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Prime decomposition for the index of a Brauer class

BENJAMIN ANTIEAU AND BEN WILLIAMS

Abstract. We prove that the index of a Brauer class satisfies prime decomposi-
tion over a general base scheme. This contrasts with our previous result that there
is no general prime decomposition of Azumaya algebras.
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1. Introduction

The Brauer group Br(k) of a field k classifies the central simple algebras over k
up to Brauer equivalence. Two such algebras A and B are Brauer equivalent if
Mm(A) ⇠

= Mn(B) for some integers m, n, where Mn(A) denotes the n ⇥ n matrix
ring with coefficients in A. The class of A in Br(k) will be written as [A]. The
group structure is given by tensor product of algebras, and �[A] = [Aop]. The
Brauer group is a key arithmetic invariant of the field k and has been studied for
about a century.

A couple of facts about Br(k) are relevant to this paper. The first is that it is a
torsion group: each element ↵ has a finite order, called the period, denoted per(↵).
In terms of Brauer equivalence, per([A]) is the least positive integer m such that
A⌦m ⇠

= Mn(k). The second is that dimk A = d2 for each central simple algebra A.
The number d appearing in this equation is called the degree of A.

Given ↵ 2 Br(k), a theorem of Wedderburn implies that ↵ = [D] for a unique
division algebra D. Classically, the index of ↵, written ind(↵), is defined to be
the degree of D. The authors discovered in [1] that this definition is unsuitable
for generalization of the Brauer group to a scheme, a topological space, or more
generally a locally ringed topos. Rather, we define

ind(↵) = gcd{deg(A)|[A] = ↵}.
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It is well-known that this definition agrees with the previous one given for fields. For
this and all other standard facts about the Brauer group and division algebras used in
this introduction, see for example the book of Gille and Szamuely [5, Section 4.5].

A related classical fact is that the index ind(↵) may be computed as the min-
imum degree of a separable splitting field K/k that splits ↵. This is an important
connection because it allows a direct Galois-theoretic approach to certain questions
about these classes. For example, it makes it possible to prove that per(↵) and
ind(↵) have the same prime divisors by using p-Sylow subgroups of Galois groups.

It was interesting for applications to other areas where period–index questions
for Brauer groups arise, such as globally over schemes, over topological spaces,
over complex analytic spaces, and so on, to find methods of proof that avoid the
use of Galois groups. We were able to do this in a previous paper, [3]. We refer
to [6, Section V.4] for a treatment of Azumaya algebras and the Brauer group in a
locally ringed topos. There is a natural bijective correspondence between Azumaya
algebras of degree n and PGLn-torsors. While the motivating questions are phrased
for Azumaya algebras, in practice we work with PGLn-torsors.

Theorem 1.1 ([3]). Let (X,OX ) be a connected locally-ringed topos and let ↵ 2

Br(X,OX ). Then there exists an Azumaya OX -algebra A such that [A] = ↵ and
the prime divisors of per(↵) and deg(A ) coincide. In particular, the prime divisors
of per(↵) and ind(↵) coincide.

Tamás Szamuely and Philippe Gille asked us recently if some other divisibility
properties of Brauer classes may be established in this generality. We recall the
following classical result over fields.

Theorem 1.2 ([5, Proposition 4.5.16], [8, Theorem 5.7]). If ↵ = [D] is in Br(k),
where k is a field and D is the division algebra with class ↵, and if d = ind(↵),
then:

(1) if d = ab where a and b are relatively prime, then D ⇠
= E ⌦k F , where E is a

division algebra of degree a and E is a division algebra of degree b;
(2) if d = a1 · · · ar where the ai are relatively prime, then D ⇠

= E1 ⌦k · · · ⌦k Er ,
where Ei is a division algebra of degree ai .

Saltman asked in [8] whether this type of result holds for Azumaya algebras and
not just for division algebras. Our previous work and this paper, taken together,
establish the maximum extent to which the theory over fields generalizes to general
contexts. For example, we showed in [1, 2] that Theorem 1.2 fails for Azumaya
algebras over more general base schemes, even smooth affine schemes over C.

