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Renormalized volume on the Teichmüller space
of punctured surfaces

COLIN GUILLARMOU, SERGIU MOROIANU AND FRÉDÉRIC ROCHON

Abstract. We define and study the renormalized volume for geometrically finite
hyperbolic 3-manifolds, including those with rank-1 cusps. We prove a varia-
tion formula, and show that for certain families of convex co-compact hyperbolic
metrics g" degenerating to a geometrically finite hyperbolic metric g0 with rank-
1 cusps, the renormalized volume converges to the renormalized volume of the
limiting metric.

Mathematics Subject Classification (2010): 51M10 (primary); 53A30, 58J32
(secondary).

1. Introduction

The renormalized volume is a geometric quantity for certain infinite-volume hyper-
bolic 3-dimensional manifolds, namely those which are convex co-compact. Such a
manifold X can be compactified into a smooth compact manifold with boundary X
in such a way that its metric g has the following property: for any smooth function
⇢ 2 C1(X) which is a boundary defining function (i.e., ⇢ � 0, ⇢�1(0) = @X
and d⇢|@X does not vanish), ⇢

2g extends to a smooth metric on X . This induces a
natural conformal class on the boundary M := @X by picking the conformal class
[h] of h = (⇢2g)|T M . We call (M, [h]) the conformal boundary of X . We say
that a boundary defining function ⇢ is a geodesic boundary defining function in X
if |d log(⇢)|g = 1 near the boundary M . Notice that such a function induces an
equidistant foliation near M , given by the level sets of ⇢. It turns out that there is
a one-to-one correspondence ĥ = e2'h 2 [h] 7! ⇢̂ between geodesic boundary
defining functions (or equivalently, equidistant foliations) near M and the elements
of the conformal class [h] on M , where ⇢̂ solves the Hamilton-Jacobi equation
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near M ���d⇢̂
⇢̂

���
g

= 1, (⇢̂2g)|T M = ĥ. (1.1)

The renormalized volume of (X, g) is the function on [h] defined by

VolR(X, g; ĥ) := FPz=0
Z
X
⇢̂zdvolg

where ⇢̂ is any smooth positive extension to X of the function solving (1.1) and
FPz=0 denotes the finite part (or regular value) at z = 0 of a meromorphic function
in the variable z 2 C. In a way, this definition has similarities with the renormal-
ization used to define the determinant of the Laplacian on a compact manifold. In
fact, the functional ' 7! VolR(X, g; e2'h) varies in the same exact way as do the
Liouville functional and the logarithm of the determinant of the Laplacian viewed
as functionals on [h]. Among metrics in the conformal class [h] of constant volume
2⇡ |�(M)|, it is maximized at the hyperbolic metric hhyp 2 [h], and we define the
renormalized volume of (X, g) by

VolR(X, g) := VolR(X, g; hhyp).

We remark that the renormalized volume could equivalently be defined by
VolR(X, g; ĥ) = a0, where a0 is defined by the asymptotic expansion (for some
a j 2 R) as ✏ ! 0

Z
⇢̂�✏

dvolg = a2✏�2 + a1 log(✏) + a0 +O(✏).

In this setting, the first general study was done by Krasnov-Schlenker [18], although
earlier works of Takhtajan-Teo [28] considered this quantity, and for more gen-
eral Poincaré-Einstein manifolds the renormalized volume appeared even earlier
in works of Henningson-Skenderis [15] and Graham [11] in AdS/CFT correspon-
dence.

When defined in this way, the renormalized volume has many interesting prop-
erties:

• the renormalized volume is a Kähler potential for the Weil-Peterson metric on
the Teichmüller space of the conformal boundary, when viewed as a function on
the deformation space of convex co-compact hyperbolic 3-manifolds. This was
proved by Takhtajan-Teo [28] for a class of Kleinian convex co-compact groups,
by Krasnov-Schlenker [18] for quasi-Fuchsian manifolds and by Guillarmou-
Moroianu [13] for all geometrically finite hyperbolic 3-manifolds without cusps
of rank 1;

• VolR(X, g) can be compared to the volume of the convex core Vol(C(X)) by

Vol(C(X)) � 10�(M)  VolR(X, g)  Vol(C(X)).
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This inequality is proved by Schlenker [27] for quasi-Fuchsian manifolds, and
extended by Bridgeman-Canary [4] to convex co-compact 3-manifolds with in-
compressible boundary;

• Schlenker [27] proves that for quasi-Fuchsian manifolds, VolR(X, g) is com-
parable to the Weil-Petersson distance between the two connected components
(M, h±) of the conformal boundary. Namely he shows that

VolR(X, g) 
3
2
p
2⇡�(X)dWP(h+, h�), (1.2)

improving a weaker inequality due to Brock [5]. Moreover, using [5], Schlenker
obtains that there exists some k1, k2 > 0 such that

k1dWP(h+, h�) � k2  VolR(X, g).

These inequalities have interesting implications about the geometry of hyper-
bolic 3-manifolds fibering over the circle, cf. [17], [6];

• Ciobotaru-Moroianu [8] prove that for almost-Fuchsian manifolds, the renor-
malized volume is positive except at the Fuchsian locus where it vanishes1;

• Moroianu [25] proves that the renormalized volume has a critical point on the
deformation space of convex co-compact 3-manifolds if the convex core has
smooth totally geodesic boundary, and the Hessian of VolR is positive definite
there. Another proof appeared recently in [30].

Like in the estimate (1.2), it is of interest to understand the properties of VolR on
the deformation space of convex co-compact hyperbolic 3-manifolds with a given
topology. For example, (1.2) shows that VolR does not explode as one approaches
the boundary of the Teichmüller space viewed as a Bers slice in the quasi-Fuchsian
space.

The first goal of this work is to define the renormalized volume for geomet-
rically finite hyperbolic 3-manifolds, focusing on the rank-1 cusps. Contrary to
the convex co-compact setting, the existence of equidistant foliations via geodesic
boundary defining functions turns out to be quite tricky in the case of rank-1 cusps.
A geometrically finite hyperbolic manifold (X, g) = 0\H3 with rank-1 cusps is
the interior of a smooth non-compact manifold X = 0\(H3

[ �0) with bound-
ary, where �0 ⇢ S2 is the discontinuity set of the Kleinian group 0 ⇢ PSL2(C).
The smooth manifold with boundary X has a non-compact boundary M = 0\�0
equipped with a conformal class [h] induced from the hyperbolic metric g. On this
conformal boundary (M, [h]), we show in Proposition 2.3 that there exists a unique
complete hyperbolic metric hhyp 2 [h] with finite volume and cusps.

Theorem 1.1. Let (X, g) be a geometrically finite hyperbolic 3-manifold with rank-
1 cusps, let (M, [h]) be its conformal boundary and let hhyp be the complete hy-
perbolic metric with finite volume in the conformal class [h]. Then there exists a

1 The normalization to make it 0 at the Fuchsian locus is actually to choose the metric in the
conformal boundary to have Gaussian curvature �4. The same normalization is used in [18]
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non-negative smooth boundary defining function ⇢ on X such that ⇢2g|T M = hhyp
and, outside a finite volume region V ⇢ X , |d log(⇢)|g = 1. The function z !R
X\V ⇢

zdvolg admits a meromorphic extension from Re(z) > 2 to a neighborhood
of z = 0.

We define the renormalized volume by

VolR(X, g) := Volg(V) + FPz=0
Z
X\V

⇢zdvolg.

In fact, in Proposition 2.4, we show a stronger statement: we prove that for each
conformal representative in [h] with certain asymptotic properties near the cusp,
there is an associated geodesic boundary defining function and an equidistant folia-
tion, allowing to view VolR as a function on [h] like in the convex co-compact case.
In Proposition 7.1, we show a variation formula similar to that of the determinant
of the Laplacian [2, Theorem 2.9] or the Liouville functional:

VolR
⇣
X, g; e2'hhyp

⌘
= VolR

⇣
X, g; hhyp

⌘
�

1
4

Z
M

⇣
|r'|

2
hhyp � 2'

⌘
dvolhhyp .

There is a diffeomorphism  : [0, ")x ⇥ M ! X \ V such that  ⇤⇢ = x , and the
metric has a finite expansion in powers of x :

 ⇤g =

dx2 + h0 + x2h2 + x4h4
x2

(1.3)

where the coefficients h0, h2 and h4 are symmetric tensors on M and such that
h0 = hhyp, h02 := h2 �

1
2h
hyp is trace-free and divergence-free with respect to

hhyp, and h4 =
1
4h0(A

2
·, ·) if A is the endomorphism defined by h2 = h0(A·, ·).

The tensor h02 can thus be identified to a cotangent vector to the Teichmüller space
T (M) of M at the metric h0 = hhyp, and the pair (h0, h02) 2 T ⇤T (M) characterizes
uniquely g. We call h02 the second fundamental form of g at M .

Theorem 1.2. For t 2 (�1, 1), let (X, gt ) be a smooth family of geometrically
finite hyperbolic metrics with cusps of rank 1 and let ht be the unique finite volume
hyperbolic representative of the conformal boundary of (X, gt ). Then,

@tVolR
�
X, gt

���
t=0 = �

1
4

Z
M

D
ḣ, h02

E
h
dvolh,

with ḣ = @t ht |t=0, h = ht |t=0, and h02 is the second fundamental form of g = gt |t=0
at M .

The equivalent result was shown by Krasnov-Schlenker [18] (see also [13] for
another proof) in the convex co-compact setting. This implies, using a theorem
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of Marden [20], that the deformation space of a geometrically finite hyperbolic 3-
manifold (X, g)with rank-1 cusps can be viewed as a Lagrangian submanifoldH ⇢

T ⇤T (M), the graph of the exact 1-form on T (M) given by the exterior differential
of the renormalized volume functional VolR(X, ·) : T (M) ! R. Equivalently, the
restriction to H of the Liouville 1-form on T ⇤T (M) is exact, and a primitive is
given by VolR(X, ·) if we identify H with T (M) by the canonical projection; we
refer to [13] for details in the convex co-compact setting.

Ahlfors-Bers simultaneous uniformisation theorem shows that if (M, h�) and
(M, h+) are two hyperbolic surfaces of finite volume with n cusps, there exists a
unique (up to diffeomorphism) complete hyperbolic metric g(h�,h+) on the cylinder
X := Rt ⇥ M , which is realized as a quotient 0\H3 for some quasi-Fuchsian
group 0 ⇢ PSL2(C) and the obtained manifold is geometrically finite with cusps of
rank-1. The quasi-Fuchsian space is the deformation space of such quasi-Fuchsian
groups and it identifies to T (M) ⇥ T (M) where T (M) is the Teichmüller space
of M . Fixing h�, the map h+ 7! g(h�,h+) provides an embedding of T (M) into
the quasi-Fuchsian deformation space and we view the renormalized volume as a
function on T (M): h+ 7! VolR(X, g(h�,h+)). We extend to the case with punctures
the result proved in the convex co-compact case by Takhtajan-Teo [28], and later
by Krasnov-Schlenker [18], Guillarmou-Moroianu [13].
Theorem 1.3. Set h� = h0 2 T (M), the map Vh0 : h+ 7! VolR

�
X, g(h0,h+)

�
is

a Kähler potential for Weil-Petersson metric on T (M); more precisely @@Vh0 =

i
16!WP where !WP is the Weil-Petersson symplectic form.
Notice that the same result was proved independently by Park-Takhtajan-Teo [29].

Our last result consists in analyzing the renormalized volume of families of
convex co-compact hyperbolic 3-manifolds degenerating to a geometrically finite
manifold with rank-1 cusps. We define precisely an admissible degeneration of
convex co-compact metrics in Definition 6.1, but essentially such a family of metrics
(g")">0 on X corresponds to having a disjoint union H = [

j1
j=1Hj of j1 simple

curves in M = @X such that:
(1) outside a uniform neighborhood U of H , ⇢2g" converges smoothly to a metric

on X \ U if ⇢ is a fixed boundary defining function of @X ;
(2) in U near Hj , the metric g" is isometric to a certain region of h� "j i\H3 where

� "j 2 PSL2(C) is a loxodromic element converging as " ! 0 to a parabolic
element � j in such a way that ↵ j (")/` j (") converges , where ` j (") and ↵ j (")
are respectively the translation length and the holonomy angle of � "j (i.e., �

"
j is

conjugated to z 7! e`(")+i↵ j (")z).
Our last theorem is:
Theorem 1.4. Assume g" is an admissible degeneration of convex co-compact hy-
perbolic metrics on X , in the sense of Definition 6.1, to a geometrically finite hy-
perbolic metric g0 with rank-1 cusps on X . Then

lim
"!0

Vol(X, g") = VolR(X, g0).



328 COLIN GUILLARMOU, SERGIU MOROIANU AND FRÉDÉRIC ROCHON

Figure 1.1. We consider a case when the curve H is being pinched in the boundary M .
The equidistant foliation is represented by the dotted lines. The first picture corresponds
to the convex co-compact case and the second picture is the hyperbolic 3-manifold with
a rank-1 cusp. The dark regions are the convex cores.

We show in Proposition 6.2 that such admissible degenerations happen for instance
on the boundary of the classical Schottky space. In [4, Theorem 1.3], Bridgeman
and Canary show that in other asymptotic regime (when the radius of injectivity of
the hyperbolic metric in the domain of discontinuity is going to 0), the renormalized
volume tends to �1.

ACKNOWLEDGEMENTS. We thank R. Canary and J.-M. Schlenker for helpful dis-
cussions.

2. Renormalized volume for geometrically finite hyperbolic 3-manifolds

2.1. Geometrically finite hyperbolic 3-manifolds

In this section we recall the geometry of geometrically finite hyperbolic manifolds
of dimension 3. For more details, we refer to the paper of Bowditch [3] (see also
[22, Mazzeo-Phillips] or [12, Guillarmou-Mazzeo]). A manifold X of dimension
3 is said to be geometrically finite hyperbolic if it can be realized as a quotient
X = 0\H3 by a Kleinian group 0 ⇢ PSL2(C) ' PSO(3, 1), so that its action on
H3 has a fundamental domain with finitely many side. In higher dimension, this
definition is not very natural and the correct one is given by Bowditc; however we
shall restrict here to the 3-dimensional case. If we view H3 as the open unit ball in
R3, it can be naturally compactified into the closed unit ball H3

= H3
[ S2, and

elements of PSL2(C) acts on H3. We say that X has cusps if 0 contains parabolic
elements in PSL2(C), i.e., elements which fix only one point in the closed unit ball
H3. If for each point p 2 S2 fixed by a parabolic transformation �p 2 0, the
subgroup 0p ⇢ 0 fixing p is the cyclic group generated by the element �p, then
we say that X has only cusps of rank 1, and we will make this assumption for what
follows.2

2 Cusps of rank 2 are trivial to deal with for what concerns renormalized volume questions, since
they generate ends with finite volume in X .
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We view H3 as the unit ball in R3. We can add to X a conformal boundary by
defining

X := 0\(H3
[�)

where � ⇢ S2 is the domain of discontinuity of the group 0, i.e., the complement
in S2 of the limit set 30 consisting of accumulation points in the closed unit ball
of the orbit of any given point m 2 H3. The manifold X is a smooth manifold with
boundary and its boundary

M := 0\� = @X

is a union of smooth Riemann surfaces, which has cusps if and only if 0 has rank-
1 cusps. It inherits a conformal class which is defined to be the conformal class
of ⇢2g|T M where g is the hyperbolic metric on X and ⇢ is any smooth boundary
defining function in X (i.e., ⇢ � 0, M = {⇢ = 0} and d⇢|M never vanishes on M).
Note that X is not compact if 0 has cusps.

The important geometric fact that we shall use is the following: there exists a
compact set K ⇢ X such that X \K = [

j1
j=1Ucj where Ucj are disjoint open sets of

X , called cusp neighbourhoods, so that g on Ucj \ X is isometric through a map ◆ j
to n

(z = y + i x, w) 2 H2
⇥

⇣
R/12Z

⌘
; |z| > R j

o
,

with metric g =

dx2 + dy2 + dw2

x2

(2.1)

for some R j > 0; hereH2
= {z 2 C; Im(z) > 0} is viewed as the upper half plane.

We shall therefore identify Ucj with the region in (2.1). Here j1 is the number of
rank-1 cusps. The compact K in X decomposes further into K = K0 [ Ur where
K0 is compact in X and Ur is a compact set of X such that the hyperbolic metric g
in the interior of Ur near M is of the form g = g/⇢2 where ⇢ is a smooth boundary
defining function of M and g is a smooth metric on K. The boundary M is a non
compact Riemann surface with 2 j1 cusps, and M equipped with the conformal class
[⇢2g|T M ] is called the conformal boundary of X . Notice that, using an inversion
(v + iu) = �1/(y + i x) in the H2 factor of (2.1), the neighborhood Ucj \ X with
metric g is also isometric to

n
(z = v + iu, w) 2 H2

⇥

⇣
R/12Z

⌘
; |z| < R�1

j

o
,

with metric g =

du2 + dv2 + (u2 + v2)2dw2

u2
.

(2.2)

Using this model for Ucj , we see that we can compactify X into a compact smooth
manifold with boundary, denoted X, by compactifying the open set (2.2) to

n
(z = v + iu, w) 2 H2

⇥

⇣
R/12Z

⌘
; |z| < R�1

j

o
(2.3)
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if H2 is the closed upper half-plane of C, and with the smooth structure given by
the smooth structure on H2

⇥ (R/12Z). This compactification amounts to adding a
circle at each cusp of X , and clearly the interior of X is X and X is an open set in
X. We denote by Hj each of these circles defined by {u = v = 0} in (2.3), and let
H := [

j1
j=1Hj .

There is another natural compactification of X (and X) that arises, which cor-
responds to the real blow-up of H in @X in X, which we denote by Xc. This is a
smooth manifold with corners of codimension 2 defined as follows: by taking the
representation (2.2) of Ucj , we see that this has closure in X diffeomorphic ton

(u, v,w) 2 R+ ⇥ R ⇥

⇣
R/12Z

⌘
; u2 + v2 < R�2

j

o

and to define Xc, we replace this chart by the chartn
(r, ✓, w) 2

⇥
0, R�1

j
�
⇥

⇥
�
⇡
2 , ⇡2

⇤
⇥

⇣
R/12Z

⌘o

where r :=

p

u2 + v2 and ✓ := arctan v
u . This corresponds to a real blow-up (de-

noted Xc = [X; H ] in [23, Chapter 5]) of the submanifold {(u, v,w) 2 Ucj ; u =

v = 0}, which is a circle. In this way, the manifold with corners Xc has two bound-
ary hypersurfaces. One, given by ✓ = ±

⇡
2 , is denoted M and is a compactification

of M to a smooth surface with boundary, while the other, the cusp face, denoted cf,
is given by r = 0 and is diffeomorphic to a cylinder [�⇡

2 , ⇡2 ]✓ ⇥ (R/12Z)w if there
is only one cusp of rank 1. More generally, the connected components of cf are in
one-to-one correspondence with the cusps of rank 1 of X with each connected com-
ponent diffeomorphic to [�

⇡
2 , ⇡2 ]✓ ⇥ (R/12Z)w. We will use this extended space

Xc to describe the analytic structure of the geodesic boundary defining function of
M in X near the cusps, which allows us to define the renormalized volume in that
setting. To summarize, we have the following manifolds and inclusions

@X = M ⇢ M, X ⇢ X ⇢ X, X ⇢ X ⇢ Xc =

⇥
X; H

⇤
.

