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A special point problem of André-Pink-Zannier
in the universal family of Abelian varieties

ZIYANG GAO

Abstract. The André-Pink-Zannier conjecture predicts that a subvariety of a
mixed Shimura variety is weakly special if its intersection with the generalized
Hecke orbit of a given point is Zariski dense. It is part of the Zilber-Pink con-
jecture. In this paper we focus on the universal family of principally polar-
ized Abelian varieties. We explain the moduli interpretation of the André-Pink-
Zannier conjecture in this case and prove several different cases for this conjec-
ture: its overlap with the André-Oort conjecture; when the subvariety is contained
in an Abelian scheme over a curve and the point is a torsion point on its fiber;
when the subvariety is a curve.

Mathematics Subject Classification (2010): 11G18 (primary); 14G35 (sec-
ondary).

1. Introduction

Consider [⇡] : Ag(N ) ! Ag(N ), the universal family of principally polarized
Abelian varieties of dimension g with level-N -structure over a fine moduli space.
For simplicity we drop the “(N )” in the notation. The variety Ag is an example of
a mixed Shimura variety which is not pure. For general theory of mixed Shimura
varieties, we refer to [24]. An interesting Diophantine problem related to mixed
Shimura varieties is the Zilber-Pink conjecture, which concerns unlikely intersec-
tions in mixed Shimura varieties. In order to study this conjecture, Pink defined
in [25, Definition 4.1] weakly special subvarieties of mixed Shimura varieties. In
Section 3, we shall discuss weakly special subvarieties of Ag. In particular we dis-
pose of the following geometric description for weakly special subvarieties of Ag:
let Y any irreducible subvariety of Ag, it is then a subvariety of [⇡]

�1([⇡]Y ) with
the latter being an Abelian scheme over [⇡]Y , whose isotrivial part we denote by
C. Then we have (for the proof see Subsection 3.2):
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Proposition 1.1. An irreducible subvariety Y of Ag is weakly special if and only if
the following holds:

(1) [⇡]Y is a totally geodesic subvariety ofAg;
(2) Y is the translate of an Abelian subscheme of [⇡]

�1([⇡]Y ) (over [⇡]Y ) by a
torsion section and then by a section of C ! [⇡]Y .

Moreover, this holds for any connected Shimura variety of Kuga type S (i.e., mixed
Shimura varieties with trivial weight�2 part), in which case the “Ag” in (1) should
be replaced by the pure part of S. See the forthcoming dissertation [6, Section 2.2].

Let us define the constant sections of C ! [⇡]Y . By definition of isotriviality,
there exists a finite cover B0

! B such that C ⇥[⇡]Y B0
' Cb0 ⇥ B0 for any

b0 2 [⇡]Y . A constant section of C ! [⇡]Y is then defined to be the image of
the graph of a constant morphism B0

! Cb0 in C ⇥[⇡]Y B0 under the projection
C ⇥[⇡]Y B0

! C.
A very important case of the Zilber-Pink conjecture is the André-Oort conjec-

ture, which for Ag is equivalent to the following statement: if a subvariety Y of Ag
contains a Zariski dense subset of special points (i.e., points of Ag corresponding
to torsion points of CM Abelian varieties), then Y is a weakly special subvariety of
Ag. By previous work of Pila-Tsimerman [23] and Gao [5], the only obstacle to
prove the André-Oort conjecture for Ag (or more generally, for any mixed Shimura
variety of Abelian type) is the lower bound for the Galois-orbits of special points.

The goal of this article is to study another important case of the Zilber-Pink
conjecture, which we call the André-Pink-Zannier conjecture:
Conjecture 1.2. Let Y be a subvariety of Ag. Let s 2 Ag and6 be the generalized
Hecke orbit of s. If Y \6

Zar
= Y , then Y is weakly special.

Several cases of this conjecture had been studied by André before its final
form was made by Pink [25, Conjecture 1.6]. It is also closely related to a problem
(Conjecture 1.4) proposed by Zannier. Pink has also proved [25, Theorem 5.4] that
Conjecture 1.2 implies the Mordell-Lang conjecture.

Conjecture 1.2 for Ag, the pure part of Ag, has been intensively studied by
Orr in [18, 19], generalizing the previous work of Habegger-Pila [8, Theorem 3] in
the Pila-Zannier method. This paper is based on the work of Orr [18, 19] and the
author’s previous work on the mixed André-Oort conjecture [5].

The set 6 has good moduli interpretation: by Corollary 4.5,

6 = division points of the polarized isogeny orbit of s
=

�
t 2 Ag| 9n 2 N and a polarized isogeny
f : (Ag,[⇡]s, �[⇡]s) ! (Ag,[⇡]t , �[⇡]t ) such that nt = f (s)

 
.

