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Equilibria of point-vortices on closed surfaces

TERESA D’APRILE AND PIERPAOLO ESPOSITO

Abstract. We discuss the existence of equilibrium configurations for the Hamil-
tonian point-vortex model on a closed surface6. The topological properties of6
determine the occurrence of three distinct situations, corresponding to S2, to RP2
and to 6 6= S2, RP2. As a by-product, we also obtain new existence results for
the singular mean-field equation with exponential nonlinearity.

Mathematics Subject Classification (2010): 35Q35 (primary); 35J61, 35J20,
76B47 (secondary).

1. introduction

Let 6 be a closed surface (i.e., compact and without boundary) endowed with a
metric tensor g. We are concerned with equilibrium configurations of the Hamilton
function

H0(⇠) =

X
i

02i H(⇠i , ⇠i ) +

X
i 6= j

0i0 jG(⇠i , ⇠ j )

for ⇠ = (⇠1, . . . , ⇠N0) 2 6N0
\ {⇠i 6= ⇠ j for i 6= j}, where G(x, p) is the Green

function of �1g over 6 with singularity at p and H(x, p) is its regular part (see
[30] for the definition of the Green function of a closed surface).

In an inviscid and incompressible fluid, the velocity field and the pressure obey
the Euler equations. For a two-dimensional turbulent flow, the point-vortex ansatz
! =

PN0
i=1 0i�⇠i (t) for the (scalar) vorticity function ! leads to the Hamiltonian

system
0i @t⇠i = J r⇠iH0(⇠) 8 i = 1, . . . , N0, (1.1)

where J denotes the symplectic matrix

J =

✓
0 1

�1 0

◆
.
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The quantity 0i 2 R \ {0} is the strength of the point-vortex ⇠i , whose sign de-
termines the clockwise/counterclockwise rotation of the fluid near ⇠i . Based on
ideas of Helmoltz [34], (1.1) has been derived by Kirchhoff [38] in R2. Extended
by Routh [50] to a bounded domain in terms of the so-called hydrodynamic Green
function (see also [41,42]), the renormalized kinetic energyH0 is referred to as the
Kirchhoff-Routh path function. The interested reader can look at [1,48] for the case
of a surface (like spheres, cylinders or tori), and refer to [28,33,45,47,48,51] for a
modern treatment of the topic.

Apart from R2 and the case of special domains (like discs, half-discs, annuli,
strips), very little is known concerning the existence of equilibrium configurations
for H0. On a closed surface, notice that H0 always has a minimum point when
the point-vortices have the same orientation (say, 0i � 0 for all i = 1, . . . , N0).
The presence of counter rotating vortices makes the problem very difficult. On a
bounded domain, when N0  4 point-vortices of alternating orientations have been
considered in [9] with 0i = (�1)i and in [8] for the general case (see also [6] for
N0 = 2). The assumption on N0 prevents the collision of some ⇠i ’s with opposite
orientations, the simplest case being given by three point-vortices with 0i = 1
collapsing onto one with 0i = �1 (see [32] in a PDE context).

In this paper we address the case where all the point-vortices with negative ori-
entation are kept fixed. Denoting them by p1, . . . , p` with strengths�↵1

2 , . . . ,�↵`
2 ,

we are led to study

H(⇠) =

NX
j,k=1
j 6=k

0 j0kG(⇠ j , ⇠k) �

X̀
i=1

↵i

NX
j=1

0 jG(⇠ j , pi ) +

NX
j=1

h(⇠ j ) (1.2)

for ⇠ = (⇠1, . . . , ⇠N ) 2M, where N = N0 � `, ↵i , 0i > 0, h 2 C1(6, R) and

M = (6 \ {p1, . . . , p`})
N

\ 1, 1 =

n
⇠ 2 6N

: ⇠ j = ⇠k for some j 6= k
o

.

Inspired by some arguments in [4,10], the main aim of our paper is to investigate the
interaction of the topology of 6 with the presence of singular sources p1, . . . , p`

toward the existence of equilibria for H. As we will see below, the three cases
6 = S2, 6 = RP2 and 6 6= S2, RP2 exhibit completely different phenomena.

The critical point ofH will be found at the max-min energy level
H⇤

= sup
�2F

min
⇠2K

H(� (⇠)),

where F collects a suitable family of deformation maps from K into an open set
D b M that keep fixed K0 ⇢ K (for some compact sets K , K0). To prevent the
collapsing for part of the ⇠ j ’s onto some pi , the following compactness condition is
crucial:

↵i /2

8><
>:

0
B@X

j,k2J
j 6=k

0 j0k

1
CA

 X
j2J

0 j

!
�1

: J ⇢ {1, . . . , N }

9>=
>; 8 i = 1, . . . , `. (1.3)
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When 01 = · · · = 0N = 1, notice that (1.3) simply reduces to

↵i 6= 1, . . . , N � 1 8 i = 1, . . . , `. (1.4)

To produce the linking structure

H⇤ < min
⇠2K0

H(⇠),

we need that a crucial intersection property is accomplished: more precisely, by
applying a topological degree argument, for all � 2 F we catch a point ⇠⇤

� 2 K
with prescribed P j (� j (⇠

⇤

� )), j = 1, . . . , N , for suitable retraction maps P j . When
6 6= S2, RP2, we take P j = P for all j = 1, . . . , N , P being a retraction of 6
onto a simple closed curve � ⇢ 6 \ {p1, . . . , p`}. Since the fibers of P are well
separated, the value H⇤ is uniformly (with respect to K0) bounded from above,
whereas min⇠2K0 9(⇠) can be made arbitrarily large by a suitable choice of K0.
Our first main result then reads as follows:

Theorem 1.1. Let 6 be a closed surface topologically different from S2 and RP2.
If (1.3) holds, thenH has a critical point.

When 6 = RP2, every map P j , j = 1, . . . , N , can be taken instead as a retraction
P of RP2 \ {pi } onto a simple closed curve � ⇢ 6 \ {p1, . . . , p`} for a fixed
i = 1, . . . , `. In this case the fibers of P are curves emanating from the singular
source pi and the assumption

NX
j,k=1
j 6=k

0 j0k < ↵i

NX
j=1

0 j (1.5)

is required to assure that the mutual interactions between the components of ⇠ are
dominated by the interplay between each component with pi , which is essential
to get a uniform control from above on H⇤. So, our second main result is the
following:

Theorem 1.2. Let 6 be a closed surface topologically equivalent to RP2. If (1.3)
and ✓ NX

j,k=1
j 6=k

0 j0k

◆✓ NX
j=1

0 j

◆
�1

< max{↵1, . . . ,↵`} (1.6)

hold, thenH has a critical point.

The Euclidean case [22,25], which has been the starting point for our investigation,
has a strong analogy with RP2. When 01 = · · · = 0N = 1, (1.6) becomes

N � 1 < max{↵1, . . . ,↵`}.
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The case 6 = S2 is more involved since S2 \ {p} is contractible, therefore it
is essential that we remove two points from S2 in order to find a suitable retraction.
So, first of all we need to assume ` � 2. Let us split

{1, . . . , N } = N1 [ · · · [N`

with disjoint union and set Ni = #Ni � 0. Then, each i = 1, . . . , ` has to be
coupled with r(i) 6= i and we choose P j = Pi for all j 2 Ni , Pi being a retraction
of S2\{pi , pr(i)} onto a simple closed curve �i ⇢ S2\{p1, . . . , p`}. The fibers ofPi
are curves between pi and pr(i), and then part of such Ni points could approach not
only pi but also pr(i). Now, by exchanging the role of i and r , for every i = 1, . . . , `
we define the set Ji ⇢ {1, . . . , `}\{i}, as made up of those indices which are coupled
in the above construction with i , and then {1, . . . , `} is the disjoint union of such
Ji , i = 1, . . . , `. To obtain an upper bound onH⇤ we need to require

X
j,k2Ñi
j 6=k

0 j0k < ↵i
X
j2 ˜Ni

0 j 8i = 1, . . . , `, (1.7)

where
˜Ni = Ni [

[
r2Ji

Nr .

When 01 = · · · = 0N = 1, notice that (1.7) turns into

Ni +

X
r2Ji

Nr � 1 < ↵i 8 i = 1, . . . , `. (1.8)

Our third main result reads as follows:

Theorem 1.3. Let 6 be a closed surface topologically equivalent to S2 and ` � 2.
If (1.3) and (1.7) hold, thenH has a critical point.

Hereafter, we restrict our attention to the case 01 = · · · = 0N = 1. The
corresponding H can also be seen as the reduced energy (cf. [16, 17, 30]) for the
following singular mean-field problem

�1gu = �

✓
(x)euR

6 (x)eu dVg
�

1
|6|

◆
� 4⇡

X̀
i=1

↵i

✓
�pi �

1
|6|

◆
(1.9)

when looking for solutions blowing-up at distinct points ⇠1, ..., ⇠N 26\{p1, ..., p`}.
Here, � is a parameter close to 8⇡N ,  : 6 ! R is a smooth positive function,
and p1, . . . , p` 2 6 are singular sources with ↵i > 0. We denote by �p the Dirac
measure supported at p, by dVg the area element in (6, g) and by |6| =

R
6 dVg

the area of 6.
Regular mean-field equations naturally arise in conformal geometry [13, 14,

36], in statistical mechanics [11,12,15,37] and in the study of turbulent Euler flows
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[53]. The singularities can model Euler flows interacting with sinks of opposite
vorticities [57] or conical singularities on a surface [4,21,56], and naturally arise in
connection with the Chern-Simons-Higgs model [20,26,43,49,54,58] and the Elec-
troweak theory [3,7, 52]. To attack existence issues, one can compute the topologi-
cal degree [16–20,39,40], use a min-max variational approach [4,5,7,27,46] or per-
turbative arguments in the regime � ! 8⇡N [16,17,30] (see also [2,23–25,31,44]).
The topological degree is non-zero when 6 6= S2, RP2, ↵ j 2 N and � /2 8⇡N
(see [19]). For S2 this is still true (of [20]) when � 2 (8⇡, 16⇡) and ` � 2, but the
topological degree vanishes in several cases like:

• ` = 1 and � 2 (8⇡, 8⇡(1 + ↵1)) [ (8⇡(2 + ↵1),+1), which is consistent
with the necessary condition for the existence: �  8⇡ or � � 8⇡(1 + ↵1)
(see [55]);

• ` = 2 and � 2 (8⇡(1+↵1), 8⇡(1+↵2))[ (8⇡(2+↵1+↵2),+1) if ↵1  ↵2
(in agreement with the necessary condition for the existence: � < 8⇡(1+ ↵1)
or � > 8⇡(1+ ↵2)) (see [5]).