2.2. Renormalized volume in the convex co-compact case

A geometrically finite hyperbolic 3-manifold X = 0\H3 with no cusps is called
convex co-compact. Such a manifold X can be decomposed as X = K [ U where
K ⇢ X is a compact region with smooth boundary and U is isometric to

M ⇥ (0, �)⇢, with metric g =

d⇢2 + h((Id+
1
2⇢
2A)2·, ·)

⇢2
(2.4)

where M = 0\� is a compact surface (not necessarily connected), h is a metric
on M , A is a symmetric endomorphism of T M satisfying the trace and divergence
properties

Trh(A) = �
1
2Scalh, �h(A) =

1
2d Scalh, (2.5)
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# 

cf

u

-
vM

6

Xc \ V Xc \ V

V

Figure 2.1. The manifold with corners Xc (the circle variable w is not represented).
The region V has finite volume and appears in the statement of Proposition 2.4. It cor-
responds to the region where the geodesic boundary defining function is well-defined.

see [10, Theorem 7.4] or [18] for details. The product form (2.4) will also be written

g =

d⇢2 + h0 + ⇢2h2 + ⇢4h4
⇢2

with h0 = h, h2(·, ·) = h(A·, ·) and h4(·, ·) :=
1
4h(A

2
·, ·). The manifold M

is compact and, when equipped with the conformal class [⇢2g|T M ] = [h], is the
conformal boundary of X . As above, X can be compactified smoothly into X with
boundary @X = M and ⇢, viewed as a function on X \ K, is a smooth boundary
defining function. The function ⇢ in U so that the metric has the form (2.4) is not
unique and is characterized by the property����d⇢⇢

����
g

= 1 in U , and (⇢2g)|T M = h.

In fact, for each metric ĥ conformal to h, there is a unique function ⇢̂ near @X
satisfying |d⇢̂/⇢̂|g = 1 and ⇢̂2g|⇢̂=0 = ĥ, and we call ⇢̂ the geodesic boundary
defining function associated to the conformal representative ĥ. We just recall briefly
the argument of Graham [11], as it will be useful later for the cusp case: take ⇢ a
boundary defining function of X , then the structure of the hyperbolic metric on H3

near its boundary implies that ḡ = ⇢2g is smooth up to @X and |d⇢/⇢|g is smooth
on X and equal to 1 at @X (that follows from the fact that g has curvature �1 in U ,
see [21]). Then writing h := (⇢2g)|T M and ⇢̂ = ⇢e! the equation |d⇢̂/⇢̂|g = 1
with the condition ⇢̂2g|@X = ĥ = e2'h for some ' 2 C1(M) is equivalent to the
equation

2hd!, d⇢iḡ + ⇢|d!|
2
ḡ =

1� |d⇢2|ḡ
⇢

, with boundary condition !|@X = '.

This is a non-characteristic Hamilton-Jacobi equation with smooth coefficients
which can be solved near the boundary by the method of characteristics and the
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solution is unique. We then extend ⇢̂ smoothly outside this neighborhood as a posi-
tive function in any fashion. The form of the metric g in the collar neighborhood of
M = @X induced by the gradient flow of ⇢̂ with respect to the metric ⇢̂2g is of the
form g = (d⇢̂2+ ĥ(⇢̂))/⇢̂2 for some one-parameter smooth family ĥ(⇢̂) of metrics
on M parametrized by ⇢̂, and the constant sectional curvature �1 implies the form
(2.4) with (2.5) (using Gauss and Codazzi constraint equations).

If ⇢ is a geodesic boundary defining function near @X associated to a conformal
representative h 2 [h], extended smoothly as a positive function on X , then the form
(2.4) of the metric in U implies that the Riemannian volume measure in U has the
form ⇢�3dvolg = G(⇢)d⇢ dvolh for some smooth function G 2 C1([0, �)). It is
direct to see (see [1, 14] for details) that

H(z) :=

Z
X
⇢zdvolg

has a meromorphic extension from {z 2 C;Re(z) > 2} to C, with a simple pole at
z = 0 and the value of the finite part of H(z) at z = 0 is independent of the value
of ⇢ in any fixed compact set K ⇢ X : in fact

FPz=0H(z) =

✓
FPz=0

Z
X\K

⇢zdvolg
◆

+ Volg(K).

We define the renormalized volume of X with respect to the conformal representa-
tive h 2 [h] as

VolR(X, h) := FPz=0
Z
X
⇢zdvolg.

As a function on the set of metrics in the conformal class [h]with volume 2⇡�(@X),
the functional VolR(X, h) has a unique maximum at h = hhyp, the unique hyper-
bolic metric in the conformal class, see for instance [14, Proposition 3.1].
Definition 2.1. Let X be a convex co-compact hyperbolic 3-manifold with confor-
mal boundary (M, [h]) a Riemann surface admitting a hyperbolic metric, i.e., M
does not contain genus-1 connected components. Let hhyp 2 [h] be the unique hy-
perbolic representative in the conformal class [h], and let ⇢ be the geodesic bound-
ary defining function associated to hhyp, defined uniquely near M and extended
smoothly as a positive function in X . The renormalized volume of X is defined to
be

VolR(X) := FPz=0
Z
X
⇢zdvolg = VolR

⇣
X, hhyp

⌘

where g is the hyperbolic metric on X .
The choice of the conformal representative hhyp 2 [h] to be hyperbolic is

important and yields particularly interesting properties of the renormalized volume
related to quasi-Fuchsian reciprocity and construction of Kähler potential for the
Weil-Peterson metric; see [14,18].
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2.3. Uniformisation of Riemann surfaces with cusps

Definition 2.2. A hyperbolic cusp is a region {y > R} of the quotient hz ! z +

1
2 i\H2 for some R > 0, where z = y + iw are coordinates on the hyperbolic
half-plane H2.

This set is also isometric to 
(R,1)y⇥(R/12Z)w,h=

dy2+dw2

y2

!
'

 ⇣
0, 1R

⌘
v
⇥

⇣
R/12Z

⌘
w
,h=

dv2

v2
+v2dw2

!
.

A surface with hyperbolic cusps (M,h) is a surface isometric outside a compact set
to a finite disjoint union of hyperbolic cusps.

We can compactify M into a smooth compact surface M with boundary by
replacing each cusp end

�
0, 1R

�
v

⇥

�
R/12Z

�
w
by
⇥
0, 1R

�
v

⇥

�
R/12Z

�
w
, that is, by

adding circles at infinity of the cusp end.
We can also compactify M to a compact surface 6 by adding a finite number

of points, one for each cusp. Define a conformal coordinate near such a point by
⇣ = exp(4⇡(�y + iw)). (The factor 4⇡ is needed in order for e4⇡ iw to be well-
defined for w 2 R/12Z.) We compute

|d⇣ |2 = (4⇡)2|⇣ |2(dy2 + dw2) = (4⇡)2|⇣ |2y2h. (2.6)

Since h is conformal to |d⇣ |2, we get in this way a conformal structure on 6. If M
is oriented, 6 becomes a compact Riemann surface.

If we take a boundary defining function ⇢ in a geometrically finite hyperbolic
3-manifold with a certain behaviour near the cusps, we see that the conformal in-
finity M = @X will have a metric with a hyperbolic cusp in the conformal class:
indeed, set ⇢ to be a smooth boundary defining function for M in X such that

⇢ =

xp
x2 + y2

in Ucj .

Then the metric h := ⇢2g|T M is a smooth metric on M which is given near the
cusps, that is in Ucj \ M ' {y 2 R; |y| > R j } ⇥ (R/12Z), by

h =

dy2 + dw2

y2
, |y| > R j , w 2 R/12Z

or equivalently, using the coordinates (u, v,w) of (2.2), ⇢ = u/
p

u2 + v2 and

h =

dv2

v2
+ v2dw2, 0 < |v| < 1/R j , w 2 R/12Z.

We define on M the space ˙C1(M) to be the Fréchet subspace of C1(M) consisting
of functions vanishing to infinite order at @M . We also define C1

r (M) to be the
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subspace of C1(M) consisting of functions f such that @w f 2
˙C1(M). This

corresponds to smooth functions whose Taylor series at the boundary is of the form

f (x, ✓) ⇠

1X
k=0

akvk (2.7)

where ak are constants, rather than functions of w. On a surface (M, h) with hy-
perbolic cusps, we say that a symmetric tensor h0

2 C1(M; S2(T ⇤M)) is a cusp
symmetric tensor if there exist A 2 C1(M;End(T M)) self-adjoint with respect to
h such that h0(·, ·) = h(A·, ·).

We first claim the following uniformization theorem, see [26, Theorem 3] for
a related result for Kähler-Einstein metrics.

Proposition 2.3. Let h be a metric on a surface M with hyperbolic cusps and
let M be the compactification as above. There exists a unique conformal factor
' 2 C1(M) \ L1(M) such that hhyp = e2'h has constant curvature �1 on M .
Moreover, ' 2 C1

r (M) and '|@M = 0. More precisely, in every cusp of M ,

'(v,w) + log(1+ av) 2
˙C1(M)

for some a 2 R depending on the cusp.

Proof. The surface (M, h) is conformal to the compact Riemann surface 6 with a
finite number of points removed, hence its fundamental group is non-commutative
and free. The Poincaré–Koebe uniformization theorem implies that M with its in-
duced conformal structure is conformal to a complete hyperbolic quotient. In other
words, there exists a unique conformal factor ' 2 C1(M) such that the Riemannian
metric hhyp = e2'h is hyperbolic and complete. The complete hyperbolic metric
on a punctured Riemann surface is known to have hyperbolic cusps near the punc-
tures, hence there exist isometries 8 between the hyperbolic cusps of h and hhyp
near the punctures. Such a 8 is a holomorphic self-map of 6 defined only near the
punctures, and 8⇤h = e2'h.

Note that 8 is an isometry, hence it is proper. It follows that it extends con-
tinuously as the identity on the punctures. The possible singularities of 8 at the
punctures are thus removable since the target surface 6 is compact, so in terms
of the complex variable ⇣ = exp(4⇡(�y + iw)), we have 8(⇣ ) = ⇣ f (⇣ ) with
f (0) = 80(0) 6= 0. Then using (2.6)

h =

|d⇣ |2

16⇡2|⇣ |2y2
=

1
|⇣ |2 log2 |⇣ |

|d⇣ |2.

This implies

8⇤h =

|80(⇣ )d⇣ |2

|⇣ f (⇣ )|2 log2 |⇣ f (⇣ )|
=

|1+ ⇣ f 0(⇣ )
f (⇣ ) |

2

⇣
1+

log | f (⇣ )|
log |⇣ |

⌘2 h.
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In terms of the boundary-defining function v = 1/y,

log |⇣ | = �

4⇡
v

, ⇣
f 0(⇣ )

f (⇣ )
2

˙C1(M), log | f (⇣ )| � log | f (0)| 2
˙C1(M).

Thus the conformal factor e2' =
8⇤h
h satifies ' + log(1 �

log | f (0)|
4⇡ v) 2

˙C1(M)
near the cusp.

2.4. The renormalized volume of geometrically finite hyperbolic 3-manifolds

We now wish to define a renormalized volume for a geometrically finite hyperbolic
3-manifold X with rank-1 cusps. We proceed like in the convex co-compact case,
by first uniformizing the conformal infinity (M, [h]) with the choice of the finite
volume hyperbolic metric h in the conformal class and then constructing a geodesic
boundary defining function ⇢ in X associated to h. The difficulty here is that the
conformal boundary is non-compact and it is not clear what is the behavior of the
function ⇢ near the cusp in X . We proceed as in Section 2.3: we start by choos-
ing ⇢ as a smooth boundary defining function near @X = M which is equal to
⇢ = u/

p

u2 + v2 in the model (2.2) of each cusp neighborhood Ucj ; the metric
h 2 [h] obtained by h = ⇢2g|T M in the conformal infinity is then hyperbolic out-
side a compact region of M . Then by Proposition 2.3 we know that there exists a
hyperbolic metric hhyp = e2'h, with ' 2 C1(M) and '|@M = 0. We obtain the
following Proposition, whose proof is done in Section 6.3.

Proposition 2.4. Let X be a geometrically finite hyperbolic 3-manifold with rank-1
cusps. Let (M, [h]) be the conformal infinity and hhyp be the complete hyperbolic
metric with cusps in the conformal class obtained from Proposition 2.3. For each
 2 C1

r (M), consider the conformal representative ĥ := e2 hhyp. There exists a
smooth boundary defining function ⇢̂ 2 C1(Xc) of the boundary hypersurface M
in Xc and a closed set V ⇢ Xc with finite volume, intersecting @Xc only at cf, such
that ����d⇢̂⇢̂

����
g

= 1 in Xc \ V, ⇢̂2g|T M = ĥ. (2.8)

The function ⇢̂ is defined uniquely near M . There is a smooth diffeomorphism
� : M ⇥ [0, ✏)x ! Xc \V such that �⇤⇢̂ = x and �⇤g admits a finite expansion in
powers of x ,

�⇤g =

dx2 + ĥ0 + x2ĥ2 +
1
4 x
4ĥ4

x2
(2.9)

where the coefficients ĥ0 = ĥ and ĥ2, ĥ4 are cusp symmetric tensors such that

Trĥ0(ĥ2) = �

1
2
Scalĥ0 and �ĥ0(ĥ2) =

1
2
d Scalĥ0
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and ĥ4(·, ·) =
1
4 ĥ0(A

2
·, ·) if ĥ2(·, ·) = ĥ0(A·, ·). Finally, the function H(z) :=R

X ⇢̂
zdvolg admits a meromorphic extension from Re(z) > 2 to a neighborhood of

z = 0, with pole of order 1 at z = 0.

A smooth boundary defining function of M in Xc is called geodesic boundary
defining function associated to ĥ if it satisfies (2.8). Similarly to the convex co-
compact case, the value of the finite part at z = 0 of the integral in any compact
subset V ⇢ Xc \ M is independent of the value of ⇢ in V:

FPz=0H(z) =

⇣
FPz=0

Z
X\V

⇢zdvolg
⌘

+ Volg(V).

This is a consequence of the fact thatV has finite volume. In otherwords, FPz=0H(z)
depends only on the values of ⇢ in arbitrarily small neighborhoods of M in Xc, and
thus it depends only on the conformal representative ĥ 2 [h] in the conformal infin-
ity.

Now we can define the renormalized volume in this setting:
Definition 2.5. Let X be a geometrically finite hyperbolic 3-manifold with rank-
1 cusps, and with conformal boundary (M, [h]) admitting a complete hyperbolic
metric. Let hhyp 2 [h] be the unique hyperbolic representative in the conformal
class [h]. For  2 C1

r (M), let ⇢̂ 2 C1(Xc) be the geodesic boundary defining
function of M associated to ĥ := e2 hhyp defined uniquely by Proposition 2.4
in a neighborhood of M in Xc and extended in any fashion as a positive smooth
function in Xc \ M . The renormalized volume of X associated to the conformal
representative ĥ = e2 hhyp is defined to be

VolR(X, ĥ) := FPz=0
Z
X
⇢̂z dvolg

where g is the hyperbolic metric on X . We define the renormalized volume of X by

VolR(X) := VolR
⇣
X, hhyp

⌘
.

3. Formation of a cusp from Schottky groups

3.1. Notation

We shall use mainly the representation of H3 as a half-space R+

x ⇥ Cz in R3, the
boundary then becomes @H3

= {0} ⇥ C ' C.
The intersection of H3

= R+

x ⇥ Cz with the Euclidean ball of radius r > 0
centered at a boundary point z 2 @H3 is called a half-ball of H3, and we denote
it by B(z, r). The boundary of a half-ball B(z, r) in H3 is called a half-sphere of
center z 2 C and radius r > 0, and is denoted by H(z, r). In terms of hyperbolic
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geometry, B(z, r) is an unbounded domain with totally geodesic boundary given
by the half-sphere H(z, r) = @B(z, r) \ H3. We say that the ball is supported by
the disc D(z, r) ⇢ C of center z and radius r (this corresponds to @H3

\ B(z, r)).
Similarly we say that H(z, r) is supported by the circle C(z, r) = @D(z, r) in
@H3

' C (this corresponds to @H3
\ H(z, r)).

3.2. Schottky groups

We shall analyze the behaviour of VolR(X") for a family (X")">0 of convex co-
compact hyperbolic 3-manifolds such that, as " ! 0, X" converges to a hyperbolic
3-manifold X0 with rank-1 cusps. Here, we take " � 0 to be a continuous parame-
ter, but one could of course also consider sequences. The case that we consider is a
smooth (in " > 0) family of Schottky groups 0" with certain loxodromic generators
of PSL2(C) converging to parabolic transformations of PSL2(C).

We recall that amarked Schottky group 0 ⇢ PSL2(C) of genus g with standard
generators �1, . . . , �g 2 PSL2(C) is a group generated by these generators such
that there exist 2g disjoint Jordan curves (C± j ) j=1...,g in S2 = @H3 bounding a
connected open domain D ⇢ S2 with � j (D) \ D = ; and � j (C� j ) = C+ j .
Then 0 is free and contains only loxodromic elements, with fundamental domain
D [ j C± j ⇢ S2 for the action of 0 on the discontinuity set � ⇢ S2 (which is
connected open and dense set in S2). It is shown by Chuckrow [7] that every set
of g free generators of a Schottky group is in fact a set of standard generators. A
Schottky group is said to be a classical Schottky group if there is some set of free
generators for which the curves C± j can be taken to be circles. A family of circles
associated to the generators satisfying the conditions as above will be called a set
of adapted circles. Such a set is of course not unique. We can view 0 as a discrete
group of isometries acting freely and discontinuously on H3, and as a group of
conformal transformations acting freely and discontinuously on the discontinuity
set � ⇢ S2. To define the Schottky space Sg, we follow Chuckrow [7]: PSL2(C)
identifies with P3(C) \ Y where P3(C) is the 3-dimensional complex projective
space, and Y the algebraic submanifold {� 2 PSL2(C); det � = 0}. Consider the
subset Ug of (PSL2(C))g consisting of groups with g generators �1, . . . , �g such
that there are at least 3 distincts fixed points among those of � j . Then Ug is an open
and connected subset of (P3(C) \ Y )g. There is an action of PSL2(C) on Ug by
conjugation:

(B, (�1, . . . , �g)) 7! (B�1B�1, . . . , B�g B�1)

and Ug/PSL2(C) is a complex manifold of dimension 3g�3 with the natural topol-
ogy inherited from (PSL2(C))g. One way of fixing coordinates on this space is to
fix 3 distincts fixed points of the generators by conjugating the group with an ap-
propriate element of PSL2(C). More precisely near a 0 2 Ug/PSL2(C), up to
conjugation, we can choose the generators � j so that 0, 1 and 1 are the three
distinct fixed points among the generators, then there are local complex coordi-
nates on Ug/PSL2(C) near [0] given by the coefficients a j , b j , c j , d j 2 C so
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that � j (z) = (a j z + b j )/(c j z + d j ) with a jd j � b j c j = 1 (notice that 3 com-
plex parameters among the � j are fixed). The Schottky space Sg is the subset of
Ug/PSL2(C) corresponding to equivalence classes of marked Schottky groups. For
a group 0 2 Sg, we can always choose the three distinct fixed points to be the re-
pulsive and attractive fixed point of �1 and the repulsive fixed point of �2, and one
then gets global complex coordinates by conjugating the groups so that 0 and1 are
the attractive and repulsive fixed point of �1 and 1 is the repulsive point of �2. This
system of coordinates is not well adapted to the description of groups tending to the
boundary of Sg with �1 becoming parabolic. Chuckrow [7, Lemma 5] showed that
Sg is a connected open subset of Ug/PSL2(C). The Schottky classical space S0g
is the open subset of those groups which are classical. Chuckrow [7, Theorems 4
and 5] also showed that boundary points in @Sg are free groups with g genera-
tors, without elliptic transformations, which either have a parabolic element or are
not discontinuous, and both cases may happen. Marden [19] proved that groups
in @Sg are discrete, that Sg \ S0g is a non-empty open set, and groups in @S0g are
discontinuous. Later Jorgensen-Marden-Maskit [16] proved that all points in @S0g
are geometrically finite Kleinian group with parabolic elements. Thus S0g is better
behaved and we will only focus on this space.