(1.1)

There are authors who consider isogenies instead of polarized isogenies. However
this does not essentially improve the result because of Zarhin’s trick (see [18, Propo-
sition 4.4]): for any isogeny f : A ! A0 between polarized Abelian varieties, there
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exists u 2 End(A4) such that f 4 � u : A4 ! A04 is a polarized isogeny. See Sec-
tion 8 for more details.

Although Conjecture 1.2 and the André-Oort conjecture do not imply each
other, they do have some overlap. The overlap of these two conjectures is the
same statement of Conjecture 1.2 with 6 replaced by the set of points of Ag cor-
responding to torsion points of CM Abelian varieties admitting a polarized isogeny
to a given principally polarized CM Abelian variety. A main result of this pa-
per is to prove this overlap, partially generalizing existing result of Edixhoven-
Yafaev [4, 30] and Klingler-Ullmo-Yafaev [10, 29] for pure Shimura varieties (see
Theorem 1.5.(2)).

We shall divide Conjecture 1.2 into two cases: when s is a torsion point of
Ag,[⇡]s and when s is not a torsion point of Ag,[⇡]s . The Diophantine estimates for
both cases are not quite the same.

1.1. The torsion case

When s is a torsion point of Ag,[⇡]s , this conjecture is related to a special-point
problem proposed by Zannier. We define the following “special topology” proposed
by Zannier:

Definition 1.3. Fix a point a 2 Ag. Then a corresponds to a principally polarized
Abelian variety (Aa, �a) of dimension g.

(1) We say that a point t 2 Ag is Aa-special (or a-special) if there exists an
isogeny Aa ! Ag,[⇡]t and t is a torsion point on the Abelian variety Ag,[⇡]t .
We shall denote by 60

a (or 60 when there is no confusion) the set of a-special
points;

(2) we say that a point t 2 Ag is (Aa, �a)-special if there exists a polarized
isogeny (Aa, �a) ! (Ag,[⇡]t , �[⇡]t ) and t is a torsion point on the Abelian
variety Ag,[⇡]t . We shall denote by 6a (or 6 when there is no confusion) the
set of a-strongly special points;

(3) we say that a subvariety Z of Ag is a-special if Z contains an a-special point,
[⇡]Z is a totally geodesic subvariety ofAg and Z is an irreducible component
of a subgroup of [⇡]

�1([⇡]Z).

In view of Proposition 1.1, every a-(strongly) special subvariety is weakly special.
The following conjecture was proposed by Zannier.

Conjecture 1.4. Let Y be a subvariety of Ag and let a 2 Ag. If Y \60

a
Zar

= Y ,
then Y is a-special.

By (1.1), Conjecture 1.2 when s is a torsion point of Ag,[⇡]s is equivalent to a
weaker version of Conjecture 1.4, i.e., replace 60

a by 6a in Conjecture 1.4. How-
ever by [18, Proposition 4.4], Conjecture 1.2 for A4g also implies Conjecture 1.4
for Ag. Our first main result is:
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Theorem 1.5. Conjecture 1.4 holds if one of the following conditions holds:
(1) either dim([⇡](Y )) 6 1;
(2) or the point a is a special point of Ag (which is the overlap between Conjec-

ture 1.2 and the André-Oort conjecture for Ag).
The proof of this theorem will be presented in Sections 5 and 6. Remark that, by
Corollary 4.6, the case where dim([⇡]Y ) = 0 (i.e., [⇡](Y ) is a point) is nothing but
the Manin-Mumford conjecture, which is proved by many people (the first proof
was given by Raynaud). On the other hand, with a similar proof, Theorem 1.5.
(2) holds for more general cases (more details will be given in the forthcoming
dissertation [6, Theorem 14.2]). In this paper we only present the proof for the
case Ag.

1.2. The non-torsion case

The situation becomes more complicated when s is not a torsion point of Ag,[⇡]s .
In this case we prove (in Section 7):
Theorem 1.6. Conjecture 1.2 holds if Y is a curve.

Structure of the paper

In Section 2 we define the universal family of Abelian varieties in the language of
mixed Shimura varieties of Pink [24]. In Section 3 we discuss weakly special sub-
varieties ofAg. In particular we prove Proposition 1.1 and recall the Ax-Lindemann
theorem in this section. Then we shall lay the base of the study for Conjecture 1.2
in Section 4, where matrix expressions of polarized isogenies are given and gener-
alized Hecke orbits are computed. After these preliminaries, we will start proving
Theorem 1.5 and Theorem 1.6. The proof of Theorem 1.5 will be executed in Sec-
tions 5 and 6, with the former section devoted to the Diophantine estimate and the
latter section devoted to the rest of the proof. In Section 7 the proof of Theorem 1.6
will be presented. Finally, in Section 8, we discuss the following situation: replace
the subset 6 (which is (1.1)) in Conjecture 1.2 by the isogeny orbit of a finitely
generated subgroup of one fiber. We will prove that although this change a priori
seems to generalize Conjecture 1.2, it can in fact be implied by Conjecture 1.2. For
more details see Corollary 8.2.
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2. Universal family of Abelian varieties

