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Points in the fppf topology

STEFAN SCHRÖER

Abstract. Using methods from commutative algebra and topos theory, we con-
struct topos-theoretical points for the fppf topology of a scheme. These points
are indexed by both a geometric point and a limit ordinal. The resulting stalks of
the structure sheaf are what we call fppf-local rings. We show that for such rings
all localizations at primes are Henselian with algebraically closed residue field,
and we relate them to the AIC and TIC rings. Furthermore, we give an abstract
criterion ensuring that two sites have point spaces with identical sobrification.
This applies in particular to some standard Grothendieck topologies considered
in algebraic geometry: Zariski, étale, syntomic, and fppf.

Mathematics Subject Classification (2010): 14F20 (primary); 13B40, 18B25,
18F10 (secondary).

1. Introduction

One of the major steps in Grothendieck’s program to prove the Weil Conjectures
was the introduction of topoi [2], thus lying the foundations for étale cohomology.
Roughly speaking, a topos is a category E that is equivalent to the category of
sheaves Sh(C) on some site C. The latter is a category endowed with a Grothendieck
topology, which gives the objects a role similar to the open subsets of a topological
space. (Set-theoretical issues will be neglected in the introduction, but treated with
care in what follows.)

One may perhaps say that topoi are the true incarnation of our notion of space,
keeping exactly what is necessary to pass back and forth between local and global,
to apply geometric intuition, and to use cohomology. This comes, of course, at
the price of erecting a frightening technical apparatus. Half-way between sites and
topological spaces dwell the so-called locales, sometimes referred to as pointless
spaces, which are certain ordered sets L having analogous order properties like the
collection T comprising the open subsets from a topological space (X,T ).

A considerable part of [2] deals with the notion of points for a topos. Roughly
speaking, topos-theoretical points are continuous maps of topoi P : (Set) ! E ,
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where the category of sets is regarded as the topos of sheaves on a singleton space.
Such a continuous map consists of a stalk functor P�1 : E ! (Set), which must
commute with finite inverse limits, and a direct image functor P⇤ : (Set) ! E ,
related by an adjunction. After one chooses an equivalence E ' Sh(C), the points
P can be recovered via certain pro-objects (Ui )i2I of neighborhoods Ui 2 C, such
that FP = P�1(F) = lim

�!i 0(Ui , F) for all sheaves F on the site C.
The topos-theoretical points P form the category of points Points(E ), and their

isomorphism classes [P] comprise the space of points |E |, where the topology
comes from the subobjects of the terminal object e 2 E . In the special case that
E = XZar = Sh(X) is the topos of sheaves on a topological space X , there is con-
tinuous map X ! |E |, which can be identified with the sobrification X ! Xsob,
in other words, the universal map into a topological space where each irreducible
closed subset has a unique generic points. In particular, for schemes X endowed
with the Zariski topology we have an identification X = |E |.

Another important result is Deligne’s Theorem, which asserts that topoi fulfill-
ing certain technical finiteness conditions have enough points, that is, stalk functors
detect monomorphisms [3, Appendix to Expose VI]. Note, however, that there are
examples of topoi having no point at all, and examples of topoi having “large”
spaces of points [2, Expose IV, Section 7].

The goal of this paper is to investigate the space of points |E | for various topoi
occurring in algebraic geometry, in particular for the fppf topology. The fppf topos
was studied, for example, by Milne [26, Chapter III, Section 3] and [27, Chap-
ter III], Shatz [34, Chapter VI] and [31–33], Waterhouse [37], and the Stacks
Project [35]. Somewhat surprisingly, very little seems to be known about the points.
Interesting result on several other Grothendieck topologies were recently obtained
by Gabber and Kelly [10].

Note that one ususally defines the fppf topos via sheaves on the “big” site
(Sch/X) of all X-schemes. In this paper, however, we will mainly consider the
topos obtained by sheaves on the “small” site (fppf/X) comprising flat schemes
that are locally of finite presentation.

To gain flexibility and facilitate applications, it seems preferable to work in an
axiomatized situation, having nevertheless the fppf topos in mind. One of our main
result is a sufficent criterion for adjoint functors between two abstract sites

u : C f ! Cz and v : Cz ! C f (1.1)

to induce homeomorphisms between locales:
Theorem 3.3. Suppose the adjoint functors above satisfy the conditions (TL 1)
– (TL 4) given in Section 3. Then the induced continuous maps of locales ✏ :

Loc(E f ) ! Loc(E z) is a homeomorphism. Moreover, we get an embedding
|E f |sob ⇢ |E z|sob of sober spaces. The latter is an equality if the map |E f |! |E z|
admits a section.

Note that these conditions are rather technical to formulate, but easy to verify
in practice. The result applies for the fppf site C f = (fppf/X) comprising flat X-
schemes that are locally of finite presentation, and the Zariski site Cz = (Zar/X) of
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open subschemes, and their corresponding topoi E f = Xfppf and E z = XZar. The
morphisms in the above sites are the X-morphisms and inclusion maps, respectively.
Since we are able to construct sections for the canonical map |Xfppf|! |XZar|, we
get:

Theorem 7.5. For every scheme X , the continuous map of topoi Xfppf ! XZar
induces an identification |Xfppf|sob = |XZar|sob = X of sober spaces.

Similar results hold for the Nisnevich topology, the étale topology, and the
syntomic topology. Note that for the étale site, the much stronger result |Xet| = X
is true by [35, Lemma 44.29.12]. This, however, becomes false in the fppf topology,
as we shall see below. Unfortunately, our method, as it stands, does not apply to the
fpqc site, because fpqc morphisms are not necessarily open maps.

In order to construct explicit points P : (Set)! (Xfppf) for the fppf topos, we
introduce the notion of fppf-local rings, which are local rings R for which any fppf
algebra A admits a retraction, in other words, the morphisms Spec(A)! Spec(R)
has a section. Such rings should be regarded as generalizations of algebraically
closed fields. However, they have highly unusual properties from the point of view
of commuative algebra. For example, their formal completion R̂ = lim

 �n
R/mn

coincides with the residue field  = R/m. Rings with similar properties were stud-
ied by Gabber and Ramero [11], in the contex of “almost mathematics”. Here is
another amazing property:

Theorem 5.6. If R is fppf-local, then the local rings Rp are strictly local with al-
gebraically closed residue field, for all prime ideals p ⇢ R.

Moreover, we relate fppf-local rings to the so-called TIC rings introduced by
Enochs [8] and further studied by Hochster [19], and the AIC rings considered by
Artin [4]. Furthermore, we show that the stalks O Xfppf,P of the structure sheaf
at topos-theoretical points are examples of fppf-local rings. Throughout, the term
strictly local denotes local Henselian rings with separably closed residue fields.

We then use ideas of Picavet [29] to construct, for each strictly local ring R
and each limit ordinal �, some faithfully flat, integral ring extension R� that is fppf-
local. Roughly speaking, the idea is to form the tensor product over “all” finite fppf
algebras, and to iterate this via tranfinite recursion, until reching the limit ordinal �.
Note that there is a close analogy to the Steinitz’s original construction of algebraic
closures for fields [36, Chapter III].

This is next used to produce, for each geometric point ā : Spec(�)! X on a
scheme X and each limit ordinal �, a topos-theoretical point

P = Pā,� : (Set)! Xfppf

with O Xfppf,P = (O X,ā)�. Here the main step is to construct a suitable pro-object
(Ui )i2I of flat X-schemes locally of finite presentation yielding the stalk functor.
The index category I will consists of certain 5-tuples of X-schemes and morphisms
between them. This gives the desired section:
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Theorem 7.4. For each limit ordinal �, the map a 7! Pā,� induces a continuous
section for the canonical map |Xfppf|! X .

The paper is organized as follows: in Section 2 we recall some basic definitions
and results from topos theory, also paying special attention to set-theoretical issuses.
Following Grothendieck, we avoid the use of the ambiguous notion of “classes”,
and use universes instead. Section 3 contains the sufficient criterion that two sites
have homeomorphic locales and sobrified spaces. This is applied, in Section 4, to
the fppf topos and the Zariski topos of a scheme. Here we also discuss relations
to the “big” fppf topos, which usually occurs in the literature. In Section 5 we
introduce the notion of fppf-local rings and establish their fundamental properties.
A construction of fppf-local rings depending on a given strictly local ring and a limit
ordinal is described in Section 6. This is used, in the final Section 7, to construct
topos-theoretical points for the fppf topos attached to a scheme.
Remark. After this paper was submitted to the arXiv, I was kindly informed by
Shane Kelly that related results appear in [10], now a joint paper with Ofer Gabber.

ACKNOWLEDGEMENTS. I wish to thank the referee for noting some mistakes and
giving several suggestions, in particular for pointing out that one has to distinguish
between the “big” fppf topos, which is usually used in the literature, and the “small”
fppf topos considered here.

2. Recollection: universes, sites, topoi and locales

In this section we recall some relevant foundational material about topos theory
from Grothendieck et al. [2]. Further very useful sources are Artin [1], Johnstone
[20,22,23], Kashiwara and Shapira [25], and the Stacks Project [35].

Recall that a universe is a nonempty set U of sets satisfying four very natural
axioms, which we choose to state in the following form:

(U 1) If X 2 U then X ⇢ U ;
(U 2) If X 2 U then {X} 2 U ;
(U 3) If X 2 U then } (X) 2 U ;
(U 4) If I 2 U and Xi 2 U , i 2 I then

S
i2I Xi 2 U .