3.3. Admissible Schottky groups

We consider a sequence of classical Schottky groups 0" 2 S0g where (� "1 , . . . , � "g )

converge to (� 01 , . . . , � 0g ) with 00 generated by these elements in @S0g \ @Sg as
" ! 0, so that 00 is a geometrically finite free group with g generators, with
parabolic elements. We assume that � "j is smooth in " 2 [0, 1] for j  g. We use
the coordinates on Sg as above, so that the fixed points of � "1 are 0 and1, and the
repulsive point of � "2 is 1. For notational simplicity, we shall sometime remove the
0 superscript for the limiting objects at " = 0, for instance we shall use � j for � 0j .
We write these elements of PSL2(C) as

� j (z) =

a j z + b j
c j z + d j

, � "j (z) =

a j (")z + b j (")
c j (")z + d j (")

,

with a jd j � b j c j = 1 and a j (")d j (") � b j (")c j (") = 1.

For j < j0, the fixed points of � "j are denoted p± j (") and given by

p± j (") =

a j (")�d j (")
2c j (") ±

q
Tr(� "j )2�4
2c j (") . (3.1)

(we use the determination of
p

· on C \ R�). Up to possibly exchanging � "j by its
inverse in our choice of generators, we can assume that p+ j (") is the attractive, and
p� j (") the repulsive fixed point. The geodesic in H3 relating p� j (") to p+ j (") is
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called the axis of � "j . The Euclidean distance in C between the two fixed points of
� "j is

|p+ j (") � p� j (")| =

|Tr(� "j )
2
� 4|

1
2

|c j (")|
. (3.2)

Take a family of adapted circles C"
± j bounding a fundamental domain D

". Notice
that D" has compact closure contained in the region bounded by C"

�1 and C
"
+1 inC.

If the circles C"
±1 are not contained in a compact set of C independent of ", then all

the fixed points of a subsequence of � "j for j > 1 tend to1, and that is not possible
since the limiting transformations � j and �k can not have common fixed points if
j 6= k, according to [19, Lemma 2.3]. For the same reason, D" can not shrink to
0 and more generally to a point of C. Up to extraction of a subsequence "n ! 0,
the circles C"n

± j then converge to circles or points, and for j = 1 the limits C±1 are
circles. If they are disjoint then the limiting domain D0 is non-empty and thus, if
some circle C"n

± j converge to a point p, we obtain a contradiction since � j would
have to map D to p. This shows in that case that all C"n

± j converge to circles C± j .
If C+1 = C�1, then since � "1 ! �1, we necessarily have that �1 is elliptic or the
Identity, but this can not happen by [7] since 00 can not contain elliptic elements
and must be a free group with g generators given by �1, . . . �g. We thus conclude
that D"n ! D0 non-empty, bounded by circles C± j . Necessarily, at least two of
the circles C± j must intersect at a point since we assume that 00 is not in S0g . We
will make the assumption that the limiting circles satisfy

C± j \ (C+k [ C�k) = ;, if j 6= k. (3.3)

Thus there are g� j0 of the generators � j that are parabolic for some 0 < j0  g�1.
Without loss of generality, we choose them to be � j for j = j0 + 1, . . . , g. For
j  j0 the � j are loxodromic. If j > j0, we have Tr(� j ) = 2 at the limit and
the unique fixed point of the parabolic transformation is p j =

a j�d j
2c j , and we have

that |Tr(� "j ) � 2|
1
2 /|c j (")| ! 0 as " ! 0. The fundamental domain D" for 0" is

uniformly bounded in C, and c j (") 6= 0 for j > 1 in order to have adapted circles
C"

± j associated to �
"
j . To be adapted, the disk bounded by the circle C

"
+ j has to

contain the point z = a j (")/c j (") (which is the image of 1 by � "j ) and the disk
bounded by the circle C"

� j has to contain z = �d j (")/c j (") (which is mapped to1

by � "j ); since C
"
± j also contains p± j ("), we deduce that when j > j0 and " ! 0,

the fact that p± j (") ! p j implies that the radius of C"
± j is bounded below by

(|Tr(� "j )| � |Tr(� "j ) � 2|
1
2 )/4|c j (")| for small " > 0. In particular c j (") converge

to c j 6= 0 as otherwise the radius of the adapted circles would tend to 1. There is
a subsequence "n where for each j there are adapted circles C"n

± j associated to the
�
"n
j that converge to circles C0

± j (also denoted C± j ), which are tangent if and only
if j > j0 and with C+ j \ C� j = p j being the fixed point of � j . Then the limiting
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(tangent) adapted circles for j > j0 have radius bounded from below by 1/2|c j |.
Moreover, an easy computation shows that � j preserve the line c�1j (a j + R) ⇢ C
that we call the axis of � j .

The element � "1 is of the form
� "1 (z) = q1(")z, q1(") 2 C, |q1(")| > 1

and each � "j for j > 1 can be written as the transformation of C ' S2 \ {1}

satisfying

✓"j � � "j (z) = q j (")✓"j (z), ✓"j (z) := �

z � p� j (")

z � p+ j (")

where p± j (") 2 C are the two fixed points of � "j and q j (") 2 C is the complex
multiplier with |q j (")| > 1 (we take p+ j (") to be the attractive fixed point). The
multiplier will also be written as

q j (") = e` j (")+i↵ j (") (3.4)
for some ` j (") > 0 and ↵ j (") 2 [0, 2⇡). Since for j > j0, � "j converge to
a parabolic element � j with fixed point p j , then q j (") ! 1 since Tr(� "j )

2
� 4 =

(q j (")�1)2/q j (")must converge to 0. The axis of � "j is mapped toR+
⇥{0} ⇢ H3

by (✓"j )
�1 in the half-space model H3

= R+

x ⇥ Cz
The set D" is a fundamental domain for the action of 0" on the discontinuity

set �" ⇢ C. The group acts properly discontinuously on �" by conformal trans-
formations and the quotient M"

= 0"\D" = 0"\�" is a closed Riemann surface
of genus g, with conformal structure induced by that of C. It is the conformal
boundary of the hyperbolic 3-manifold X" := 0"\H3. We denote by F" ⇢ H3

the fundamental domain for the group 0" with totally geodesic boundary satisfying
@F" \ @H3

= D"; in particular X" = 0"\F". Up to extraction of a subsequence,
these fundamental domains converge to D0 and F0 (that we also denote D and F)
and X0 = 00\F0 is a geometrically finite hyperbolic manifold (that we also denote
X).

We define the parameters

� j (") :=

|p+ j (") � p� j (")|

` j (")
, ⌫ j (") :=

↵ j (")

` j (")
. (3.5)

Since c j (") is smooth in [0, 1] and Tr(� "j ) = q j (")
1
2 + q j (")�

1
2 , we see from (3.2)

that if ⌫ j (") is smooth, then � j (") extends smoothly in " 2 [0, 1] and

� j := lim
"!0

� j (") = (1+ ⌫2j )
1
2 /|c j |. (3.6)

In fact, if ⌫ j (") is smooth, then by (3.1) we have that
p+ j (")�p� j (")

` j (")
extends smoothly

to " = 0 with
p+ j (") � p� j (")

` j (")
! (1+ i⌫ j )/c j as " ! 0. (3.7)
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Definition 3.1. For a smooth family of multipliers " ! q(") 2 C1([0, 1]; C \

D(0, 1)) with q(0) = 1 and |q(")| > 1 if " > 0, we say that q(") is admissible
if q(") = e`(")(1+i⌫(")) for some real valued functions `("), ⌫(") smooth in " 2

[0, 1]. We say that a smooth family 0" of classical Schottky groups of genus g
is admissible if each multiplier q j (") of the generator � "j is either admissible or
� j = � 0j is loxodromic, and if there is a subsequence "n ! 0 for which there are
2g adapted circles C"n

± j converging to C± j such that if two of the limiting 2g circles
C± j intersect, this can only be C+ j \C� j = {p j } for j so that � j is parabolic with
fixed point p j .

3.4. Canonical circles

The adapted circlesC"
± j associated to the elements �

"
j can actually be taken smoothly

in " > 0, but they are not in general of the best form to get a local model descrip-
tion of the geometry with respect to " ! 0. In addition it is not clear if they can
be taken smoothly down to " = 0, but we will show below that if the family of
Schottky groups 0" is admissible, then we can find a smooth family of fundamental
domains down to " = 0, which are bounded by pieces of circles near the punctures.

For this purpose and to obtain a nice description of the degeneration near the
punctures, we define the notion of canonical circles for a loxodromic transforma-
tion.

If � 2 PSL2(C) is loxodromic with fixed points p� and p+ and multiplier
q = e`(1+i⌫) with ` > 0 and ✓ � � � ✓�1(z) = qz for some ✓ 2 PSL2(C), the
canonical circles for � will be the circles

eC± := ✓�1
⇣n
z; |z| = e±

`
2
o⌘

= {z 2 C; |z � z±| = r} , with

z⌥ := p± +

p⌥ � p±

1� e�`
, r =

|p+ � p�|

2 sinh(`/2)
.

(3.8)

Lemma 3.2. Let � 2 PSL2(C) be loxodromic with multiplier q = e`(1+i⌫) and
fixed points p�, p+ 2 C, and let eC⌥ be its associated canonical circles, defined by
(3.8). Then the transformation � maps the exterior of the disk eD� bounded by eC�

to the interior of the disk eD+ bounded by eC+.

Proof. Consider the two concentric circles S± := {|z| = e±
1
2 `} and let m(q) be the

complex dilation by q in C. Consider the transformations

�(z) =

z � 1
z + 1

,  (z) = z +

p+ + p�

p+ � p�

, ⌘(z) =

p+ � p�(")

2
z. (3.9)

The composition ⌘ � maps {0,1} to {p�, p+} and � = (⌘ �)m(q)(⌘ �)�1.
The circles eC± are mapped by ✓ := (⌘ �)�1 to {|z| = e±`/2} and the lemma
follows directly.
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We shall denote by eC"
± j the canonical circles of �

"
j ; a priori they are not

adapted circles for the group. For j > j0, assuming that ⌫ j (") is smooth in
" 2 [0, 1], we see by (3.8) and (3.7) that eC"

± j extends smoothly to " = 0 with
limiting circles eC0

± j , tangent at p j , with radius r j and center z± j given by

z± j = p j ⌥

(1+ i⌫ j )
c j

, r j = � j =

q
1+ ⌫2j

|c j |
.

Note that the lines passing through the centers z+ j and z� j intersect the axis of the
parabolic transformation � j at an angle arctan(⌫ j ).

3.5. Good fundamental domains

For 0" a family of admissible Schottky groups we have a subsequence of funda-
mental domains F"n with totally geodesic boundary and with D"n = @H3

\ @F"n
bounded by the adapted circles C"n

± j , and F
"n and D"n are converging to F0 and

D0, where D0 is bounded by the limiting circles C± j . From the limiting domain
F0, we shall construct new fundamental domains eF" for 0" for small " � 0, called
good fundamental domains and constructed by combining canonical circles with
the limiting adapted circles C± j . The domain eD" = @eF" \ @H3 will be bounded
by Jordan curves instead of circles, but their form near the parabolic points p j will
be a good model for the geometry as " ! 0 near the punctures.

Notice that we can always choose �0 > 0 and "0 > 0 small enough so that for
each j > j0 and � 2 (0, �0), for all 0 < "  "0 the half-ball B(p j , �) ⇢ H3 is
at positive Euclidean distance from all connected components of @F0 \ @F0 \ @H3

except those half-spheres supported by C± j .
Recall that eC"

± j are the canonical circles of �
"
j , and denote by eD"± j ⇢ C the

disk bounded by eC"
± j . We then show the existence of good fundamental domains:

Lemma 3.3. There exists � 2 (0, �0) such that for all " 2 [0, "0], there exist funda-
mental domains eF" for 0" acting on H3 with the following properties:
• the boundary @eF" is a smooth in " 2 [0, "0] collection of 2g smooth hypersur-
faces (H "

± j ) j=1,...,g homeomorphic to half-spheres: more precisely H
"
± j is the

image of H0
± j by a smooth in " 2 [0, "0] family of diffeomorphisms of H3 equal

to Id at " = 0. The closures of H "
± j in H3 are all disjoint except when " = 0

where H0
� j \ H0

+ j = {p j } for j > j0;
• each � "j maps the exterior of the compact domain bounded by H

"
� j in H3 to the

interior of the compact domain bounded by H "
+ j in H3;

• for each j > j0, eF" \ B(p j , �) =
eF"j \ B(p j , �) if eF"j is the fundamental

domain with totally geodesic boundary for the cyclic group h� "j i and satisfying
@eF"j \ @H3

= C \ (eD"
+ j [

eD"
� j ).
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Proof. For j  j0, we can take H "
� j = H0j to be the half-spheres supported by the

circles C0
� j and H

"
+ j = � "j (H

0
j ). Since �

"
j ! � j and C± j are adapted circles for

the limiting � j , clearly for small enough " the hypersurfaces H "
± j satisfy the desired

properties. Now we deal with the more delicate part, that is when j > j0 and the
limiting � j is parabolic. We take � small, but independent of " � 0, and take a large
C > 0 so that B(p j ,C�) is at positive distance from the half-spheres supported by
the limiting C±k at @H3 for k 6= j . Note that C can be taken large by taking � small
(for instance C ' ��1/2 works). We start with " = 0, where we will modify F0
to eF0 near the parabolic points p j . We may assume that C0

� j 6=
eC0

� j as otherwise
it suffices to take H "

± j to be the half-spheres supported by eD"± j , which satisfy the
desired properties. By conjugating by � : z 7! 1/(z � p j ) the parabolic element
� j becomes a parabolic transformation fixing 1, thus of the form z 7! z + c for
some c 2 C, which in H3 acts by Tc : (x, z) ! (x, z + c). The half-balls B(p j , �)
and B(p j ,C�) are mapped by the Poincaré extension 8 of � to (the interior of)
H3

\ B(0, ��1) and H3
\ B(0, (C�)�1). The circles C0

� j and eC0� j are mapped to
lines L and eL of C with respective tangent vector ⌧ 2 C ande⌧ 2 C, and �(C0

+ j )

and �(eC0
� j ) are images of these lines by z 7! z + c, that is L + c and eL + c.

The half-spheres of H3 supported by C0
� j and eC0� j are mapped to vertical planes

R+
⇥ L andR+

⇥
eL by8, and the image of the half-spheres supported by C0

+ j andeC0
+ j areR+

⇥(L+c) andR+
⇥(eL+c). Note that S := 8(F0 \ B(p j ,C�))\@H3

andeS := 8(eF0j \ B(p j ,C�)) \ @H3 are strips in C \ D(0, (C�)�1) bounded by L
and L + c (resp. eL and eL + c). For the following part of the proof, we recommend
the reader to see Figure 3.1 while reading the argument.

Figure 3.1. The new fundamental domain D in @H3
' C before smoothing is given by

the dark region



344 COLIN GUILLARMOU, SERGIU MOROIANU AND FRÉDÉRIC ROCHON

For C > 0 large and � > 0 small, consider the annulus A� := {(C�)�1 < |z| <
��1} in C viewed as the boundary of the half-space H3. If � > 0 is chosen very
small, then in A� the strips bounded by L and L+c and the strips bounded byeL andeL+c are at a positive distance. We can then take two segments T1 and T2 in A� with
extremities on L and eL , which are transverse to the lines with tangent vector c 2 C.
Then Pi := [t=2[0,1](Ti + tc) for i = 1, 2 are two parallelograms with vertices on
L , L + c, eL , eL + c. Then there is a unique fundamental domain D ⇢ C for the
translation z ! z + c, with boundary made of two piecewise linear curves Z and
Z+c, with Z containing 5 segments, and such thatD is equal toeS outside |z| < ��1,
to S inside |z| < (C�)�1, and contains the parallelograms P1 and P2. The two
points ofD at the largest distance fromeS are the vertices v1 and v2 of P1 and P2 (we
choose v1 to be the one on L), and there is a homotopy ht (for t 2 [0, 1]) between
D andeS which can be done in the obvious way by moving v1 along L toward v0

1 :=

L \
eL and v2 along L+ c toward v0

2 := (eL+ c)\ (L+ c) linearly in t . By choosing
C > 0 large enough, there exists a height x0 2 ((C�)�1, ��1) so that in the half-
space H3, [t2]0,1]({t x0} ⇥ ht (P1 [ P2)) is contained in B(0, ��1) \ B(0, (C�)�1).
We thus take the fundamental domainF ⇢ R+

x ⇥C = H3 for the quotient hTci\H3

given by
F =

⇣ [
t2(0,1]

({t x0} ⇥ ht (D))
⌘

[ ([x0,+1) ⇥
eS).

This has a piecewise smooth boundary, and can be smoothed out by an arbitrar-
ily small perturbation in B(0, ��1) \ B(0, (C�)�1). For convenience we keep the
same notation for the smoothed fundamental domain. By construction, 8�1(F) \

B(p j ,C�) gives the desired modification of F0 inside B(p j ,C�) to produce eF0.
This construction defines the hypersurfaces H0

± j , which are the connected compo-
nents of @eF0 \ @eF0 \ @H3.

Next we want to use a perturbation argument to construct H "
± j from H0

± j . For
each j > j0, there exists a smooth family in " 2 [0, "0] of Möbius transformations
A"j 2 PSL2(C) which map eC0

� j onto eC"� j . It is just a composition of a translation
and a dilation, and equals Id at " = 0. Then H "

� j := A"j H
0
� j is a smooth hypersur-

face and define H "
+ j := � "j (H

"
� j ); both hypersurfaces are disjoint from other H

"
±k

for small " since it is the case for " = 0. The point d j/c j 2 C that is mapped to
1 by � j is in the disk D� j bounded by C� j , and since A"j ! Id as " ! 0, we
see that for " > 0 small enough d j (")/c j (") is in the domain bounded by the curve
@H "

� j \ @H3
⇢ C and thus property 2) in the lemma is satisfied for this choice of

H "
± j . By construction, in B(p j , �) the hypersurfaces H "

± j are given by pieces of
half-spheres supported by eC"

± j , and outside B(p j , �) they are arbitrarily close to
H0

± j since A
"
j ! Id in Ck-norms, thus we deduce that H "

� j \ H "
+ j = ; for " > 0

small enough. These conditions ensure that the domain eF" bounded by the hyper-
surfaces H "

± j is a fundamental domain for 0
" satisfying all the desired properties

of the lemma.
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4. Analysis of the model degeneration

In this section we shall describe more precisely the model geometry for the degener-
acy to a rank-1 cusp. Let �L 2 PSL2(C) be loxodromic with multiplier q = e`(1+i⌫)
and fixed points p� = 0 and p+ = �` for some � > 0; we write L = (`, ⌫, �) and
we take

L 2 Q := (0, 1] ⇥ [�N , N ] ⇥ [N�1, N ] (4.1)

for some N > 0 fixed. Using (3.7), the set of those �L such that L 2 Q has closure
such that the boundary {` = 0} corresponds to parabolic elements

�L(z) =

z
cz + 1

with c =

1+ i⌫
�

, L = (0, ⌫, �)

fixing p� = p+ = 0. We denote byQ the closure ofQ, and we define the parabolic
boundary ofQ as the set {` = 0}. There is a smooth fibration

5 : X ! Q, with fibers the manifolds
5�1(L) = XL := h�Li\(H3

[�L)
(4.2)

where �L = @H3
\ {0, �`} the discontinuity set of the cyclic group h�Li. A cusp

region of XL is the image of a neighborhood B(0, �) of 0 2 @H3 by the covering
map ⇡�L : (H3

[ �L) ! XL and we say that [(0,�,⌫)2Q⇡�L (B(0, �)) is the cusp
region of X .