The point of this short note is to prove the following theorem, which general-
izes Theorem 1.2 to the indices of Azumaya algebras:

Theorem 1.3. Let (X,OX ) be a connected locally-ringed topos, and let ↵ = ↵1 +

· · ·+↵t be the prime decomposition of a Brauer class ↵ 2 Br(X,OX ), so that each
per(↵i ) = paii for distinct primes p1, . . . , pt . Then,

ind(↵) = ind(↵1) · · · ind(↵t ).
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That is, whereas prime decomposition cannot hold for general Azumaya algebras,
it does hold for the index. Using Theorem 1.3 and several facts about p-adic valu-
ations of binomial coefficients, we prove the next result. For division algebras, see
Saltman [8, Theorem 5.5] for a proof. Our proof is new over division algebras as
well.

Theorem 1.4. Let (X,OX ) be a connected locally-ringed topos. Suppose ↵ 2

Br(X,OX ) is a Brauer class, and d = ind(↵) its index. Then:

(1) ind(m↵)| gcd(
�d
m
�
, d);

(2) ind(m↵) = ind(↵) if m is prime to d;
(3) if e = gcd(m, d), then ind(m↵) divides d/e.

This answers the original question posed to us by Gille and Szamuely, which was
whether point (1) above holds in general. Note that the results of Theorem 1.4 are
straightforward to prove in the special case when the index d is a prime power, and
we will do so in Lemma 2.3.

Theorems 1.3 and 1.4 hold for the Brauer groups of arbitrary connected
schemes, or even algebraic stacks, for connected topological spaces, for connected
complex analytic spaces, for the topos of G-sets when G is a discrete group, and so
on.
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2. Proof of Theorem 1.4 assuming Theorem 1.3

Write vp(m) for the p-adic valuation of m, which is to say the largest power of p
that divides m. We will employ Kummer’s theorem on p-adic valuations of bino-
mial coefficients throughout.

Theorem 2.1 (Kummer’s theorem [7]). Let m and n be nonnegative integers with
m  n. Then, vp

��n
m
��
is the number of carries when n�m is added to m in base p,

or equivalently it is the number of borrows when m is subtracted from n in base p.

We will use the following special case of Kummer’s theorem several times.
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Corollary 2.2. Suppose that 0  r  s are integers, ` and j are positive integers
relatively prime to a prime number p, and pr j  ps`. Then, vp

�� ps`
pr j

��
� s � r ,

with equality if pr j < ps .

Proof. The first non-zero entry in the p-adic expansion of pr j occurs exactly in
the r th place, corresponding to the coefficient of pr , and similarly the first non-zero
entry of ps j is in the sth place. When subtracting ps` � pr j , there is a sequence
of borrows from the (r + 1)st place to the sth place. Hence, there are at least s � r
borrows. If pr j < ps , no additional borrows occur.

We make use of the exterior-power representations for PGLn to deduce Corol-
lary 1.4. This was the main device of [3]. Given a PGLn-torsor with Brauer class
↵, and an integer 0  m  n, this produces a PGL(nm)

-torsor with Brauer class m↵.
This construction is that of Proposition 3.2 in the specific case of a Young diagram
consisting of a single column.

Lemma 2.3. Suppose that per(↵) = p⌫ , where p is a prime number. Then the
following hold:

(1) ind(m↵)| ind(↵) for all integers m;
(2) ind(m↵)|

�ind(↵)
m

�
for all integers m satisfying 1  m  p⌫

� 1.

Proof. The main result of [3] says that the indices of ↵ and m↵ are powers of p.
Write ind(↵) = p� .