In other words, U is a nonempty transitive set of sets that is stable under forming
singletons, power sets, and unions indexed by I 2 U . Roughly speaking, this en-
sures that universes are stable under the set-theoretical operation usually performed
in practice.

If X2U is an arbitrary element, which a fortiori exists becauseU is nonempty,
then the power set } (X) and hence ; 2 } (X) and the singleton S = {;} are
elements. In turn, the set I = } (S) of cardinality two is an element. It follows
by induction that all finite ordinals 0 = ; and n + 1 = n [ {n} are elements as
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well. Moreover, (U 2) and (U 4) ensure that for each X,Y 2 U , the set {X,Y } is
an element. The latter statement is the form of the axiom (U 2) given in [2, Expose
I, Section 0].

Note that for a pair we have (X,Y ) 2 U if and only if X,Y 2 U , in light of
Kuratowski’s definition of pairs (X,Y ) = {{X,Y } , {Y }}. In particular, it follows
that groups or topological spaces are elements ofU if and only if the underlying sets
are elements ofU . Note also that we adopt von Neumann’s definition of ordinals ⌫
as sets of sets that are transitive (in the sense ↵ 2 ⌫ ) ↵ ⇢ ⌫), so that the resulting
order relation on ⌫ is a well-ordering (where ↵  � means ↵ = � or ↵ 2 �). In
turn, each well-ordered set is order isomorphic to a unique ordinal.

Following Grothendieck, we assume that any set X is an element of some
universe U , which is an additional axiom of set theory. Note that the intersection
of universes is a universe, so there is always a unique smallest such universe. The
two axioms (U 3) and (U 4) enforce that the cardinality @◆ = Card(U ) of a universe
is strongly inaccessible. In fact, the assumption that any set is contained in some
universe is equivalent to the assumption that any cardinal is majorized by some
strongly inaccessible cardinal. A related notion was already mentioned by Felix
Hausdorff under the designation “reguläre Anfangszahlen mit Limesindex”, and
I cannot resist from quoting the original [18, page 131]: “Wenn es also reguläre
Anfangszahlen mit Limesindex gibt (und es ist uns bisher nicht gelungen, in dieser
Annahme einenWiderspruch zu entdecken), so ist die kleinste unter ihnen von einer
so exorbitanten Größe, daß sie für die üblichen Zwecke der Mengenlehre kaum
jemals in Betracht kommen wird.”

Given a universe U , a set X is called a U -element if X 2 U . We write
(Set)U for the category of all sets that are U -elements, and likewise denote by
(Grp)U , (Sch)U , (Cat)U the categories of all groups, schemes, categories that are
U -elements. The same notation is used for any other mathematical structure. By
common abuse of notation, we sometimes drop the index, if there is no risk of
confuction. Note that a category C is a U -element if and only if its object set and
all its hom sets have this property. Given such a category, we denote by PSh(C)
the category of presheaves, that is, contravariant functors C ! (Set)U . Given
X 2 C, one writes the corresponding Yoneda functor as hX : C ! (Set)U , Y 7!
HomC(Y, X).

A set X is calledU -small if it is isomorphic to some element ofU . The same
locution is used for any mathematical structure, for example groups, rings, topo-
logical spaces, schemes and categories. If there is no risk of confusion, we simple
use the term small rather than U -small. Note that a category C is a U -element or
U -small if and only if its object set and all its hom sets have the respective prop-
erty. This has to be carfully distinguished from the following notion: a category C is
called a U -category if the sets HomC(X,Y ) are U -small for all objects X,Y 2 C.
Clearly, this property is preserved by equivalences of categories. It is also possible
to define a Yoneda functor for U -categories, and not only for categories that are
U -elements, by choosing bijections between HomC(Y, X) and elements ofU .

Usually, the category PSh(C) is not U -small, even for C 2 U : take, for ex-
ample, the category of presheaves on a singleton space, which is equivalent to the
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category (Set)U . Suppose its object set U has the same cardinality  as an ele-
ment X 2 U . Since the power set } (X) 2 U has strictly larger cardinality, and
} (X) ⇢ U , we obtain 2   , in contradiction to cardinal arithmetic.

Let C be a category. A Grothendieck topology on C is a collection J (X) of
sieves for each object X 2 C, satisfying certain axioms. We do not bother to repro-
duce the axioms, and refer for details to [2, Expose II, Section 1]. Recall that a sieve
on X is a full subcategory S ⇢ C/X with the property that A 2 S for each mor-
phism A! B in C/X with B 2 S . Usually, the covering sieves of a Grothendieck
topology are specified with the help of pretoplogies, which is a collection Cov(X)
of tuples (X↵ ! X)↵2I of morphisms X↵ ! X for each object X 2 C satisfying
similar axioms. These tuples are referred to as coverings of X , and the induced
Grothendieck topology is the finest one for which the coverings families generate
coverings sieves.

A category C endowed with a Grothendieck topology is called a site. To
proceed, choose a universe with C 2 U . Then we have the full subcategory
Sh(C) ⇢ PSh(C) of sheaves, that is, contravariant functors C ! (Set)U satisfy-
ing the sheaf axioms with respect to the covering sieves or covering families. A
U -site is aU -category C endowed with a Grothendieck topology, so that there is a
full U -small subcategory D ⇢ C so that for each object X 2 C, there is a covering
family (X↵ ! X)↵ with X↵ 2 D. This condition ensures that the category Sh(C)
ofU -sheaves remains aU -category.

AU -topos is aU -category E that is equivalent to the category Sh(C) for some
site C 2 U . The central result on topoi is Giraud’s Characterization [2, Expose IV,
Theorem 1.2]. Roughly speaking, it makes the following three assertions: first, it
says that one may choose the site C so that it contains all inverse limits, and that
its Grothendieck topology is subcanonical, which means that all Yoneda functors
hX , X 2 C satisfy the sheaf axioms. Second, it singles out the topoi among the U -
categories in terms of purely categorical properties of E , referring to objects and
arrows rather than to coverings. Third, it characterizes the topoi among theU -sites
using the canonical topology on E , which is the finest topology on E that turns all
Yoneda functors hF , F 2 E into sheaves.

A continuous map ✏ : E ! E 0 between U -topoi is a triple ✏ = (✏⇤, ✏
�1,'),

where ✏⇤ : E ! E 0 and ✏�1 : E 0 ! E are adjoint functors, and ' is the adjunction
isomorphism. Here ✏�1 is left adjoint and called the preimage functor, and ✏⇤ is
right adjoint and called the direct image functor. Moreover, one demands that the
preimage functor ✏�1 is left exact, that is, commutes with finite inverse limits. Up to
isomorphism, the continuous map ✏ is determined by either of the preimage functor
✏�1 and the direct image functor ✏⇤. The set of all continuous maps Hom(E ,E 0)
is itself a category, the morphism being the compatible natural transformations be-
tween the direct image and preimage functors.

The U -valued sheaves on a topological space X 2 U form a a topos E =

Sh(X). In particular, the category (Set)U can be identified with the category Sh(S)
for the singleton space S = {?}. In light of this, a point in the sense of topos theory
of a U -topos E is a continuous map of topoi P : (Set)U ! E . We denote by
Points(E ) the category of points, and by |E | the set of isomorphism classes [P]



POINTS IN THE FPPF TOPOLOGY 425

of points. This set is endowed with a natural topology: choose a terminal object
e 2 E . Given a subobject U ⇢ e, we formally write U \ |E | ⇢ |E | for the set of
isomorphism classes of points P with P�1(U) 6= ;, and declare it as open. This
indeed constitutes a topology on the set |E |.

Recall that a nonempty ordered set L is called a locale if the following axioms
hold:

(LC 1) For all pairs U, V 2 L , the infimum U ^ V 2 L exists, that is, the largest
element that is smaller or equal than both U, V ;

(LC 2) For each family Ui 2 L , i 2 I , the supremum
W
↵2I Ui 2 L exists, that is,

the least element that is larger or equal than all Ui ;
(LC 3) The distributive law holds, which means U ^ (

W
i2I Vi ) =

W
i2I (U ^ Vi ).

The ordered set L = T of open subsets U ⇢ X of a topological space (X,T )
is the paramount example for locales. One should regard locales as abstractions
of topological spaces, where one drops the underlying set and merely keeps the
topology. In light of this, one defines a continuous map f : L ! L 0 between
locales as a monotonous map f �1 : L 0 ! L that respects finite infima and arbitrary
suprema. Note the reversal of arrows. Here the notation f �1 is purely formal, and
does not indicate that f is bijective.

Each locale comes with a Grothendieck topology, and thus can be regarded as
site: the covering families (U↵ ! V )↵2I are those with V =

W
↵ U↵ . In turn, we

have the U -topos Sh(L) of sheaves on the locale L 2 U . Conversely, for each
U -topos E we have a locale Loc(E ), which is the ordered set of subojects U ⇢ e
of a fixed terminal object e 2 E . Up to canonical isomorphism, it does not depend
on the choice of the terminal object.