If |q| > 1, consider the isometry of the hyperbolic space H3
= R+

x ⇥ Cz

m(q) : (x, z) 7! (|q|x, qz) (4.3)

and the quotient of H3 by the elementary group hm(q)i generated by m(q)

Xm(q) := hm(q)i\H3 with covering map ⇡m(q) : H3
! hm(q)i\H3. (4.4)

Lemma 4.1. For L = (`, ⌫, �) 2 Q, let �L 2 PSL2(C) be loxodromic with mul-
tiplier q = e`(1+i⌫) and fixed points p� = 0 and p+ = �` 2 (0,1), and leteCL

±
be its associated canonical circles, defined by (3.8). Let eDL

±
⇢ C be the disk

bounded by eCL
±
and eFL ⇢ H3 the fundamental domain for the cyclic group h�Li

with totally geodesic boundary satisfying @eFL \ @H3
= C \ (eDL

+
[
eDL

�
). Let

⇡�L : H3
! h�Li\H3 denote the covering map, then for � > 0 small and for

�` < �, the set
U �L := ⇡�L (B(0, �) \

eFL) (4.5)

is isometric to

⇡m(q)

✓⇢
(x, z) 2 H3

\ B(e, ⇢); e�
1
2 ` 

q
x2 + |z|2  e

1
2 `
�◆

(4.6)
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where e(L) 2 C ⇢ @H3 and ⇢(L) > 0 have asymptotics for small `

e(L) = �1�
�2`2

�2
+O(�

4`4

�4
), ⇢(L) =

�`
� +O(�

2`2

�2
). (4.7)

The isometry from (4.5) to (4.6) is given by

2L(x, z) :=

 
x�`

|z � �`|2 + x2
,
�x2 � |z|2 + �`z
|z � �`|2 + x2

!
. (4.8)

Proof. We use the notations of the proof of Lemma 3.2. We have a composition
⌘ � which maps {0,1} to {0, �`} and � = ⌘ �m(q)(⌘ �)�1. We define 2
to be the Poincaré extension of ✓ = (⌘ �)�1 to the half-space H3, thus given by
(4.8). We check that the image of B(0, �) under (⌘ �)�1 is the complement of the
half-ball B(e, ⇢) as claimed in the statement of the lemma:  �1⌘�1 maps B(0, �)
to the half-ball centered at (x, z) = (0,�1) and radius 2�/�`, then ��1 maps it to
the complement of the half-ball with center and radius

(x, z) =

 
0,�1�

�2`2

�2 � �2`2

!
, ⇢ =

��`

|�2 � �2`2|

which proves the claim.

The following Proposition describes the model manifold Xm(q) with more ap-
propriate coordinates; since the proof involves a sequence of tedious (and not very
enlightning) computations, we have deferred it in the Appendix.

Proposition 4.2. Assume that L = (`, ⌫, �) 2 Q with the notation (4.1); then
there is an isometry8L between the solid torus (4.4) and the manifold (R/12Z)w ⇥

H2
⇣=v+iu equipped with the metric

gL=

du2+dv2+((1+⌫2)R4�4⌫2`2u2)dw2+2⌫(R2�2u2)dwdv+4⌫uvdudw

u2
(4.9)

where R :=

p

u2 + v2 + `2. With e(L), ⇢(L) given by (4.7), the neighborhood

⇡m(q)

✓⇢
(x, z) 2 H3

\ B(e, ⇢); e�
1
2 ` 

q
x2 + |z|2  e

1
2 `
�◆

(4.10)

is mapped by 8L to the set

W�
L := ⇡w

✓⇢
(w, ⇣ ) 2


�

1
4
,
1
4

◆
⇥ H2

; |⇣ � vL(w)| < ⌧L(w)

�◆
(4.11)

where ⇡w : R ⇥ H2
! (R/12Z) ⇥ H2 is the covering map, and ⌧L(w), vL(w) are

smooth functions of w 2

⇥
�

1
4 ,

1
4
�
which converge uniformly as ` ! 0 to some



RENORMALIZED VOLUME OF PUNCTURED SURFACES 347

⌧�,⌫(w) and v�,⌫(w) satisfying v�,⌫(w) = O(�3) and ⌧�,⌫(w) = 2�/� + O(�3)
uniformly in |w| < 1/4. Finally, the map

(L , x, z) 7! (L ,8L �2L(x, z)) 2

⇣
Q⇥

⇣
R/12Z

⌘
⇥ H2

⌘

extends smoothly to a neighborhood of the cusp region ofX and is a diffeomorphism
with image V \ {` = 0, ⇣ = 0} where V is some neighborhood of {` = 0, ⇣ = 0}.

Notice that when ` ! 0, the limiting model in Proposition 4.2 is
�
R/12Z

�
w

⇥ H2
⇣=v+iu equipped with the metric

g0 =

du2 + dv2 + (1+ ⌫2)(u2 + v2)2dw2 + 2⌫(v2 � u2)dwdv + 4⌫uvdudw

u2
.

(4.12)
Writing x :=

u
u2+v2

, y := �
v

u2+v2
, this becomes

g0 =

dx2 + dy2 + (1+ ⌫2)dw2 + 2⌫dwdy
x2

and thus taking (x 0, y0, w0) =

� x
p

1+⌫2
, y
1+⌫2 , w +

⌫y
1+⌫2

�
and the inverted coordi-

nates
�
u0

=
x 0

x 02
+y02 , v

0
= �

y0

x 02
+y02 , w

0

�
, we obtain

g0 =

dx 02
+ dy02

+ dw02

x 02 =

du02
+ dv02

+ (u02
+ v02)2dw02

u02 (4.13)

which is exactly the model metric of (2.2). We can then write this change of variable

u0

= (1+⌫2)3/2u

 
1�

⌫2u2

u2(1+⌫2)+v2

!
, v0

=

⇣
1+⌫2

⌘
v

 
1�

⌫2u2

u2(1+⌫2)+v2

!

w0

=w�

⌫

1+⌫2
v

v2+u2
(4.14)

and if we take the fundamental domain
⇥
�
1
4 ,

1
4
⇤
w

⇥H2
iu+v for

�
R/12Z

�
w

⇥H2, we
see that the corresponding fundamental domain in the coordinates (u0, v0, w0) for
the action w0

7! w0
+

1
2 becomes

D :=

⇢
(w0, iu0

+ v0) 2 R ⇥ H2
;w0

+

⌫

1+ ⌫2
v

v2 + u2
2


�

1
4
,
1
4

��
. (4.15)

This explicit isometry will be used later since it is sometimes more convenient to
work in the model (4.13) than in the model (4.12).

The function U :=
u
R inW�

L defines the boundary corresponding to @XL via
8L �2L . We will see later that, near the cusp, this function is a boundary defining
function on a space that compactifies X as a manifold with corners. This function
will essentially give the form of the equidistant foliation near the pinched geodesic.
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Lemma 4.3. Let U :=
u
R be the chosen boundary defining function in W�

L ; then
the metric hL := (1 + ⌫2)(U2gL)|U=0 in the conformal infinity induced by the
defining function U

p

1+ ⌫2 is given by

hL := (1+ ⌫2)

 
dv2

v2 + `2
+ (v2 + `2)(1+ ⌫2)dw2 + 2⌫dvdw

!

and has constant Gaussian curvature �1.

Proof. First we notice that h[L :=
`2

(1+⌫2)(v2+`2)hL is flat, since it is given by

h[L = d✓2 + `2(1+ ⌫2)dw2 + 2`⌫d✓dw

with ✓ := arctan(v/`), and thus the Gaussian curvature of hL is given by

1
2(1+ ⌫2)

`2

v2 + `2
1h[L

 
log

 
v2 + `2

`2

!!
= (cos ✓)2@2✓ (log cos(✓)) = �1

which finishes the proof.

5. Formation of a cusp on surfaces

In this section we discuss the uniformisation on a Riemann surface when there is a
degeneration to a surface with cusps.

We start by setting the assumptions. Let N be a compact surface of genus
g � 2 and h" a family of smooth metrics on N for " > 0. Assume that there is
a finite family of disjoint smooth embedded circles (Hj ) j=1,..., j1 on N (for some
j1 2 N) which satisfies the following properties: there exist A > a > 0 and some
connected open neighborhoods Z"j ⇢

�
R/12Z

�
⇥ (�A, A) of

�
R/12Z

�
⇥ {0} and

some neighborhood Y"j of Hj in N such that
�
R/12Z

�
⇥ (�a, a) ⇢ Z"j , and there

exist some smooth diffeomorphisms

 "j : Z"j ! Y"j

and some parameters ⌫ j ("), ` j (") converging to ⌫ j 2 R and 0 as " ! 0, such that

 "j
⇤h"

=(1+⌫ j (")
2)

 
dv2

v2+` j (")2
+(v2+` j (")

2)(1+⌫ j (")
2)dw2+2⌫ j (")dvdw

!
,

(5.1)
wherew 2

�
R/12Z

�
is an angle variable and v is the coordinate obtained by project-

ing on the second factor. Moreover, we ask that  "j is converging in Ck-norms for
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all k 2 N0 to some smooth diffeomorphisms  0j : Z0j \ ((R/12Z)⇥ {0}) ! Y0j \Hj

where Z0j = Int(\">0Z"j ) and Y0j = Int(\">0Y"j ). We finally assume that the met-
ric h" converges in Ck-norms on compact sets of M := N \ H for all k 2 N0 to a
smooth metric h0 defined on M where H :=

S j0
j=1 Hj . Thus, for " > 0, the metric

h" is smooth on N , while for " = 0, h0 is a complete metric on M of finite volume
with cusp ends.

Notice that near Hj the metric (5.1) can be rewritten under the more standard
form

h" =

dv2

v2 + ` j (")2
+ (v2 + ` j (")

2)dw02,

with w0

:= w(1+ ⌫ j (")
2) �

⌫ j (")

` j (")
arccos

0
@ vq

v2 + ` j (")2

1
A (5.2)

which shows that Hj = {v = 0} is a closed geodesic of length 12` j (")(1+⌫ j (")
2) in

this neighborhood. Since `�1 arccos(v/
p

v2 + `2) = �

R
1

v 1/(t2 + `2)dt , we see
that for the limiting case ` j (") = 0, the change of coordinates above is only well
defined (and smooth) in the region {v > 0}. By changing arccos(v/

q
v2 + ` j (")2)

to arccos(�v/
q

v2 + ` j (")2), we get a smooth change of coordinates at " = 0 in
{v < 0}. We use the model (5.1) instead of (5.2) since it is more suitable to our
3-dimensional model of Proposition 4.2 for the rank-1 cusp formation.

We can compactify smoothly M into M by using  0j : it suffices to compact-
ify the chartsW0

j \

��
R/12Z

�
⇥ {0}

�
made of two disjoint connected components

{v > 0} and {v < 0} by attaching a circle at v = 0 on each connected component
and defining the smooth structure by saying that v and w are smooth functions.
The obtained surface is a smooth surface with 2 j1 boundary components and with
interior given by M . It is important to notice that the isometry between (5.1) and
(5.2) at ` j = 0 (i.e., " = 0) is not smooth at v = 0 since F0(v) = �1/v, thus the
smooth compactification we take for M using  0j is not the same as the one used in
the beginning of Section 2.3, which corresponds rather to compactifying by using
the coordinates (w0, v) having put metric under the form (5.2).

By the uniformization theorem, we can find for each " > 0 a unique function
'" 2 C1(N ) such that the conformal metric

hhyp" = e2'"h"

is hyperbolic. Similarly, for " = 0, Proposition 2.3 insures that we can find
'0 2 C1(M) such that hhyp0 = e2'0h0 is a complete hyperbolic metric of finite
volume with cusps on M . In fact, if (w0, v) are the coordinates above putting
the metric under the form (5.2), Proposition 2.3 shows that '0(w0, v) admits a
smooth extension from each connected component of {v 6= 0} to both {v � 0}
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and {v  0} (it is smooth from each side but not globally on an open interval con-
taining 0) with '0|v=0 = 0 and @w0'0 = O(|v|

1) near v = 0. Viewing now '0
as a function of (w, v), we get '0(w0, v) = '(w(1 + ⌫2) �

⌫
v , v) in v > 0 and

'0(w0, v) = '(w(1 + ⌫2) +
⌫
v , v) in v < 0, and we easily see that '0 admits a

smooth extension to M such that '0|@M = 0 and @w'0 vanishes to infinite order at
@M = {v = 0}.

Proposition 5.1. Under the assumptions above, we have, as " ! 0,

k'" � '0kC0 ! 0.

Proof. Let e' be a continuous function on N ⇥ [0, "0)" whose restriction to " = 0 is
given by '0 and such that e' is smooth on (N ⇥ [0, "0)) \ (H ⇥ {0}). Moreover, we
ask that

@we' = O((` j (") + |v|)1) (5.3)
near Hj ⇥ {0}; for instance this can be achieved by writing '0 = '0,1 + '0,2 with
supp('0,1)\H = ;, and supp('0,2) ⇢ [ jY"j (where Y"j is the collar neighborhood
with coordinates v,w as above) and then takinge' = e'1+e'2 wheree'2 is supported
in [ jY"j and given in Y"j by

e'2(v,w, ") =

1
` j (")

Z
�

✓
v � v0

` j (")

◆
'0,2(v

0, w)dv0 (5.4)

where � 2 C1

0 (R) satisfies
R
� = 1, � � 0 and �(0) = 1. Using that, near

Hj , @w'0,2 = @w'0 = O(|v|
1), we obtain the claim. Consider the new family of

metrics eh" = e2e'h", " 2 [0, "0),

and set e'" := '" � e'(·, ") so that hhyp" = e2'"h" = e2e'"eh". Notice that e'0 = 0
and that Reh0 = �2 where R denotes the scalar curvature. Thus, outside any fixed
open set containing H , we will have that Reh" = �2 + o(1) as " ! 0, by the fact
that h" ! h0 on M in Ck-norms on compact sets of M . On the other hand, near
H , Rh" = �2 by Lemma 4.3, so by the formula for the scalar curvature under
conformal changes of metrics, we have that

Reh" = e�2e'(·,")(�2+ 21h"e'(·, ")) near H.

The Laplacian 1h" near Hj is given by

1h" = �@v(v
2
+ ` j (")

2)@v �

(1+ ⌫ j (")
2)�1

v2 + ` j (")2
@2w + 2

⌫ j (")

1+ ⌫ j (")2
@v@w,

therefore using (5.3), (5.4) and the fact that '0 2 C1(M), we deduce that Reh"
converges uniformly to Reh0 near H as " ! 0 and thus Reh" = �2+o(1) uniformly.
In particular, for " sufficiently small, Reh" will be negative.
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Now, again by the formula for the curvature under conformal changes of met-
rics, we have that

�2 = e�2e'"(Reh" + 21eh"e'"). (5.5)

Thus, for " > 0 sufficiently small so that Reh" is negative, we see that if e'" attains
its maximum at p, then

�2 � e�2'"(p)Reh"(p) =) e2e'"(p) 

Reh"(p)
�2

=) e'"(p) 

1
2
log

✓ Reh"(p)
�2

◆
= o(1).

Similarly, if e'" attains its minimum at q, then
e'"(q) �

1
2
log

✓ Reh"(q)

�2

◆
= o(1).

Consequently,e'" ! 0 uniformly on M as " ! 0. Since '"�'0 = e'"+e'(·, ")�'0
and ||e'(·, ") � '0||L1 = o(1) as " ! 0, the result follows.

Remark 5.2. A recent result of Melrose-Zhu [24] shows that in fact '✏ admits
a polyhomogeneous expansion on the manifold with corners obtained from N ⇥

[0, 1)" by blowing up H ⇥ {0}.
The following corollary will be useful to deal with the limit of the renormalized

volume under the formation of a rank-1 cusp.

Corollary 5.3. Let I" ⇢ [�1, 1] with size |I"| ! 0, and let e2'" be the uniformisa-
tion factor for h" on M so that hhyp" = e2'"h" is hyperbolic. We have in each collar
neighborhood C j of Hj ,

lim
"!0

Z
R/ 12Z

Z
I"

|d'"|2h"dvdw = 0,

lim
"!0

Z
M

|d'"|2h"dvolh" =

Z
M

|d'0|2h0dvolh0 .
(5.6)

Proof. Since '0 2 C1(M) with @w'0 2
˙C1(M), we see from the form of the

metric h" in (5.1) that |d'0|2h" 2 L1 with uniform bound with respect to ", and so

lim
"!0

Z
R/ 12Z

Z
I"

|d'0|2h"dvdw = 0. (5.7)

On the other hand, we know that

21h"'" = �2e2'" � Rh" , for " 2 [0, "0). (5.8)
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By the previous proposition, we therefore have that k1h"'"�1h0'0kC0(M) = o(1).
Moreover, the form of the metric (5.1) and the fact that '0 2 C1(M) and @w'0 2

˙C1(M) imply that k1h"'0 � 1h0'0kC0(M) = o(1). Now we combine these facts
and use integration by parts to show that
Z
M

|d('" � '0)|
2
h"dvolh" =

Z
M

('"1h"'" + '01h"'0 � 2'01h"'")dvolh" = o(1).
(5.9)

The boundary terms at H are 0 by the properties of h" and '". In particular, as
" ! 0 Z

R/ 12Z

Z
I"

|d('" � '0)|
2
h"dvdw = o(1). (5.10)

The first result in the Corollary then follows by combining (5.7) and (5.10) and
using the triangle inequality. The second result follows from (5.9) and the fact that

lim
"!0

Z
M

|d'0|2h"dvolh" =

Z
M

|d'0|2h0dvolh0 . (5.11)

This ends the proof.

6. The boundary defining function used to define
the renormalized volume

In this section we analyze the geodesic boundary defining function corresponding
to the hyperbolic representative in the conformal infinity when we have a family
of convex co-compact hyperbolic 3-manifold converging to a geometrically finite
hyperbolic 3-manifold with rank-1 cusps.

6.1. Geometric assumptions on the family of metrics

We fix a compact manifold with boundary X and a family of hyperbolic convex
co-compact metrics g", with " > 0, on the interior X of X.