Let S := ResC/RGm,C. Let g 2 N>0. Let V2g be aQ-vector space of dimension 2g
and let

9 : V2g ⇥ V2g ! U2g := Ga,Q (2.1)

be a non-degenerate alternating form. Define

GSp2g :=

�
g 2 GL(V2g)|9(gv, gv0) = ⌫(g)9(v, v0) for some ⌫(g) 2 Gm

 
,

and H+

g the set of all homomorphisms

S ! GSp2g,R

which induce a pure Hodge structure of type {(�1, 0), (0,�1)} on V2g and for
which 9 defines a polarization. The action of GSp2g(R)+ on H+

g is given by the
conjugation, i.e., for any h 2 GSp2g(R)+ and any x 2 H+

g , h · x is the morphism

h · x : S ! GSp2g,R
y 7! hx(y)h�1.

It is well known thatH+

g can be identified with the Siegel upper half space (of genus
g) n

Z = X +

p

�1Y 2 Mg⇥g(C)| Z = Zt , Y > 0
o

and the action of GSp2g(R)+ on H+

g is given by
✓
A B
C D

◆
Z := (AZ + B)(CZ + D)�1.

The action of GSp2g on V2g induces a Hodge structure of type {(�1, 0), (0,�1)}
on V2g. Let

X+

2g,a := V2g(R) o H+

g ⇢ Hom
�
S, V2g,R o GSp2g,R

�

denote the conjugacy class under (V2g o GSp2g)(R)+ generated by H+

g (recall
that every point of H+

g gives rise to a homomorphism S ! GSp2g,R ⇢ V2g,R o
GSp2g,R). The notion V2g(R) o H+

g is justified by the natural bijection

V2g(R) ⇥ H+

g
⇠

�! V2g(R) o H+

g , (v0, x) 7! int(v0) � x . (2.2)

Under this bijection the action of (v, h) 2 (V2g o GSp2g)(R)+ is given by (v, h) ·

(v0, x) := (v + hv0, hx).
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Denote by (P2g,a,X+

2g,a) := (V2goGSp2g, V2g(R)⇥H+

g ). This is a connected
mixed Shimura datum ( [24, 2.25]). There is a natural morphism

⇡ :

⇣
P2g,a,X+

2g,a

⌘
!

⇣
GSp2g, H+

g

⌘

induced by P2g,a = V2g o GSp2g ! GSp2g.
Let 0V (N ) := NV (Z) and 0G(N ) := {h 2 GSp2g(Z)|h ⌘ 1 (mod N )} for

any integer N > 3. Define 0(N ) := 0V (N )o0G(N ), then it is a neat subgroup of
P2g(Q)+. Define

Ag(N ) := 0(N )\X+

2g,a

and
Ag(N ) := 0G(N )\H+

g .

Then Ag(N ) is a connected mixed Shimura variety andAg(N ) is a connected pure
Shimura variety. The morphism ⇡ induces a Shimura morphism

[⇡] : Ag(N ) ! Ag(N ). (2.3)

Theorem 2.1. (1) The morphism (2.3) is the universal family of principally po-
larized Abelian varieties of dimension g over the fine moduli spaceAg(N ).

(2) Both Ag(N ) andAg(N ) are both defined over Q;
(3) letF := [0, N )2g⇥FG ⇢ V2g(R)⇥H+

g ' X+

2g,a, whereFG is a fundamental
Siegel set for the action of 0G(N ) onH+

g . Then F is a fundamental set for the
action of 0(N ) on X+

2g,a such that unif|F is definable in the o-minimal theory
Ran,exp.

Proof. See [24, 10.5, 10.9, 10.10, 11.16] for (1) and (2), while (3) is the main result
of [20] (see [5, Remark 4.4]).

Let N > 3 be even. Pink has also constructed an ampleGm-torsor overAg(N )
in terms of mixed Shimura varieties in [24]. In our purpose we only need:

Theorem 2.2. There exists a Gm-torsor Lg(N ) ! Ag(N ), which is totally sym-
metric and relatively ample with respect to Ag(N ) ! Ag(N ). Furthermore,
any point a 2 Ag(N ) corresponds to the principally polarized Abelian variety
(Ag(N )a,Lg(N )a) with some level-N -structure.

Proof. See [24, 2.25, 3.21, 10.5, 10.10].

Notation 2.3. In the rest of the paper, we shall always take N to be even and larger
than 3. Furthurmoer we write Ag, Ag and Lg for Ag(N ), Ag(N ) and Lg(N ) for
simplicity.
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3. Weakly special subvarieties of Ag

In this section we discuss weakly special subvarieties of Ag (or more generally, of
mixed Shimura varieties of Kuga type).