3. Topoi with same locales

In this section we establish some facts on continuous maps between certain topoi,
which occur in algebraic geometry when various Grothendieck topologies are in-
volved. In order to achieve flexibility and facilitate application, we work in the
following axiomatic set-up:

Throughout, fix a universe U . Let C f and Cz be two categories that are U -
elements, in which terminal objects exist. Furthermore, suppose these categories
are equipped with a pretopology of coverings, such that we regard them as sites.
We now suppose that we have adjoint functors

u : C f �! Cz and v : Cz �! C f ,

where u is the left adjoint and v is the right adjoint. Let us write the objects of
C f formally as pairs (U, p), and the objects of Cz by ordinary letters V , and the
functors as

u(U, p) = p(U) and v(V ) = (V, i).
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Note that the adjunction, which by abuse of notation is regarded as an identification,
takes the form

HomCz (p(U), V ) = HomC f
�
(U, p), (V, i)

�
. (3.1)

Let me emphasize that all this notation is purely formal, but based on geometric
intuition. The guiding example, which one should have in mind, is that Cz comprises
open subsets of a scheme X , and that C f consists of certain flat X-schemes (U, p),
where p : U ! X is the structure morphism that is assumed to be universally open.
The functor u takes such an X-scheme to its image p(U) ⇢ X , whereas the functor
v turns the open subset V ⇢ X into an X-scheme (V, i), where i : V ! X is the
inclusion morphism. Note that, by abuse of notation, we usually write i : V ! X
and not the more precise iV : V ! X . Of course, the indices in C f and Cz refer to
“flat” and “Zariski”, respectively.

We now demand the following four conditions (TL 1) – (TL 4), which conform
with geometric intuition:

(TL 1) The composite functor u � v is isomorphic to the identity on Cz;
(TL 2) For each covering family (V� ! V )� in the site Cz , the induced family

((V�, i�)! (V, i))� in the site C f is covering;
(TL 3) For each family (U�, p�)� of objects in C f , there is a subobject V of the

terminal object in Cz and factorizations p�(U�) ! V so that the family
(p�(U�)! V )� is a covering;

(TL 4) For each object (U, p) in C f , the representable presheaf h(U,p) is a sheaf.

Let me make the following remarks: the functor v : Cz ! C f , being a right adjoint,
commutes with inverse limits. Moreover, condition (TL 1) ensures that v is faithful,
which allows us to make the identification i(V ) = V . By our overall assumption
on the categories C f and Cz , the terminal object appearing in condition (TL 3)
does exists. Finally, condition (TL 4) can be rephrased as that the Grothendieck
topology on C f is finer than the canonical topology, which is the finest topology for
which every representable presheaf satisfies the sheaf axioms. One also says that
the Grothendieck topology on C f is subcanonical.

Furthermore, we want to point out that we do not assume that our categories
C f ,Cz all finite inverse limits are representable. However, it is part of the definition
for pretopologies that for any covering family (U� ! U)�, the members U� ! U
are base-changeable (“quarrable” in [2, Expose II, Definition 1.3]), that is, for every
other morphism U 0 ! U , the fiber product U� ⇥U U 0 does exist.

Proposition 3.1. The functor u : C f ! Cz is cocontinuous, and the adjoint functor
v : Cz ! C f is continuous.

Proof. For the precise definition of continuous and cocontinuous functors between
sites, we refer to [2, Expose III]. The two assertions are equivalent, according to
loc. cit. Proposition 2.5, because the functors u and v are adjoint. To check that u is
cocontinuous, let (U, p) 2 C f , and (V� ! p(U))� be a covering family in Cz . By
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condition (TL 2), the induced family ((V�, i�)! (p(U), i))� is a covering family
in C f . Form the pull-back

(U�, p�) ����! (V�, i�)??y ??y
(U, p) ����! (p(U), i)

in C f , which exists because members of covering families are base-changeable. By
the axioms for covering families, ((U�, p�)! (U, p))� remains a covering family.
The preceding diagram, together with the adjunction, shows that the induced maps
p�(U�) ! p(U) factor over V� ! p(U). If follows that u is cocontinuous [2,
Expose III, Definition 2.1].

Now let E f = Sh(C f ) and E z = Sh(Cz) be theU -topoi of sheaves on C f and
Cz , respectively. We refer to the sheaves on C f as f-sheaves, and to the sheaves on
Cz as z-sheaves. According to [2, Expose IV, Section 4.7], the cocontinuous functor
u : C f ! Cz induces a continuous map of topoi

✏ = (✏⇤, ✏
�1,') : E f �! E z .

Let me make this explicit: the direct image functor ✏⇤ sends an f-sheaf F to the
z-sheaf ✏⇤(F) defined by

0(V, ✏⇤(F)) = 0((V, i), F). (3.2)

Note that, in general, this would be an inverse limit of local sections, indexed by
the category of pairs ((U, p), ), where  : p(U) ! V is a morphism in Cz . In
our situation, such an inverse limit is not necessary, because the index category has
a terminal object ((V, i), ), where  : i(V ) ! V is the canonical isomorphism
coming from condition (TL 1).

The inverse image functor ✏�1 sends a z-sheaf G to the f-sheaf ✏�1(G), defined
by

0
⇣
(U, p), ✏�1(G)

⌘
= 0(p(U),G). (3.3)

Note that, in general, this would give merely a presheaf, and sheafification is neces-
sary. In our situation, however, the presheaf is already a sheaf, thanks to condition
(TL 2).

The adjunction map ' between ✏�1 and ✏⇤ is determined by natural transfor-
mations

G �! ✏⇤✏
�1(G) and ✏�1✏⇤(F) �! F.

Here the former comes from identity maps

0(V,G)
id
�! 0(i(V ),G) = 0((V, i), ✏�1(G)) = 0

⇣
V, ✏⇤✏

�1(G)
⌘

.
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The latter is the given by restriction maps

0
⇣
(U, p), ✏�1✏⇤(F)

⌘
= 0(p(U), ✏⇤(F)) = 0((p(U), i), F)

res
�! 0((U, p), F).

For later use, we now establish a technical fact:

Lemma 3.2. For each object V in Cz , the presheaf hV is a sheaf. Furthermore, we
have ✏�1(hV ) = h(V,i).

Proof. According to condition (TL 4), the presheaf h(V,i) on Cz is a sheaf. If the
follows from condition (TL 2) and the fact that the functor v : Cz ! C f is faithful
that the presheaf hV on Cz satisfies the sheaf axioms. Finally, for each object (U, p)
of C f , we have

0((U, p), ✏�1(hV )) = 0(p(U), hV ) = HomCz (p(U), V ),

where the first equation comes form (3.3), and the second equation stems from the
Yoneda Lemma. Similarly, we have

0
�
(U, p), h(V,i)

�
= HomC f ((U, p), (V, i)) .

Using the adjointness of the functors (3.1), we infer that ✏�1(hV ) = h(V,i).

The continuous map of topoi ✏ : E f!E z induces a functor ✏ : Points(E f )!
Points(E z) on the category of points. In turn, we get a continuous map of topologi-
cal spaces ✏ : |E f | �! |E z|. To understand this map, we first look at the induced
continuous map of locales

✏ : Loc(E f ) �! Loc(E z). (3.4)

Recall that these locales comprise the ordered sets of subobjects of the chosen ter-
minal objects. Let us write X 2 Cz for the terminal object. It follows that ez = hX
is a terminal object in the topos E z , and Loc(E z) is the ordered set of subobjects
G ⇢ ez . Being right adjoint, the functor v : Cz ! C f respects inverse limits,
whence (X, i) 2 C f is a terminal object. In turn, e f = h(X,i) is the terminal ob-
ject in the topos E f , and Loc(E f ) is the ordered set of subobjects F ⇢ e f . The
continuous map of locales (3.4) is just the monotonous map

Loc(E z) �! Loc(E f ), G 7�! ✏�1(G), (3.5)

which, by definition of the hom-sets in the category of locales, goes in the reverse
direction.

Theorem 3.3. The continuous map of locales ✏ : Loc(E f )! Loc(E z) is a home-
omorphism, that is, the monotonous map (3.5) is bijective.
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Proof. The argument is analogous to [3, Expose VIII, Proposition 6.1]. To see that
the monotonous map is injective, suppose we have two subobjects G,G 0 ⇢ ez with
✏�1(G) = ✏�1(G 0) as subobjects in e f = ✏�1(ez). For each V 2 Cz , we then have

0(V,G) = 0
⇣
(V, i), ✏�1(G)

⌘
= 0((V, i), ✏�1(G 0)) = 0(V,G 0),

where the outer identifications come from (3.3). Whence G = G 0.
For surjectivity, let F ⇢ e f be a subobject in C f . First note that, for each

object (U, p) in C f over which F has a local section, the set 0((U, p), F)must be a
singleton, because F is a subobject of the terminal object. Moreover, if (U 0, p0)!
(U, p) is a morphism, then 0((U 0, p0), F) stays a singleton.

Now consider the family (U�, p�) of all objects in C f over which F has a local
section. Using condition (TL 3), there is a subobject V ⇢ X of the terminal object
and morphisms p�(U�) ! V so that the induced family ((U�, p�) ! (V, i))� is
covering. Consider the fiber products

(U�µ, p�µ) ����! (Uµ, pµ)??y ??y
(U�, p�) ����! (V, i),

which exists because members of covering families are base-changeable. The sheaf
axioms give a short exact sequence

0((V, i), F) �!
Y
�

0 ((U�, p�), F) �!
Y
�,µ

0
�
(U�µ, p�µ), F

�
,

where the terms in the middle and the right are singletons. If follows that the term
on the left is a singleton. The Yoneda Lemma yields a morphism of presheaves
h(V,i)! F . Note that the presheaf h(V,i) is actually a sheaf, according to condition
(TL 4). Moreover, this morphism is actually an isomorphism: let (U, p) be an
arbitrary object of C f . Suppose there is a morphism (U, p)! (V, i). Since V is a
subobject of the terminal object, so is (V, i), by the adjunction (3.1). It follows that
the term on the left in

0
�
(U, p), h(V,i)

�
�! 0((U, p), F) (3.6)

is a singleton, whence the map is bijective. Finally, suppose there is no morphism
(U, p) ! (V, i), such that there is also no morphism p(U) ! V . By the very
definition of V , this means 0((U, p), F) = ;. Again, the map (3.6) is bijective.
We conclude that h(V,i) ! F is an isomorphism. Using Lemma 3.2, we infer that
F = ✏�1(hV ). Since V is a subobject of the terminal object in Cz , the sheaf hV
must be a subobject of the terminal object ez 2 E z , which concludes the proof.
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We finally come to the induced continuous map ✏ : |E f |! |E z| of topological
spaces. Recall that the chaotic topology on a set has as sole open subsets the whole
set and the empty set. A topological space X is called sober if each irreducible
closed subset has a unique generic point. Each space X comes with the sobrification
X ! Xsob, which is universal with respect to continuous maps into sober spaces,
compare [13, Chapter 0, Section 2.9].