In a similar way, the topological degree can vanish when 6 = RP2. An alternative
variational approach is also available, which is completely general for6 6= S2, RP2
[4], see also [10] and requires the following restrictions when 6 = S2 (cf. [5, 46]):

a) ↵1, . . . ,↵`  1, � 2 (8⇡, 16⇡) \ {8⇡(1+ ↵1), . . . , 8⇡(1+ ↵`)} and #J� � 2,
where

J� = {i = 1, . . . , ` : � < 8⇡(1+ ↵i )};

b) ` � 2 and � 2 (0, 8⇡ min
i=1,...,`

(1+↵i )) \ 8⇡N, which can be stated equivalently
as #J� = ` � 2.

In the special regime � ! 8⇡N solutions of (1.9) may possibly exhibit concentra-
tion phenomena, a property of definite physical interest since the right hand side of
(1.9) represents precisely the vorticity of the Euler flow. The concentration points, if
different from p1, . . . , p`, have to correspond to critical points of a reduced energy
having H (with h(⇠) = H(⇠, ⇠) +

1
4⇡ log (⇠)) as main order term. The existence

of such concentrated solutions has been addressed, among other things, in [17] for
non-degenerate critical points ⇠ = (⇠1, . . . , ⇠N ) ofH with non-vanishing

A(⇠) =

NX
j=1

(⇠ j )e8⇡H(x,⇠ j )�4⇡
P`

i=1 ↵i G(⇠ j ,pi )+8⇡
P

k 6= j G(x,⇠k)

⇥


1g log (⇠ j ) +4⇡

2N�3

|6|

�2K (⇠ j )

�
,

where 3 =

P`
i=1 ↵i and K is the Gaussian curvature of (6, g). The critical points

provided by Theorems 1.1, 1.2 ,1.3 may possibly be degenerate, but the critical
value H⇤ is stable with respect to small C1-perturbations of H, since it has been
found by a max-min scheme. We recall the notion of stable critical value.
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Definition 1.4. A critical value H⇤ of H is stable if for any " > 0 there exists
� > 0 such that if k9 �HkC1  �, then 9 has at least one critical value 9⇤ with
|9⇤

�H⇤
| < ".

Thanks to the result in [30], stable critical values ofH, under the sign assump-
tion A < 0 (A > 0, respectively), give rise to a family of solutions u� for (1.9) such
that

�(x)eu�R
6 (x)eu�dVg

! 8⇡
NX
j=1

�⇠ j

as � ! 8⇡N� (� ! 8⇡N+, respectively) in the measure sense, for a critical
point ⇠ of H with H(⇠) = H⇤. Consequently, as a by-product of Theorems 1.1,
1.2 and 1.3, we provide solutions of multi-bubble type to equation (1.9) in the spe-
cial regime � ! 8⇡N . In many cases, we obtain the perturbative counterparts of
global existence results already available in literature, obtained via degree theory or
a global variational approach. However, compared to such previous results, in some
situations one can still have existence when the degree of the equation vanishes even
beyond the threshold on � imposed by a) and b), as we will see by explicit examples
(see Remark 1.6 and Example 1.7 below).

Setting
[↵]

�

= max{n | n 2 Z, n < ↵} 8↵ 2 R,

for 01 = · · · = 0N = 1 we summarize Theorems 1.1, 1.2 and 1.3 as follows:

Theorem 1.5. Assume that (1.4) holds for N . Then

H(⇠) =

NX
j,k=1
j 6=k

G(⇠ j , ⇠k) �

X̀
i=1

↵i

NX
j=1

G(⇠ j , pi ) +

NX
j=1

h(⇠ j )

has a C1�stable critical valueH⇤ if

• 6 6= S2, RP2;
• 6 = RP2 and

N  max{1+ [↵1]
�, . . . , 1+ [↵`]

�

};

• 6 = S2, ` � 2 and

Ni +

X
r2Ji

Nr  1+ [↵i ]
�

8 i = 1, . . . , `, (1.10)

for Ni 2 N [ {0} and disjoint subsets Ji ⇢ {1, . . . , `} \ {i}, i = 1, . . . , `, so
that

N =

X̀
i=1

Ni , {1, . . . , `} =

[̀
i=1

Ji .
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Remark 1.6. For � ! 8⇡N , on the standard sphere (S2, g0) let us compare (1.10)
with a) � b). Assumption (1.10) turns out to be more general for ` � 3 by allowing
larger values of �: notice that N may possibly overcome the value maxi (1 + ↵i ).
Moreover, the choice Ni = 0 for all i 6= i1, i2 and Ji1 = {i2}, Ji2 = {i1} shows
that #J� � 2 implies the validity of (1.10), extending a) to general ↵i and b). Since
in this case A < 0 if  = 1 in view of K = 4⇡ |6|

�1, Theorem 1.5 provides
new existence results for equation (1.9) on (S2, g0) with  = 1 when � ! 8⇡N
compared to [5, 46].
Example 1.7. Consider equation (1.9) on the standard sphere (S2, g0) with  = 1
and let

` = 3, ↵1 = ↵2 = ↵ 2 (1, 2), ↵3 � 4.
According to the degree formula computed by Chen-Lin [19], it can be easily
checked that the degree vanishes for � 2 (8⇡(2 + ↵), 32⇡); moreover the exis-
tence results in [5, 46] do not work in such an interval since neither assumption
a) nor assumption b) are satisfied. On the other hand, (1.10) is verified by taking
J1 = ;, J2 = {3}, J3 = {1, 2}, and N1 = N2 = 2, N3 = 0, and it is immediate to
check that A < 0 if  = 1. Then, as a by-product of Theorem 1.5, we deduce the
existence of a solution to the Liouville equation (1.9) for � in a small left neighbor-
hood of 32⇡ with N = 4 blow-up points. This example provides a new existence
result in a perturbative regime for equation (1.9) which is not covered neither by the
degree theory [19] nor by variational methods [5, 46].

Assumption (1.10) comes from (1.8) but is quite involved in such a general
form. Finally, consider Theorem 1.5 restricted to the case #Ji = 1, i = 1, . . . , `,
which, up to re-ordering, simply means that each pi is coupled (in the construction
of Pi ) with pi+1 (with the convention p`+1 = p1, ↵`+1 = ↵1 and N`+1 = N1).
Referred to as a consecutive coupling of the pi ’s, assumption (1.10) reduces to

Ni + Ni+1  1+ [↵i+1]
�

8 i = 1, . . . , `. (1.11)

From now on we will use the following notation: the quantities ai = 1 + [↵i ]
�,

i = 1, . . . , `, correspond to a general consecutive coupling, whereas b1, . . . , b`

will denote the permutation of a1, . . . , a` in increasing order b1  . . .  b`. Given
J ⇢ {1, . . . , k}, for any 2  k 

`
2 let us define

sk(J ) =

kX
j=2

⇥
�J ( j)a2 j + (1� �J ( j))

�
a2 j+1 + �J ( j � 1)min{a2 j�1, a2 j }

�⇤
,

where �J denotes the characteristic function of J . Set c1 = a1, g1 = a3, d1 = f1 =

+1, and for k � 2

ck = min{a2+sk(J ) : J s.t. 1, k 2 J }, dk =min{a3+sk(J ) : J s.t. 1 62 J, k 2 J }

and

fk =min{a2+sk(J ) : J s.t. 1 2 J, k 62 J }, gk =min{a3+sk(J ) : J s.t. 1, k /2 J }.
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In order to determine the maximal N =

P`
i=1 Ni so that (1.11) holds, in Ap-

pendix A simple but involved computations show the following:

Theorem 1.8. For a general consecutive coupling, the maximal N is given by

N = min{c `
2
, g `

2
}

for ` even and

N = max
n
min{c `�1

2
+ â1 � N1, d `�1

2
+ â1, f `�1

2
, g `�1

2
+ N1} : â1 �min{a1, a`}

 N1  min{a1, a2}
o

for ` odd, where â1 = min{a1,min{a1, a2} + min{a1, a`}}. For the increasing
consecutive coupling, N takes the form

N =

8>>>>>><
>>>>>>:

`�2
2X
j=0

b2 j+1 ` even

min
⇢
b1 +

`�1
2X
j=1

b2 j ,
1
2
X̀
j=1

b j
�

` odd.

(1.12)

When ` = 2, 3 consecutive (increasing or not) and non-consecutive couplings lead
to the maximal N given by (1.12). However, for ` � 4 non-consecutive couplings
may possibly give rise to a larger maximal N than consecutive ones, which in turn
may do better than the increasing consecutive coupling.

The paper is organized as follows. In Section 2 we set up the abstract max-min
scheme to provide a stable critical level H⇤ of H. Here we make use of a crucial
compactness property which is established in Section 3. Finally, in Appendix A
we derive the expression for the maximal N given in Theorem 1.8 along with a
thorough discussion of the cases ` = 2, 3, 4.

2. A max-min argument and the role of the topology of 6

Let us outline the variational argument we are going to set up. First, we need to
construct compact sets K , K0 (with K connected) and an open smooth set D so
that

K0 ⇢ K ⇢ D ⇢ D ⇢M,

where

M = (6 \ {p1, . . . , p`})
N

\ 1, 1 = {⇠ 2 6N
: ⇠ j = ⇠k for some j 6= k}.



EQUILIBRIA OF POINT-VORTICES ON CLOSED SURFACES 295

Let

F=

n
0(1,·):02C([0,1]⇥K ,D) s.t. 0(0,·)=idK ,0(t,·)

��
K0

=idK08t2[0,1]
o

and
H⇤

= sup
�2F

min
⇠2K

H(� (⇠)).

Through a standard deformation argument, the existence of a critical point ⇠ 2 D
of H with H(⇠) = H⇤ is driven by a change in the topology of superlevel sets for
H in D at heightH⇤, as expressed by

H⇤ < min
⇠2K0

H(⇠) (2.1)

(with the convention min⇠2K0H(⇠) = +1 if K0 = ;). To exclude the presence
of constrained critical points ofH

��
@D at levelH⇤, we further require the following

compactness condition:

8 ⇠ 2 {H = H⇤

} \ @D 9⌧ 2 T⇠ (@D) s.t. h⌧,rH(⇠)i 6= 0, (2.2)

where T⇠ (@D) stands for the tangent space of @D at ⇠ . Since properties (2.1)-(2.2)
continue to hold also for functionals which are C1-close to H, notice that such
critical points are stable under C1-small perturbations ofH.

Let us set

8(⇠) =

NX
j,k=1
j 6=k

0 j0kG(⇠ j , ⇠k) +

X̀
i=1

↵i

NX
j=1

0 jG(⇠ j , pi ) +

NX
j=1

h(⇠ j ), (2.3)

and for M > 0 sufficiently large define D as

D =

�
⇠ 2M : 8(⇠) < M

 
.

We remark that the smoothness of @D will follow later from the nonexistence of
points satisfying the equation (3.2) with (�1,�2) = (0, 1).