3.1.

The following definition is not exactly the original one given by Pink [25, Definition
4.1(b)], but it is not hard to verify their equivalence (see [25, Proposition 4.4(a)]
and [5, Proposition 5.7]):
Definition 3.1. A subvariety Y of Ag is called weakly special if there exist a con-
nected mixed Shimura subdatum (Q,Y+) of (P2g,a,X+

2g,a), a connected normal
subgroup N of Q possessing no non-trivial torus quotient and a pointey 2 Y+ such
that Y = unif(N (R)+ey).
Remark 3.2.

(1) Weakly special subvarieties of Ag defined as above are automatically irre-
ducible ([5, Remark 5.3]).

(2) For an arbitrary connected mixed Shimura variety S of Kuga type, its weakly
special subvarieties are defined in the same way with (P2g,a,X+

2g,a) replaced
by the connected mixed Shimura datum associated with S. For more general
connected mixed Shimura varieties, the “N (R)+” in the definition should be
replaced by “N (R)+UN (C)” where UN is the so-called weight �2 part of N .
We shall not go into details on this.

3.2.

The goal of this subsection is to prove Proposition 1.1. Recall that P2g,a is defined
to be V2g o GSp2g with the natural representation of GSp2g on V2g. Therefore this
induces the zero-section " : (GSp2g, H+

g ) ,! (P2g,a,X+

2g,a) of ⇡ . Remark that "
corresponds to the zero-section of [⇡] : Ag ! Ag.

Proposition 3.3. Let B be an irreducible subvariety of Ag and X := [⇡]
�1(B).

Define C to be the isotrivial part of X ! B, i.e., the largest isotrivial Abelian
subscheme of X over B. Then

{translates of an Abelian subscheme of X ! B by a torsion section and then
by a constant section of C ! B} = {X \ E | E weakly special in Ag}.

The constant sections of C ! B are defined as follows: By definition of isotriv-
iality, there exists a finite cover B0

! B such that C ⇥B B0
' Cb0 ⇥ B0 for any

b0 2 B. A constant section of C ! B is then defined to be the image of the graph
of a constant morphism B0

! Cb0 in C ⇥B B0 under the projection C ⇥B B0
! C.
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It is clear that Proposition 1.1 follows immediately from Proposition 3.3 and
[15, 4.3].

The following proposition is not hard to prove using Levi decomposition [26,
Theorem 2.3]. Another (partial) proof can be found in [12, Section 5.1].

Proposition 3.4. To give a Shimura subdatum (Q,Y+) of (P2g,a,X+

2g,a) is equiva-
lent to giving:

• a pure Shimura subdatum (GQ,Y+

GQ
) of (GSp2g, H+

g );
• a GQ-submodule VQ of V2g (V2g is a GSp2g-module, and therefore a GQ-
module);

• an element v0 2 (V2g/VQ)(Q).

Proof. We only give the constructions here.

(1) Given (Q,Y+) ⇢ (P2g,a,X+

2g,a), we have VQ := Ru(Q) < Ru(P2g,a) =

V2g. Therefore the inclusion (Q,Y+) ⇢ (P2g,a,X+

2g,a) induces

(GQ,Y+

GQ
) := (Q,Y+)/VQ ⇢ (GSp2g, H+

g ) = (P2g,a,X+

2g,a)/V2g.

The fact that VQ is a GQ-submodule of V2g is clear. Now it suffices to find
v0 2 (V2g/VQ)(Q).
Consider the group Q\ := (V2g/VQ) o GQ , where the action is induced by
the natural one of GQ on V2g. By definition, Q\ = ⇡�1(GQ)/VQ . Now
the inclusion (Q,Y+) ⇢ (P2g,a,X+

2g,a) also induces an inclusion (which we
call i 0)

GQ = Q/VQ ⇢ ⇡�1(GQ)/VQ = Q\.

We have the following diagram, whose solide arrows commute:

where sQ is the homomorphism GQ = {0} o GQ < (V2g/VQ) o GQ = Q\.
Now i 0 and sQ are two Levi-decompositions for Q\. By [26, Theorem 2.3],
sQ equals the conjugation of i 0 by an element v0 2 (V2g/VQ)(Q). Moreover,
the choice of v0 is unique;

(2) conversely, given the three data as in the Proposition, the underlying group Q
is the conjugate of VQoGQ<V2goGSp2g (compatible Levi-decompositions)
by (v0, 1) in P2g,a. The space

Y+

=

�
v0 + VQ(R)

�
⇥ Y+

GQ
⇢ V2g(R) ⇥ H+

g ' X+

2g,a

where v0 is any lift of v0 to V2g(Q).
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Proposition 3.5. A subvariety Y of Ag is weakly special if and only if there exist

• a pure Shimura subdatum (GQ,Y+

GQ
) of (GSp2g, H+

g );
• a point v0 2 V2g(Q);
• a normal semi-simple connected subgroup GN of GQ and a pointeyG 2 Y+

GQ
;

• a GQ-submodule VN of V2g;
• a GQ-submodule V?