Corollary 3.4. Each fiber of the map ✏ : |E f |! |E z| carries the chaotic topology,
and the induced map of sober spaces is an embedding |E f |sob ⇢ |E z|sob. The latter
is an equality provided that the map ✏ : |E f |! |E z| admits a section.

Proof. According to the theorem, each open subset in |E f | is the preimage of an
open subset in |E z|. The statement is thus a special case of the following lem-
ma.

Lemma 3.5. Let f : X ! Y be a continuous map between topological spaces.
Suppose that each open subset in X is the preimages of an open subset in Y . Then
all fibers of f carry the chaotic topology, and the induced map of sober space is an
embedding Xsob ⇢ Ysob. The latter is an equality provided that f admits a section.

Proof. Given y 2 Y , and let U = f �1(V ) be an open subset in X . Then U \
f �1(y) is either empty or the hole fiber. In turn, the fiber f �1(y) carries the chaotic
topology. Likewise, one sees that f : X ! Y is a closed map. Recall that one may
view the sobrification Ysob as the space of closed irreducible subsets in Y . Let
Z ⇢ Y be such a subset. Then f (Z) ⇢ X is a closed irreducible subset as well.
Given x 2 f �1 f (Z) and any open neighborhood x 2 U = f �1(V ), we see that
f ( f �1(V ) \ Z) = V \ f (Z) is nonempty. Whence x is in the closure of Z ,
which means x 2 Z . We conclude that Z ⇢ X equals the preimage of the closed
irreducible subset f (Z). In turn, we may regard the induced map on sobrification
as an inclusion Xsob ⇢ Ysob. The space Xsob carries the subspace topology, again
by our assumption on the open sets.

One easily sees that any set-theoretical section s : Y ! X for f must be
continuous. It thus induces a right inverse for the inclusion Xsob ⇢ Ysob, which
then must must be an equality.

4. Applications to algebraic geometry

We now apply the abstract results of the preceding section to some concrete
Grothendieck topologies in algebraic geometry. Let X be a scheme, and fix a
universe with X 2 U . In what follows, all schemes are tacitly assumed to be
U -elements. We denote by (Zar/X) the locale given by the ordered set of open
subschemes V ⇢ X , regarded as a site in the usual way, and write XZar for the
ensuingU -topos of sheaves on X .

Let us denote by (fppf/X) the category of X-schemes (U, p), where the struc-
ture morphism p : U ! X is flat and locally of finite presentation, following
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the convention of [35]. The hom sets in this category are formed by arbitrary X-
morphisms. Note that any such morphism is automatically locally of finite presen-
tation, by [13, Proposition 6.2.6], but not necessarily flat. If (U, p), (V, q) are two
objects andU ! V is a flat X-morphism, than for any other object (V 0, q 0) and any
X-morphism V 0 ! V , the usual fiber product of schemesU⇥V V 0 yields an object
and whence a fiber product in (fppf/X). It is not clear to me to what extend other
fiber products in (fppf/X) exists, which may differ from the ususal fiber products
in (Sch/X).

Our category is equipped with the pretopology of fppf coverings ((U↵, p↵)!
(U, p))↵2I , where each U↵ ! U is flat, and the induced map

`
↵ U↵ ! U is

surjective. We regard (fppf/X) as a site, and denote by Xfppf the resultingU -topos
of sheaves. Note that the category (fppf/X) usually contains hom sets of cardinality
� 2, in contrast to the Zariski site.

Clearly, the categories (Zar/X) and (fppf/X) have terminal objects. Consider
the functors

u : (fppf/X) �! (Zar/X), (U, p) 7�! p(U)

and
v : (Zar/X) �! (fppf/X), V 7�! (V, i)

where i : V ! X denotes the inclusion morphism of an open subscheme. These are
well-defined, because any flat morphism locally of finite presentation is universally
open [14, Theorem 2.4.6], and any open embedding is a fortiori flat and locally of
finite presentation. Note that, for schemes that fail to be quasiseparated, there are
open subschemes whose inclusion morphism is not quasicompact, and in particular
not of finite presentation. Nevertheless, they are locally of finite presentation.

Proposition 4.1. The functor u is left adjoint to v, and this pair of adjoint functors
satisfy the conditions (TL 1) – (TL 4) of Section 3.

Proof. The adjointness follows from the universal property of schematic images
of open morphisms. The first two conditions (TL 1) and (TL 2) are trivial. To
see (TL 3), let p� : U� ! X be flat and locally of finite presentation. The the
image is open, and the open subscheme V =

S
� p�(U�) of the terminal object

X 2 (Zar/X) is covered by the p�(U�). Finally, (TL 4) holds by [17, Expose VIII,
Theorem 5.2].

In turn, the functor u : (fppf/X) ! (Zar/X) is cocontinuous and induces a
morphism of topoi ✏ : Xfppf ! XZar. Applying Theorem 3.3 and its corollary we
get:

Proposition 4.2. The induced continuous map ✏ : Loc(Xfppf) ! Loc(XZar) of
locales is a homeomorphism, and the induced map of sober spaces is an embedding
|Xfppf|sob ⇢ |XZar|sob = X .

In Section 7, we shall construct a section for the map |Xfppf|! |XZar|, whence
we actually have an equality |Xfppf|sob = |XZar|sob = X .
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This approach carries over to analogous topoi defined with the étale topology,
the Nisnevich topology [28], and the syntomic topology [9]. With the obvious no-
tation, we thus get canonical identifications of locales and sober topological spaces.
We leave the details to the reader. Note, however, that Theorem 3.3 does not apply
to the fpqc topology. This is because flat and quasicompact morphisms are not nec-
essarily open (for example the one induced by the faithfully flat ring extension Z ⇢
Z⇥Q, compare [14, Remark 2.4.8]). Thus we apparently have no functor v from the
fpqc site to the Zariski site. However, one may apply it to the site (fpuo/X) of flat
and universally open morphisms, which was considered by Romagny [30]. It would
be interesting to understand the relation between the fpqc topos and the fpuo topos.

One disadvantage for the site (fppf/X) and the enusing topos Xfppf is that it is
apparently not functorial with respect to X , by similiar reasons as for the lisse-étale
topos. Therfore, in the literature one usually considers the category (Sch/X) of
all X-schemes contained in a fixed universe, and endows it with the fppf topology.
The covering families are the (U↵ ! Y )↵ , where U↵ ! Y are flat X-morphisms
that are locally of finite presentation, and qU↵ ! Y is surjective. Let me refer to
sheaves on this site (Sch/X) as big fppf sheaves, whereas we now call sheaves on
the site (fppf/X) small fppf sheaves. Likewise, we call the resulting topos Xbigfppf the
big fppf topos, whereas we refer to Xfppf as the small fppf topos.

Given a big fppf sheaf F over X , we obtain by forgetting superfluous local
sections and restriction maps a small fppf sheaf F |Y for each X-scheme Y . The
resulting functor

Xbigfppf �! Yfppf, F 7�! F |Y (4.1)

commutes with direct and inverse limits, because the sheafification functor F 7!
F++ involves over a fixed Y only fppf coverings and their fiber products, which are
the same in (Sch/X) and (fppf/Y ). In turn, we obtain a functor

Points
�
Yfppf

�
�! Points

⇣
Xbigfppf

⌘
, P 7�! Pbig,

where Pbig is given by the fiber functor FPbig = (F |Y )P . Likewise, we get a
continuous map of locales: fix a terminal object e 2 Xbigfppf. Then e|Y are terminal
objects, and for each subobject G ⇢ e we get subojects G|Y ⇢ e|Y . Since the
forgetful functor (4.1) commutes with direct and inverse limits, the monotonous
map G 7! G|Y constitutes a continuous map of locales

Loc
�
Yfppf

�
�! Loc

⇣
Xbigfppf

⌘
. (4.2)

In turn, the canonical map of topological spaces |Yfppf|!
���Xbigfppf

��� is continuous as
well.
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5. fppf-local rings

We now define a class of local rings that generalizes the notion of algebraically
closed fields. Such rings will appear as stalks of the structure sheaf O Xfppf at topos-
theoretical points.
Definition 5.1. A ring R is called fppf-local if it is local, and every fppf homomor-
phism R ! B admits a retraction. In other words, the corresponding morphism of
schemes Spec(B)! Spec(R) admits a section.