We prove item (2) first. By definition of the index, there is a PGLp� `-torsor
having Brauer class ↵, where ` is prime to p. Taking the m-th exterior power, we
produce a PGL

(p
� `
m )
-torsor having Brauer class m↵. By Corollary 2.2,

vp

✓✓
p� `

m

◆◆
= vp

✓✓
p�

m

◆◆
= vp

✓✓
ind(↵)

m

◆◆
,

since m  p⌫
� 1  p�

� 1.
We now prove item (1). We may assume that 1  m  p⌫

� 1, and apply
part (2). Kummer’s theorem says that vp

⇣�ind(↵)
m

�⌘
is the number of carries when

m is added to p�
� m in base p. Both m and p�

� m can be written in at most
� base p digits, and it follows that the number of carries is at most � . Therefore
vp(ind(m↵))  � , as desired.

Proof of Theorem 1.4 assuming Theorem 1.3. By Theorem 1.3 and Lemma 2.3,
ind(m↵)| ind(↵) for any Brauer class ↵ and any m. If m is prime to the period of
↵, let j be a positive integer such that jm ⌘ 1 (mod per(↵)). Then, j is prime to
per(m↵), so ind(↵) = ind( jm↵)| ind(m↵)| ind(↵). Hence, part (2) of the theorem
results immediately.

We prove (1). We know from Theorem 1.3 and Lemma 2.3 that ind(m↵)|d,
so we have to prove that ind(m↵) divides

�d
m
�
. Let p be a prime dividing d, and
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write d = p� `, where ` is prime to p. Let ↵p denote the p-component of ↵.
Since vp(ind(m↵)) = vp(ind(m↵p)) by Theorem 1.3, it is enough to prove that
vp(ind(m↵p))  vp

��d
m
��
. Let m ⌘ m0 (mod p⌫) with 0  m0 < p⌫ , where

per(↵p) = p⌫ . Then, vp(ind(m↵p)) = vp(ind(m0↵p)). We know by Lemma 2.3
and another invocation of Corollary 2.2 that vp(ind(m0↵p))vp

��p�

m0

��
=vp

��p� `
m0

��
.

So it suffices to show that vp
��p� `

m0

��
 vp

��p� `
m

��
. Since vp(m0) = vp(m) by

construction, this equality follows once again from Corollary 2.2.
Finally, for (3), note that, by Theorem 1.3, it is enough to consider the case

when m = p� and d = p� are powers of the same prime p and �  � . Then,
we know that ind(m↵) divides

�p�

p�

�
by Lemma 2.3. The p-adic valuation of this

binomial coefficient is the number of carries when p� is added to p�
� p� in the

p-adic expansions of these numbers. There are � � � of these, and in the notation
of (3), we have d/e = p��� .

3. Proof of Theorem 1.3

The method of proof of our theorem is to study certain morphisms between pro-
jective general linear groups corresponding to symmetric powers. We arrived at
these by considering morphisms corresponding to more general Young tableaux,
and some of the full theory of such morphisms is retained here in hope that it may
be useful in solving other problems.

We write |�| for the total number of boxes in the young diagram �. For all
other conventions about Young diagrams and Young tableaux, we refer to Fulton’s
book [4].

To begin, we note that linear representations of GLn corresponding to Young
diagrams can be defined integrally. A point that caused the authors some unease
in the drafting is that the associated representations of the symmetric group are not
necessarily irreducible, as they are over the complex numbers. This is not important
here, however; all that is required is the existence of associated representations of
GLn on free modules, no reference is made to irreducibility.

Proposition 3.1. Let R be a commutative ring. Let � be a Young diagram, let n � 1
be an integer and let N denote the number of Young tableaux on � with entries in
{1, . . . , n}. There is a map ��(R) : GLn(R) ! GLN (R), functorial in R, which
fits in a functorially defined commutative square

Gm(R) //

x 7!x |�|

✏✏

GLn(R)

��

✏✏
Gm(R) // GLN (R),

(3.1)

the horizontal maps being the inclusion maps of the subgroup of scalar invertible
matrices.
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Proof. Write V for Rm . We can construct a Schur module V �, as in [4, Chapter 8].
This construction is functorial in both the free R-module V and the ring R, and V �

is equipped with a canonical R-linear EndR(V ) action, and in particular a GLn(R)-
action. The module V � is a quotient of V⌦|�| by a certain module of GLn(R)-
invariant relations, and therefore the reduction map V⌦|�|

! V � is compatible
with the GLn(R) action on each.