N of V2g on which GN acts trivially, and a point v 2 V?

N (R)

such that
Y = unif

⇣�
v0 + v + VN (R)

�
⇥ GN (R)+eyG⌘.

Here
�
v0 + v + VN (R)

�
⇥ GN (R)+eyG ⇢ V2g(R) ⇥ H+

g ' X+

2g,a.

Proof.

(1) Given a weakly special subvariety Y of Ag, let (Q,Y+), N and ey be as
in Definition 3.1. By Proposition 3.4, (Q,Y+) corresponds to a Shimura
subdatum (GQ,Y+

GQ
) of (GSp2g, H+

g ), a GQ-submodule VQ of V2g and a
point v0 2 (V2g/VQ)(Q). Let v0 be any lift of v0 to V2g(Q). Let GN :=

N/(VQ \ N ), then GN is a connected normal subgroup of GQ , and hence is
reductive. Since N possesses no non-trivial torus quotient, GN is semi-simple.
LeteyG := ⇡(ey).
Let VN := VQ \ N , then VN is a GQ-submodule of VQ since N is normal
in Q. By [5, Corollary 2.14], there exists a GQ-submodule V?

N of VQ such
that VQ = VN � V?

N and GN acts trivially on V?

N . Write ey = (eyV ,eyG) 2

(v0+VQ(R))⇥Y+

GQ
= Y+

⇢ X+

2g,a (here we use the second part of the proof
of Proposition 3.4).
To simplify the computation below, we introduce a new Shimura subdatum
(Q0,Y 0) of (P2g,a,X+

2g,a): (Q0,Y 0) is defined to be the conjugate of (Q,Y+)

by (�v0, 1). By the second part of the proof of Proposition 3.4, (Q0,Y 0) =

(VQ oGQ, VQ(R) ⇥Y+

GQ
) ⇢ (V2g oGSp2g,X+

2g,a). Let N
0
:= VN oGN <

V2g o GSp2g, then N 0 is the conjugate of N by (�v0, 1). Let ey0
:= (eyV �

v0,eyG) 2 Y 0+.
Let v be the V?

N (R)-factor of eyV . Then since GN acts trivially on V?

N , we
have

N 0(R)+ey0

=

�
v + VN (R)

�
⇥ GN (R)+eyG ⇢ Y 0+.

Hence N (R)+ey =

�
v0 + v + VN (R)

�
⇥ GN (R)+eyG . Now the conclusion

follows;
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(2) conversely given all these data, let the Shimura subdatum (Q,Y+) be the one
obtained from (GQ,Y+

GQ
), VN � V?

N and v0 by Proposition 3.4. Let N be the
subgroup of Q which is defined to be VN oGN conjugated by (v0, 1) in P2g,a.
Then since GN acts trivially on V?

N , N C Q. Letey := (v0 + v,eyG). Now we
have �

v0 + v + VN (R)
�
⇥ GN (R)+eyG = N (R)+ey.

The group N is by definition connected and possessing no non-trivial torus
quotient since GN is semi-simple. Hence Y is weakly special by definition.

Now we can prove Proposition 3.3:

Proof of Proposition 3.3.

(1) Prove “�”. For this it suffices to prove:
For any weakly special subvariety Y of Ag, Y is the translate of an Abelian
subscheme of [⇡]

�1([⇡]Y ) (over [⇡]Y ) by a torsion section and then by a
section of the isotrivial part of [⇡]

�1
[⇡]Y ! [⇡]Y .

Let Y be a weakly special subvariety of Ag. Then associated to Y there are
data as in Proposition 3.5 and

Y = unif
⇣�

v0 + v + VN (R)
�
⇥ GN (R)+eyG⌘.

Let B0
:= [⇡]Y and X 0

:= [⇡]
�1(B0).

Now X 0
! B0 is an Abelian scheme. Since VN is a GQ-submodule of V2g,

unif
�
VN (R)⇥GN (R)+eyG� is an Abelian subscheme of X 0 over B0. Therefore,

unif
⇣�

v0 + VN (R)
�
⇥ GN (R)+eyG⌘

is the translate of B0 by a torsion section of X 0
! B0. But v 2 V?

N (R)

and GN acts trivially on V?

N , so unif
�
V?

