
Z

RR
I(z)e(�(3P)�d⌧ · z) dz,

where
I(z) =

Z
[�1/3,1/3]n

e(z · f(u)) du.

Now [2, Lemma 5.3] givesZ
RR

S1(↵)e(�↵ · ⌧ ) d↵ = (3P)n�Rd
✓Z

RR
I(z) dz+ o(1)

◆

as P ! 1. Moreover, changing variables yieldsZ
RR
I(z) dz =

Z
RR

Z
[�1/3,1/3]n

e(z · f(u)) du dz = 3Rd�nc,

where we recall (1.3). HenceZ
RR

S1(↵)e(�↵ · ⌧ ) d↵ = cPn�Rd
+ o

⇣
Pn�Rd

⌘
. (7.16)

Combining (7.14), (7.15) and (7.16) givesZ
M
S⇤(↵)e(�↵ · ⌧ ) d↵ = cPn�Rd

+ o
⇣
Pn�Rd

⌘
.

Substituting this into (7.13) yields (7.1), confirming the desired asymptotic for-
mula (1.2).
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8. The singular integral

Schmidt [37, Section 3] gives the following geometric definition of the real density
c. For L > 0 and ⇠ 2 R, let

�L(⇠) = L ·max(0, 1� L|⇠ |).

For ⇠ 2 RR , put
3L(⇠) =

Y
k6R

�L(⇠k).

Set
IL(f) =

Z
[�1,1]n

3L(f(t)) dt,

and define
c = lim

L!1

IL(f) (8.1)

whenever the limit exists. Schmidt explains in [36, Section 11] and [37, Section
3] that the limit does exist, and that this definition is equivalent to Birch’s analytic
definition (1.3).

The expression on the right hand side of (1.3) arose naturally in our proof of
(1.2). It is well defined, by [2, Lemma 5.3] and a change of variables (here Birch
uses a box of side length less than 1). One can verify the final statement of Theorem
1.1 from (8.1) by mimicking [36, Section 4]; one uses the implicit function theorem
to construct a region of measure � L�R on which |f(t)| < (2L)�1. Birch instead
invokes the Fourier integral theorem to show from (1.3) that c > 0 whenever f = 0
has a nonsingular real solution (see [2, Section 6]).

This discussion concludes the proof of Theorem 1.1.

9. An alternative approach

In this section we establish Theorem 1.2. The crux is a suitable analogue of Lemma
2.1, and we shall deduce such an analogue from the work of Schmidt [37]. Let g be
as defined in [37, Section 10], and put

 0

=

g
R(d � 1)2d�1 .

The quantity  0 shall play the rôle played by  in the proof of Theorem 1.1. We
note at once that coupling (1.4) with the corollary to [37, Proposition III] yields

 0 > R + 1,

in analogy with (2.12).
We begin with an analogue of [2, Lemma 2.5].
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Lemma 9.1. Let 0 < ✓ 6 1 and k > 0. Then at least one of the following holds.

(i) We have
g(↵,!⇧) ⌧ Pn�k .

(ii) There exist integers q, a1, . . . , aR satisfying (2.9) and (2.10).
(iii) We have

g 6 2d�1k/✓ .

The same is true if we replace g(↵,!⇧) by

X
16x1,...,xn6P

e

0
@↵ · f(x) +

X
16|j|16d�1

!jxj
1
A .

Proof. We may imitate the Birch’s proof of [2, Lemma 2.5]. As in Section 2, the
lower order terms have no bearing on the proof. Our second assertion follows in the
same way as our first.

This implies the following analogue of Lemma 2.1.

Lemma 9.2. Let 0 < ✓ 6 1. Suppose

|g(↵,!⇧)| > Pn�R(d�1) 0✓+". (9.1)

Then there exist integers q, a1, . . . , aR satisfying (2.9) and (2.10). In particular, if
|S(↵)| > Pn�R(d�1) 0✓+" then there exist q 2 N and a 2 ZR satisfying (2.9) and
(2.10). We may replace g(↵,!⇧) by

X
16x1,...,xn6P

e

0
@↵ · f(x) +

X
16|j|16d�1

!jxj
1
A ,

and the same conclusions hold.

Proof. Choosing k = R(d�1) 0✓�" in Lemma 9.1 ensures that (iii) is impossible,
reducing us to two possibilities. We have removed the implied constant from (9.1)
by redefining " and recalling that P is large. Our second claim follows from our
first, by (1.16).

Using Lemma 9.2 instead of Lemma 2.1, we can then follow the proof of
Theorem 1.1, with minimal changes. Corollary 2.2 follows with  0 in place of
 . Similarly, Lemmas 5.1 and 5.2 follow in the same way, but with  0 in place of
 . Finally, it is important to note that we still have d, d � 1 2 S . As explained in
the introduction, our assumption that the (1, . . . , 1) · r fk are linearly independent
implies that d � 1 2 S . This assumption also implies that d 2 S , in view of (1.13).
This completes the proof of Theorem 1.2.
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The quantity8(d) dominates the quantity '(d) in [37, Proposition IIIC ]. If we
read [37] more closely, we find that we can replace 8(d) by

max(⌘d�2, 2d�2
� 1),

where ⌘0 = 1 and

⌘m =

mX
q=1

X
u1+...+um=q

ui>0

m!

u1! · · · uq !
(m 2 N).
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