Since
8(⇠) ! +1 as ⇠ ! @M

in view of (2.5) below, it follows that D is an open set with D ⇢ M. Letting
�1, . . . , �N be (not necessarily distinct) simple, closed curves in 6 \ {p1, . . . , p`}

and ⇠0 = (⇠01 , . . . , ⇠
0
N ) 2 �1 ⇥ · · · ⇥ �N be a N�tuple of distinct points, introduce

the sets K and K0 as follows:

W connected component of
⇢
⇠ 2�1⇥···⇥�N :min

j 6=k
dg(⇠ j ,⇠k)>M�1

�
s.t. ⇠02W

K=W , K0=
n
⇠ 2K

���min
j 6=k

dg(⇠ j ,⇠k)=M�1
o
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for M > (min j 6=k dg(⇠0j , ⇠
0
k ))�1. By construction K and K0 are compact sets, K is

connected and K0 ⇢ K . Since � j , j = 1, . . . , N , is a curve in 6 \ {p1, . . . , p`},
we have that

inf{dg(⇠ j , pi ) : ⇠ j 2 � j , i = 1, . . . , `} > 0. (2.4)

Thanks to the decomposition

G(x, p) = �

1
2⇡

log dg(x, p) + H(x, p), H 2 C(62), (2.5)

we can rewriteH in (1.2) and 8 in (2.3) as

H = 9+ + O(1), 8 = 9� + O(1)

9±(⇠) = �

1
2⇡

NX
j,k=1
j 6=k

0 j0k log dg(⇠ j , ⇠k) ±

X̀
i=1

↵i
2⇡

NX
j=1

0 j log dg(⇠ j , pi ), (2.6)

where
|(H� 9+)(⇠)| + |(8 � 9�)(⇠)|  C0 8 ⇠ 2 6N

for some C0 > 0. By (2.4) and (2.6) we have that supK 8  C logM for M large,
with a universal C > 0, and then the inclusion K ⇢ D does hold for M sufficiently
large, as required.

We are concerned nowwith the proof of (2.1), whereas (2.2) will be established
in the next Section thanks to the validity of (1.3). We begin with the following
lemma.

Lemma 2.1. The following holds

min
⇠2K0

H(⇠) ! +1 as M ! +1.

Proof. Assume by contradiction the existence of sequences ⇠n = (⇠n1 , . . . , ⇠nN ) 2

�1 ⇥ · · · ⇥ �N and Mn such that

sup
n
H(⇠n) < +1, min

j 6=k
dg(⇠nj , ⇠

n
k ) = M�1

n ! 0 as n ! +1.

Up to a subsequence, we can find j0 6= k0 so that

dg(⇠nj0, ⇠
n
k0) = M�1

n ! 0 as n ! +1.

By (2.4) and (2.6) we deduce that

H(⇠n) �

1
2⇡

0 j00k0 logMn + O(1) ! +1

as n ! +1, yielding a contradiction.
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Thanks to Lemma 2.1, the validity of (2.1) will follow once we have obtained an
upper bound on the max-min valueH⇤ for large M .

To this aim, let P j , j = 1, . . . , N , be a retraction of 6 \ {p1, . . . , p`} onto
� j , i.e., P j : 6 \ {p1, . . . , p`} ! � j is a continuous map so that P j

��
� j

= id� j . A
simple application of the topological degree yields the following crucial intersection
property:

Theorem 2.2. For all � 2 F there exists ⇠⇤

� 2 K so that P j (� j (⇠
⇤

� )) = ⇠0j for all
j = 1, . . . , N .

Proof. Fix � 2 F , and write it as � = 0(1, ·), where 0 2 C([0, 1] ⇥ K ,D)
satisfies 0(0, ·) = idK and 0(t, ·)

��
K0

= idK0 for all t 2 [0, 1]. Extend 0 from K
to �1 ⇥ · · · ⇥ �N as 0̃:

0̃(t, ⇠) = 0(t, ⇠) if ⇠ 2 K , 0̃(t, ⇠) = ⇠ if ⇠ 2 (�1 ⇥ · · · ⇥ �N ) \ K .

Notice that the topological boundary of K relative to �1 ⇥ · · · ⇥ �N is contained
in K0, and then 0̃ 2 C([0, 1] ⇥ (�1 ⇥ · · · ⇥ �N ),D) in view of 0(t, ⇠) = ⇠ for
all t 2 [0, 1], ⇠ 2 K0. Writing 0̃ as 0̃ = (0̃1, . . . , 0̃N ), the map H : [0, 1] ⇥

(�1 ⇥ · · · ⇥ �N ) ! (�1 ⇥ · · · ⇥ �N ) with components Hj (t, ⇠) = (P j � 0̃ j )(t, ⇠),
j = 1, . . . , N , is a continuous map so that H(0, ·) = id�1⇥···⇥�N .

To use a degree argument, we can identify each � j , j = 1, . . . , N , with S1
through a suitable homeomorphism, and then regard H as a map [0, 1] ⇥ (S1)N !

(S1)N with H(0, ·) = id(S1)N . Given the annulus A =

n
1
2  |x |  2

o
, extend H

from (S1)N to AN as H̃ = (H̃1, . . . , H̃N ), with

H̃ j (t, x1, . . . , xN ) = |x j |Hj

✓
t,

x1
|x1|

, . . . ,
xN
|xN |

◆
, (x1, . . . , xN ) 2 AN .

By construction H̃ is a continuous map from [0, 1] ⇥ AN into AN , owing to
|H̃ j (t, x1, . . . , xN )| = |x j | for all t 2 [0, 1], and H̃(0, ·) = idAN . Moreover,
H̃(t, ·) maps the boundary @(AN ) into itself, and we are in the position to apply a
degree argument: by homotopy invariance we have that

deg(H̃(1, ·), AN , ⇠0) = deg(H̃(0, ·), AN , ⇠0) = deg(id, AN , ⇠0) = 1,

where ⇠02 (S1)N corresponds to the original ⇠02�1⇥. . .⇥�N through the identifica-
tions of � j , j=1, . . . , N , with S1. Then, there exists x⇤

=(x⇤

1 , . . . , x
⇤

N )2 AN so that
H̃(1,x⇤) = ⇠0, and consequently x⇤

2 (S1)N thanks to |x⇤

j | = |H̃ j (1, x⇤

1 , . . . , x
⇤

N )| =

|⇠0j | = 1. Getting back,wehave thus found ⇠⇤

2 �1⇥· · ·⇥�N so that H(1, ⇠⇤) = ⇠0.
We claim that ⇠⇤

2 K : otherwise, if ⇠⇤

2 (�1⇥ · · ·⇥�N )\K , then H(1, ⇠⇤) = ⇠⇤,
which would lead to ⇠⇤

= ⇠0, and this provides a contradiction with ⇠0 2 K . So,
⇠⇤

2 K and Hj (1, ⇠⇤) = P j (� j (⇠
⇤)) = ⇠0j for all j = 1, . . . , N .
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Since
H⇤

= sup
�2F

min
⇠2K

H(� (⇠))  sup
�2F

H(� (⇠⇤

� ))

with ⇠⇤

� given by Theorem 2.2, an upper bound onH⇤ is then reduced to show that

sup
�2F

9+(� (⇠⇤

� ))  C (2.7)

does hold for M large, in view of (2.6). The topological properties of 6 play here a
crucial role to find the retractionsP j , j = 1, . . . , N , and to investigate the structure
of its fibers in order to prove (2.7). By the topological classification of closed sur-
faces, we have that6 is homeomorphic to either the sphere S2 or the connected sum
of tori T or a connected sum of real projective planesRP2. In the next Subsections,
we will separately discuss the case 6 6= S2, RP2 and the case 6 = S2, RP2 (up to
homeomorphic equivalence), completing the proof of Theorems 1.1-1.3.

2.1. The case 6 6= S2, RP2

By Dyck’s theorem [29] 6 is homeomorphic either to the torus T or to the Klein
bottle or to the connected sum T#60, for a closed surface 60. Recall that a torus
and a Klein bottle can be represented by the fundamental square ABA�1B�1 and
ABA�1B, respectively. To fix the ideas, let A, B be a horizontal, vertical edge,
respectively, and let us also assume that the singularities lie in the interior of the
square. In this case, we can construct a retractionP of the surface onto A by simply
projecting along vertical lines, where A represents a circle not passing through the
singularities, and the fibers of P are well-separated:

P�1(⇣1) \ P�1(⇣2) = ; (2.8)

for all ⇣1, ⇣22 A, ⇣1 6=⇣2. For T#60 the fundamental polygon looks like ABA�1 . . .
and contains three edges of a square Q. Let v be one of the two vertices of Q which
do not belong to B. The retraction P is the projection on A inside the square Q and
takes constant value v outside Q, and we can still assume that A does not contain
any singularities. The map P is continuous and its fibers satisfy (2.8).

Via the homeomorphism between 6 and one of the above models, in our
hands we have a retraction map P from 6 onto a simple, closed curve � in 6 \

{p1, . . . , p`} so that

inf{dg(⇠1, ⇠2) : P(⇠1) = µ1,P(⇠2) = µ2} > 0 (2.9)

for all µ1, µ2 2 � , µ1 6= µ2, in view of (2.8). We take �1 = · · · = �N = � ,
P1 = · · · = PN = P and we fix N distinct points ⇠01 , . . . , ⇠

0
N 2 � . By Theorem

2.2 we have that � j (⇠⇤

� ) 2 P�1(⇠0j ) for all j = 1, . . . , N , and then

inf
�
dg(� j (⇠⇤

� ), �k(⇠
⇤

� )) : j 6= k, � 2 F ,M � 2(min
j 6=k

dg(⇠0j , ⇠
0
k ))�1

 
> 0

does hold thanks to (2.9), yielding the validity of (2.7).
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2.2. The case 6 = S2, RP2

Since 6 is a smooth surface, there exists (see for example [35]) a diffeomorphism
! from 6 to S2 or RP2. Let p̃1 = !(p1), . . . , p̃` = !(p`) be the corresponding
singular sources, and g̃ = (!�1) ⇤ g be the induced metric. In this way, (6, g)
is isometrically equivalent to S2 or RP2 endowed with the metric g̃. In Theorem
1.3 let us first consider a consecutive coupling where each pi is coupled with pi+1
(p`+1 := p1), i.e., J1 = {`} and Ji = {i � 1} for all i = 2, . . . , `. The argument
is already involved and contains the main ideas of the general case, which will be
discussed in a sketched way right after.