N (R) ⇥ GN (R)+eyG� is an isotrivial
Abelian scheme over B0. Therefore Y is the translate of an Abelian subscheme
of X 0

! B0 by a torsion section and then by a section of the isotrivial part of
X 0

! B0;
(2) prove “⇢”. Let Y be a subvariety of X such that Y is the translate of an Abelian

subscheme of X ! B translated by a torsion section and then by a section of
C ! B, where C ! B is the isotrivial part of X ! B. Let us find a weakly
special subvariety E of Ag associated with the data in Proposition 3.5 such
that Y = E \ X .
Let B0 be the smallest weakly special subvariety of Ag containing B. Then
by definition there exist a Shimura subdatum (GQ,Y+

GQ
), a connected semi-

simple normal subgroup GN of GQ and a point eyG 2 Y+

GQ
such that B0

=

unifG
�
GN (R)+eyG�. Moreover by [15, 3.6, 3.7], GN is the connected alge-

braic monodromy group of (B0)sm, i.e. the neutral component of the Zariski
closure of 0B0sm :=the image of ⇡1((B0)sm) ! ⇡1(Ag) = 0G .
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Let X 0
:= [⇡]

�1(B0). Then the isotrivial part C0 of X 0
! B0 is

unif
�
V 0(R) ⇥ GN (R)+eyG�,

where V 0 is the largest GQ-submodule of V2g on which GN acts trivially. This
V 0 is the V?

N we want in Proposition 3.5.
A key step is to prove that as subvarieties of Ag, we have

C = C0

\ X (3.1)

It is clear that C0
\X ⇢ C. For the other inclusion, suppose that C is defined by

theGQ-submodule V 00 of V2g (i.e. C = unif(V 00(R)⇥eB) for eB := unif�1G (B)),
then 0B0sm acts trivially on V 00. However the action of G on V2g is algebraic,
therefore 0B0sm

Zar acts trivially on V 00. So GN acts trivially on V 00. By the
maximality of V 0, V 00

⇢ V 0. So C ⇢ C0. Now (3.1) follows.
Now since Y is the translate of an Abelian subscheme by a torsion section and
then by a section of C ! B, there exists, by (3.1), a GQ-submodule VN of
V2g such that

Y = unif
⇣�

v0 + v + VN (R)
�
⇥

eB⌘

where v0 2 V2g(Q) corresponds to the torsion section and v 2 V 0(R) corre-
sponds to the section of C ! B. In other words,

Y = E \ X , where E = unif
⇣�

v0 + v + VN (R)
�
⇥ GN (R)+eyG⌘

and E is the weakly special subvariety of Ag we desire.

3.3. Ax-Lindemann

In this subsection we summarize some results regarding the mixed Ax-Lindemann
theorem. All the results stated in this subsection hold for arbitrary connected mixed
Shimura varieties, and in particular for Ag.

In this subsection, let S be a connected mixed Shimura variety associated with
(P,X+) and let unif : X+

! S be the uniformization. An example for this is
Ag and (P2g,a,X+

2g,a). As explained in [5, Proposition 4.1], there exists a complex
algebraic variety X_, which is the total space of a holomorphic vector bundle (of
rank g in the case of (P2g,a,X+

2g,a)) over a complex projective variety, such that
X+ ,! X_ makes X+ a semi-algebraic1 and open (in the usual topology) subset
of X_.

1 For any positive integer N , a semi-algebraic set of RN is a subset defined by a finite sequence
of R-polynomial equations and inequalities, or any finite union of such sets.
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Definition 3.6. Let eY be an analytic subvariety of X+, then

(1) eY is called an irreducible algebraic subset of X+ if it is an analytically irre-
ducible component of the intersection of its Zariski closure in X_ and X+;

(2) eY is called algebraic if it is a finite union of irreducible algebraic subsets of
X+.

The following Ax-Lindemann theorem is due to Gao [5]:

Theorem 3.7. Let eZ be a semi-algebraic subset of X+. Then any irreducible com-
ponent of unif(eZ)

Zar
is a weakly special subvariety of S.

Proof. (See the forthcoming thesis [6, Theorem 7.4]) Recall that a connected semi-
algebraic subset of X+ is called irreducible if its R-Zariski closure in X_ is an
irreducible real algebraic variety. Note that any semi-algebraic subset of X+ has
only finitely many connected irreducible components. Let eZ 0 be any connected
irreducible component of eZ . It suffices to prove that every irreducible component
of unif(eZ)0

Zar
is weakly special.

Let Y := unif(eZ 0)
Zar

and let eW be a connected irreducible semi-algebraic
subset of X+ which contains eZ 0 and is contained in unif�1(Y ), maximal for these
properties. Then

Y = unif(eW )
Zar

.