Definition 6.1. We say that the family g" is an admissible degeneration of con-
vex co-compact hyperbolic metrics on X if g" are convex co-compact hyperbolic
metrics satisfying the following properties (below,H2 denotes the open upper half-
plane in C and H2 the closed upper half-plane; we use the topology of C to define
bounded sets in H2):

Assumption 1 (Model near the cusp). There exists a family of j1 disjoint simples
curves H1, . . . , Hj1 in @X, and disjoint open neighborhoods U"j ⇢ X of Hj , there
are diffeomorphisms 9"j : W"

j ! U"j whereW"
j ⇢ (R/12Z)w ⇥ H2

⇣ are bounded
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open sets containing (R/12Z) ⇥ {⇣ 2 H2
; |⇣ | < r j } for some r j > 0, and for

⇣ = v + iu

9"j
⇤g" =

du2 + dv2 + ((1+ ⌫ j (")
2)R4 � 4` j (")2⌫ j (")2u2)dw2

u2

+

2⌫ j (")(R2 � 2u2)dwdv + 4⌫ j (")uvdudw

u2

(6.1)

for some ` j (") ! 0 and ⌫ j (") ! ⌫ j 2 R as " ! 0, with R :=

q
u2 + v2 + ` j (")2.

Assumption 2 (Convergence outside the cusp).There exists a hyperbolic metric g0
on X such that for any fixed boundary defining function ⇢2C1(X), ⇢2g" ! ⇢2g0
in all Ck-norms on compact sets of X \ [ j Hj as " ! 0. IfW0

j := Int(\">0W"
j ) ⇢

(R/12Z)w ⇥ H2 and U0j := Int(\">0 U"j ) ⇢ X, then 9"j converge to a smooth
diffeomorphism 90j : W0

j \ (R/12Z) ⇥ {0} ! U0j \ Hj in all Ck-norms.
Under these assumptions, the metric g0 has rank-1 cusps. This follows from the

convergence of 9"j ,U"j ,W"
j and the fact that (6.1) has a limiting metric as " ! 0

which is isometric to a neighborhood (2.2) of a rank-1 cusp. The degenerating
curve H ⇢ @X is the submanifold given by H := [

j1
j=1Hj .

Proposition 6.2. Let 0" ⇢ PSL2(C) be an admissible family of classical Schottky
groups of genus g in the sense of Definition 3.1. Then for each " > 0, X" := 0"\H3

is isometric to (X, g") where X is the interior of a solid torus of genus g and g" is
an admissible degeneration of convex co-compact hyperbolic metrics on X in the
sense of Definition 6.1.

Proof. We can write the hyperbolic manifold as X" = 0"\eF" where eF" are good
fundamental domains constructed in Lemma 3.3. The metric on X" is the hyper-
bolic metric gH3 on eF", which descends smoothly to the quotient by 0". In fact, we
can also consider the closure X" obtained from the action of 0" on the closure ofeF" in H3

[ �" where �" ⇢ S2 is the set of discontinuity of 0". These can be put
together into a smooth fibration

5 : X ! [0, 1] (6.2)

such that 5�1(") = X" has interior equipped with the complete hyperbolic metric
ĝ" induced from gH3 . For " > 0, X" is naturally the interior of a solid torus X"
of genus g, while when " = 0, there are cusps of rank 1. So as we have seen in
Section 2, the conformal compactification is no longer a solid torus, it is a solid torus
with a circle removed for each rank-1 cusp. In fact, by Lemma 4.1 and Proposition
4.2, for each cusp point p j , we have an isometry 9"j := (8"j � 2"j )

�1 from a
neighborhood of ⇣ = 0 in (R/12Z)w ⇥ H2

⇣ to a neighborhood of p j in eF", where
2"j = 2L(� "j )

is given by (4.8) and 8"j = 8L(� "j )
is given by Proposition 4.2 with
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L(� "j ) = (` j ("), ⌫ j ("), � j (")) smooth in " 2 [0, 1] (in Section 4 we take the fixed
points p"

� j = 0 and p"
+ j = � j (")` j (") but we can always reduce to this case by

composing with a smooth family of translations and rotations). Moreover, these
combine to give a smooth diffeomorphism 9 j : W j ! U j from a neighborhood
W j of {⇣ = 0, " = 0} in (R/12Z)w⇥H2

⇣⇥[0, 1]"\{⇣ = " = 0} into a neighborhood
U j ⇢ X of the cusp point p j in5�1(0) ⇢ X . This follows from the last statement
of Proposition 4.2.

The diffeomorphisms 9 j give us a natural way to compactify uniformly down
to " = 0 by simply replacingW j by its closureW j in (R/12Z)w ⇥ H2

⇣ ⇥ [0, 1]".
Indeed, we can consider a compactification

5 : X ! [0, 1] (6.3)

of (6.2) such that 5�1
(") = X" for " > 0 and 9 j : W j ! U j , which restrict

to 9 j on W j , is a diffeomorphism from W j to a neighborhood U j of the circle
Hj ⇢ 5

�1
(0) corresponding to the cusp point p j . Here, X is now a compact

manifold with corners and 5 is a surjective submersion. Moreover, the fibres of
5 are manifolds with boundary, more precisely solid tori of genus g. Choosing
a horizontal connection for (6.3), we can then use parallel transport to obtain a
commutative diagram

X
G //

5

$$HHHHHHHHHH X ⇥ [0, 1]
pr2

✏✏
[0, 1]

(6.4)

where pr2 : X ⇥ [0, 1] ! [0, 1] is the projection on the second factor, X is a fixed
manifold with boundary and G is a diffeomorphism of manifolds with corners. In
the statement of Proposition 6.2, it suffices then to take X to be the interior of X
with family of metrics g" = G⇤ĝ" on the slices pr�12 (") where ĝ" is the induced
family of hyperbolic metrics on the fibres of 5 : X ! [0, 1]. The family of
diffeomorphisms associated to each cusp point p j in Definition 6.1 can then be
taken to be G �9 j (·, ") for " � 0.

6.2. The Hamilton-Jacobi equation outside the cusps

We consider an admissible degenerating family of convex co-compact metrics g"
on X = Int(X) in the sense of Definition 6.1 and we keep the notations of Section
6.1. The manifold (X, g0) is geometrically finite hyperbolic with cusps of rank-1
and X = X\H where H is the degenerating curve in the boundary ofX. Recall that
K is a compact subset of @X where Assumption 2 is satisfied in Definition 6.1. Let
hhyp0 be the uniformizing metric on the conformal boundary M = @X \ H = @X ,
given by Proposition 2.3; it is a complete hyperbolic metric with finite volume. We
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define ⇢0 the geodesic boundary defining function of M in K near @X to be the
solution of the Hamilton-Jacobi equation

����d⇢0⇢0
����
2

g0
= 1, (⇢20g0)|T M = hhyp0 .

This equation is non-characteristic at M \K and has a unique solution near M \K,
just as in the convex co-compact case (see the discussion of Section 2.2). We first
want to define a geodesic boundary defining function for g" by the equation

����d⇢̂"⇢̂"
����
2

g"
= 1, !̂"|⇢=0 = 0 (6.5)

where ⇢̂" = e!̂"⇢0; notice that !̂0 = 0. We first show

Lemma 6.3. There exists � > 0 such that for all " � 0, the Hamilton-Jacobi
equation (6.5) has a solution !̂" inK\{⇢0 < �} and !̂" converges to 0 in Ck-norms
there for all k.

Proof. The equation can be written as

2hd!̂",d⇢0iḡ" +⇢0|d!̂"|2ḡ" =

1� |d⇢20 |ḡ"
⇢0

, with boundary condition !̂"|⇢0=0 = 0,

where ḡ" := ⇢20g" converges in C1(K; S2T ⇤X) to ⇢2g0 as " ! 0. This is a
uniform family (with respect to ") of non-characteristic Hamiton-Jacobi equations,
which converge in C1(K) to a non-characteristic Hamiton-Jacobi equation as " !

0. This is solved by the method of characteristics and thus it admits a solution in a
uniform neighborhood of ⇢0 = 0, converging smoothly to !̂0 = 0 as " ! 0.

Notice that ⇢̂" is not exactly the geodesic boundary function that we would need
to compute the renormalized volume but we will see later that the renormalized
volume there can be expressed easily in terms of this boundary defining function.
The function we are interested in is

⇢" = e!" ⇢̂" (6.6)

where !" is the solution of
����d⇢"⇢"

����
2

g"
= 1, !"|⇢0=0 = '"

and '" is the uniformization factor such that h
hyp
" := e2'"h" is hyperbolic if h" :=

(⇢20g")|⇢0=0; The Hamilton-Jacobi equation (6.6) has a unique solution in K near
M and in particular one has !0|K\M = '0 = 0.
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6.3. The Hamilton-Jacobi equation near the cusps

In the model from Proposition 4.2, which is a neighborhood of {⇣=0} in (R/12Z)w⇥

H2
⇣=v+iu , it will be useful to forget the " parameter and consider now (`("), ⌫("))

as independent parameters (`, ⌫); we shall study the geodesic boundary defining
function as a function of (`, ⌫), where ⌫ 2 R is a bounded parameter and ` 2 [0, `0]
for some fixed small `0 > 0. We view ⌫ as a parameter moving in a compact set,
and since the metric has a uniform behavior in terms of ⌫ in this set, we shall not
emphasize the dependence in ⌫ in the notations. The metric g" of (4.9) will be
rewritten as

g`=
du2+dv2+((1+⌫2)R4�4`2⌫2u2)dw2+2⌫(R2�2u2)dwdv+4⌫uvdudw

u2
(6.7)

with R =

p

u2 + v2 + `2.
We thus consider for the moment just a neighborhood of a cusp, that is we set

U :=

n
(w, u, v) 2

⇣
R/12Z

⌘
⇥ [0, 1) ⇥ R; u2 + v2 < 1

o
.

and U its interior. Consider the submanifold H := {u = v = ` = 0} ⇢ X ⇥ [0, `0)
which corresponds to the cusp, and let U` be the blow-up of U ⇥ [0, `0) at H ,
defined to be

U` =

⇣
U ⇥ [0, `0) \ H

⌘
t SH

where SH ⇢ T (X ⇥ [0, `0))|H is the normal inward pointing spherical bundle of
H . There is a blow-down map � : U` ! U ⇥ [0, `0), which is the identity outside
SH and the projection SH ! H on the base when restricted to SH . The set U
has a natural structure of smooth manifold with corners of codimension 2 in a way
that the functions u, v, `, R lift by � to smooth functions on U`; we will use the
same notations for these functions and for their lifts to U`. There are three bound-
ary hypersurfaces in U`: the face denoted F` whose interior is diffeomorphic to
{` = 0, u 6= 0} ⇢ U ⇥ [0, `0), the face denoted Fu whose interior is diffeomor-
phic to {u = 0, ` 6= 0} ⇢ U ⇥ [0, `0), and the front face FR = SH given by
the equation R = 0. See Figure 6.1. We notice that F` is naturally diffeomorphic
to a neighborhood of cf in the manifold Xc defined in Section 2.3, with cf identi-
fied with FR \ F`; thus studying what happens on F` is equivalent to consider a
neighborhood of the cusp in Xc.

Consider the following smooth variables on U`:
⇣
U =

u
R

, v,w, `
⌘

. (6.8)

They provide coordinates outside FR . In fact, when restricted to F`, (U, v,w)
provides smooth coordinates onF` near the cornerFR\Fu , withU being a smooth
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# 

FR

u

-v

�
�

�
�↵

Fu

F`

6

`

Figure 6.1. The manifold with corners U`

defining function for Fu and v being a smooth defining function for FR . We will
also sometime use the smooth variable

V =

v

R
= ±

s
1�U2 �

`2

R2

on U`. Then we have
du
u

=

dU
U(1�U2)

+

Vdv

R(1�U2)
.

Hence, we see that the dual vector fields u@u and @v to du/u and dv become in the
coordinates (U, v,w)

u@u ! U(1�U2)@U , @v ! @v �

VU
R
@U . (6.9)

In terms of the variables U, v,w, the metrics g` is given by

g` =

dU2

U2(1�U2)2
+

2vdUdv

U(1�U2)(v2 + `2)
+

v2dv2

(v2 + `2)2
+

(1�U2)dv2

U2(v2 + `2)

+

4⌫v
U(1�U2)

dUdw +

 
(1+ ⌫2)

(v2 + `2)

U2(1�U2)
� 4`2⌫2

!
dw2

+ 2⌫

 
2v2

v2 + `2
+

(1� 2U2)
U2

!
dwdv.

(6.10)

In particular, looking at the conformal family of metrics g` = U2g`, we see that
when pulling-back to {U = 0} = Fu this metric, one has

h` := g`
��
U=0 =

dv2

v2 + `2
+ (1+ ⌫2)(v2 + `2)dw2 + 2⌫dvdw, (6.11)
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which corresponds to the model (5.1) for the formation of a cusp obtained by pinch-
ing a closed geodesic. In general, as described in the previous section, the global
hyperbolic representative of this conformal infinity will be slightly different, of the
form

hhyp` = e2'`h` (6.12)
for some family of smooth functions '`, which is obtained by uniformization and
has the properties of Proposition 2.3 for the case ` = 0. By Proposition 5.1 (with
` playing the role of " here), the uniformizing factor '` will tend to '0 as ` ! 0
on the interior of Fu . Since we want to work in a more general setting than the
uniformized metric, we now just fix an arbitrary family of smooth functions '` so
that '` ! '0 on Fu as ` ! 0 with the requirement that '0 satisfies the properties
of Proposition 2.3, i.e., it extends smoothly to the closure of Fu in F` and @w'0
vanishes to infinite order at FR = {v = U = 0} in F` \Fu .

To define the renormalized volume associated to such a choice of representative
in the conformal class at the boundary, we need to construct a boundary defining
function ⇢` of the face Fu = {U = 0} such that

(1) ⇢` = e!`U for some function !` satisfying !`|U=0 = '`

(2)
����d⇢`⇢`

����
2

g`
= 1.

(6.13)

We solve this first order differential equation near the face FR . This is an equa-
tion of Hamilton-Jacobi type which we write explicitly in terms of the coordinates
U, v,w. First, in the coordinates u, v,w and in matrix form, the family of dual
metrics g�1

` on the cotangent space is given by

g�1
` =

u2

R4

0
@ R4 + 4⌫2u2v2 2⌫2uv(R2 � 2u2) �2⌫uv
2⌫2uv(R2 � 2u2) R4 + ⌫2(R2 � 2u2)2 �⌫(R2 � 2u2)

�2⌫uv �⌫(R2 � 2u2) 1

1
A . (6.14)

Since d⇢`
⇢`

=
(R2�u2)du

uR2 �
vdv
R2 + d!`, the equation |

d⇢`
⇢`

|
2
g` = 1 becomes

(1�U2)2

u2
|du|2g` + |d!`|2g` +

v2

R4
|dv|

2
g` + 2(1�U2)

⌧
du
u

, d!`
�
g`

�

2v(1�U2)
R2

hdv,
du
u

ig` �

2v
R2

hdv, d!`ig` = 1.

(6.15)

Now, we compute (recall that V = v/R)

(1�U2)2

u2
|du|2g`+

v2

R4
|dv|

2
g`�

2v(1�U2)
R2

⌧
dv,

du
u

�
g`

=(1�U2)2+V 2U2
⇣
4⌫2(1�U2)2+1+⌫2(1�2U2)2�4⌫2(1�U2)(1�2U2)

⌘
,

(6.16)
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and
⌧
du
u

,d!`
�
g`

=(1+4⌫2U2V 2)(u@u!`)+2⌫2U2(1�2U2)V R@v!`

�2⌫U2
V
R
@w!`,

hdv,d!`ig` =�2⌫2U2(1�2U2)V R(u@u!`)+U2(1+⌫2(1�2U2)2)R2@v!`

�U2⌫(1�2U2)@w!`,
(6.17)

and from (6.14), |d!`|2g` is of the form

|d!`|2g` = (u@u!`)2 +

U2

R2
|@w!`|

2
+ ⌫U2P0

✓
U2, V ; u@u!`, R@v!`,

1
R
@w!`

◆

for some polynomial P0(x, y; X,Y, Z), which is quadratic in (X,Y, Z) with coef-
ficients which are polynomial functions in (x, y), independent of ` and depending
smoothly on ⌫. Gathering these computations with (6.15), we obtain that |d⇢`/⇢`|g`
= 1 is equivalent to

2
⇣
1�U2 + 2⌫2V 2U2(3� 4U2)

⌘
(u@u!`) +U2V Q1(U2)(R@v!`)

+ ⌫U2V Q2(U2)(
1
R
@w!`) + (u@u!`)2 +

U2

R2
|@w!`|

2

+ ⌫U2P0
✓
U2, V ; u@u!`, R@v!`,

1
R
@w!`

◆
= U2Q3(U2, V )

where Qi are polynomials, and thus using (6.9) and dividing by U we get an equa-
tion of the form

2
⇣
(1�U2)2 + V 2U2Q0(U2)

⌘
@U!` +UQ1(U2)v@v!`

+U(1�U2)2(@U!`)2 +

U
R2

|@w!`|
2
+ ⌫UV Q2(U2)

✓
1
R
@w!`

◆

+ ⌫UP1
✓
U2, V, R;U@U!`, R@v!`,

1
R
@w!`

◆
= UQ3(U2, V )

(6.18)

for some polynomials Qi , and P1 having the same properties as P0, and Q2. This
equation is of the form F(D!`,!`, z) = 0, where x = (U, v,w), D!` = (@U!`,
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@v!`, @w!`) and

F(p, z, x) = F(pU , pv, pw, z,U, v,w)

= 2
h
(1�U2)2 + V 2U2Q0(U2)

i
pU +UvQ1(U2)pv

+ ⌫
UV
R

Q2(U2)pw +U(1�U2)2 p2U +

Up2w
R2

+ ⌫UP1
⇣
U2, V ;UpU , Rpv,

pw

R

⌘
�UQ3(U2, V ).

(6.19)

In this definition, notice that the dependence in z and w is in fact trivial. Now,
since @pU F |U=0 = 2 6= 0, the equation with initial condition !`|U=0 = '` is non-
characteristic. It can therefore be resolved using the method of characteristics for
U small outside R = 0. In general, the equations for the characteristics are given
by (denoting (x1, x2, x3) = (U, v,w) and (p1, p2, p3) = (pU , pv, pw))

ṗi (s) = � @xi F(p(s), z(s), x(s)) � @z F(p(s), z(s), x(s)),

ż(s) =

X
i
@pi F(p(s), z(s), x(s))pi (s),

ẋi (s) = @pi F(p(s), z(s), x(s)).

(6.20)

where a dot is used to denote a derivative with respect to the parameter s. We
notice that, when ⌫ = 0, these equations have smooth coefficients except for all
terms containing pw/R. Thus they are smooth outside the face FR = {R = 0},
in particular they restrict on the face F` \ {R 6= 0} corresponding to the rank-1
cusp limiting case. We will need to solve these equations with the following initial
conditions on the face Fu = {U = 0} (we restrict for the moment to the region
U = 0, R 6= 0)

U(0) = 0, v(0) = v0, w(0) = w0, z(0) = '`(v0, w0),

pv(0) = @v'`(v0, w0), pw(0) = @w'`(v0, w0), pU (0) = 0,
(6.21)

where the last condition follows from the fact F(p(0), z(0), x(0)) = 0. The behav-
ior of the solution forU small near the face R = 0 can possibly be singular because
of the singularity of the coefficients containing some R�1 in F there. The solution
!` will be given by

D!`(U(s),v(s), w(s))=(pU (s),pv(s),pw(s)), !(U(s),v(s),w(s))= z(s) (6.22)

with initial condition !`(0, v0, w0) = '`(v0, w0). We analyze the solution nearFR
when ` = 0 (FR \F` corresponds to {u = v = 0} inside F`).
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Proposition 6.4. For each '0 2 C1(F`\Fu) with @w'0 vanishing to infinite order
at FR , there exists a unique smooth function !0 on F` defined in a neighborhood
of Fu \ FR in F` such that @w!0 vanishes to infinite order at FR and ⇢0 = e!0U
is a boundary defining function of F` \Fu with the property that

(⇢20g0)
���
Fu

= e2'0h0,
����d⇢0⇢0

����
g0

= 1.