The module V � is a free R module of dimension N by [4, Chapter 8, Theorem
1], and we therefore have a map ��(R) : GLn(R) ! GLN (R), which is moreover
functorial in R.

Finally, the reduction map V⌦|�|
! V � is R-linear, and the action of a scalar

matrix x In 2 GLn(R) on V⌦|�| is by multiplication by x |�|, and it follows that
��(x In) = x |�| IN as asserted.

Proposition 3.2. Let (X,OX ) be a locally ringed topos, let � be a Young diagram,
let m � 1 be an integer, and let N denote the number of Young tableaux on � with
entries in {1, . . . ,m}. There is a map of short exact sequences of group objects in X

1 // Gm

x 7!x |�|

✏✏

// GLm
��

✏✏

// PGLm
��

✏✏

// 1

1 // Gm // GLN // PGLN // 1

(3.2)

and in particular, there is a commutative diagram of cohomology groups in X

H1(X,PGLn)

��

✏✏

// Br(X)

⇥|�|

✏✏

� � // H2(X, Gm)

⇥|�|

✏✏
H1(X,PGLN ) // Br(X)

� � // H2(X, Gm).

(3.3)

Proof. The objects GLi , including the special caseGm = GL1, of X are determined
by the property that GLi (U) = GLi (OX (U)). The objects PGLi are defined as the
quotients GLi /Gm . Diagram (3.2) therefore requires only a commutative square

Gm(OX (U)) //

x 7!x |�|

✏✏

GLm(OX (U))

��

✏✏
Gm(OX (U)) // GLN (OX (U)),

which is functorial in the ring OX (U). This is precisely the content of Diagram
(3.1). We refer to [6, IV 4.2.10] for the existence of the long exact sequence in
cohomology in this generality.

One may deduce that the mapGm ! Gm given by x 7! x |�| induces multipli-
cation by |�| on cohomology groups by deriving these groups as Čech cohomology
groups, among other ways. Diagram (3.3) follows.
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The Azumaya algebra interpretation of Diagram (3.3) is the following: given
the data of a Young diagram � and a degree-m Azumaya algebra A on X , we may
construct a degree-N Azumaya algebra A 0 with the property that [A 0

] = |�|[A ]

in the Brauer group. The power of this construction lies in the great freedom we
have in our choice of �.

To derive general results, however, we should like to have closed-form expres-
sions for N . In the remainder of the paper, the aim of which is to prove an existence
result, we concentrate on one particular case in which these closed-form expres-
sions exist: that of Young diagrams of shape (t), corresponding to t-fold symmetric
powers. In doing this, we abandon all pretence of minimality, being content to pro-
duce colossal representations which happen to satisfy our requirements for prime
factorization.

For a partition of shape � = (t), the number of Young tableaux on � with
entries in {1, . . . ,m}—to wit, the dimension of the t-fold symmetric power of an
m-dimensional vector space—is well known to be

N =

✓
t + m � 1

t

◆
.

Lemma 3.3. Let m � 2 be a positive integer, let p be a prime number such that
vp(m) = s > 0. Let ` be an integer relatively prime to p. There exists some integer
r � 1 satisfying the following three conditions:

(1) r ⌘ 0 (mod `);
(2) r ⌘ 1 (mod ps), and
(3) vp

⇣�r+m�1
r

�⌘
= s.

Proof. Let g be an integer exceeding logp m. Note that g > s, since ps |m. Choose
r � 1 such that

r ⌘ 0 (mod `),

r ⌘ 1 (mod pg).

This r satisfies conditions (1) and (2). We calculate the p-adic valuation of✓
r + m � 1

r

◆
=

✓
r � 1+ m
m � 1

◆
.