Now [22, Lemma 4.1] claims that eW is algebraic in the sense of Definition 3.6.
Then any complex analytic irreducible component eW 0 of eW is an irreducible alge-
braic subset of X+ which is contained in unif�1(Y ), maximal for these properties.
But then [5, Theorem 1.2] tells us that unif(eW 0) is a weakly special subvariety of S,
and in particular a closed irreducible algebraic subvariety of S. Now Y is the Zariski
closure of unif(eW 0) for eW 0 running over the complex analytic irreducible compo-
nents of eW . Hence any irreducible component of Y equals unif(eW 0) for some eW 0,
and hence is a weakly special subvariety of S.

4. Generalized Hecke orbit

In this section we discuss the matrix expression of a polarized isogeny and then
compute the generalized Hecke orbit of a point of Ag.

4.1. Polarized isogenies and their matrix expressions

Let b 2 Ag. Denote by Ab = Ag,b and denote by �b : Ab
⇠

�! A_

b the principal
polarization induced byLg,b. Then the point b corresponds to the polarized Abelian
variety (Ab, �b). Let B be a symplectic basis of H1(Ab, Z) with respect to the
polarization �b. Leteb 2 H+

g be the period matrix of Ab with respect to the basis B.
In this subsection we fix B to be the Q-basis of V2g.
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Consider all the points b0
2 Ag such that there exists a polarized isogeny

f : (Ab, �b) ! (Ab0, �b0)

where (Ab0, �b0) = (Ag,b0, Ab0

⇠

�! A_

b0
induced by Lg,b0). Let B0 be a symplectic

basis of H1(Ab0, Z) with respect to the polarization �b0 and let eb0
2 H+

g be the
period matrix of Ab0 with respect to the basis B0.
Definition 4.1. The matrix ↵ 2 GSp2g(Q)+ \M2g⇥2g(Z) associated to

f⇤ : H1(Ab, Z) ! H1(Ab0, Z)

in terms of B and B0 is called the rational representation of f with respect to B
and B0.

The periodseb andeb0 are related by ↵ in the following way:

eb = ↵t ·
eb0

= (Aeb0

+ B)(Ceb0

+ D)�1,

where ↵t =

✓
A B
C D

◆
andeb,eb0

2 H+

g ⇢ Mg⇥g(C).

Under the Q-basis B of V2g, the matrix ↵t corresponds to the dual isogeny of f ,
i.e., the following diagram commutes:

(4.1)

However, since f is a polarized isogeny, f ⇤Lg,b0 = L
⌦(deg f )1/g
g,b . So the following

diagram commutes:

(4.2)

Therefore by (4.1) and (4.2), we get the following commutative diagram:

(4.3)
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Definition 4.2. The matrix (deg f )1/g(↵t )�1 is called the matrix expression of f
in coordinates B with respect to B0.
Remark 4.3. It is good to give the matrix (deg f )1/g(↵t )�1 a name because we will
use it several times in the proof of Theorem 1.6. The name “matrix expression” is
given by the author. Remark that this definition only works for polarized isogenies
because (4.2) fails for general non-polarized isogenies.

4.2. Generalized Hecke orbit

Lemma 4.4. Let ' 2 Aut
⇣
(P2g,a,X+

2g,a)
⌘
. Then there exist g0

2 GSp2g(Q)+ and
v0 2 V2g(Q) such that the action of ' on X+

2g,a is given by

' ((v, x)) = (g0v + v0, g0x).

Proof. We have '(V2g) = '(Ru(P2g,a)) ⇢ Ru(P2g,a) = V2g. Since every two
Levi decompositions of P2g,a differs by the conjugation of an element v0 2 V2g(Q),
there exists a v0 2 V2g(Q) such that := int(v0)�1�' maps (GSp2g, H+

g ) to itself.
Now  maps V2g and (GSp2g, H+

g ) to themselves. So  can be written as (A, B),
where A 2 GL2g(Q) and B 2 Aut

⇣
(GSp2g, H+

g )
⌘

= GSp2g(Q)+. Remark that
 2 Aut(P2g,a), so that we can do the following computation: for any v 2 V2g(Q)
and h 2 GSp2g(Q)+,

(Ahv, BhB�1) =  ((hv, h)) =  ((0, h)(v, 1)) =  (0, h) (v, 1)
= (0, BhB�1)(Av, 1) = (BhB�1Av, BhB�1).

Because v is an arbitrary element of V2g(Q), this implies that Ah = BhB�1A
for any h 2 GSp2g(Q)+. But this tells us that A�1B commutes with any element
of GSp2g(Q)+, and hence A�1B 2 Gm(Q). So  acts on the group P2g,a as
 ((v, h)) = (cBv, BhB�1) where c 2 Q⇤ and B 2 GSp2g(Q)+. Therefore  
acts on X+

2g,a as  ((v, x)) = (cBv, Bx) = (cBv, cBx). Denote by g0
:= cB 2

GSp2g(Q)+, then the action of ' on X+

2g,a is given by

' ((v, x)) = (g0v + v0, g0x).