Recall that a ring R is called totally integrally closed if for any ring homomor-
phism B ! R and any integral extension B ⇢ B0, there is homomorphism B0 ! R
making the diagram

Spec(B0)

✏✏
Spec(R) //

88rrrrrrrrrr

Spec(B)

commutative. This was introduced by Enochs [8], and further analyzed by Hochster
[19]. One also says that R is a TIC ring. Note that such rings are necessarily reduced
(see [8, Theorem 1] and also [5]).

Let us call a ring R absolutely integrally closed if each monic polynomial f 2
R[T ] has a root in R. These rings are also called AIC rings. Note that an integral
domain R is AIC if and only its it is normal and its field of fraction is algebraically
closed, and this holds if and only if R is TIC [8, Proposition 3]. Throughout, we
call a ring R integral if it is an integral domain, that is, a subring of a field.

Proposition 5.2. Any fppf-local ring is AIC. Moreover, for local rings R, the fol-
lowing three conditions are equivalent:

(i) R is TIC;
(ii) R is AIC and integral;
(iii) R is fppf-local and integral.

Proof. Suppose that R is fppf-local, and let f 2 R[T ] be a monic polynomial.
The fppf algebra R[T ]/( f ) contains a root of f , and also admits an R-algebra
homomorphism to R. Hence R itself contains a root. Consequently, R is AIC.
This also shows that implication (iii))(ii). According to [19, Proposition 7], a
local ring that is TIC must be integral. The equivalence of (i) and (ii) follows
from [8, Proposition 3]. Now suppose that R is TIC. Using the TIC condition with
B = R and a finite fppf algebra B0, we infer that R is fppf-local. This gives the
implication (i))(iii).

We shall see in Section 6 that there are fppf-local rings that are not integral. I
do not know whether there are local AIC rings that are not fppf-local. Neither do I
know whether nonzero homomorphic images of fppf-local rings remain fppf-local.
We have the following partial results in this direction:
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Proposition 5.3. Let R be an fppf-local ring. For every prime ideal p ⇢ R, the
domain R/p is fppf-local, and the residue field (p) is algebraically closed. For
every ideal a ⇢ R, the residue class ring R/a is AIC.

Proof. Let f̄ 2 R/a[T ] be a monic polynomial. Lift it to a monic polynomial
f 2 R[T ]. The fppf R-algebra B = R[T ]/( f ) contains a root of f , and admits an
R-algebra homomorphism to R. Whence there is root a 2 R, whose residue class
is a root of f̄ in R/a, such that the latter is AIC. If a = p is prime, then the AIC
domain R/p is fppf-local by Proposition 5.2. Any localization of the domain R/p
stays AIC. In particular, its field of fractions (p) is algebraically closed.

Proposition 5.4. Let R be an fppf-local ring, and p ⇢ R be a prime ideal. Then
pn = p for every integer n � 1.

Proof. Let a 2 p be some element, and consider the monic polynomial f = T n �
a 2 R[T ]. The fppf R-algebra R[T ]/( f ) contains a root for f , and admits an R-
algebra homomorphism to R, whence there is an element b 2 R with bn = a. Since
p is prime, we must have b 2 p.

In particular, all cotangent spaces p/p2 of an fppf-local ring R vanish, and its
formal completion R̂ = lim

 �n
R/mn coincides with the residue field  = R/m. This

yields the following:

Corollary 5.5. A ring is fppf-local and noetherian if and only if it is an alge-
braically closed field.

Proof. The condition is sufficient by Proposition 5.2, or more directly by Hilbert’s
Nullstellensatz. Conversely, suppose that R is an fppf-local noetherian ring, with
residue field k = R/m. By the Proposition, m⌦ k = m/m2

= 0. The Nakayama
Lemma ensures m = 0, whence R = k is a field. This field is algebraically closed
by Proposition 5.2.

It follows that finite flat algebras over fppf-local rings may fail to be fppf-local:
take R = k an algebraically closed field and A = k[✏] the ring of dual numbers,
where ✏2 = 0.

We now can state an amazing property of fppf-local rings:

Theorem 5.6. Let R be an fppf-local ring. For every prime ideal p ⇢ R, the local
ring Rp is strictly local, with algebraically closed residue field.

Proof. The residue field (p) is algebraically closed by Proposition 5.3. It remains
to check that the local rings Rp are Henselian. Let q ⇢ R be a minimal prime ideal
contained in p. Then the local domain (R/q)p is AIC according to Proposition 5.3,
whence Henselian, for example by [4, Proposition 1.4]. Clearly, the Spec(R/q)p
are the irreducible components of Spec(Rp). The assertion now follows from the
following lemma.
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Lemma 5.7. A local ring A is Henselian if and only if A/q is Henselian for every
minimal prime ideal q ⇢ A.

Proof. The condition is necessary by [16, Proposition 18.5.10]. For the converse,
write Y = Spec(A). Let f : X ! Y be a finite morphism, and write a1, . . . , an 2
X for the closed points. Since X is quasicompact, each point x 2 X specializes to
at least one closed point. Since Z = {x} is irreducible, the composite morphism
Z ! Y is finite, and Y is Henselian, it follows that Z is local. Consequently, we
have a disjoint union X = Spec(O X,x1)[. . .[Spec(O X,an ). Writing X = Spec(B),
we conlcude that the maximal ideals mi ⇢ B corresponding to the closed points
ai 2 X are coprime, and thus B =

Q
Bmi . In turn, X is a sum of local schemes.

We now easily obtain the following useful criterion:

Proposition 5.8. A ring R is fppf-local if and only if it is local Henselian and every
finite fppf homomorphism R! B admits a retraction.

Proof. According to Theorem 5.6, the condition is necessary. It is sufficient as well:
suppose that R is local Henselian, and every finite fppf algebra admits a retraction.
Let R ! C be an arbitrary fppf homomorphism. According to [16, Corollary
17.16.2] there is a residue class ring C/a that is quasifinite and fppf over R. Since
R is Henselian, there is a larger ideal a ⇢ b so that B = C/b is finite and fppf.
The latter admits, by assumptions, a retraction B ! R, and the composite map
C ! B ! R is the desired retraction of C .

Now let X be a scheme, and P : (Set)! Xfppf be a point in the sense of topos
theory. Applying the corresponding fiber functor P�1 to the structure sheaf O Xfppf ,
we get a ring O Xfppf,P = P�1(O Xfppf).

Theorem 5.9. Under the preceding assumptions, the ring O Xfppf,P is fppf-local.

Proof. Choose a pro-object (Ui )i2I in (fppf/X) so that the fiber functor is of the
form P�1(F) = lim

�!i2I 0(Ui , F). Write Ri = 0(Ui ,O Xfppf) and R = O Xfppf,P ,
such that R = lim

�!i2I Ri . According to Lemma 5.10 below, we may assume that the
schemes Ui are affine, in other words, Ui = Spec(Ri ).

We first verify that the ring R is local. In light of [24, Chapter III, Corollary
2.7], it suffices to check that the ringed topos (Xfppf,O Xfppf) is locally ringed. This
indeed holds by loc. cit. Criterion 2.4, because for each U 2 (fppf/X) and each
s 2 0(U,OU ), the open subsets Us,U1�s ⇢ U where s respectively 1 � s are
invertible form a covering.

We next check that the local ring R is Henselian. Let R ! B be étale, and
suppose there is a retraction B/m ! k, where m ⇢ R is the maximal ideal, and
k = R/m. We have to verify that this retraction extends to a retraction B ! R,
compare [16, Theorem 18.5.11]. Localizing B, we may assume that B is local, such
that we merely have to check that there is a retraction B ! R at all. According
to [16, Proposition 17.7.8], there is an index i 2 I and some étale homomorphism
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Ri ! Bi with B = Bi ⌦Ri R. Set Bj = R j ⌦Ri Bi for j � i . Invoking [2, Expose
IV, Section 6.8.7] again, we infer that there is an index j � i and some Ri -algebra
homomorphism R j ! Bi , which gives a retraction Bi ⌦Ri R j ! R j . This yields
a direct system of retractions

Bi ⌦Ri Rk = Bi ⌦Ri R j ⌦R j Rk �! R j ⌦R j Rk = Rk .

Passing to direct limits with respect to k � j yields the desired retraction B =

lim
�!k�i (Bi ⌦Ri Rk)! R.

We finally show that R is fppf-local. Let R ! B be a finite fppf homomor-
phism of rings. It suffices to check that it admits a retraction, by Proposition 5.8.
Define Bi as in the preceding paragraph. There is an index i 2 I and an homo-
morphism Ri ! Bi with B = Bi ⌦Ri R, according to [15, Theorem 8.8.2]. Since
the R-module B is free of finite nonzero rank, we may assume that the same holds
for the Ri -module Bi , by [15, Corollary 8.5.2.5]. Set V = Ui = Spec(Ri ), and
V 0 = Spec(Bi ). Again using [2, Expose IV, Section 6.8.7] and arguing as above,
one infers that the desired retraction B ! R exists.

In the course of the preceding proof, we have used the following fact:

Proposition 5.10. Each topos-theoretical point P : (Set)! (fppf/X) has a fiber
functor isomorphic to F 7! lim

�!i2I 0((Ui , pi ), F) for some pro-object ((Ui , pi ))i2I
in (fppf/X) where all the Ui are affine.

Proof. To simplify notation, write C0 = (fppf/X) and consider the full subcategory
C ⇢ C0 of objects (U, p) with U affine, endowed with the induced Grothendieck
topology. Let E 0 = Xfppf and E be the ensuing topoi ofU -sheaves. Given an object
(U, p) 2 C0, we denote by U↵ ⇢ U the family of all affine open subschemes, and
set p↵ = p|U↵ . Clearly, (U↵, p↵) 2 C and ((U↵, p↵) ! (U, p))↵ is a covering
in C0. By the Comparison Lemma [2, Expose III, Theorem 4.1], the restriction
functor E 0 ! E , F 7! F |C is an equivalence of categories. In turn, every fiber
functor on E 0 is isomorphic to some fiber functor coming from a pro-object in the
category C.