Proof. We need to investigate if the equation (6.20) can be solved in a uniform way
as the initial condition v0 in (6.21) approaches zero. We first change coordinates
and use the coordinates (u0, v0, w0) of (4.14) in which the metric g0 has the simpler
form (4.13). In fact, since the metric in the new coordinates has the same form as in
the original coordinates (u, v,w) but with ⌫ replaced by 0, we are reduced to solve
a Hamilton-Jacobi equation which has the same form as (6.18) but with ⌫ = 0, and
in the coordinates (U 0, v0, w0)whereU 0

:= u0/
p

u02
+ v02. Our first goal is to prove

that !0 viewed in the (U 0, v0, w0) coordinates is smooth near U 0
= 0, and then to

come back to the original coordinates using (4.14) to deduce the desired result.
We are reduced to analyze the solution of (6.18) when ⌫ = 0, which we now do

(for convenience of notations we keep the expression of this equation with the vari-
able (U, v,w) for the moment, having in mind that they really mean (U 0, v0, w0)).
We also allow w and w0 to be in R instead of R/12Z, which is the same as viewing
the equation in the universal covering, since we need to work in the domain (4.15)
where the coordinates (U 0, v0, w0) are valid. We notice that since we assume ⌫ = 0,
each of the singular terms in the equations (6.20) comes now with a pw factor.
From the initial conditions and the independence of F with respect to w, we have
that pw(s) = @w'0(v0, w0) for all s. On the other hand, by hypothesis, we know
that @w'0(v0, w0) = O(|v0|1) when v0 ! 0. To solve the ODE (6.20) uniformly
as v0 ! 0, we now check that for v0 6= 0, v(s) cannot approach zero rapidly.

Lemma 6.5. There exists a positive constant K depending on '0 but not on v0 and
w0, as well as C > 0 such that

|v(s)| � |v0|e�Cs and U(s) � s for s  K .

Proof. We will consider the case v0 > 0, since the case v0 < 0 can be dealt with in
a similar fashion. First we use that for ` = 0, we have that

R =

v
p

1�U2
, V =

p
1�U2.

Set y = log v, then from (6.19) and (6.20), we can write, as long as U < 1,

ẏ = UQ1(U2) +U
⇣
A1(U2)ey + A2(U2)pU + A3(U2)ey pV + A4(U2)e�y pw

⌘

for some polynomials Ai in the variable U2. Consider the vector
�!X = (pU (s),

pv(s) � pv(0),U(s), y(s) � y(0)), where y(0) = log v0. Since pw is in fact inde-
pendent of s, we see from (6.19) and (6.20) that there exists a positive constant K1
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depending on '0 such that
d
ds

|

�!X (s)|  K1

whenever |�!X (s)| 
1
K1 . This means that

|

�!X (s)|  K1s

for s 
1
K 21
. In particular, there exists C > 0 such that

|y(s) � y(0)|  K1s =) v(s) � v0e�Cs

for s 
1
K 21
. This gives the first half of the result for some big constant K . Now, for

|

�!

X (s)| sufficiently small, notice that U̇ � 1. Integrating, we get thatU(s) � s for s
sufficiently small. Taking the constant K smaller if necessary gives the result.

We have pw(s) = pw(0) = @w'0(v0, w0) which decreases rapidly when v0
tends to zero, and V = v/R is close to 1 when U is small, thus using Lemma 6.5,
there is C > 0 such that for s < 1/K , we have U(s) � s and

���� pw(s)
R(s)2

����  2
����@w'0(v0, w0)v(s)2

����  CeCU(s)

�����
@w'0(v0, w0)

v20

����� = O(|v0|
1).

Using this rapid vanishing as v0 ! 0, by looking at (6.20) and (6.19), we deduce
that the (U(s), v(s), w(s)) extend smoothly as the initial condition xi (0), pi (0) tend
to {v = 0}, on a uniform time s 2 [0, s0] with s0 > 0. In fact, with the initial
condition v0 = 0, we have by (6.19) that v(s) = pw(s) = 0 for all s and the ODE
simply becomes in the region U < 1 (using that V =

p

1�U2 in that case)

ṗU = L1(U, pU ), ṗv = L2(U, pv, pU ), ż = L3(U, PU ),

U̇ = L4(U, PU ), ẇ = 0
(6.23)

for some polynomials L j with L4(0, pU ) = 2. In particular, we see that the curves
U(s), v(s) are tangent to the face v = 0 (as long as U < 1) and they are trans-
verse to U = 0; moreover U(s) = 2s + O(s2) near U = 0. We thus obtain that
 : (s, v0, w0) ! (U(s), v(s), w(s)) is a smooth local diffeomorphism on [0, ✏)
⇥ [0, ✏)⇥R for small ✏ > 0 and there is ✏ > 0 such that for each point w0 2 R it is
a diffeomorphism from [0, ✏) ⇥ [0, ✏) ⇥ (w0 � ✏, w0 + ✏) on its image. Moreover,
it is easily seen that  (s, v0, w0 +

1
2 ) = (U(s), v(s), w(s) +

1
2 ). The same hold

in the region v0  0 and this implies that !0 given by (6.22) for ` = 0 extends
as a smooth function of (U, v,w) near each (0, 0, w0) on {U � 0, v � 0} and on
{U � 0, v  0}, in some neighborhood which has uniform size with respect to w0.
We also have that @w!0( (s, v0, w0)) = pw(s) = @w'0(v0, w0) = O(|v0|1), thus
@w!0 = O(|v|

1) uniformly where it is defined.
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We have thus proved that in the (U 0, v0, w0) coordinates, !0 lifted to the univer-
sal cover is smooth in [0, ✏) ⇥ [0, ✏) ⇥ R, and @w0!0 = O(|v0

|
1) . To conclude the

proof, we need to come back to the original coordinates (U, v,w) by using (4.14):

U 0

=

U
p

1+ ⌫2
p

1+ ⌫2U2
, v0

=

v(1+ ⌫2)

1+ ⌫2U2
, w0

= w �

⌫

1+ ⌫2
1�U2

v
.

First it is clear that !0(U 0, v0, w0) is smooth when viewed as a function of (U, v,w)
except possibly at v = 0 where w0 is a singular function of v. Similarly to the
discussion of Section 5 (which corresponds to an analysis in the boundary U = 0),
the fact that @w0!0 = O(|v0

|
1) actually implies that !0 is smooth in the variable

(U, v,w) since D!0 admits a smooth extension to v = 0. This achieves the proof
of Proposition 6.4, as (U, v,w) are smooth coordinates near FR \ Fu on the face
F`, and U 0 is a smooth function of U .

Corollary 6.6. Let ⇢0 be the function of Proposition 6.4. There exists a diffeomor-
phism � : [0, ")s ⇥O ! Q ⇢ F` with Q a neighborhood of Fu \ FR in F` and
O a neighborhood of Fu \FR in Fu \F` such that �⇤⇢0 = s and

�⇤g0 =

ds2 + h0(As · ·)

s2

where As is a one-parameter smooth family of smooth endomorphisms of TO up to
FR , for s 2 [0, "), so that hs(·, ·) := h0(As · ·) is a smooth family of cusp symmetric
tensors.

Proof. The diffeomorphism is given by �(s, v0, w0) = �s(v0, w0) where �s is the
flow at time s of the gradient r

⇢20g0⇢0 of ⇢0 with respect to ⇢20g0. First, we no-
tice that this flow is exactly the diffeomorphism �(s, v0, w0) = x(s/2) where x(s)
is the integral curve studied in the proof of the previous proposition — satisfy-
ing (6.20) with initial condition x(0) = (0, v0, w0). Since (�⇤U)/s is a smooth
function on [0, ") ⇥ O for some small neighborhood O of {0} ⇥ {0} ⇥

�
R/12Z

�
in (U, v,w) 2 [0, ") ⇥ [0, ") ⇥

�
R/12Z

�
, the metric s2�⇤g0 is given by a positive

smooth function times �⇤(U2g0) with g0 given in (6.10) (for ` = 0). To prove the
statement, it suffices to check that for vector fields Z1 := v0@v0 and Z2 := v�1

0 @w0 ,
we have that �⇤(U2g0)(Zi , Z j ) is smooth near s = v0 = 0 for i, j 2 {1, 2}.
Since �(s, 0, w0) ⇢ {v = 0} by the analysis of the proof in the previous propo-
sition, writing �(s, v0, w0) = (U, v,w) we get v = v0(1 + v0 f (s, v0, w0)) and
w = w0 + v0k(s, v0, w0) for some smooth functions f, k, and thus

�⇤(v0@v0) = vW1, �⇤(v
�1
0 @w0) = v�1@w + W2

for some smooth vector field W1,W2 near v = U = 0. By inspecting (6.10) for
` = 0, �⇤(U2g0)(Zi , Z j ) is smooth near s = v = 0. The same argument works in
the region v  0 covering the other neighborhood of FR \Fu in F`.
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6.4. Proof of Proposition 2.4

We decompose the hyperbolic 3-manifold with rank-1 cusps (X, g) as in Section 2.1
into a region K ⇢ X and some cusp neighborhoods Ucj for j = 1, . . . , j1. Recall
that X can be compactified into Xc. Then we fix a boundary defining function ⇢ in
a neighborhood of M = @X , which is equal to ⇢ = u/

p

u2 + v2 in the coordinates
of the model (2.2) of Ucj . The hyperbolic metric g there, as given by the model
(2.2), corresponds to the case ` = 0, ⌫ = 0 in the expression (6.7) and U = u/R
is the chosen defining function of @X in these coordinates. Let hhyp be the unique
hyperbolic metric on M in the conformal class of h := (⇢2g)|T M . Let  2 C1

r (M)

and ĥ = e2 hhyp. By Proposition 2.3, we have e2 hhyp = e2( +')h for some
' 2 C1

r (M). Since we still have that  + ' 2 C1

r (M), Proposition 6.4 shows
that there exists a smooth defining function ⇢̂ of M on a neighborhood of cf\M in
Xc (as explained above, M corresponds to Fu and cf to FR in the model F` of Xc
near the cusps), such that |d⇢̂/⇢̂|g = 1 with ⇢2g|T M = e2 hhyp; it is unique where
it is defined. On the other hand, outside Ucj , this equation is also a smooth non-
characteristic Hamilton-Jacobi equation, thus the solution ⇢̂ defined near M \ cf
can be extended uniquely as a solution also in a whole neighborhood of M in Xc,
giving the desired function ⇢̂. Considering the maps � : [0, ✏)x ! M ! Xc given
by �(x, y) = �x (y) where �s the flow at time s of the gradient r ⇢̂2g⇢̂ of ⇢̂ with
respect to ⇢̂2g, we see by using Corollary 6.6 (recall that � is the gradient flow in
the proof of that Corollary) that on (0, ✏)x ⇥ M

�⇤g =

dx2 + ĥx
x2

for some 1-parameter family ĥx of smooth metrics on M depending smoothly on
x 2 [0, "), and hx are actually a smooth family of cusp symmetric tensors. Since
g is hyperbolic, we know (as it is a local computation) from [10, Theorem 7.4] that
the dependence of ĥx is a polynomial of order 2 in x2

ĥx = ĥ((Id+ x2A)·, ·)

with Tr(A) = �
1
2Scalĥ and �ĥ(A) =

1
2dScalĥ . It remains to check that the com-

plement of the region �([0, ✏) ⇥ M), called V , has finite volume with respect to g
in X . Clearly, K \ (X \ {⇢̂ < ✏}) is compact in X thus has finite volume. Now we
analyze the region Ucj \ {⇢̂ < ✏}. To show that it has finite volume, it suffices to
use that ⇢̂ is a defining function of Fu \F` in the blown-up space F` of U

c
j around

the region H = {(u, v) = 0} representing the cusp, and so {⇢̂ � ✏} is contained in
some region {U � c✏} for some c > 0. Now the volume form of the metric g in
coordinates (u, v,w) is u

2
+v2

u3 dudvdw and a simple computation shows that
Z 1

0

Z Cu

�Cu

✓
u

p

u2 + v2

◆z u2 + v2

u3
dvdu < 1 (6.24)
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for all z 2 C. By taking z = 0 we see that the region has finite volume for any
finite constant C > 0. It remains to show that if ⇢̂ is extended smoothly to Xc as
a boundary defining function of M (positive in Xc \ M) then H(z) =

R
X ⇢̂

zdvolg
is meromorphic in {Re(z) > �✏} for some ✏ > 0. We can split the integral as
an integral near @X \ K and the meromorphy of this part follows directly from
the fact that ⇢̂ is a smooth boundary defining function there, and there remains the
integral in each Ucj . The part of the integral in V clearly gives holomorphy in z by
(6.24). For the integral in Ucj \V , we notice that the volume form in the coordinates
(U, R, w) near Fu = {U = 0} in the model F` (isometric to Ucj with ⌫ = 0) of
Section 6.3 is given by dUdRdw/(U3

p

1�U2) and thus from the fact that ⇢̂/U is
a smooth positive function in these coordinates nearU = 0, the meromorphy of the
remaining part of the integral H(z) follows by Taylor expanding ⇢̂/U at U = 0.⇤

6.5. Taylor expansion of the boundary defining function to second order

For ` > 0 fixed, it is also straightforward to solve the equations (6.15) near the
degenerating curve and find !` and ⇢. The function !` will be smooth in s, so
smooth in U . In particular, at U = 0, it has an expansion of the form

!` ⇠

1X
j=0

a jUk . (6.25)

To compute the limit as ` ! 0 of the renormalized volume, we will need to know
the terms of order 0 and 2. By assumption, we have that a0 = '`. We now compute
a1 and a2.

Proposition 6.7. Near v = 0, the coefficients a1 and a2 in the expansion (6.25) are
given by a1 = 0 and

a2=�

1
4

 
|d'`|2h`+(1+⌫2)

 
1�

`2

v2+`2

!
�2+2(⌫2�1)v@v'`�

2⌫v
v2+`2

@w'`

!
.

Proof. We see directly from (6.18) that a1 = 0. Then notice that by (6.14), the
metric dual to g` = U2g` is smooth near Fu \ (Fu \FR) and as U ! 0

|d!`|2g` =U2
 

(v2+ `2)((1+ ⌫2)(@v'`)
2)+

(@w'`)
2

v2+ `2
� 2⌫@v'`@w'`

!
+O(U3)

=U2|d'`|2h` +O(U3)

where h` is given by (6.11). Combining this with (6.15), (6.16) and (6.17), we have

�2+

v2

v2 + `2
(1+ ⌫2) + 4a2 + 2(⌫2 � 1)v@v'` � 2⌫

v

v2 + `2
@w'` + |d'`|2h` = 0

which achieves the proof.
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7. Variation formulas for the renormalized volume and Kähler potential
for Weil-Petersson metric

In this section we describe the properties of the renormalized volume as a function
on the conformal class of the conformal boundary: we first compute the variation of
the renormalized volume for families of hyperbolic metrics with rank 1-cusps, and
we show that VolR is a Kähler potential for Weil-Petersson metric in a Bers slice of
the quasi-Fuchsian deformation space.

7.1. Variation formula

Arguing as in [14, Proposition 3.11], we have the following variation formula for the
renormalized volume under a change of conformal representative in the conformal
boundary.

Proposition 7.1. Let X be a geometrically finite hyperbolic 3-manifold. Let hhyp
be the unique hyperbolic representative in the conformal boundary of g and let
ĥ := e2 hhyp with  2 C1

r (M). If ⇢ and ⇢̂ are geodesic boundary defining
functions associated to hhyp and ĥ given by Proposition 2.4, we have

VolR(X, ĥ) = VolR(X, hhyp) �

1
4

Z
M

(|r |
2
hhyp � 2 )dvolhhyp .

For any � 2 C1

c (X) satisfying � =

P2
k=0 �k⇢

2
+O(⇢3) at @X , with �k 2 C1

c (M)

FPz=0
Z
X
⇢̂z�dvolg = FPz=0

Z
X
⇢z�dvolg

�

1
4

Z
M

(�0(|r |
2
hhyp � 2 ) � 4�2 )dvolhhyp .

(7.1)

Proof. First, by Proposition 2.4, associated to both hhyp (resp. to ĥ), there are
product coordinates [0, ✏)x ⇥ M near M in the compactification Xc of X in which
g is of the form

g =

dx2 + h0 + x2h2 + x4h4
x2

with h0 = hhyp (resp. h0 = ĥ) , h2, h4 some smooth cusp symmetric tensors such
that Trh0(h2) = �

1
2Scalh0 and �h0(h2) =

1
2dScalh0 . The complement of the regions

covered by these coordinates has finite volume, thus the part of the integrals above
over the region x > ✏/2 are trivial to deal with. On the other hand, by the proof of
Proposition 2.4, we can also solve the Hamilton-Jacobi equation |

dx
x + d!|

2
g = 1

near M with initial condition !|M =  . From the symmetries of this equation,
we see that ! must have an even expansion in x at M , ! ⇠

P
1

j=0 !2 j x2 j . As
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in [14, Lemma 3.6], putting this expansion back in the Hamilton-Jacobi equation,
we compute that (the computation is local)

!2 = �

1
4
|r!0|

2
h0, with !0 =  .

On the other hand, the volume form of g is given by dvolg = v(x)dvolh0
dx
x3 with

v(x) = v0 + x2v2 + O(x3) for v0 = 1 and v2 = �
1
4Scalh0 . Hence, we compute

just as in the proof of [14, Lemma 3.5] that

VolR(X, ĥ) = VolR(X) +

Z
M

(v0!2 + v2!0) dvolhhyp

= VolR(X) �

1
4

Z
M

(|r!0|
2
hhyp � 2!0)dvolhhyp .

(7.2)

For (7.1), the calculation is similar but one has to replace v(x) by v(x)�(x) in the
reasoning, thus v0!2 and v2!0 become v0�0!2 and (v2�0 + v0�2)!0.

First we say that (X, gt ) for t 2 (�t0, t0) is a smooth family of geometrically
finite hyperbolic manifolds: if g := g0 is a geometrically finite metric on X with j1
cusps of rank-1, represented by some disjoint curves H = [

j1
j=1Hj in the boundary

@X of the compactification X as in Section 2.1, gt is hyperbolic for all t and there
is a neighborhood U j of Hj in X such that ⇢2gt extends to a smooth metric on
X \ [ jU j if ⇢ is a boundary defining function of @X, and there exists a smooth
family of diffeomorphisms  t

j : U j !  t (U j ) ⇢ H2
⇣ ⇥

�
R/12Z

�
w
such that for

⇣ = v + iu 2 H2

( t
j )⇤g

t
=

du2 + dv2 + (u2 + v2)dw2

u2
.