By using p̃` as north pole on S2, we can construct a diffeomorphism 5 :

6 \ {p`} ! C so that 5(pi ) = qi 2 R for all i = 1, . . . , ` � 1, with qi = i ,
and 5 � !�1 coincides with the stereographic projection through p̃` in a small
neighborhood of p̃`. Since

1
C
g0  g̃  C g0

does hold in every coordinate open set � ⇢ S2 for some C = C(�) > 1, where g0
is the round metric on S2, by compactness of S2 we get

1
C



dg0(x, y)
dg̃(x, y)

 C 8 x, y 2 S2

for some C > 1. Since (S2 \ { p̃`}, g0) is isometrically equivalent to (C, g1), g1 =

4
(1+|z|2)2 dxdy (z = x + iy), via the stereographic projection, we have that there
exists C > 1 so that

1
C



dg(x, y)
dg1(5(x),5(y))

 C 8 x, y 2 6 \ {p`}. (2.10)

Indeed, (2.10) is true on compact subsets of 6 \ {p`}, while near p` it follows by
the property that 5 � !�1 coincides with the stereographic projection through p̃`

near p̃`.
Thanks to (2.10), we can work directly in C. Let us now define a continuous

map 7i,r : C \ {qi , qr } ! S1, i 6= r , as follows:

7i,r (z) =

⇢
ei arg(z�qi ) if Re z 

i+r
2

ei(⇡�arg(z�qr )) if Re z �
i+r
2

if i < r  ` � 1, 7i,`(z) = ei arg(z�qi ) if i < r = ` and 7i,r =
1

7r,i
if r < i . For

✓ 2 (�⇡
2 , ⇡

2 ) notice that the fibers Li,r (✓) = 7�1
i,r (ei✓ ) represent

• the two vertical edges of the isosceles triangle with base qiqr and base angle ✓

Li,r (✓) =

⇢
qi + ⇢ei✓

��� 0 < ⇢ 

r � i
2 cos ✓

�
[

⇢
qr � ⇢e�i✓

��� 0 < ⇢ 

r � i
2 cos ✓

�

for i < r  ` � 1;
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• the straight line starting from qi with angle ✓ for i < r = `;
• the set Lr,i (�✓) for r < i .

Split {1, . . . , N } as the disjoint union of Ni , i = 1, . . . , `, and define continuous
maps P j : 6 \ {p1, . . . , p`} ! � j , j = 1, . . . , N , as

P j = 5�1
✓
qi +

1
4
7i,i+1 � 5

◆
, � j = 5�1

✓
qi +

1
4
S1

◆

when j 2 Ni , i = 1, . . . , ` � 1, and

P j = 5�1 �q1 + `71,` � 5
�
, � j = 5�1

⇣
q1 + `S1

⌘

when j 2 N`. Notice that P j
��
� j

= id� j for all j = 1, . . . , N . Let us fix N
distinct angles ✓1, . . . , ✓N 2 (0, ⇡

2 ), and let ⇠0 = (⇠01 , . . . , ⇠
0
N ) 2 �1 ⇥ · · · ⇥ �N be

a N�tuple of distinct points, with

⇠0j =

⇢
5�1(qi +

1
4e
i✓ j ) if j 2 Ni , i = 1, . . . , ` � 1

5�1(q1 + `e�i✓ j ) if j 2 N`.

Thanks to Theorem 2.2, for all � 2 F we can find z� = (z�1 , . . . , z�N ) 2 CN , with
z�j = 5[� j (⇠

⇤

� )] for j = 1, . . . , N , so that

z�j 2 Li,i+1(✓ j ), 8 j 2 Ni , i = 1, . . . , `

(with ` + 1 = 1). In view of (2.10), (2.7) can be re-formulated as

sup
�2F

9(z� )  C, (2.11)

where

9(z) = �

1
2⇡

NX
j,k=1
j 6=k

0 j0k log dg1(z j , zk) +

X̀
i=1

↵i
2⇡

NX
j=1

0 j log dg1(z j , qi ) (2.12)

for z = (z1, . . . , zN ) 2 CN , with q` = 1. The next lemma establishes the validity
of (2.11).

Lemma 2.3. If ✓1, . . . , ✓N 2 (0, ⇡
2 ) are distinct angles, then

sup
z2Z

9(z) < +1,

where 9 is given by (2.12) and

Z =

n
z = (z1, . . . , zN ) 2 CN

: z j 2 Li,i+1(✓ j ) 8 j 2 Ni , i = 1, . . . , `
o
.
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Proof. Observe that

Li,i+1(✓ j ) \ Lr,r+1(✓k) =

8<
:
qi , qi+1 if r = i
qi+1 if r = i + 1
; otherwise

(2.13)

for all j 2 Ni and k 2 Nr with j 6= k, where q`+1 = q1 and the closure is meant
with respect to dg1 . By (2.13) we can rewrite 9 as

9(z) = �

1
2⇡

X̀
i=1

X
j2Ni

X
k2Ni�1[Ni[Ni+1

k 6= j

0 j0k log dg1(z j , zk)

+

X̀
i=1

↵i
2⇡

X
j2 ˜Ni

0 j log dg1(z j , qi ) + O(1),

where ˜Ni = Ni [ Ni�1 for a consecutive coupling, N0 = N`, N`+1 = N1 and
↵`+1 = ↵1.

For i = 1, . . . , ` and j, k 2 Ni , j 6= k, the two polygonals Li,i+1(✓ j ) and
Li,i+1(✓k) approach the same end-points qi and qi+1 with different angles ✓ j 6= ✓k ,
yielding the inequality

dg1(z j , zk) � � dg1(z j , qi ) dg1(z j , qi+1) (2.14)

for all z j 2Li,i+1(✓ j ) and zk 2Li,i+1(✓k), where � > 0 depends only on ✓1, . . . , ✓N .
Indeed, for i = 1, . . . , ` � 2 we can write points z j , zk near qi as z j = qi + |z j �

qi |ei✓ j , zk = qi + |zk � qi |ei✓k to get

|z j � zk |2 = |z j � qi |2 � 2|z j � qi ||zk � qi | cos |✓k � ✓ j | + |zk � qi |2

� |z j � qi |2 sin2 |✓k � ✓ j |,

and (2.14) follows near qi owing to the equivalence between dg1 and the euclidean
distance on compact subsets ofR2. A similar argument works near qi+1, and (2.14)
is thus proved when i = 1, . . . , ` � 2. Inequality (2.14) is still valid near qi for
i = ` � 1 and near qi+1 for i = `, and the difficult case is when approaching
q` = 1. For z j = q`�1 + |z j � q`�1|ei✓ j and zk = q`�1 + |zk � q`�1|ei✓k the
following holds
��� 1z j �

1
zk

���2= |z j � zk |2

|z j |2|zk |2

=

|z j � q`�1|2 � 2|z j � q`�1||zk � q`�1| cos |✓k � ✓ j | + |zk � q`�1|2

|z j |2|q`�1 + |zk � q`�1|ei✓k |2

�

|zk � q`�1|2 sin2 |✓k � ✓ j |

2|z j |2|zk � q`�1|2
� �

��� 1z j
���2,
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for |z j |, |zk | large, providing the validity of (2.14) with i = ` � 1 near q` = 1 in
view of the invariance of g1 under the map z !

1
z and the equivalence between dg1

and the euclidean distance near 0. A similar argument works for (2.14) with i = `
near q` = 1, and (2.14) is finally established for i = 1, . . . , `.

For i = 1, . . . , ` and j 2 Ni , k 2 Ni+1, the two polygonals Li,i+1(✓ j ) and
Li+1,i+2(✓k) (with L`+1,`+2(✓k) = L1,2(✓k)) just have qi+1 as common end-point,
and, arguing as above, we deduce

dg1(z j , zk) � �max{dg1(z j , qi+1) dg1(zk, qi+1)} (2.15)

for all z j 2 Li,i+1(✓ j ) and zk 2 Li+1,i+2(✓k), where � > 0 depends only on
✓1, . . . , ✓N .

For i = 1, . . . , ` and j 2 Ni , by (2.14) and (2.15) we deduce that

�

X
k2Ni�1[Ni[Ni+1

k 6= j

0k log dg1(z j , zk)

= �

X
k2Ni�1

0k log dg1(z j , zk) �

X
k2Ni
k 6= j

0k log dg1(z j , zk) �

X
k2Ni+1

0k log dg1(z j , zk)

 �

X
k2Ni�1

0k log dg1(z j , qi ) �

X
k2Ni
k 6= j

0k log dg1(z j , qi ) �

X
k2Ni
k 6= j

0k log dg1(z j , qi+1)

�

X
k2Ni+1

0k log dg1(z j , qi+1) + O(1)

= �

X
k2Ñi
k 6= j

0k log dg1(z j , qi ) �

X
k2Ñi+1
k 6= j

0k log dg1(z j , qi+1) + O(1).

Therefore, we have shown that

9(z) = �

1
2⇡

X̀
i=1

X
j2Ni

X
k2Ñi
k 6= j

0 j0k log dg1(z j , qi )

�

1
2⇡

X̀
i=1

X
j2Ni

X
k2Ñi+1
k 6= j

0 j0k log dg1(z j , qi+1)

+

X̀
i=1

↵i
2⇡

X
j2 ˜Ni

0 j log dg1(z j , qi ) + O(1)

= �

1
2⇡

X̀
i=1

 X
j,k2Ñi
k 6= j

0 j0k � ↵i
X
j2 ˜Ni

0 j

�
log dg1(z j , qi ) + O(1)
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and the above quantity is uniformly bounded from above with respect to z 2 Z in
view of (1.7), yielding supZ 9 < +1.

Letting ⇠ be the equivalence relation between antipodal points, the surface
RP2 can be represented as the quotient S2/⇠. We can find a retraction P j : RP2 \

{ p̃i } ! C , j 2 Ni , as the projection along great circles passing through p̃i onto a
given equatorial circle C not passing through p̃1, . . . , p̃`. The fibers of P j , j 2 Ni ,
intersect in p̃i , a fact which can be controlled by an assumption like (1.5). However
the fibers of P j and Pk have intersection points outside p̃1, . . . , p̃`, for all j 2 Ni1
and k 2 Ni2 with i1 6= i2, and an upper bound on H⇤ is not generally available.
In Theorem 1.2 we then restrict the attention to the special case Ni = {1, . . . , N },
with ↵i = max{↵1, . . . ,↵`} for some i = 1, . . . , `. Taking p̃i as the north pole and
C as the equator, we have that the upper hemisphere S2

+
(w.r.t. C) can be projected

onto the equatorial plane and the unit disc D with identified antipodal boundary
points is a model for RP2. Then we can find a diffeomorphism 5 : 6 ! D so
that 5(pr ) = qr 2 R, r = 1, . . . , `, with qi = 0 and �1  q1 < · · · < q`  1.
Moreover, by compactness of 6 the following holds

1
C



dg(x, y)
|5(x) � 5(y)|

 C 8 x, y 2 6 (2.16)

for some C > 1. Letting ⇡ : D \ {0} ! @D be the radial projection, we define
P j = P for all j = 1, . . . , N , where P = 5�1

� ⇡ � 5 : 6 \ {pi } ! � and
� = 5�1(@D). Let us fix N distinct points ⇠01 , . . . , ⇠

0
N 2 � \ {p1, . . . , p`}. In view

of (2.16), the validity of (2.7) will follow by

sup
z2Z

9(z) < +1,

9(z) = �

1
2⇡

NX
j,k=1
j 6=k

0 j0k log |z j � zk | +

X̀
i=1

↵i
2⇡

NX
j=1

0 j log |z j � qi |,
(2.17)

where

Z =

n
z = (z1, . . . , zN ) 2 DN

: z j 2 ⇡�1(⇣ 0j ) 8 j = 1, . . . , N
o
, ⇣ 0j = 5(⇠0j ).