6. Construction of fppf-local rings

Let R be a strictly local ring, that is, a Henselian local ring with separably closed
residue field. Choose a universe R 2 U and some ordinal � 0 62 U . Let � < � 0

be the smallest ordinal that is not an element of U . The goal of this section is to
attach, in a functorial way, a direct system R⌫ 2 U of strictly local rings, indexed
by the well-ordered set

� = {⌫ | ⌫ ordinal with ⌫ < � }

of all smaller ordinals. The transition maps in this direct system will be faithfully
flat and integral. For each limit ordinal � < � , the local ring R� will be fppf-local,
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that is, every fppf R�-algebra admits a retraction. Maybe it goes without saying that
all the rings R⌫ , ⌫ > 0 are highly non-noetherian.

The construction of the rings is as follows: consider the category F = F(R)
of finite fppf R-algebras A with Spec(A) connected. Note that each such alge-
bra is a fortiori isomorphic to some R[T0, . . . , Tm]/( f1, . . . , fr ) for some integer
m � 0 and some finite collection of polynomials f1, . . . , fr . Whence the set of
isomorphism classes of objects in F does not depend on the chosen universe, up
to canonical bijection. Choose a set I = I (R) of such R-algebras, so that each
isomorphism class is represented by precisely one element of I . Now consider the
set 8 = 8(R) of all finite subsets of the set I , endowed with the order relation
coming from the inclusion relation. Clearly, the ordered set 8 is filtered. Each of
its elements ' is thus a finite set of certain finite fppf R-algebras. Given an element
' 2 8, we form the finite fppf R-algebra

A' =

O
A2'

A.

Here the tensor product denotes the unordered tensor product.
Recall that for an collection of R-modules (Mj ) j2J , indexed by some finite set

J of cardinality n � 0, the unordered tensor product is the R-module of invariants

O
j2J

M j =

 M
⌘

M⌘(1) ⌦ . . .⌦ M⌘(n)

!Sn

.

Here the sum runs over all bijections ⌘ : {1, . . . , n}! J , and the symmetric group
Sn acts from the right on the sum by permuting the summands:�

a⌘(1) ⌦ . . .⌦ a⌘(n)
�
⌘

· � =

�
a⌘� (1) ⌦ . . .⌦ a⌘� (n)

�
⌘�

.

Note that, for each choice of ordering J = { j1, . . . , jn}, the obvious inclusion
into the sum gives a canonical identification Mj1 ⌦ . . . ⌦ Mjn =

N
j2J M j of the

ordinary tensor product with the unordered tensor product. However, the unordered
tensor product has the advantage to be functorial, in the strict sense, with respect to
indexed R-modules (Mj ) j2J . Here a morphism between (Mj ) j2J and (Mk)k2K is
given by a map m : J ! K together with homomorphisms Mj ! Nm( j).

This functoriality ensures that ' 7! A' is a direct system of R-algebras, and
we already remarked that it is filtered. We denote by

R+ = lim
�!

'28(R)

A'

its direct limit. Clearly, all transition maps in this direct limit are finite fppf, so we
may regard each A' as an R-subalgebra of R+.

Lemma 6.1. The ring R+ is strictly local, and the homomorphism R! R+ is flat,
integral and local. Moreover, we have R+ 2 U , and Card(R+) = Card(R).



438 STEFAN SCHRÖER

Proof. Using the notation from the beginning of this section, we start by checking
that the tensor products A' ' A1 ⌦ . . .⌦ An , where A1, . . . , An are the elements
', are local. Obviously, A' is a finite fppf R-algebra. By definition, the schemes
Spec(Ai ) are connected. Whence R ! Ai are local maps of local rings, because
R is Henselian. Furthermore, Ai ⌦R k, where k = R/mR is the residue field, is
a finite local k-algebra. Their tensor product remains local, because k is separably
closed. We conclude that there is a unique prime ideal in A lying over mR ⇢ R.
Since Spec(A)! Spec(R) is a closed map, it follows that A is local, and that the
map R! A is local. Passing to the filtered direct limit, the first assertion follows.

Since R, A' , I (R) and whence 8(R) are elements of the universe U , the
same must hold for the direct limit R+. By faithful flatness, the maps A' ! R+

are injective, whence R+ =

S
'28 A' as a union of subrings that are finite fppf

R-algebras. Now recall that R is strictly local, and in particular infinite. Let @◆ be
its cardinality. It easily follows that each subring A' ⇢ R+ and the index set 8
both have the same cardinality. Cardinal arithmetic thus gives @◆  Card(R+) 
@◆ · @◆ = @◆. Consequently Card(R+) = Card(R).

The ring R+, however, is never noetherian: if n � 1, then R[T ]/(T n) is a finite
fppf algebra with connected spectrum, whence isomorphic to some subring of R+.
It follows that there is an element f 2 R+ with f n = 0 but f n�1 6= 0. In particular,
the nilradical Nil(R+) is not nilpotent.

Using transfinite recursion, we now define a direct system of rings R⌫ , ⌫ < �
as follows: to start with, set R0 = R. Suppose the direct system is already defined
for all ordinals smaller that some ⌫ < � . We then set

R⌫ =

(
(R� )+ if ⌫ = � + 1 is a successor ordinal
lim
�!�<⌫

R� if ⌫ is a limit ordinal.

Proposition 6.2. For each ordinal ⌫ < � , the rings R⌫ are strictly local, and the
transition map R� ! R⌫ , �  ⌫ are local, faithfully flat, and integral.

Proof. By transfinite induction. The assertion is trivial for ⌫ = 0. Now suppose
that ⌫ > 0, and that the assertion is true for all smaller ordinals. If ⌫ is a successor
ordinal, the assertion follows from Lemma 6.1. If ⌫ = � is a limit ordinal, then R� is
a filtered direct limit of strictly local ring with local transition maps, whence strictly
local. Moreover, the transition maps R� ! R� for � < � are local, faithfully flat,
and integral.

Proposition 6.3. For each ordinal ⌫ < � , we have dim(R⌫) = dim(R), and the
residue field k⌫ = R⌫/mR⌫ is an algebraic closure of the residue field k = R/mR .

Proof. Since R ⇢ R⌫ is integral and faithfully flat, the first statement follows from
[7, Chapter VIII, Section 2, n. 3, Theorem 1]. As to the second assertion, the field
extension k ⇢ k⌫ is clearly algebraic. Let P 2 R[T ] be a monic polynomial,
consider the finite fppf R-algebra A = R[T ]/(P), and let Am be the localization
at some maximal ideal m ⇢ A. Then P has a root in A, and Am is isomorphic to
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a subring of R⌫ . Whence we have a homomorphism A ! k⌫ . It follows that each
monic polynomials with coefficients in k has a root in k⌫ .

Proposition 6.4. For each ordinal ⌫ < � , the ring R⌫ is an element of the chosen
universe U .

Proof. By transfinite induction. The assertion is obvious for ⌫ = 0. Now suppose
that ⌫ > 0, and that the assertion holds for all smaller ordinals. If ⌫ = � + 1 is a
successor ordinal, then R⌫ = (R� )+ 2 U by Proposition 6.1. If ⌫ is a limit ordinal,
then R⌫ = lim

�!�<⌫
R� 2 U because the R� and the index set, which equals the set

⌫, are members of the universeU .

Theorem 6.5. For each limit ordinal � < � , the ring R� is fppf-local.

Proof. Given a fppf homomorphism R ! B, we have to show that it admits a
retraction. It suffices to treat the case that B is finite fppf, according to Proposition
5.8. Since B is of finite presentation, there is some ordinal ⌫ < � and some R⌫-
algebra B⌫ with B ' B⌫ ⌦R⌫ R� (see [14, Lemma 5.13.7.1]). Moreover, we may
assume that B⌫ is finite and fppf. Since tensor products commute with filtered direct
limits, the canonical map lim

�!�
(B⌫⌦R⌫ R� )! B is bijective, where the direct limit

runs over all ordinals ⌫  � < �.
Choose A⌫ 2 I (R⌫) and an isomorphism of R⌫-algebras h : B⌫ ! A⌫ .

Consider the singleton ' = {A⌫} 2 8(R⌫), such that A' = A⌫ in the notation
introduced above. By the very definition of R⌫+1, there exists an R⌫-algebra ho-
momorphism B⌫

h
! A' ! R⌫+1, which gives a retraction B⌫ ⌦R⌫ R⌫+1! R⌫+1.

Tensoring with R� over R�+1, � � ⌫ + 1 we get a direct system of retractions

B⌫ ⌦R⌫ R� = B⌫ ⌦R⌫ R⌫+1 ⌦R⌫+1 R� �! R⌫+1 ⌦R⌫+1 R� = R� .

Passing to direct limits yields the desired retraction B ! R�.

For later use, we record the following fact:

Lemma 6.6. For each ordinal ⌫ < � and each finite subset S ⇢ R⌫ , there is an
R-subalgebra B ⇢ R⌫ containing S so that the structure map R ! B is finite and
fppf.