For such a family of metrics, it is easy by extending ( t
j )

�1
�  0j to X to construct

a diffeomorphism ✓ t of X such that ⇢2(✓ t )⇤gt extend smoothly as a metric on X =

X \ H and near Hj

( 0j )⇤(✓
t )⇤gt =

du2 + dv2 + (u2 + v2)dw2

u2
.

We can thus reduce the analysis to the family of metrics (✓ t )⇤gt with a cusp singu-
larity at H , which we do now, and to avoid heavy notation we write gt instead of
(✓ t )⇤gt . Denote by ht the hyperbolic metric in the conformal boundary of (X, gt ):
it is a smooth family in t of hyperbolic metric with finite volume and cusps. Pro-
ceeding as in the proof of Proposition 6.4 and using ht as the representative of the
conformal infinity of gt , we can then solve the Hamilton-Jacobi equation����d⇢

t

⇢t

����
gt

= 1, (⇢t )2gt
���
T M

= ht
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smoothly in t to get a smooth family of boundary defining functions ⇢t of M in X .
As we have seen in the proof of Proposition 2.4, the gradient vector field r

gt⇢t ,
where gt = (⇢t )2gt , is defined and smooth in a neighborhood of M in Xc and
is tangent to the cusp face cf. Integrating this vector field for each t then gives a
smooth family of collar neighborhood �t : M ⇥ [0, ✏)x ! X such that

(�t )⇤gt =

dx2 + ht0 + x2ht2 + x4ht4
x2

(7.3)

with ht2 j some smooth families (in t) of cusps symmetric tensors such that h
t
0 = ht .

Theorem 7.2. Let (X, gt ) be a smooth family of geometrically finite hyperbolic
metrics. Let ht be the unique hyperbolic representative of the conformal infinity of
gt and ht2 the second fundamental form at @X given by (7.3). If VoltR(X) denotes
the renomalized volume of (X, gt ), then

@tVoltR(X)
��
t=0 = �

1
4

Z
M

hḣ0, h2 � h0ih0dvolh0,

where h2 = ht2
��
t=0, h0 = ht |t=0 and the dot denotes a derivative in the t variable

evaluated at t = 0.

Proof. The proof is very similar to the proof of [14, Theorem 5.3] and is based on
Schläfli formula, but here one has to be careful about the degeneracy near the cusps
to perform the argument. Like in [14, Theorem 5.3], we can pull-back gt (using
an extension of (�t )�1 � �0) by a family of diffeomorphisms of Xc which is the
Identity outside a neighborhood of M , so that the new metric is isometric to the
right hand side of (7.3) near M via the diffeomorphism � := �0 that is independent
of t . For � 2 (0, �0), consider the region V� := �(M ⇥ [0, �)) ⇢ X . Then, as in the
proof of Proposition 2.4, X \ V� is of finite volume with respect to gt , and we claim
that

@tVol(X \ V�, gt )
��
t=0 =

1
2

Z
⇢=�

✓
Ḣ +

1
2
hġ, IIig

◆
dvolg, (7.4)

where Ht is the mean curvature of �(M ⇥ {�}) with respect to the metric gt , IIt is
its second fundamental form and g := gt |t=0. The proof of (7.4) is then the same
as the one of [14, Lemma 5.1]: using the variation formula for the scalar curvature,
we find

�4@tVol(X \ V�, gt ) =

Z
X
(1gTrg(ġ) + d⇤�g(ġ))dvolg

and the integration by parts of 1g Trg(ġ) and d⇤�g ġ can be done but there could
possibly be a new contribution coming from the cusp face cf in the compactification
Xc of X (cf\{⇢ = �} corresponds to the cusp point at infinity of the Riemann
surface {⇢ = �}). In order to analyze this, we can apply Green’s formula on {R �

�, ⇢ � �} where R is a boundary defining function of cf. If �0
: cf⇥[0, 1) ! X is
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a collar neighborhood of the cusp face in X , we know from the local form (2.2) of
gt that

Area(�0(cf⇥{�})) \ (X \ V�) = O(�2).

It is direct to check (using (6.14) with ⌫ = 0) that @R Trg(ġ) and �g(ġ)(@R) are
uniformly bounded in � on �0(cf⇥{�})\(X\V�), where @R is the unit normal vector
to �0(cf⇥{�}) with respect to g. This means that there is in fact no contribution
coming from the cusp face when we take the limit � & 0. Thus, when we integrate
by parts, we obtain the same formula as in [14] and (7.4) follows.

7.2. A Kähler potential for the Weil-Petersson metric

Consider the quasi-Fuchsian space associated to Riemann surfaces with n-cusps.
For each pair (M, h�) and (M, h+) of hyperbolic surfaces of finite volume with
n cusps, denoting h := (h�, h+), there exists a unique (up to diffeomorphism)
complete hyperbolic metric g = gh on the cylinder X := Rt ⇥M , which is realized
as a quotient 0\H3 for 0 ⇢ PSL2(C) a quasi-Fuchsian group. The quasi-Fuchsian
space is identified with T (M)⇥T (M)where T (M) is the Teichmüller space of M .
Fixing h� = h0, the map h+ 7! gh provides an embedding of T (M) into the quasi-
Fuchsian deformation space, called Bers embedding, and we view the renormalized
volume as a function on T (M): Vh0 : h+ 7! VolR(X, gh).

Proof of Theorem 1.3. First, we notice that applying the proof of Proposition 7.1
in [14], mutatis mutandis, we can compute the Hessian of the renormalized volume
at the Fuchsian locus h+ = h� :

Hessh0(Vh0)(k) =

1
8

Z
M

|k|2h0dvolh0 =

1
8
|k|2WP. (7.5)

By Theorem 7.2 and the form x�2(dx2+ (1+
x2
2 )2h0) of the quasi-Fuchsian metric

for h� = h+ = h0, the metric h+ = h0 is a critical point of Vh0 and a direct
computation (as in [18, Section 8]) shows that for k1, k2 2 TTh0(M)

@@Vh0(h0).(k1, k2) =

i
4

⇣
Hessh0(Vh0)(Jk1, k2) � Hessh0(Vh0)(k1, Jk2)

⌘

if J is the complex structure on TT (M). Combining with (7.5), we obtain that
@@Vh0(h0) =

i
16!WP(h0).

To obtain the final result we need to show that @@Vh�
(h0) does not depend

on h�. This follows from quasi-Fuchsian reciprocity like in [18, Proposition 8.9].
For the convenience of the reader, we briefly repeat the argument. Thus, consider
the Lie derivative LY�

(d@Vh�
(h+)) with respect to the variable h�, where Y� is

a vector field on T (M) and h+ is fixed. To prove it vanishes, it suffices to show
that LY�

(@Vh�
(h+)) is the exterior derivative of a function of h+. We claim that
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LY�
(@Vh�

(h+)) = dF(h�,Y�)(h+) where F(h�,Y�) is the function on T (M) defined
by

F(h�,Y�)(h+) = @VolR(h�, h+).(Y�, 0).
To prove this, we will need to use the Bers embedding of Teichmüller space and
especially its relation to VolR . The universal cover of M is the upper half plane
U = H2

⇢ C and (after composing by an isometry) the metric h+ lifts to the
hyperbolic metric gH2 =

|dz|2
Im(z)2 . The covering map is denoted ⇡ : H2

! M ,
the fundamental group ⇡1(M) is represented by a Fuchsian co-compact group 0 ⇢

PSL2(R). The metric h� on M lifts by ⇡ to a metriceh� onH2 which is 0-invariant
and of curvature �1. Using the map z 7! z̄, we can equip the lower half-plane
L = {Im(z) < 0} ⇢ C with the metriceh� (the orientation of h� is then reversed),
and this metric can be written as eh� = a(z)|dz + µdz̄|2 for some smooth a > 0
and some complex valued Beltrami coefficient µ with |µ| < 1. Extend µ by 0 on
U , then by Ahlfors-Bers result, there is a unique quasiconformal map f : C ! C
which satisfies

@z̄ f = µ@z f
and f fixes the points 0, 1,1. Notice that f is a conformal map from (C, |dz +

µdz̄|2) to (C, |dz|2), and thus f is holomorphic in U . The Bers embedding is the
map

2h+
: h� 7! S( f |U ), S( f ) =

0
@@z

 
@2z f
@z f

!
�

1
2

 
@2z f
@z f

!21A dz2.

where S is the Schwarzian derivative. The element S( f ) is a holomorphic quadratic
differential with respect to the complex structure of h+onU, which is 0-equivariant,
thus descends to an element in (T ⇤

h+

T )1,0 if T denotes the Teichmüller space of
M . The Bers map 2h+

is holomorphic as a map T ! (T ⇤

h+

T )1,0. The group
00

:= f 0 f �1 is a quasi-Fuchsian subgroup of PSL2(C). Let J = f �1, where now
we consider f : U ! �+. Here �+ is the upper component of the domain of
discontinuity of 00 on C and 00

\�+, equipped with the complex structure induced
by C, is conformal to (M, h+) by f . One has moreover J⇤gH2 = e�|dz|2 for some
smooth Liouville field � on �+, 00-equivariant, and e�|dz|2 is a hyperbolic metric
on �+. Thus

@z@z̄� =

1
2
e� .

We have also J⇤S(J ) = �S( f ) and we would like to express S( f ) in terms of the
Liouville field �. Remark that

|@z J |2 = e�(Im(J (z)))2,

thus
@z� =

@2z J
@z J

+ i
@z J
ImJ

.
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Now we compute

@2z � �

1
2
(@z�)2 = S(J ) + i

@2z J
ImJ

�

1
2

(@z J )2

(ImJ )2
�

1
2

✓
i
@z J
ImJ

◆2
� i

@2z J
@z J

.
@z J
ImJ

= S(J )
(7.6)

and thus 2h+
(h�) = �J⇤((@2z � �

1
2 (@z�)2)dz2). Next we can use Epstein’s de-

scription of the equidistant foliation in [9], combined with Theorem 7.2, which
show that @Vh�

(h+) = 2h+
: if we lift the quasi-Fuchsian hyperbolic metric to

H3 (in the half-space model H3
= (0,1)x ⇥ Cz), the geodesic boundary defin-

ing function ⇢ associated to h+ and the equidistant foliation given by the level sets
{⇢ = const} also lifts to H3, the lift of the boundary metric h+ is given by e�dz2
on the domain of discontinuity �+ ⇢ C = @H3, and [9, formula (5.5)] gives near
�+ as ⇢ ! 0

gH3 =

d⇢2 + e�|dz|2 + (Re((@2z � �
1
2 (@z�)2)dz2) + @z@z̄�|dz|2)⇢2 +O(⇢4)

⇢2
.

This implies that dVh�
(h+) =

1
4 Re(2h+

(h�)) and thus we obtain

@Vh�
(h+) =

1
4
2h+

(h�)

by using (7.6). The same holds by reversing the role of h� and h+. On the other
hand, if 2(h�, h+) := 2h+

(h�), one has for any section Y± of TT (M) (here Y±

depends only on the h± variable),

RehLY�
2h+

,Y+i = Re(L(Y�,0)2)(h�,h+)(0,Y+)

= 4L(Y�,0)dVolR(h�, h+).(0,Y+)

= 4r2VolR(h�, h+).((Y�, 0), (0,Y+))

= 4LY+
(dVolR(h�, h+).(Y�, 0))

= RehLY+
2h�

,Y�i.

(7.7)

Since2h±
is a family of holomorphic differentials on T (M) that depends holomor-

phically on h±, we see that (7.7) in fact implies the quasi-Fuchsian reciprocity

hLY�
2h+

,Y+i = hLY+
2h�

,Y�i. (7.8)

Coming back to the renormalized volume, this finally yields

4hLY�
(@Vh�

(h+)),Y+i = hLY�
2+,Y+i = hLY+

2�,Y�i

= 4hLY+
(@Vh+

(h�)),Y�i

= 4hdF(h�,Y�)(h+),Y+i

(7.9)

as claimed.
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8. Limit of the renormalized volume under the formation of a rank-1 cusp

We consider an admissible degeneration of convex co-compact hyperbolic met-
rics g" on a manifold X in the sense of Definition 6.1; X is thus the interior of
a smooth compact manifold X with boundary N := @X, with degenerating curve
H = [

j1
j=1Hj ⇢ N and X = X \ H . Recall that Xc is the smooth manifold with

corners obtained by blowing-up H in X, with boundary faces M and cf, see Section
2.3. The goal of this Section is to show

Theorem 8.1. Let g" be an admissible degeneration of convex co-compact hyper-
bolic metrics on X in the sense of Definition 6.1, with limiting geometrically finite
hyperbolic metric g0. Then

lim
"!0

VolR(X, g") = VolR(X, g0).

8.1. Limit far from the cusp

First we describe the limit of the renormalized volume of the part far from the cusp,
that is in a fixed compact region K ⇢ X .

Proposition 8.2. Let ⇢" 2 C1(X) be a geodesic boundary defining function such
that h" := (⇢2" g")|N is the unique hyperbolic metric in the conformal boundary (⇢"
is uniquely defined near N ). Let ⇢0 2 C1(Xc) be a geodesic boundary defining
function of M of Proposition 2.4 with h0 := (⇢20g0)|T M being the unique finite vol-
ume hyperbolic metric in the conformal boundary (⇢0 is uniquely defined near M).
Let ✓" be a family of smooth functions on X vanishing in a uniform neighborhood
of the degenerating curve H and converging in all Ck-norms to ✓ . The following
limit holds

lim
"!0

✓
FPz=0

Z
X
✓"⇢

z
" dvolg"

◆
= FPz=0

Z
X
✓⇢z0 dvolg0 .

Proof. Let K be a compact neighborhood of supp ✓ . First, we can write dvolg" =

eG"dvolg0 for some smooth function G" converging to 0 in C1(K). We use the
notation of Section 6.2: the geodesic boundary defining function ⇢̂" in K is defined
by (6.5). Then we get

Z
X
✓"⇢̂

z
" dvolg" �

Z
X
✓⇢z0 dvolg0 =

Z
X
⇢z0

⇣
✓"eG"+z!̂" � ✓

⌘
dvolg0 (8.1)

where ⇢̂" = e!̂"⇢0, and !̂" and ✓" � ✓ converge to 0 in C1(K) by Lemma 6.3.
Now the volume form of g0 near ⇢0 = 0 is of the form ⇢�3

0 eHd⇢0dµ where dµ is
a smooth measure on K \ M and H a smooth function of K, thus writing

ez!̂" = 1+ z!̂" + z2F"
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for some smooth function F" onCz ⇥K and using that for small � > 0,
R �
0 ⇢

z�1d⇢0
has a pole of order 1 at z = 0 with residue 1, we directly obtain that

FPz=0
Z
X
⇢z0

⇣
✓"eG"+z!̂" � ✓

⌘
dvolg0 = FPz=0

Z
X
⇢z0(✓"e

G"
� ✓) dvolg0

+

1
2

Z
K\M

@2⇢0

⇣
✓"eG"+H !̂"

⌘
|⇢0=0 dµ

where @⇢0 is the vector field given by the gradient of ⇢0 with respect to ⇢2g0. Using
that G" ! 0, !̂" ! 0 and ✓" ! ✓ in C1(K), as " ! 0, we obtain that the finite
part of (8.1) at z = 0 converges to 0 as " ! 0. We write h" = e2'" ĥ". To conclude,
we may use Proposition 7.1, which of course also works in the convex co-compact
case: that is for each " > 0, we get with ✓" =

P2
k=0 ✓",k⇢

k
" + O(⇢3" ) for some

✓",k 2 C1

0 (M)

FPz=0
Z
X
⇢̂z"✓" dvolg" = FPz=0

Z
X
⇢z"✓" dvolg"

�

1
4

Z
K\M

⇣
✓",k

⇣
|d'"|2h" + Scalh"'"

⌘
� 4✓",k'"

⌘
dvolh" .

By assumption we have ✓",k ! ✓k with ✓ =

P2
k=0 ✓k⇢

k
0 +O(⇢30). Using Proposi-

tion 5.1 and Corollary 5.3 we directly obtain that (recall that '0 = 0)

lim
"!0

Z
K\M

⇣
✓",0(|d'"|2h" + Scalh"'") � 4✓",2'"

⌘
dvolh" = 0,

which achieves the proof since (8.1) has finite part at z = 0 tending to 0.

8.2. Limit near the cusp

We next study the behaviour of the renormalized volume in the regions U"j contain-
ing the degeneration. We notice that Theorem 8.1 follows from Propositions 8.2
and the following

Proposition 8.3. With the notations and assumptions of Proposition 8.2 and Theo-
rem 8.1, we have

lim
"!0

FPz=0
Z
X
(1� ✓")⇢z"dvolg" = FPz=0

Z
X
(1� ✓)⇢z0dvolg0 .

Proof. We can assume that (1�✓") is supported in [ jU"j , we are reduced to a local
analysis and we can use the model U` with metric g` of Section 6.3, where we have
forgot the " parameter and use rather ` with ` ! 0, and ⌫ = ⌫(`) is converging to
some limit ⌫0 as ` ! 0. First, an easy computation gives that the volume form of
g` is given by

dvolg` =

R2dudvdw

u3
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# 

FR

u

-v

�
�

�
�↵

Fu

F` R1

R+

3R�

3

R2

6

`

Figure 8.1. The manifold with corners U`

where R2 = u2 + v2 + `2. We need to prove that

lim
`!0

FPz=0
Z

(u,v,w,`)2U`
⇢z`�

R2dudvdw

u3
= FPz=0

Z
⇢z0�

R2dudvdw

u3
(8.2)

where ⇢` = ⇢" is the function solving (6.13) with e2'`h` being hyperbolic if h` is
given by (6.11), and � 2 C1

c (U`) is independent of ` and equal to 1 near u = v = 0.
To study the renormalized integral (8.2) we decompose U` in several regions, see
Figure 8.1.

We start with a region of finite volume (with the notations of Section 6.3)

R1(`) = {(u, v,w) | u  �, �1  V  1, 0 < L  1},

where we use the following coordinates,

u, V =

v

u
, L =

`

u
, w. (8.3)

In fact, for ` > 0 fixed, we have that

0  L  1, 0  u  � =) `  u  �.

Take � so that � is supported in
p

u2 + v2  �. In these coordinates, the volume
form of g` is for ` fixed given by

dvolg` =

(`2 + u2 + v2)dudvdw

u3
= (1+ V 2 + L2)dudVdw.

Restricted to this region, the volume is thus clearly finite and there is no need to
renormalize. Thus,

FPz=0
Z
R1(`)

⇢z`�
R2dudvdw

u3
=

Z
�
1
4

�
1
4

Z 1

0

Z �

`
�(u,Vu,w)

 
1+V 2+

`2

u2

!
dudVdw.
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We can use dominated convergence (using L2 1l[`,�](u)  1l[0,�]) to deduce that

lim
`!0

FPz=0
Z

(u,V,L ,w)2R1
⇢z`�

R2dudvdw

u3

=

Z
�
1
4

�
1
4

Z 1

0

Z �

0
�(u, Vu, w)

⇣
1+ V 2

⌘
dudVdw

= FPz=0
Z
R1(0)

⇢z0�
(u2 + v2)dudvdw

u3
.

(8.4)

Next we analyze the region R2(`) near the intersection Fu \FR but away from the
corners FR \Fu \F`. In this region, we can use the coordinates

`, eU =

u
`
, eV =

v

`
, w.