Since ⇡�1(⇣ 0j ) \ ⇡�1(⇣ 0k ) = {0} for j 6= k, arguing as in Lemma 2.3 (2.17) can be
deduced by (1.6).

For a general coupling in Theorem 1.3, we explain below the necessary
changes. Denoting by r(i) the unique index such that i 2 Jr(i), i 2 {1, . . . , `},
we split

{1, . . . , `} =

m[
r=1

Xr
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in disjoint blocks Xr which satisfy

i 2 Xr ) Ji ⇢ Xr and r(i) 2 Xr (2.18)

and are minimal (i.e., no proper subset of Xr satisfies (2.18)). Notice that such a
partition {X1, . . . , Xm} is unique, and (2.18) guarantees that there are no couplings
between indices in different blocks. Thanks to the following result, we can provide
each block with a nice order of all the indices but one (say, the last one):

Lemma 2.4. Let X = {x1, . . . , xn} ⇢ R be a set of n � 2 elements. Let J1, . . . , Jn
be a partition of X so that xi /2 Ji , i = 1, . . . , n, and

X 0

⇢ X : Ji ⇢ X 0 and xr(i) 2 X 0

8 xi 2 X 0

=) X 0

= X, (2.19)

where r(i) 2 {1, . . . , n} is the unique index so that xi 2 Jr(i). Then there exists a
permutation � of {1, . . . , n} so that1

� (i) < � ( j)
) either J⇤

� (i) < x� (i)  J⇤

� ( j) < x� ( j) or J⇤

� ( j) < J⇤

� (i) < x� (i) < x� ( j),
(2.20)

where J⇤

i = Ji \ {x� (n)}, i = 1, . . . , n.

Proof. We argue by induction on n. When n = 2 we have that J1 = {x2}, J2 = {x1}
and (2.20) is satisfied with � = id. If Lemma 2.4 does hold for n, let us discuss
its validity also for n + 1. If Ji 6= ; for any i = 1, . . . , n + 1, then #Ji = 1
for all i , and by (2.19) we can find a permutation � so that J� (i) = {x� (i�1)} for
i � 2 and J� (1) = {x� (n)}, and (2.20) easily follows. Otherwise, we can find a
first permutation ⌧ so that J⌧ (n+1) = ; and ⌧ (n) = r(⌧ (n + 1)). Letting Y =

{x⌧ (1), . . . , x⌧ (n)}, we have that #Y = n and Y still satisfies (2.19) with the partition
J⌧ (1), . . . , J⌧ (n�1), J⌧ (n) \ {x⌧ (n+1)}. Since Lemma 2.4 is true for Y , we can find a
permutation � of {1, . . . , n} so that (2.20) does hold for Y with �. The permutation
� of {1, . . . , n + 1} constructed as � (1) = ⌧ � �(1), . . . , � (i0 � 1) = ⌧ � �(i0 �

1), � (i0) = ⌧ (n+1), � (i0+1) = ⌧ ��(i0), . . . , � (n+1) = ⌧ ��(n)with i0 defined
by �(i0) = ⌧ (n), satisfies (2.20), as it can be straightforwardly checked.

We first make a permutation to have X1 < · · · < Xm and then apply Lemma 2.4 to
each Xr , r = 1, . . . ,m, to get the following:

Proposition 2.5. Up to a permutation, there exist blocks X1 < · · · < Xm , m � 1,
satisfying (2.18) and for all r = 1, . . . ,m:

i, j 2 Xr , i < j ) either J⇤

i < i  J⇤

j < j or J⇤

j < J⇤

i < i < j, (2.21)

where J⇤

i = Ji \ {lr } and lr = max Xr .

1 Hereafter, the notation A < B (A  B resp.) stands for sup A < inf B (sup A  inf B resp.) if
A, B 6= ;. The inequality is always true if either A = ; or B = ;, and points are identified with
singletons.
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Hereafter, let us assume that we have permuted the indices according to Propo-
sition 2.5. Define continuous maps P j : 6 \ {p1, . . . , p`} ! � j , j = 1, . . . , N ,
as

P j = 5�1
✓
qi +

1
4
7i,r(i) � 5

◆
, � j = 5�1

✓
qi +

1
4
S1

◆

when j 2 Ni , i = 1, . . . , ` � 1, and

P j = 5�1 �qr(`) + `7r(`),` � 5
�
, � j = 5�1

⇣
qr(`) + `S1

⌘

when j 2 N`. Let us fix N angles

0 < ✓N < · · · < ✓1 <
⇡

2
, (2.22)

and let ⇠0 = (⇠01 , . . . , ⇠
0
N ) 2 �1 ⇥ · · · ⇥ �N be a N�tuple of distinct points, with

⇠0j =

(
5�1(qi +

1
4e
i✓ j ) if j 2 Ni , i = 1, . . . , ` � 1

5�1(qr(`) + `e�i✓ j ) if j 2 N`.

Thanks to Theorem 2.2, for all � 2 F we can find z� = (z�1 , . . . , z�N ) 2 Z (with
z�j = 5[� j (⇠

⇤

� )] for j = 1, . . . , N ), where

Z = {z = (z1, . . . , zN ) 2 CN
: z j 2 Li,r(i)(✓ j ) 8 j 2 Ni , i = 1, . . . , `}.

Arguing as in Lemma 2.3, the aim now is to discuss the set Li,r(i)(✓ j ) \ Ls,r(s)(✓k)
for r(i)  r(s) and j 2 Ni , k 2 Ns with j 6= k, where the closure is meant with
respect to dg1 . Since i 2 Jr(i), by (2.18) notice that i 2 Xr if and only if r(i) 2 Xr ,
and by (2.21)-(2.22) the following distinct alternatives can arise:

• if i = s, then Li,r(i)(✓ j ) \ Ls,r(s)(✓k) = {qi , qr(i)} (with q` = 1);
• if i 6= s and r(i) = r(s), then Li,r(i)(✓ j ) \ Ls,r(s)(✓k) = {qr(i)};
• if i, s 2 Xr with r(i) < r(s) and i = lr , then s < r(s) and

Li,r(i)(✓ j ) \ Ls,r(s)(✓k) =

8><
>:

{qs, qi } if r(i) = s, r(s) = lr
{qi } if r(i) 6= s, r(s) = lr
{qs} if r(i) = s, r(s) 6= lr
; if r(i) 6= s, r(s) 6= lr ;

• if i, s 2 Xr with r(i) < r(s) and s = lr , then i < r(i) < r(s) < s and
Li,r(i)(✓ j ) \ Ls,r(s)(✓k) = ;;

• if i, s 2 Xr \ {lr } with r(i) < r(s), then either i < r(i)  s < r(s) with

Li,r(i)(✓ j ) \ Ls,r(s)(✓k) =

⇢
{qs} if r(i) = s
; if r(i) 6= s,

or s < i < r(i) < r(s) with Li,r(i)(✓ j ) \ Ls,r(s)(✓k) = ;;
• if i and s belong to different blocks, then Li,r(i)(✓ j ) \ Ls,r(s)(✓k) = ;.



306 TERESA D’APRILE AND PIERPAOLO ESPOSITO

Since the Li,r(i)(✓ j )0s can share at most endpoints among p1, . . . , p`, we just
need to analyze the behavior at each pi . Every pi is an endpoint of Li,r(i)(✓ j ),
j 2 Ni , and of Ls,r(s)(✓k), s 2 Ji and k 2 Ns . Letting

˜Ni = Ni [

[
r2Ji

Nr ,

we can argue precisely as in Lemma 2.3 to show that (1.7) implies

sup
z2Z

9(z) < +1

with 9 given in (2.12), which in turn is equivalent to (2.7).

3. A compactness property

We shall show that (2.2) holds provided that M is sufficiently large. Since the choice
� = idK in the definition ofH⇤ leads to

H⇤

� min
⇠2K

9+(⇠) + O(1)

�

1
2⇡

✓X̀
i=1

↵i

◆✓ NX
j=1

0 j

◆
log d �

1
2⇡

✓ NX
j,k=1
j 6=k

0 j0k

◆
log diam6 + O(1)

in view of (2.6), where d = inf{dg(⇠, pi ) : ⇠ 2 � j , i = 1, . . . , `, j = 1, . . . , N } >
0, by the previous Section we deduce that H⇤ is uniformly bounded in M . There-
fore, it is enough to show that the tangential derivative ofH on @D is non-zero for
uniformly bounded values ofH when M is large enough. By contradiction assume
that there exist ⇠n = (⇠n1 , . . . , ⇠nN ) 2M and (�n1 ,�

n
2 ) 6= (0, 0) such that

8(⇠n) ! +1, �C  H(⇠\)  C, (3.1)

�n1rH(⇠\) + �
\
2r8(⇠\) = 0 (3.2)

for some C > 0, where the last expression accounts also for non-regular points of
@D and can be re-written as

(�n2 � �n1 )0 j
X̀
i=1

↵ir⇠ j G(⇠nj ,pi ) + 2(�n1 + �n2 )0 j

NX
k=1
k 6= j

0kr⇠ j G(⇠nj , ⇠
n
k )

=O(1) 8 j.

(3.3)

To get a contradiction, our aim is to identify the leading term of the left hand side
in (3.3). Without loss of generality we assume that

(�n1 )
2
+ (�n2 )

2
= 1, �n1 � �n2 � 0,

min
j 6=k

dg(⇠nj , ⇠
n
k ) = o(1), min

j,i
dg(⇠nj , pi ) = o(1), (3.4)
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where we have used

2
NX

j,k=1
j 6=k

0 j0kG(⇠nj , ⇠
n
k ) = H(⇠\) + 8(⇠\) +O(1) ! +1

and

2
X̀
i=1

↵i

NX
j=1

0 jG(⇠ j , pi ) = 8(⇠n) �H(⇠\) +O(1) ! +1

thanks to (3.1). Given r0 > 0 small enough (smaller than the injectivity radius
of (6, g)), we introduce normal coordinates y⇠ : y�1

⇠ (Br0(0)) ! Br0(0) which
depend smoothly on ⇠ 2 6. Since y⇠ (⇠) = 0 and dg(x, ⇠) = |y⇠ (x)| for all
x 2 y�1

⇠ (Br0(0)), we have that

r⇠1 log dg(⇠1, ⇠2) =

y⇠2(⇠1)
|y⇠2(⇠1)|2

=

y⇠ (⇠1) � y⇠ (⇠2)
|y⇠ (⇠1) � y⇠ (⇠2)|2

+ o
⇣ 1
dg(⇠1, ⇠2)

⌘
(3.5)

as ⇠1, ⇠2 ! ⇠ , owing to

y⇠ (⇠1) � y⇠ (⇠2) = y⇠2(⇠1) � y⇠2(⇠2) + O(dg(⇠2, ⇠))|r⇠ y⇠̃ (⇠1) � r⇠ y⇠̃ (⇠2)|
= y⇠2(⇠1) + o(|y⇠2(⇠1)|)

as ⇠1, ⇠2 ! ⇠ (where ⇠̃ is “between” ⇠ and ⇠2).
Hereafter we might pass to subsequences without further notice. Let us split

{1, . . . , N } as Z0 [ · · · [ Z`, where

Z0 = { j : |⇠nj � pi | � c for all i}, Zi = { j : ⇠nj ! pi } i = 1, . . . , `.