Proof. By transfinite induction. The case ⌫ = 0 is trivial. Now suppose that ⌫ > 0,
and that the assertion is true for all smaller ordinals. If ⌫ is a limit ordinal, then
R⌫ = lim

�!�<�
R� , there is some ordinal � < ⌫ with S ⇢ R� , and the induction

hypothesis, together with flatness of R� ⇢ R⌫ , yields the assertion.
Now suppose that ⌫ = � + 1 is a successor ordinal. Write R⌫ = lim

�!

A' as a
filtered union of finite fppf local R� -subalgebras and choose some index ' so that
S ⇢ A' . Since R� is local, the underlying R� -module of A' is free. The same
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holds for A'/R� , because the unit element 1 2 A' does not vanish anywhere. Thus
we may extend b1 = 1 to an R� -basis b1, . . . , bm 2 A' , and write

s =

X
k
cskbk and bi · b j =

X
k
ci jkbk

for some coefficients csk, ci jk 2 R� , where s 2 S and 1  i, j, k  m. Form the
finite subset S0 =

�
csk, ci jk

 
⇢ R� comprising all these coefficients. By induc-

tion hypothesis, there is a finite fppf R-subalgebra B0 ⇢ R� containing S0. Now
consider the canonical R-linear map

mM
i=1

B0bi �! R⌫ .

This map factors over A' ⇢ R⌫ , and it is injective, because the b1, . . . , bm 2 A'
are R� -linearly independent. Let B ⇢ R⌫ be its image. By construction, S ⇢ B,
and B0 ⇢ B is a direct summand of free B0-modules of finite rank, in particular, an
fppf ring extension. It follows that R ⇢ B is finite fppf.

Given ⌫ < � , consider the set of all R-subalgebras Bi ⇢ R⌫ , i 2 I⌫ so that
the structure map R ! Bi is finite fppf. We regard I⌫ is an ordered set, where the
order relation is the inclusion relation.

Proposition 6.7. The ordered set I⌫ is filtered, each Bi is a local R-algebra such
that the structure map R! Bi is local, finite and fppf, and R⌫ =

S
i2I⌫ Bi .

Proof. If follows from Lemma 6.6 that R⌫ is the union of the Bi . To see that the
union is filtered, let Bi , Bj ⇢ R⌫ be two such subrings. Let Si ⇢ Bi be an R-basis,
and similarly S j ⇢ Bj . Then S = Si [ S j is a finite subset of R⌫ , and Lemma 6.6
gives us the desired subalgebra B ⇢ R⌫ containing Bi and Bj .

Each Bi is by definition finite fppf over R. Since R is strictly local, it remains
to check that Spec(Bi ) is connected. Since Bi ! R⌫ is injective, the image of the
continuous map Spec(R⌫) ! Spec(Bi ) contains every generic point. Obviously,
Bi ⇢ R⌫ is integral, whence the continuous map is surjective. Since Spec(R⌫) is
connected, so must be its continuous image Spec(Bi ).

The direct system R⌫ , ⌫ < � is functorial: suppose that f : R ! R0 is a
local homomorphism between strictly local rings. With the notation introduced at
the beginning of this section, we get a functor

F(R) �! F(R0), A 7�! A0 = A⌦R R0,

and thus induced maps of ordered sets I (R) ! I (R0) and 8(A) ! 8(A0), � 7!
�0. The latter are not necessarily injective, but in any case induce morphisms A� !
A�0 . In turn, we get a natural homomorphism of direct limits R+ ! R0

+
. Using

transfinite induction, one finally obtains the desired homomorphism R⌫ ! R0⌫ of
direct systems. One easily checks that this is functorial.
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7. Points in the fppf topos

Let X be a scheme. Choose a universe X 2 U , and let � be the smallest ordinal not
contained in this universe. Given a geometric point ā : Spec(�) ! X and a limit
ordinal � < � , we call

O X,ā,� =

�
O X,ā

�
�

the fppf-local ring attached to the geometric point and the limit ordinal, as defined
in Section 6. The goal now is to construct a point P = Pā,� : (Set)! Xfppf in the
sense of topos theory, together with a canonical identification

O Xfppf,P = P�1
�
O Xfppf

�
= O X,ā,�.

Actually, the isomorphism class of Pā,� 2 Points(Xfppf) depends only on the image
point a 2 X of the geometric point ā, and will be denoted by Pa,� 2 |Xfppf|.
This will give a continuous section a 7! Pa,� for the canonical map |Xfppf| �!
|XZar| = X of topological spaces.

The main step is the construction of a pro-object in (fppf/X) that will be iso-
morphic to the pro-object of neighborhood for the topos-theoretical point Pā,�. Our
first task to to find a suitable index category for such a pro-object:

Fix a geometric point ā : Spec(�) ! X and some ordinal ⌫ < � . For the
moment, this can be either a limit ordinal or a successor ordinal. We now define the
index category Iā,⌫ as follows: the objects are 5-tuples

(V0, V1,�,U, ),

where a 2 V0 ⇢ X is an affine open neighborhood, V1 is an affine étale V0-scheme,
� : Spec(O X,ā) ! V1 is a morphism, U is a finite fppf V1-scheme, and  :

Spec(O X,ā,⌫)! U is a morphism. We demand that the diagram

Spec(O X,a)
can
 ���� Spec(O X,ā)

can
 ���� Spec(O X,ā,⌫)

can
??y �

??y ??y 
X  ���� V0  ���� V1  ���� U

(7.1)

is commutative, and that the resulting morphism of affine schemes

Spec(O X,ā,⌫) �! U ⇥V1 Spec(O X,ā) (7.2)

is schematically dominant, that is, induces an injection on global sections of the
structure sheaf. The morphisms

(V 00, V
0

1,�
0,U 0, 0) �! (V0, V1,�,U, )
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in the category Iā,⌫ are 3-tuples (h0, h1, h), where h0 : V 00! V0 and h1 : V 01! V1
and h : U 0 ! U are morphisms of schemes. We demand that the diagram

Spec(O X,a)

✏✏

��?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
Spec(O X,ā)

�0

✏✏

oo

�

  @
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

Spec(O X,ā,�)

 0

✏✏

oo

 

⌧⌧8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8

X

id
$$JJJJJJJJJJJ V 00

h0
''OOOOOOOOOOOOOOO

oo V 01oo

h1
''PPPPPPPPPPPPPPPP U 0oo

h
%%KKKKKKKKKKKK

X V0oo V1oo Uoo

(7.3)

is commutative. Note that h0 is an inclusion between the two open subschemes
V 00, V0 ⇢ X , and h1 is a refinement between the étale neighborhoods V 01, V1 ! X
of the geometric point ā.

Given an object (V0, V1,�,U, ), the composite morphismU ! V1! V0 ⇢
X is quasifinite and fppf, whence we may regard U as an object in (fppf/X). This
yields a covariant functor Iā,⌫ ! (fppf/X), which on morphism is defined as
(h0, h1, h) 7! h. The corresponding contravariant functor I opā,⌫ ! (fppf/X) is
actually a pro-object, which means the following:

Proposition 7.1. The opposed category I opā,⌫ is filtered.

Proof. Working with Iā,⌫ rather then the opposed category, we have to check two
things: first, for any two given objects, there is some object and morphisms from it
to the given objects. Second, any two morphisms with the same domain and range
become equal after composing with some morphism from the right.

We start with the former condition: suppose�
V 00, V

0

1,�
0,U 0, 0

�
and

�
V 000 , V 001 ,�00,U 00, 00

�
. (7.4)

are two objects. Choose an affine open neighborhood a 2 V0 ⇢ X contained in
V 00 \ V

00

0 . Base-changing the data to V0 over X , we easily reduce to the case that
V 00 = V0 = V 000 . Similarly, we may assume V

0

1 = V 001 and �
0
= �00.

To simplify notation, now write

R = O X,ā and R⌫ =

�
O X,ā

�
⌫
.

Let B0 ⇢ R⌫ be the images of the ring of global sections with respect to the mor-
phism of affine schemes Spec(R⌫) ! U ⇥V1 Spec(R). The definition of objects
in Iā,⌫ ensures that Spec(B0) = U ⇥V1 Spec(R). Define B00 ⇢ R⌫ analogously.
Then B0, B00 are finite fppf as R-algebras, and R-subalgebras inside R⌫ . Accord-
ing to Proposition 6.7, they are contained in some larger finite fppf R-subalgebra
B ⇢ R⌫ . Since R = O X,ā can be regarded as the filtered direct limit of the global
section rings of the étale neighborhoods of the geometric point

Spec(�) ⇢ Spec(R)
�0=�00

�! V 01 = V 001 ,



POINTS IN THE FPPF TOPOLOGY 443

we find some étale neighborhood V1 ! V 01 = V 001 so that Spec(B) ! Spec(R)
arises via base-change from some finite fppf scheme U ! V1. Passing to smaller
étale neighborhoods, we may assume that the inclusion maps B0, B00 ⇢ B inside
R⌫ of finite fppf R-algebras are induced by some V1-morphisms U ! U 0 and
U ! U 00. Let � : Spec(R) ! V1 and  : Spec(R⌫) ! U be the canonical
morphisms. Then (V0, V1,�,U, ) is an object in Iā,⌫ and by construction has
morphisms to both of the given objects in (7.4).