In these coordinates, we can define more precisely the region R2(`) by

R2(`) = {(u, v,w) | 0 
eU  1, �1 

eV  1}

In these coordinates, the volume form of g` is given (for ` fixed) by

dvolg` =

`(1+
eU2 +

eV 2)deUdeVdw

eU3 .

Since U :=
u
R =

eU
p

1+eU2+eV 2 and ⇢` = e!`U with the notation of (6.13), we have

FPz=0
Z
R2(`)

�⇢z`
R2dudvdw

u3

= FPz=0
Z 1

4

�
1
4

Z 1

�1

Z 1

0
⇢z`�

`(1+
eU2 +

eV 2)deUdeVdw

eU3
= FPz=0

Z 1
4

�
1
4

Z 1

�1

Z 1

0
�
`eUzez!`(1+

eU2 +
eV 2)deUdeVdw

(1+
eU2 +

eV 2) z2 eU3
= A1(`) + A2(`) + A3(`)

with

A1(`):=FPz=0
Z 1

4

�
1
4

Z 1

�1

Z 1

0
�
`eUz(1+eU2+eV 2)deUdeVdw

eU3 ,

A2(`):=resz=0
Z 1

4

�
1
4

Z 1

�1

Z 1

0
�
`eUz!`(1+eU2+eV 2)deUdeVdw

eU3 ,

A3(`):=�

1
2
resz=0

Z 1
4

�
1
4

Z 1

�1

Z 1

0
�
`eUz log(1+eU2+eV 2)(1+eU2+eV 2)deUdeVdw

eU3 .
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For j = 0, 1, the function `�(`eU , `eV , w)(1 +
eU2 +

eV 2)(log(1 +
eU2 +

eV 2)) j
converges to 0 in Ck-norms for all k, and thus it is direct to see lim`!0 A1(`)
= lim`!0 A3(`) = 0. For the second term, we use the Taylor expansion of !`
in terms of eU using (6.25):

!` = a0 + a2U2 +O(U3) = a0 +

a2eU2
1+

eV 2 +O(eU3).
Thus, we compute that

A2(`) = `

Z 1
4

�
1
4

Z 1

�1

⇣
(a0 + a2)(�(0,`eV ,w) + a0`2(1+

eV 2)@2u�(0,`eV ,w)
⌘
dVdw

= `

Z 1
4

�
1
4

Z 1

�1
�(0,`eV ,w)(a0 + a2)dVdw +O(`3).

=

Z 1
4

�
1
4

Z `

�`
�(0, v,w)

✓
'` �

1
4
|d'`|2h`

+

C1`2 +C2v@w'`
(`2 + v2)

+C3v@v'` +

1
2

◆
dvdw,

(8.5)
where C j are constant depending smoothly on ⌫, and we used that a0 ='` is uni-
formly bounded in ` in the second line. From Proposition 5.1 and Corollary 5.3, we
see that

Z 1
4

�
1
4

Z `

�`
�(0, v,w)

 
'` �

1
4
|d'`|2h` +

C1`2

(`2 + v2)

!
dvdw ! 0.

Using Cauchy-Schwartz and |d'`|h` � C(|(v2 + `2)�
1
2 @w'`| + |v@v'`|) we also

get that

Z 1
4

�
1
4

Z `

�`
|�(0, v,w)|

✓
C2|v@w'`|
(`2 + v2)

+ C3|v@v'`|
◆
dvdw

 C 0

⇣
p

`||d'`||L2 +

 Z 1
4

�
1
4

Z `

�`
|d'`|2h`dvdw

⌘ 1
2

!

for some C 0 independent of `, thus this converges to 0 by Corollary 5.3, and we
conclude that lim`!0 A2(`) = 0 and

lim
`!0

FPz=0
Z
R2(`)

�⇢z`
R2dudvdw

u3
= 0.
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Next we consider the coordinates, smooth near the corners FR \Fu \F`,

v, bU =

u
|v|

, L̂ =

`

|v|

, w

and take the region R3(`) [ R4(`) given by

R3(`) =

n
(u, v,w) | |v|  �, L̂  1, bU  1

o
.

We see that � can written as
P4

j=1 � 1lR j (`) . In these coordinates, the volume form
of g` is given for fixed ` by

dvolg` =

⇣
1+ L̂2 +

bU2⌘ dbUdvdw

bU3 .

Thus, since U =

bU
p

1+L̂2+bU2 , we have

FPz=0
Z
R3(`)

�⇢z`
R2dudvdw

u3

= FPz=0
Z 1

4

�
1
4

Z
`|v|�

Z 1

0
�
Û zez!`

⇣
1+

`2

v2
+
bU2⌘ dbUdvdw⇣

1+
`2

v2
+ Û2

⌘z/2 bU3
= I1(`) + I2(`) + I3(`).

(8.6)

with

I1(`) := FPz=0
Z 1

4

�
1
4

Z
`|v|�

Z 1

0
�

bUz
⇣
1+

`2

v2
+
bU2⌘ dbUdvdw

bU3 ,

I2(`) := resz=0
Z 1

4

�
1
4

Z
`|v|�

Z 1

0
�

bUz!`
⇣
1+

`2

v2
+
bU2⌘ dbUdvdw

bU3 ,

I3(`) := �

1
2
resz=0

Z 1
4

�
1
4

Z
`|v|�

Z 1

0
� log

 
1+

bU2 +

`2

v2

!

·

bUz
⇣
1+

`2

v2
+
bU2⌘ dbUdvdw

bU3 .

We notice that, in view of the smoothness of !` as a function ofU, v,w, these three
terms also make sense for ` = 0, and (8.6) for ` = 0 is given by

P3
j=1 I j (0). To
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conclude the proof, we want to prove that I j (`) ! I j (0) as ` ! 0 for j = 1, 2, 3.
For the first term, we compute that

I1(`) =

Z 1
4

�
1
4

Z
`|v|�

  
1+

`2

v2

!
q1(v,w) + q2(v,w)

!
dvdw, (8.7)

where q1 and q2 are smooth and independent of `, and it is then clear that

lim
`!0

I1(`) = I1(0)

To deal with I3(`), we can proceed similarly: we remark that for ` � 0, the inte-
grand in I3(`) is of the form Û z�3Q(Û , `

2

v2
, v,w)where Q is some smooth function

of its parameters, thus it is straightforward to see that

I3(`) =

Z 1
4

�
1
4

Z
`|v|�

q3

 
v,
`2

v2
, w

!
dvdw

for some smooth function q3 of its parameters. We conclude as in the case of I1 that

lim
`!0

I3(`) = I3(0).

Finally we study I2(`). From the expansion (6.25), we have for ` � 0 that

!` = a0 + a2U2 +O(U3) = a0 +

a2bU2
1+

`2

v2

+O(bU3).
Hence, we compute that for ` � 0

I2(`) =

Z 1
4

�
1
4

Z
`|v|�

⇣
(a0 + a2)(�(0, v,w) + a0(v2 + `2)@2u�(0, v,w)

⌘
dvdw

=

Z 1
4

�
1
4

Z
`|v|�

�(0, v,w)

✓
'` �

1
4
|d'`|2h`

+

C1`2 + C2v@w'`
(`2 + v2)

+ C3v@v'` +

1
2

◆
dvdw

+

Z 1
4

�
1
4

Z
`|v|�

'`(v
2
+ `2)@2u�(0, v,w)dvdw.

for some constant C j depending smoothly on ⌫. By Proposition 5.1, the last line is
continuous at ` = 0, and using Corollary 5.6 with the stronger estimate (5.9), it is
direct to check (like we did for the term A2(`)) that I2(`) is continuous at ` = 0,
i.e., lim`!0 I2(`) = I2(0).



RENORMALIZED VOLUME OF PUNCTURED SURFACES 379

9. Appendix

Proof of Proposition 4.2.

We will construct 8L in two steps, as a composition 8L = 4L � 7L . Let us first
construct the diffeomorphism7L , which is done by changing coordinates on Xm(q).

If r =

p
x2 + |z|2 is the Euclidean radial coordinate in H3

= R+

x ⇥ H2
z , then

the hyperbolic metric takes the form in the Euclidean radial coordinates (r,!) with
! 2 S2

gH3 =

dr2 + r2gS2

r2!2x
where r!x = x and !x = x(!) is the vertical coordinate on the sphere. We denote
by !1 = Re(z(!)) and !2 = Im(z(!)) the coordinates of ! in the horizontal
direction z. Consider the stereographic projection S2 ! R2 from the point (x, z) =

(0,�1) 2 S2 ⇢ R3, providing coordinates û, v̂ 2 R2 so that

û =

!x
!1 + 1

, v̂ =

!2
!1 + 1

, and the metric gS2 =

4(dû2 + dv̂2)

(1+ û2 + v̂2)2
.

In the coordinates (r, û, v̂) 2 R+
⇥ R+

⇥ R, the hyperbolic metric takes the form

gH3 =

(1+ û2 + v̂2)2dr2

4û2r2
+

dû2 + dv̂2

û2
.

Notice that v̂ + i û define coordinates on the hyperbolic plane H2 (viewed as the
upper half-space in C), and the stereographic projection is an isometry from the
half-sphere H(0, 1) equipped with the metric induced from H3 to this hyperbolic
plane. The action z 7! qz = e`(1+i⌫)z in C corresponds in H3 to a dilation by e`
centered at (x, z) = (0, 0) followed by a hyperbolic rotation RH3(⌫`, x) of angle ⌫`
around the x axis inH3

= R+

x ⇥Cz . The latter is an elliptic isometry for gH3 and so
its restriction to H(0, 1) becomes an elliptic isometry of the hyperbolic half-plane
H2 with coordinate z = v̂+i û, fixing the point z = i , and considering the derivative
at this point shows that RH3(⌫`, x)|H(0,1), viewed in the variable z = v̂ + i û 2 H2

via the stereographic projection, acts as the hyperbolic rotation of angle ⌫` and
center z = i 2 H2. We denote by

R⌫` =

✓
cos ⌫`2 sin ⌫`2

� sin ⌫`2 cos ⌫`2

◆
2 PSL2(R)

this hyperbolic rotation.
In the quotient (4.6), the fundamental domain is e�

1
2 `  r  e

1
2 ` so to have

coordinates with uniform behavior with respect to the deformation parameters `,
we introduce the rescaled coordinates

u0

= `û, v0

= `v̂, w =

log r
2`

.
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We denote by 7L : (x, z) 7! (w, v0
+ iu0) the diffeomorphism corresponding to

the change of coordinates. In these coordinates, the hyperbolic metric on e�
1
2 ` 

r  e
1
2 ` takes the form:

(7L)⇤gH3 =

du02
+ dv02

+ (`2 + u02
+ v02)2dw2

u02 ,

where w 2 [�
1
4 ,

1
4 ]. Moreover the transformation �L becomes in these coordinates

(w, v0

+ iu0) 7!

⇣
w +

1
2 , `R�⌫`(`

�1(v0

+ iu0))
⌘

.

The intersection of the half-sphere @B(e(L), ⇢(L)) of (4.6) with the half-sphere
H(0, e2`w) (with |w| < 1/4) is the half-circle obtained by intersecting the plane

Re(z) = (w, `, �) =

e(L)2 + e4`w � ⇢(L)2

2e(L)

with H(0, e2`w). Under the stereographic projection H(0, e2`w) ! {(x, z);Re(z)
= 0} = R2 from the point (x, z) = (0,�e2`w), a small computation shows that it
is thus sent to the half circle centered at 0 of radius

e2`w
s
e2`w + (w, `(L), �)

e2`w � (w, `, �)
=

r�(w)

`
+O�(1), r�(w) :=

 
�2

2�2
� 4w2

!
�
1
2

where we have used (4.7) in the last equality. Consequently, the intersection of the
half-ball B(e(L), ⇢(L)) of (4.6) with the half-sphere H(0, e2`w) (with |w| < 1/4)
becomes, in the coordinates ⇣ 0

= v0
+ iu0

2 H2, a half-disc of the form

Im(⇣ 0) > 0, |⇣ 0

|  `

s
(e2`w � (w, `, �))e2`w

e2`w + (w, `, �)
= r�(w) +O�(`). (9.1)

and thus, taking � small enough (independent of `) so that �/� � 4 > 1 this set is
asymptotic to the half-disk

{⇣ 0

2 C; Im(⇣ 0) > 0, |⇣ 0

|  r�(w)}. (9.2)

We have thus showed the following:

Lemma 9.1. There is an isometry 7L between h�Li\H3 and

X�q := h�qi\

 
Rw ⇥ H2

⇣ 0
=v0

+iu0,
du02

+ dv02
+ (`2 + u02

+ v02)2dw2

u02

!
, (9.3)
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where �q is the map

�q : (w, ⇣ 0) 7!

✓
w +

1
2 ,

cos(⌫`/2)⇣ 0
+ ` sin(⌫`/2)

�`�1 sin(⌫`/2)⇣ 0
+ cos(⌫`/2)

◆
.

Moreover, if � > 0 is small enough, the model neighborhood (4.6) is mapped via
7L to

⇡�q

⇣n
(w, ⇣ 0) 2 [�

1
4 ,

1
4 ) ⇥ H2

; |⇣ 0

| < rq(w)
o⌘

(9.4)

where ⇡�q : R ⇥ H2
! X�q is the covering map, and rq(w) is the radius of the

half-circle given by equation (9.1) and converging to r�(w) > 0 with r�(w) = O(�)
uniformly in |w| < 1/4.

Notice that, if ` !0, then �q converges to some transformation �⌫ : (w, ⇣ 0) 7!⇣
w +

1
2 , P⌫(⇣

0)
⌘
with P⌫ 2 PSL2(R) the parabolic transformation ⇣ 0

7!
2⇣ 0

⌫⇣ 0
+2 , and

X�q converges to

X�⌫ := h�⌫i\

 
Rw ⇥ H2

⇣ 0
=v0

+iu0, g0 =

du02
+ dv02

+ (u02
+ v02)2dw2

u02

!
.

Conjugating by an inversion ⇣ 0
7! �1/⇣ 0 on H2, P⌫ becomes the transformation

⇣ 0
7! ⇣ 0

� ⌫/2 and the transformation �⌫ viewed in the coordinates (w, y + i x)
defined by y + i x = �1/(v + iu), is the parabolic isometry of H3

= Rw ⇥ H2
y+i x

fixing 1 and given by T⌫ : (w, y + i x) 7! (w +
1
2 , y �

⌫
2 + i x). Then X�⌫ is

isometric to hT⌫i\H3, which is the model of a hyperbolic cusp of rank 1. Clearly,
the model of Lemma 9.1 extends smoothly to the parabolic boundary {` = 0} ofQ.

We also need to control the change of coordinates from the neighborhood U �L
of (4.5) to this new model when ` ! 0, that is we want to know 7L �2L . A direct
computation gives

r2(2L(x, z)) =

x2�2`2 + |x2 + |z|2 � z�`|2

(x2 + |z � �`|2)2
,

!x (2L(x, z)) =

x�`
⌘L(x, z)

, !1(2L(x, z)) =

�x2 � |z|2 + Re(z)�`
⌘L(x, z)

!2(2L(x, z)) =

Im(z)�`
⌘L(x, z)

(9.5)

with ⌘L(x, z) :=

p
(x2 + Im(z)2)�2`2 + (x2 + |z|2 � Re(z)�`)2, thus

u0(2L(x, z)) =

x
�(x2 + Im(z)2)

(⌘L(x, z) + x2 + |z|2 � Re(z)�`),

v0(2L(x, z)) =

Im(z)
�(x2 + Im(z)2)

(⌘L(x, z) + x2 + |z|2 � Re(z)�`).
(9.6)
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Notice that 7L �2L extends smoothly in a neighborhood of the cusp region of X
of the form

V� := {(L , x, z) 2 Q⇥ ⇡�L (B(0, �)); (x, z) 2
eFL \ {0}}.

Indeed one has w(2L(x, z)) =
log(r�2L (x,z))

2` , and by (9.5) we can write it under the
form w(2L(x, z)) =

log(1+`F(L ,x,z))
2` for some F(L , x, z) smooth in V� and thus w

extends smoothly in V� . It is also easily checked that (u0, v0) extend smoothly to V�
by (9.6). The inverse also admits a smooth extension to {` = 0, (u0, v0) 6= (0, 0)}
by a similar computation.

To finish the proof of the Proposition, we shall construct a diffeomorphism
4L corresponding to a new change of coordinates. In the H3

= Rw ⇥ H2
⇣ 0

=v0
+iu0

hyperbolic space, we define the function

µ(w, ⇣ 0) := dH2(⇣
0

; i`)

which is invariant under the transformation �q . One has in particular

cosh(µ) =

u02
+ v02

+ `2

2u0`
.

Let us make the following change of coordinates on [�1/4, 1/4] ⇥ H2, which de-
fines 4L ,

4L : (w, ⇣ 0) 7! (w, ⇣ := `R�2⌫`w(`�1⇣ 0))

where R✓ 2 PSL2(R) is the hyperbolic rotation of angle ✓ and center i . The trans-
formation �q becomes in the (w, ⇣ ) coordinates (i.e., after conjugation with 4L )
the transformation

4L � �q � (4L)
�1

: (w, ⇣ ) 7! (w +

1
2
, ⇣ ).

We see that 4L extends smoothly to {` = 0; |⇣ 0
| < �} if � is small enough, with

value
4(0,⌫,�)(w, ⇣ 0) =

⇣ 0

⌫w⇣ 0
+ 1

and the same holds for its inverse. Thus we deduce that8L := 4L �7L is such that
(L , x, z) 7! 8L �2L extends smoothly to V� if � > 0 is chosen small enough. If
we write ⇣ = v + iu 2 H2, the function cosh(µ) is clearly invariant by rotation, so

u02
+ v02

+ `2

u0

=

u2 + v2 + `2

u
(9.7)

and we compute

u0

=

u
| � `�1 sin(⌫`w)⇣ + cos(⌫`w)|2

, d⇣ 0

=

d⇣ + dw(⌫⇣ 2 + ⌫`2)

(�`�1 sin(⌫`w)⇣ + cos(⌫`w))2
.

(9.8)
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Therefore the metric gL becomes in the new coordinates.

gL := (4L �7L)⇤gH3 =

du2 + dv2 + ((1+ ⌫2)R4 � 4⌫2`2u2)dw2

u2

+

2⌫(R2 � 2u2)dwdv + 4⌫uvdudw

u2

where R :=

p

u2 + v2 + `2. Here we notice that the change of coordinates
v0

+ iu0
7! v + iu for a fixed w is a hyperbolic rotation of angle �2⌫`w and

center i` in H2. In particular it maps the half-circle (9.1) (which is a geodesic of
H2) to the half-circle in H2 which intersects the real axis at the two points

v±(q) =

±rq(w) cos(⌫`w) + ` sin(⌫`w)

⌥rq(w)`�1 sin(⌫`w) + cos(⌫`w)
=

±rq(w)

1⌥ ⌫wrq(w)
+O(`).

This shows that the region (9.4) in the coordinates (w, ⇣ ) becomes the set⇢
(w, ⇣ ) 2


�

1
4
,
1
4

◆
⇥ H2

; |⇣ � vq(w)|  ⌧q(w)

�
/

⇢
w ⇠ w +

1
2

�

for vq(w) =
1
2 (v+(q) + v�(q)) and ⌧q(w) =

1
2 (v+(q) � v�(q)) which clearly

converge as ` ! 0, and satisfy the desired properties (recall that rq = r�(w)+o(1)
as ` ! 0 with the notation of (9.2)).
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