We begin with the following two lemmas.

Lemma 3.1. The following holds:

a) if #Zi = 1 for some i = 1, . . . , `, then �n1 � �n2 ! 0;
b) if dg(⇠nj , ⇠

n
k ) = o(1) for some j, k 2 Z0, j 6= k, then �n1 + �n2 ! 0;

c) there exists i 2 {1, . . . , `} such that #Zi � 2.

Proof. If Zi = { j0}, the identity (3.3) with j = j0 in the coordinate system ypi
gives

(�n2 � �n1 )↵i0 j0
ypi (⇠nj0)

|ypi (⇠nj0)|
2 = O(1),

and then a) follows. Next, let j0, k0 2 Z0, j0 6= k0, be such that dg(⇠nj0, ⇠
n
k0) = o(1).

We may assume

dg(⇠nj0, ⇠
n
k0) = min

j,k2Z0
j 6=k

dg(⇠nj , ⇠
n
k ) 8 n 2 N.
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Letting
I =

�
j 2 Z0 : dg(⇠nj , ⇠

n
j0) ⇠ dg(⇠nj0, ⇠

n
k0)

 
[ { j0},

where ⇠ denotes sequences of same order as n ! +1, observe that by construc-
tion

dg(⇠nj , ⇠
n
k ) ⇠ dg(⇠nj0, ⇠

n
k0) 8 j, k 2 I, j 6= k

and dg(⇠nj0, ⇠
n
k0) = o(dg(⇠nj , ⇠

n
k )) for all j 2 I and k 2 Z0 \ I , by which

r⇠ j G(⇠nj , ⇠
n
k ) = o

✓
1

dg(⇠nj0, ⇠
n
k0)

◆
8 j 2 I, k 2 Z0 \ I.

The identities (3.3) read in the coordinate system y⇠nj0 as

2(�n1+�n2 )0 j
X
k2I
k 6= j

0k
y⇠nj0 (⇠

n
j ) � y⇠nj0 (⇠

n
k )

|y⇠nj0 (⇠
n
j ) � y⇠nj0 (⇠

n
k )|2

= o
✓

1
dg(⇠nj0, ⇠

n
k0)

◆
8 j 2 I (3.6)

in view of (3.5). Since

2
X
j,k2I
j 6=k

0 j0k
hz j � zk, z j � zi

|z j � zk |2
= 2

X
j,k2I
j<k

0 j0k =

X
j,k2I
j 6=k

0 j0k (3.7)

for all z j , z 2 R2, by taking the inner product of (3.6) with y⇠nj0 (⇠
n
j ) and summing

up in j 2 I we deduce that

(�n1 + �n2 )
X
j,k2I
j 6=k

0 j0k = o(1).

Since j0, k0 2 I , we get �n1 + �n2 = o(1), and b) follows. Finally, if #Zi  1
were true for all i = 1, . . . , `, by (3.4) we would get that #Zi0 = 1 for some i0 =

{1, . . . , `}. On the other hand, thanks to (3.4) we also have that dg(⇠nj , ⇠
n
k ) = o(1)

for some j, k 2 Z0, j 6= k. Then, by a) and b) we would derive �n1 + �n2 = o(1),
�n1 � �n2 = o(1), in contradiction with (3.4).

Lemma 3.2. If #Zi � 2 for some i = 1, . . . , `, then dg(⇠nj , pi ) = O(dg(⇠nj , ⇠
n
k ))

for all j, k 2 Zi , j 6= k.

Proof. By contradiction, assume the existence of j0, k0 2 Zi , j0 6= k0, such that

dg(⇠nj0, ⇠
n
k0)

dg(⇠nj0, pi )
= min

j,k2Zi
j 6=k

dg(⇠nj , ⇠
n
k )

dg(⇠nj , pi )
! 0. (3.8)

Letting
I =

�
j 2 Zi : dg(⇠nj , ⇠

n
j0) ⇠ dg(⇠nj0, ⇠

n
k0)

 
[ { j0},
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observe that for j 2 I by construction

dg(⇠nj , pi ) ⇠ dg(⇠nj0, pi )

and
dg(⇠nj , ⇠

n
k ) ⇠ dg(⇠nj0, ⇠

n
k0) 8 k 2 I, k 6= j,

dg(⇠nj0, ⇠
n
k0) = o(dg(⇠nj , ⇠

n
k )) 8 k 2 Zi \ I,

(3.9)

by which

r⇠ j G(⇠nj , ⇠
n
k ) = o

✓
1

dg(⇠nj0, ⇠
n
k0)

◆
8 j 2 I, k 2 Zi \ I.

The identities (3.3) in the coordinate system y⇠nj0 read as

(�n2 � �n1 )↵i0 j
y⇠nj0 (⇠

n
j ) � y⇠nj0 (pi )

|y⇠nj0 (⇠
n
j ) � y⇠nj0 (pi )|

2

+ 2(�n1 + �n2 )0 j
X
k2I
k 6= j

0k
y⇠nj0 (⇠

n
j ) � y⇠nj0 (⇠

n
k )

|y⇠nj0 (⇠
n
j ) � y⇠nj0 (⇠

n
k )|2

= o

 
�n1 + �n2
dg(⇠nj0, ⇠

n
k0)

!
+ o

 
�n2 � �n1
dg(⇠nj0, pi )

!
+ O(1) 8 j 2 I

(3.10)

in view of (3.5). By taking the inner product of (3.10) with y⇠nj0 (⇠
n
j ) and summing

up in j 2 I we deduce that

(�n1+�n2 )
X
j,k2I
j 6=k

0 j0k = o(�n1+�n2 )+(�n2��n1 )O

 
dg(⇠nj0, ⇠

n
k0)

dg(⇠nj0, pi )

!
+O

⇣
dg(⇠nj0, ⇠

n
k0)

⌘

thanks to (3.7), by which, using (3.8), we get

�n1 + �n2 = O

 
dg(⇠nj0, ⇠

n
k0)

dg(⇠nj0, pi )

!
! 0. (3.11)

By taking the inner product of (3.10) with y⇠nj0 (⇠
n
j ) � y⇠nj0 (pi ) and summing up in

j 2 I we obtain that

(�n1 � �n2 )↵i
X
j2I

0 j = (�n1 + �n2 )
X
j,k2I
j 6=k

0 j0k + o(1) + (�n1 + �n2 )o

 
dg(⇠nj0, pi )
dg(⇠nj0, ⇠

n
k0)

!

thanks to (3.7). By (3.11) we arrive at �n1±�n2 ! 0, in contradiction with (3.4).
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If #Zi � 2, let us split Zi as Y1 [ · · · [ Yl , l � 1, in such a way that for all
j 2 Yr

dg(⇠nj , pi ) ⇠ dg(⇠nk , pi ) 8 k 2 Yr ,
dg(⇠nj , pi ) = o(dg(⇠nk , pi )) 8 k 2 Yr+1 [ · · · [ Yl .

(3.12)

Notice that by construction dg(⇠nj , ⇠
n
k ) ⇠ dg(⇠nk , pi ) for all j 2 Yr , k 2 Yr+1[ · · ·[

Yl , and by Lemma 3.2 dg(⇠nj , ⇠
n
k ) ⇠ dg(⇠nk , pi ) for all j, k 2 Yr ( j 6= k), yielding

dg(⇠nj , ⇠
n
k ) ⇠ dg(⇠nk , pi ) 8 j 2 Yr , k 2 Yr [ · · · [ Yl , j 6= k. (3.13)

Combining (3.12)-(3.13) we get

r⇠ j G(⇠nj , ⇠
n
k ) = o

✓
1

dg(⇠nj , pi )

◆
8 j 2 Yr , k 2 Yr+1 [ · · · [ Yl ,

which inserted in (3.3) (written in the coordinate system ypi ) gives that

2(�n1 + �n2 )0 j
X

k2Y1[···[Yr
k 6= j

0k
ypi (⇠nj ) � ypi (⇠nk )

|ypi (⇠nj ) � ypi (⇠nk )|2

= (�n1 � �n2 )↵i0 j
ypi (⇠nj )

|ypi (⇠nj )|2
+ o

✓
1

dg(⇠nj , pi )

◆ (3.14)

for all j 2 Yr in view of (3.5). Since |ypi (⇠nj )| = o(|ypi (⇠nj ) � ypi (⇠nk )|) for all
j 2 Y1 [ · · · [ Yr�1 and k 2 Yr owing to (3.12)-(3.13), we can compute

hypi (⇠nj ) � ypi (⇠nk ), ypi (⇠nj )i
|ypi (⇠nj ) � ypi (⇠nk )|2

= 1+

hypi (⇠nj ) � ypi (⇠nk ), ypi (⇠nk )i

|ypi (⇠nj ) � ypi (⇠nk )|2

= 1+ o(1)
(3.15)

for all j 2 Yr and k 2 Y1 [ · · · [ Yr�1. By taking the inner product of (3.14) with
ypi (⇠nj ) and summing up in j 2 Yr we get that

(�n1 + �n2 )

✓ X
j,k2Yr
j 6=k

0 j0k + 2
X
j2Yr

k2Y1[···[Yr�1

0 j0k

◆
=(�n1 � �n2 )↵i

X
j2Yr

0 j + o(1) 8 r�1

(3.16)
thanks to (3.7) and (3.15). Since #Zi � 2, notice that the coefficient in brackets on
the left hand side of (3.16) is positive when r = l, and then �n1 ��n2 and �n1 +�n2 are
positively proportional up to higher order terms. By (3.4) and (3.16) (with r = l)
we deduce that

�n1 � �n2 , �n1 + �n2 , |�
n
1 |, |�n2 | � c > 0, (3.17)
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taking into account that �n2 = o(1) would imply �n1 = 1 + o(1) and consequently,
by (3.16) (with r = 1), X

j,k2Y1
j 6=k

0 j0k = ↵i
X
j2Y1

0 j ,

contradicting (1.3). Setting

a = lim
n!+1

�n2
�n1

6= 0, (3.18)

let us evaluate the different pieces of the energy as follows:
X
j,k2Zi
j 6=k

0 j0kG(⇠nj , ⇠
n
k ) � ↵i

X
j2Zi

0 jG(⇠nj , pi ) + O(1)

=

lX
r=1

X
j,k2Yr
j 6=k

0 j0kG(⇠nj , ⇠
n
k ) + 2

lX
r=1

X
j2Yr

k2Y1[···[Yr�1

0 j0kG(⇠nj , ⇠
n
k )

� ↵i

lX
r=1

X
j2Yr

0 jG(⇠nj , pi ) + O(1)

= �

1
2⇡

lX
r=1

 X
j,k2Yr
j 6=k

0 j0k log dg(⇠nj , ⇠
n
k ) + 2

X
j2Yr

k2Y1[···[Yr�1

0 j0k log dg(⇠nj , ⇠
n
k )

� ↵i
X
j2Yr

0 j log dg(⇠nj , pi )
�
.