It remains to verify the second condition. Suppose we have two arrows
�
V 00, V

0

1,�
0,U 0, 0

� //// (V0, V1,�,U, )

called (h0, h1, h) and (k0, k1, k). We have to show that they become equal after
composing from the right with some morphism. According to the commutative
diagram (7.3), both h, k : U 0 ! U are V1-morphisms. Consider the two morphisms

U 0 ⇥V1 Spec(O X,ā)
h,k
�! U ⇥V1 Spec(O X,ā)

pr
�! U.

coming form base-change. These coincide, because the morphism in (7.2) is schem-
atically dominant. Since U 0,U are of finite presentation over V1, the morphisms

U 0 ⇥V1 V
00

1
h,k
�! U ⇥V1 V

00

1
pr
�! U

coming from base-change of h and k to some étale neighborhood V 001 ! V1 of
the geometric point � : Spec(�) ! V1 become identical [15, Theorem 8.8.2].
Choosing the neighborhood small enough, we may assume that it factors over V 01.
Let �00 : Spec(O X,ā) ! V 001 be the canonical map. Define U

00
= U 0 ⇥V1 V 001

and let  00 : Spec(O X,ā,�) ! U 00 be the canonical map. The resulting morphism
(V 00, V

00

1 ,�00,U 00, 00)! (V 00, V
0

1,�
0,U 0, 0) does the job.

We now have a pro-object

Iā,⌫ �! (fppf/X), (V0, V1,�,U, ) 7�! U

and obtain a covariant functor

Xfppf �! (Set), F 7�! lim
�!

0(U, F), (7.5)

where the direct limit runs over all objects (V0, V1,�,U, ) 2 Iā,⌫ This functor
respects finite inverse limits, because the opposite of the index category is filtered.
In the special case F = O Xfppf , the morphisms  : Spec(O X,ā,⌫) ! U induce a
canonical homomorphism

lim
�!

0
�
U,O Xfppf

�
�! O X,ā,⌫ (7.6)

of rings.



444 STEFAN SCHRÖER

Proposition 7.2. The preceding homomorphism of rings (7.6) is bijective.

Proof. The map in question is surjective: set R = O X,ā and R⌫ = (O X,ā)⌫ . Ac-
cording to Proposition 6.7, every element c 2 R⌫ is contained in some R-subalgebra
C ⇢ R⌫ so that the homomorphism R ! C is finite fppf. Write R = lim

�!i2I Ri
as a filtered direct limit with étale neighborhoods Spec(Ri )! X of the geometric
point ā : Spec(�)! X . For some index j 2 I , there is a finite fppf R j -algebra C j
with C j ⌦R j R = C . Then

C = C j ⌦R j R = C j ⌦R j lim
�!

i� j
Ri = lim

�!

i� j
(C j ⌦R j Ri ).

Whence there is some index i � j so that c 2 C lies in the image Ci = C ⌦R j Ri .
Replacing j by i and C by Ci , we thus may assume that c 2 C is in the image
of C j .

Set U = Spec(C j ) and V1 = Spec(R j ), and let � : Spec(R) ! V1 and
 : Spec(R⌫) ! U be the canonical morphisms. The image of the structure map
V1 ! X , which is étale, is an open neighborhood of a 2 X , whence contains
some affine open neighborhood a 2 V0. Base-changing with V0, we may assume
that V1 ! X factors over V0. Replacing V1 by an affine open neighborhood of
the image of �, we may again assume that V1 is affine. The upshot is that the
tuple (V0, V1,�,U, ) is an object of the index category Iā,⌫ . By construction, the
element c 2 R⌫ lies in the image of 0(U,O Xfppf).

The map is injective as well: suppose we have an object (V0, V1,�,U, ) 2
Iā,⌫ and some local section s 2 0(U,O Xfppf) = 0(U,OU ) whose image in R⌫
vanishes. By definition of the index category, the map

0
�
U,OU

�
⌦0(V1,O V1 )

R = 0
⇣
U ⇥V1 Spec R,OU⇥V1Spec R

⌘
�! R⌫

is injective, whence s⌦1 vanishes in the left hand side. Now regard R = lim
�!

Ri as a
filtered direct limit for étale neighborhoods Spec(Ri )! V1 of the induced geomet-
ric point � : Spec(�)! V1. Then it vanishes already in 0(U,OU )⌦0(V1,O V1 )

Ri
for some index i 2 I . Set V 01 = Spec(Ri ) and U 0 = U ⌦0(V1,O V1 )

Ri , endowed
with the canonical morphisms �0 : Spec(R) ! V 01 and  

0
: Spec(R⌫) ! U 0.

Then (V0, V 01,�
0,U 0, ) is an object in Iā,⌫ , endowed with a canonical morphism

to (V0, V1,�,U, ), on which the pullback of s vanishes.

Theorem 7.3. Suppose our ⌫=� is a limit ordinal. Then there is a topos-theoretical
point Pā,� : (Set) ! Xfppf whose inverse image functor P�1ā,� equals the functor
in (7.5).

Proof. We apply the criterion given in [2, Expose IV, 6.8.7]. Let W 2 (fppf/X)
be an object, (W↵ ! W )↵23 an fppf covering, (V0, V1,�,U, ) 2 Iā,� an index,
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andU ! W be a X-morphism. We have to find a larger index (V 00, V
0

1,�
0,U 0, 0),

some ↵ 2 3 and a morphism U 0 ! W↵ making the diagram

U 0 ����! W↵??y ??y
U ����! W

commutative. To simplify notation, set R = O X,ā and R� = O X,ā,�. Consider the
base-changes Spec(R�)⇥W W↵ . Choose some ↵ 2 3 so that the closed point in the
local scheme Spec(R�) is in the image of the projection. By flatness, the projection
is thus surjective. According to Theorem 5.9, there is a morphism Spec(O X,ā,�)!
W↵ making the diagram

W↵

✏✏
Spec(O X,ā,�) //

55kkkkkkkkkkkkkkkk

U // W

commute. Using Proposition 7.2, together with [15, Theorem 8.8.2], we conclude
that there is some morphism (V 00, V

0

1,�
0,U 0, 0) ! (V0, V1,�,U, ) and a W -

morphism U 0 ! W↵ , as desired.

Let a 2 X be the image of the geometric point ā. If b̄ is another geometric point
on X whose image points b equals a, there is a (a)-isomorphism (ā) ! (b̄),
which comes from a unique isomorphism of strictly local rings O X,ā ! O X,b̄. By
functoriality, it extends to an isomorphism O X,ā,⌫ ! O X,b̄,⌫ , which finally yields
an isomorphism of inverse systems

(V0, V1,�,U, ) 7�! (V0, V1,� f,U, f ).

We conclude that the isomorphism class of the topos-theoretical point Pā,� 2
Points(Xfppf) only depends on the image point a 2 X , and we write this isomor-
phism class as Pa,� 2 |Xfppf|.

Theorem 7.4. Let � < � be a limit ordinal. Then the map

X = |XZar| �! |Xfppf|, a 7�! Pa,�

is section for the canonical projection |Xfppf|! |XZar| = X .

Proof. Suppose that V ⇢ X is an open subscheme that is a neighborhood of the
topos-theoretical point Pā,�. Then there is an index (V0, V1, ,U,�) 2 Iā,� having
an X-morphism U ! V . By the commutative diagram (7.1), the diagram

Spec(O X,ā,�) ����! Spec(O X,a)

�

??y ??y
U ����! X
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is commutative as well. In turn, we have a 2 V . According to [2, Expose IV,
Section 7.1] there is a unique point a0 2 X so that the open subschemes of X that
are neighborhoods of Pā,� are neighborhoods of a0. It follows that a0 = a. Hence
a 7! Pā,� is a section.

In light of Proposition 4.2 and Lemma 3.5, the existence of a section now yields
our main result:

Theorem 7.5. The continuous map |Xfppf| ! |XZar| induces an identification
|Xfppf|sob = |XZar|sob = X of sober spaces.
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[26] J. MILNE, “Étale Cohomology”, Princeton University Press, Princeton, 1980.
[27] J. MILNE, “Arithmetic Duality Theorems”, Academic Press, Boston, 1986.
[28] Y. NISNEVICH, The completely decomposed topology on schemes and associated descent

spectral sequences in algebraic K-theory, In: “Algebraic K-theory: Connections with Ge-
ometry and Topology”, J. Jardine and V. Snaith (eds.), Kluwer, Dordrecht, 1989, 241–342.

[29] G. PICAVET, Absolutely integral homomorphisms, J. Algebra 311 (2007), 584–605.
[30] M. ROMAGNY, “A Straight Way to Algebraic Stacks”, Lecture course notes, 2003,

http://perso.univ-rennes1.fr/matthieu.romagny/notes/index.html.
[31] S. SHATZ, Cohomology of Artinian group schemes over local fields, Ann. of Math. 79

(1964), 411–449.
[32] S. SHATZ, The cohomological dimension of certain Grothendieck topologies, Ann. of

Math. 83 (1966), 572–595.
[33] S. SHATZ, The structure of the category of sheaves in the flat topology over certain local

rings, Amer. J. Math. 90 (1968), 1346–1354.
[34] S. SHATZ, “Profinite Groups, Arithmetic, and Geometry”, Princeton University Press,

Princeton, 1972.
[35] STACKS PROJECT CONTRIBUTORS, “Stacks Project”, http://stacks.math.columbia.edu/

browse, version 2676bbe, compiled on June 17, 2014.
[36] E. STEINITZ, Algebraische Theorie der Körper, J. Reine Angew. Math. 137 (1910), 167–

309.
[37] W. WATERHOUSE, Basically bounded functors and flat sheaves, Pacific J. Math. 57 (1975),

597–610.

Mathematisches Institut
Heinrich-Heine-Universität
40225 Düsseldorf Germany
schroeer@math.uni-duesseldorf.de