The p-adic expansion of r�1 has no terms in any position below the g-th place. The
p-adic expansion of m � 1 has no terms in any position above the g � 1-th place.
It follows from this and Kummer’s theorem that the p-adic valuation of

�r�1+m
m�1

�
agrees with that of

� m
m�1

�
= m, which is s.

Proof of Theorem 1.3. It suffices to prove that vpi (ind(↵)) = vpi (ind(↵i )); indeed,
it is enough to prove this for p = p1. Write a = a1. Choose ` to be the non-p-
primary part of per(↵), i.e., ` =

Qt
i=2 p

ai
i .
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Write s for vp(ind(↵)). We wish to show that s = vp(ind(↵1)). We first show
the inequality vp(ind(↵1)) � s as follows. Take a representativeB for ↵1 for which
vp(deg(B )) = vp(ind(↵1)). Take a representative C for ↵2 + · · · + ↵t for which
p - deg(C ) – this may be done using the main result of [3] for instance. Then
B ⌦ C represents ↵ (see for example [3, Proposition 4]) and

s = vp(ind(↵))  vp(deg(B ⌦ C )) = vp(deg(B )) = vp(ind(↵1))

as required.
We now show the reverse inequality. There is some Azumaya algebra A, of

degree m, representing ↵ and such that vp(m) = vp(ind(↵)) = s.
We apply Lemma 3.3, usingm, p, s and ` as above in order to obtain an integer

r . Using the projective representation PGLm ! PGLN given by Young diagrams
of the shape (r), viz. the r-fold symmetric power, we obtain a representative A0

for the Brauer class r↵ having degree N =

�r+m�1
r

�
. Since r ⌘ 1 (mod ps) and

r ⌘ 0 (mod `), it follows that r↵ = ↵1. In particular, ind(↵1)|N . We also know
that vp(N ) = s, so that vp(ind(↵1))  s, as required.

4. Examples

We end the paper with an example to show why it is necessary in the proof to
consider representations of projective general linear groups other than the exterior
power representations of [3]. Let P be a PGL36-torsor with Brauer class ↵ =

↵2 + ↵3, these summands being of period 4 and 9 respectively. We would like to
show that ↵2 has index dividing 4. Proceeding as in [3], we might use the exterior
algebra representations

PGL36 ! PGL(369 )

with class ↵2 and
PGL36 ! PGL(3627)

with class �↵2 to find explicit representatives. However, v2
��36
9
��

= v2
��36
27

��
= 4,

so these do not suffice to establish that ind(↵2) is any smaller than 16.
Unwinding the proof of Theorem 1.3, we find we are asked to take r such that

r ⌘ 0 (mod 9), such that r ⌘ 1 (mod 4) and such that v2
⇣�r+36�1

r
�⌘

= 2. The
smallest r produced by the proof of Lemma 3.3 is r = 513.

Once r = 513 is chosen, one has 513↵ = ↵2, and 513-fold symmetric power
gives a representation

PGL36 ! PGL(548513)
.

Hence, associated to any degree 36 Azumaya algebra of class ↵ there is an Azumaya
algebra of class ↵2 of degree

�548
513

�
, which is divisible by 4 = 2s but not by 8.

We remark that this quantity, which is approximately 2.3⇥ 1055, is simply the
output of one particular construction that is known to work in all cases. In fact, in
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the case of 36 and the prime 2, the r = 9-fold (rather than the 513-fold) symmetric
power may be taken instead, yielding the much smaller representation

PGL36 ! PGLN ,

where
N =

✓
44
9

◆
= 708930508 = 22 · 11 · 13 · 19 · 37 · 41 · 43.

Before settling on the current argument to prove Theorem 1.3, we considered an
argument based on diagrams of the form � = (n, 1). These could be used to give
a proof of Theorem 1.3 along the same lines of the one given here. The general
procedure in that case for 36 and p = 2 produces the partition � = (260, 1), which
gives an Azumaya algebra of degree N around 1.14 ⇥ 1047 with v2(N ) = 2 and
class ↵2.
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