Since dg(⇠nj , ⇠
n
k ) ⇠ dg(⇠nj , pi ) for all j 2 Yr and k 2 Y1[ · · ·[Yr in view of (3.13),

by (3.16) and (3.18) we have that
X
j,k2Yr
j 6=k

0 j0k log dg(⇠nj , ⇠
n
k ) + 2

X
j2Yr

k2Y1[···[Yr�1

0 j0k log dg(⇠nj , ⇠
n
k )

�↵i
X
j2Yr

0 j log dg(⇠nj , pi )

=

✓ X
j,k2Yr
j 6=k

0 j0k + 2
X
j2Yr

k2Y1[···[Yr�1

0 j0k � ↵i
X
j2Yr

0 j

◆
log dg(⇠njr , pi ) + O(1)

= �(a +o(1))
✓ X

j,k2Yr
j 6=k

0 j0k+ 2
X
j2Yr

k2Y1[···[Yr�1

0 j0k + ↵i
X
j2Yr

0 j

◆
log dg(⇠njr ,pi )+O(1),
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where jr 2 Yr is fixed. We have thus proved that

1
a

✓ X
j,k2Zi
j 6=k

0 j0kG(⇠nj , ⇠
n
k ) � ↵i

X
j2Zi

0 jG(⇠nj , pi )
◆

! �1 (3.19)

for all Zi with #Zi � 2. By (3.17) we deduce #Zi 6= 1 for all i = 1, . . . , ` and
G(⇠nj , ⇠

n
k ) = O(1) for all ( j, k) /2

S`
i=1(Zi ⇥ Zi ) according to Lemma 3.1-a) and

b), then we conclude that

1
a
H(⇠\) =

1
a

 NX
j,k=1
j 6=k

0 j0kG(⇠nj , ⇠
n
k ) �

X̀
i=1

↵i

NX
j=1

0 jG(⇠nj , pi )
�

+ O(1)

=

1
a
X̀
i=1

 X
j,k2Zi
j 6=k

0 j0kG(⇠nj , ⇠
n
k ) � ↵i

X
j2Zi

0 jG(⇠nj , pi )
�

+ O(1) ! �1

by (3.19), in contradiction with (3.1).

Appendix

A. Proof of Theorem 1.8

Setting ai = 1+ [↵i ]
�, the aim of this section is to compute the maximum

N := max{N1+· · ·+N` : Ni 2 N[{0}, Ni+Ni+1  ai+18 i = 1, . . . , `}, (A.1)

with the convention a`+1 = a1 and N`+1 = N1. The cases ` = 2, 3 are easier
to handle and will be treated later in details. From now on, let us assume ` � 4.
Notice that for any i = 1, . . . , `

0  Ni  min{ai , ai+1}

and for any 1 = 1, . . . , ` � 1

Ni+1  min{ai+1 � Ni , ai+2 � Ni+2}.

Therefore, setting Ji = [0,min{ai , ai+1}] \ (N [ {0}), we have that (A.1) can be
rewritten as

N= max
Ni2Ji , i odd

⇣
N1+min{a2�N1, a3�N3}+N3+· · ·+min{a`�N`�1, a1�N1}

⌘

when ` is even and
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N= max
Ni2Ji ,i odd
N1+N`a1

⇣
N1+min{a2�N1,a3�N3}+N3+···+min{a`�1�N`�2,a`�N`}+N`

⌘

(A.2)
when ` is odd.

For the sake of clarity, we fix the following three lemmas.

Lemma A.1. Let f (t) = min{↵,� � t} + t +min{� � t, �} for 0  t  T . Then

max
[0,T ]

f = min{↵ + � ,� + � ,↵ + � + T,� + �}.

Proof. For t 2 R we can write

f (t) =

8>>><
>>>:

↵ + � + t if t  min{� � ↵, � � �}

min{� + �,↵ + � } if min{� � ↵, � � �}  t
 max{� � ↵, � � �}

� + � � t if t � max{� � ↵, � � �},

yielding

max
[0,T ]

f =

8>>><
>>>:

min{↵ + � + T,� + �,↵ + � } if min{� � ↵, � � �} � 0
min{� + �,↵ + � } if min{� � ↵, � � �}  0

 max{� � ↵, � � �}

� + � if max{� � ↵, � � �}  0
= min{↵ + � ,� + � ,↵ + � + T,� + �}

as claimed.

Let us fix 2  k 
`
2 and consider the numbers ck, dk, fk, gk defined in the intro-

duction. We get

c2 = a2 + a4, d2 = a3 + a4, f2 = a2 +min{a3, a4} + a5, g2 = a3 + a5. (A.3)

Lemma A.2. The following identities hold:

N = max
N12J1

⇣
min{c `

2
, d `

2
+ N1, f `

2
� N1, g `

2
}

⌘
(A.4)

when ` is even and

N = max
N12J1,N`2J`
N1+N`a1

⇣
min{c `�1

2
+ N`, d `�1

2
+ N1 + N`, f `�1

2
, g `�1

2
+ N1}

⌘
(A.5)

when ` is odd.
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Proof. We claim that for every 2  k 
`
2 we have

max
Ni2Ji i=3,...,2k�1 odd

⇣
min{a2 � N1, a3 � N3} + N3 + . . .

. . . +min{a2k � N2k�1, a2k+1 � N2k+1}
⌘

= min{ck � N1, dk, fk � N1 � N2k+1, gk � N2k+1}.

(A.6)

Indeed, (A.6) is valid for k = 2 owing to (A.3), and the validity of (A.6) with index
k implies

max
Ni2Ji i=3,...,2k+1 odd

⇣
min{a2 � N1, a3 � N3} + N3 + . . .

. . . +min{a2k+2 � N2k+1, a2k+3 � N2k+3}
⌘

= max
N2k+12J2k+1

⇣
min{↵k,�k � N2k+1} + N2k+1

+min{a2k+2 � N2k+1, a2k+3 � N2k+3}
⌘
,

where ↵k = min{ck �N1, dk} and �k = min{ fk �N1, gk}. By Lemma A.1 we have
that

max
N2k+12J2k+1

⇣
min{↵k,�k�N2k+1} +N2k+1+min{a2k+2� N2k+1, a2k+3� N2k+3}

⌘

= min
�
↵k + a2k+2,�k + a2k+2,↵k

+min{a2k+1, a2k+2} + a2k+3 � N2k+3,�k + a2k+3 � N2k+3
 
.

The validity of (A.6) with index k + 1 is now achieved through the identities

ck+1 = min{ck + a2k+2, fk + a2k+2},
dk+1 = min{dk + a2k+2, gk + a2k+2},
fk+1 = min

�
ck +min{a2k+1, a2k+2} + a2k+3, fk + a2k+3

 
,

gk+1 = min
�
dk +min{a2k+1, a2k+2} + a2k+3, gk + a2k+3

 
,

which follow by direct inspection of the definition of numbers ck, dk, fk, gk . Fi-
nally, by (A.6) we immediately get the thesis of the Lemma.

Lemma A.3. The following inequalities hold:

(a) ck + gk  dk + fk for all 2  k 
`
2 ;

(b) min{c `
2
, g `

2
}  d `

2
+min{a1, a2} when ` is even.
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Proof. The inequality in (a) does hold for k = 2 thanks to (A.3) and its validity at
step k implies that

ck+1 + gk+1 = min{ck + a2k+2, fk + a2k+2}
+min

�
dk +min{a2k+1, a2k+2} + a2k+3, gk + a2k+3

 



8>>><
>>>:

ck + a2k+2 + gk + a2k+3  (dk + a2k+2) + ( fk + a2k+3)
(dk + a2k+2) + (ck +min{a2k+1, a2k+2} + a2k+3)
(gk + a2k+2) + ( fk + a2k+3)
(gk + a2k+2) + (ck +min{a2k+1, a2k+2} + a2k+3),

yielding

ck+1 + gk+1  min{dk + a2k+2, gk + a2k+2}
+min

�
ck +min{a2k+1, a2k+2} + a2k+3, fk + a2k+3

 
= dk+1 + fk+1.

By induction the inequality in (a) is true for all k � 2, which implies the validity of

min
n
c `
2

� d `
2
, g `

2
� d `

2
,
1
2

⇣
f `
2

� d `
2

⌘o
= min{c `

2
, g `

2
} � d `

2

max
n
f `
2

�min{c `
2
, g `

2
},
1
2

⇣
f `
2

� d `
2

⌘o
= f `

2
�min{c `

2
, g `

2
}

for ` even, in view of 2min{c `
2
, g `

2
}  f `

2
+ d `

2
. Concerning (b) notice that

sk(J ) = (1� �J (2))�J (1)min{a3, a4} + pk(J #), (A.7)

sk(J ) = a2k�J (k)+(1��J (k))[a2k+1+�J (k�1)min{a2k�1, a2k}]+qk(J#) (A.8)

for some functions pk, qk and J # = J \ {2, . . . , k}, J# = J \ {1, . . . , k�1}. Given
J ⇢ {1, . . . , `

2 } so that 1 /2 J , `
2 2 J , for Ĵ = {1} [ J by (A.7) we have that

c `
2

 a2 + s `
2
( Ĵ ) = (a2 � a3 + (1� � Ĵ (2))min{a3, a4}) +

�
a3 + p `

2
( Ĵ #)

�
 (a2 � a3 +min{a3, a4}) +

�
a3 + p `

2
(J #)

�
 a2 + (a3 + s `

2
(J ))

yielding c `
2

 a2 + d `
2
. Similarly, for J̄ = J \ {

`
2 } by (A.8) we get that

g `
2

 a3 + s `
2
( J̄ ) =

⇣
a1 + � J̄

⇣`

2
� 1

⌘
min{a`�1, a`}

⌘
+

�
a3 + q `

2
( J̄#)

�



⇣
a1 + �J

⇣`

2
� 1

⌘
min{a`�1, a`} � a`

⌘
+

�
a3 + s `

2
(J )

�
 a1 +

�
a3 + s `

2
(J )

�
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providing g `
2

 a1 + d `
2
. In conclusion, we have shown that

min{c `
2
, g `

2
}  d `

2
+min{a1, a2}

and (b) is thus established.

Proof of Theorem 1.8. Thanks to inequalities (a)-(b) of Lemma A.3, for ` even we
have that

min{c `
2
, d `

2
+ N1, f `

2
� N1, g `

2
} =

8>>>><
>>>>:

d `
2

+ N1 if N1  min{c `
2
, g `

2
} � d `

2
min{c `

2
, g `

2
} if min{c `

2
, g `

2
} � d `

2
 N1  f `

2
�min{c `

2
, g `

2
}

f `
2

� N1 if N1 � f `
2

�min{c `
2
, g `

2
}

with min{c `
2
, g `

2
} � d `

2
 min{a1, a2}, yielding

N = min{c `
2
, g `

2
} (A.9)

when ` is even in view of (A.4). Unfortunately, when ` is odd the expression of N
in (A.5) can be simply reduced to

N = max
â1�min{a1,a`}N1min{a1,a2}

⇣
min{c `�1

2
+ â1�N1, d `�1

2
+ â1, f `�1

2
, g `�1

2
+N1}

⌘
(A.10)

because N1 + N`  â1 := min{a1,min{a1, a2} + min{a1, a`}} with the equality
achieved for all the maximizers in (A.5).

An interesting situation corresponds to the case where the ai ’s are ordered in
an increasing way. To distinguish it from the general case, we will denote them by
b1, . . . , b`. Given J ⇢ {1, . . . , k} and 3  j  k, sk(J ) depends on j � 1 only
through the term

b2 j�2�J ( j � 1) + (1� �J ( j � 1))[b2 j�1 + �J ( j � 2)b2 j�3]
+ (1� �J ( j))�J ( j � 1)b2 j�1

which is minimized by the choice j � 1 2 J or j � 1 /2 J depending on whether
j 2 J or not, respectively. The same holds if j = 2. Therefore, the minimization
in the definition of ck and dk is achieved by sets J with {2, . . . , k} ⇢ J , yielding

ck =

kX
j=1

b2 j , dk = b3 +

kX
j=1

b2 j , (A.11)

whereas for fk and gk the minimizing sets J satisfy J \ {2, . . . , k} = ; and then

fk = b2 +

kX
j=1

b2 j+1, gk =

kX
j=1

b2 j+1. (A.12)
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Since g `
2

 c `
2
in view of (A.11)-(A.12), for ` even (A.9) becomes

N = g `
2

=

`�2
2X
j=0

b2 j+1. (A.13)

Since c `�1
2

 d `�1
2
and g `�1

2
+ b1  f `�1

2
by (A.11)-(A.12), (A.10) gives that

N = max
�
min{c `�1

2
+ b1 � N1, g `�1

2
+ N1} : 0  N1  b1

 

= min
⇢
c `�1

2
+ b1,

1
2

⇣
c `�1

2
+ b1 + g `�1

2

⌘�

= min

8<
:b1 +

`�1
2X
j=1

b2 j ,
1
2

lX
j=1

b j

9=
;

(A.14)

when ` is odd, in view of

1
2
(c `�1

2
+ b1 � g `�1

2
) 

b1
2

.

Finally let us discuss the case ` = 2, 3, 4.

` = 2 We clearly have that N = min{a1, a2}.

` = 3 By (A.2) we deduce

N = max
�
min{a2 + N3, a3 + N1} : N1 + N3
 a1, 0  N1  min{a1, a2}, N3  min{a1, a3}

 
=max

�
min{a2 + â1 � N1, a3 + N1} : â1 �min{a1, a3}  N1  min{a1, a2}

 
since N1 + N3  â1 := min{a1,min{a1, a2} + min{a1, a3}} with the equality
achieved for all the maximizers. Then, we compute

N =

8>>>>><
>>>>>:

a2 + a3 + â1
2

if â1 �min{a1, a3} 

a2 � a3 + â1
2

 min{a1, a2}

a3 +min{a1, a2} if
a2 � a3 + â1

2
� min{a1, a2}

a2 +min{a1, a3} if
a2 � a3 + â1

2
 â1 �min{a1, a3}.

By discussing all the six possibilities for (a1, a2, a3) (a1 < a2 < a3, a2 < a3 < a1
and so on), we immediately realize that N = min{b1+b2, b1+b2+b32 }, which actually
corresponds to (A.14) for ` = 3 for the increasing ordering b1, b2, b3. We have thus
proved that the maximal N in (A.1) is independent of the order of ai ’s.
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Instead of coupling the ai ’s in a consecutive way (ordered or not), with regards
to Theorem 1.5 let us now couple the pair a1, a2 with a3 and a3 with a1: in order to
satisfy (1.10), we decompose N as N = N1 + N2 + N3 with

N1 + N3  a1, N1 + N2 + N3  a3, N2  a2.

We can easily see that the maximal N satisfies N = min{a1 + a2, a3}, giving
N  min{b1 + b2, b1+b2+b32 }. Since such a case represents the general situa-
tion for a non-consecutive coupling, we can summarize our discussion by saying
that the consecutive increasing coupling b1, b2, b3 gives rise to the best maximal
N = min{b1 + b2, b1+b2+b32 } among all the possible couplings (consecutive or not,
increasing or not). Such a property is peculiar for ` = 3, as we will see below by
discussing the case ` = 4.

` = 4 By (A.9) we have that N = min{a1 + a3, a2 + a4}, and the optimal choice
is (a1, a2, a3, a4) = (b2, b1, b3, b4) which gives rise to N = min{b2 + b3, b1 +

b4}. Since in general min{b2 + b3, b1 + b4} > b1 + b3 (see (A.13)), we see that
the increasing ordering is no longer the optimal among all the consecutive ones.
Moreover, referring to non-consecutive couplings in Theorem 1.5, let us couple the
pair b1, b2 with b4, b3 with b2 and b4 with b3: in order to satisfy (1.10) we need to
require that N = N1 + N2 + N3 + N4 with

N1  b1, N2 + N3  b2, N3 + N4  b3, N1 + N2 + N4  b4.

The particular choice N1 = b1, N2 = min{b2, b4 � b1}, N3 = 0 and N4 =

min{b3, b4 � b1 � min{b2, b4 � b1}} leads to N � min{b1 + b2 + b3, b4}. Since
min{b1 + b2 + b3, b4} > min{b2 + b3, b1 + b4} when b1 + b2 + b3  b4, we also
see that consecutive couplings are not in general the optimal among all the possible
ones.

References

[1] H. AREF, P. K. NEWTON, M. A. STREMLER, T. TOKIEDA and D. L. VAINCHTEIN,
Vortex crystals, Adv. Appl. Mech. 39 (2003), 1–79.

[2] S. BARAKET and F. PACARD, Construction of singular limits for a semilinear elliptic
equation in dimension 2, Calc. Var. Partial Differential Equations 6 (1998), 1–38.

[3] D. BARTOLUCCI and F. DE MARCHIS, On the Ambjorn-Olesen electroweak condensates,
J. Math. Phys. 53 (2012), 073704.

[4] D. BARTOLUCCI, F. DE MARCHIS and A. MALCHIODI, Supercritical conformal metrics
on surfaces with conical singularities, Int. Math. Res. Not. IMRN 2011 (2011), 5625–
5643.

[5] D. BARTOLUCCI and A. MALCHIODI, An improved geometric inequality via vanish-
ing moments, with applications to singular Liouville equations, Comm. Math. Phys. 322
(2013), 415–452.

[6] D. BARTOLUCCI and A. PISTOIA, Existence and qualitative properties of concentrating
solutions for the sinh- Poisson equation, IMA J. Appl. Math. 72 (2007), 706–729.



EQUILIBRIA OF POINT-VORTICES ON CLOSED SURFACES 319

[7] D. BARTOLUCCI and G. TARANTELLO, Liouville type equations with singular data and
their application to periodic multivortices for the electroweak theory, Comm. Math. Phys.
229 (2002), 3–47.

[8] T. BARTSCH and A. PISTOIA, Critical points of the N�vortex Hamiltonian in bounded
planar domains and steady state solutions of the incompressible Euler equations, SIAM J.
Appl. Math. 75 (2015), 726–744.

[9] T. BARTSCH, A. PISTOIA and T. WETH, N�vortex equilibria for ideal fluids in bounded
planar domains and new nodal solutions of the sinh-Poisson and the Lane-Emden-Fowler
equations, Comm. Math. Phys. 297 (2010), 653–687.

[10] L. BATTAGLIA, A. JEVNIKAR, A. MALCHIODI and D. RUIZ, A general existence result
for the Toda system on compact surfaces, Adv. Math. 285 (2015), 937–979.

[11] E. CAGLIOTI, P. L. LIONS, C. MARCHIORO and M. PULVIRENTI, A special class of
stationary flows for two-dimensional Euler equations: a statistical mechanics descriptions,
Comm. Math. Phys. 143 (1992), 501–525.

[12] E. CAGLIOTI, P. L. LIONS, C. MARCHIORO and M. PULVIRENTI, A special class of
stationary flows for two-dimensional Euler equations: a statistical mechanics descriptions.
Part II, Comm. Math. Phys. 74 (1995), 229–260.

[13] S.-Y. CHANG, M. J. GURSKY and P. C. YANG, The scalar curvature equation on 2� and
3�spheres, Calc. Var. Partial Differential Equations 1 (1993), 205–229.

[14] S.-Y. CHANG and P. C. YANG, Prescribing Gaussian curvature on S2, Acta Math. 159
(1987), 215–259.

[15] S. CHANILLO and M. KIESSLING, Rotational symmetry of solutions of some nonlinear
problems in statistical mechanics and in geometry, Comm. Math. Phys. 160 (1994), 217–
238.

[16] C. C. CHEN and C. S. LIN, Sharp estimates for solutions of multi-bubbles in compact
Riemann surfaces, Comm. Pure Appl. Math. 55 (2002), 728–771.

[17] C. C. CHEN and C. S. LIN, Topological degree for a mean field equation on Riemann
surfaces, Comm. Pure Appl. Math 56 (2003), 1667–1727.

[18] C. C. CHEN and C. S. LIN, Mean field equations of Liouville type with singular data:
sharper estimates, Discrete Contin. Dyn. Syst. 28 (2010), 1237–1272.

[19] C. C. CHEN and C. S. LIN, Mean field equation of Liouville type with singular data:
topological degree, Comm. Pure Appl. Math. 68 (2015), 887–1084.

[20] C. C. CHEN, C. S. LIN and G. WANG, Concentration phenomena of two-vortex solutions
in a Chern-Simons model, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), 367–397.

[21] W. CHEN and C. LI, Prescribing Gaussian curvatures on surfaces with conical singulari-
ties, J. Geom. Anal. 1 (1981), 359–372.

[22] T. D’APRILE, Multiple blow-up solutions for the Liouville equation with singular data,
Comm. Partial Differential Equations 38 (2013), 1409–1436.

[23] M. DEL PINO, P. ESPOSITO, P. FIGUEROA and M. MUSSO, Non-topological condensates
for the self-dual Chern-Simons-Higgs model, Comm. Pure Appl. Math. 68 (2015), 1191–
1283.

[24] M. DEL PINO, P. ESPOSITO and M. MUSSO, Two-dimensional Euler flows with concen-
trated vorticities, Trans. Amer. Math. Soc. 362 (2012), 6381–6395.

[25] M. DEL PINO, M. KOWALCZYK and M. MUSSO, Singular limits in Liouville-type equa-
tions, Calc. Var. Partial Differential Equations 24 (2005), 47–81.

[26] W. DING, J. JOST, J. LI and G. WANG, An analysis of the two-vortex case in the Chern-
Simons-Higgs model, Calc. Var. Partial Differential Equations 7 (1998), 87–97.

[27] W. DING, J. JOST, J. LI and G. WANG, Existence results for mean field equations, Ann.
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