Let s 2 Ag, then [⇡]s 2 Ag corresponds to a polarized Abelian variety (Ag,[⇡]s,
�[⇡]s).

Corollary 4.5. Let s 2 Ag. Then a point t is in the generalized Hecke orbit of s
if and only if there exist a polarized isogeny f : (Ag,[⇡]s, �[⇡]s) ! (Ag,[⇡]t , �[⇡]t )
and n0

2 N such that f (s) = n0t .
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Proof. Let (v, x)2X+

2g,a (respectively (vt , xt )2X+

2g,a) be such that s=unif ((v, x))
(respectively t = unif ((vt , xt ))). Then by Lemma 4.4, t is in the generalized Hecke
orbit of s if and only if

(vt , xt ) = (g0v + v0, g0x) (4.4)

for some g0
2 GSp2g(Q)+ and v0 2 V2g(Q).

If (4.4) is satisfied, then there exists c 2 Gm(Q) = Q⇤ s.t h := c�1g0
2

GSp2g(Q)+ is a Z-coefficient matrix. Hence h corresponds to a polarized isogeny
f : (Ag,[⇡]s, �[⇡]s) ! (Ag,[⇡]t , �[⇡]t ). By (4.4), we have t= unif ((chv + v0, xt )),
and therefore

n0t = m0 f (s) + unif ((v0, xt ))

where c = m0/n0. But unif ((v0, xt )) is a torsion point ofAg,[⇡]t since v0 2 V2g(Q),
and therefore can be removed by replacing m0 and n0 by sufficient large multiples.
On the other hand m0 f is still a polarized isogeny, and hnce replacing f by m0 f ,
we may assume m0

= 1. Finally we may assume n0
2 N by possibly replacing f

by � f .
On the other hand, suppose there exist a polarized isogeny f : (Ag,[⇡]s, �[⇡]s)!

(Ag,[⇡]t , �[⇡]t ) and n0
2 N such that f (s) = n0t . Let Bs (respectively Bt ) be a

symplectic basis of H1(Ag,[⇡]s, Z) (respectively H1(Ag,[⇡]t , Z)) and let h be the
matrix expression of f in coordiante Bs with respect to Bt . Then h 2 GSp2g(Q)+

and there exists (�V , �G) 2 0 such that

(n0vt , xt ) = (�V , �G)(hv, hx) = (�V + �Ghv, �Ghx).

Now g0
:= �Gh/n0

2 GSp2g(Q)+ and v0 := �V /n0
2 V2g(Q) satisfy (4.4).

Corollary 4.6. Let s 2 Ag and t be a point in the generalized Hecke orbit of s. Let
ft : (Ag,[⇡]s, �[⇡]s) ! (Ag,[⇡]t , �[⇡]t ) be a polarized isogeny of minimal degree.
Then there exist

• a point s0 2 Ag,[⇡]s;
• ' 2 End

�
(Ag,[⇡]s, �[⇡]s)

�
;

• n0 2 N

such that s = n0s0 and
ft ('(s0) + p) = t

for some torsion point p 2 Ag,[⇡]s .

Proof. By Corollary 4.5, there exist a polarized isogeny f : (Ag,[⇡]s, �[⇡]s) !

(Ag,[⇡]t , �[⇡]t ) and m0, n0
2 N such that p1 := m0 f (s) � n0t is a torsion point

of Ag,[⇡]t . Now f �1
t � f 2 End

�
(Ag,[⇡]s, �[⇡]s)

�
⌦ Q, i.e., there exist '0

2

End
�
(Ag,[⇡]s, �[⇡]s)

�
and n0

0 2 N such that f �1
t � f = '0

⌦ (1/n0). So n0

0 � f =

ft � '0 and hence

m0 ft ('0(s)) = m0n0

0 f (s) = n0

0(n
0t + p1) = n0

0n
0t + n0 p1.
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Let ' := m0
� '0

2 End
�
(Ag,[⇡]s, �[⇡]s)

�
and n0 := n0

0n
0
2 N, then there exists a

torsion point p2 2 Ag,[⇡]t such that

ft ('(s)) = n0t + p2.

Hence the conclusion follows.

5. Diophantine estimate for the torsion case

5.1. Preliminary

In this subsection we fix some definitions and notation used in the proof of Theo-
rem 1.5.

Let a 2 Ag. We use 6 instead of 6a to denote the set of all a-strongly special
points of Ag. Let unif : X+

2g,a ! Ag be the uniformization map and let F be the
fundamental set in X+

2g,a defined as in Theorem 2.1.(3). Let

eY := unif�1(Y ) \F and e6 := unif�1(6) \F .

The point a 2 Ag corresponds to the polarized Abelian variety (Aa, �a) := (Ag,a,
�a). Let B be a symplectic basis for H1(Aa, Z) with respect to the polarization
�a . Let ea be the period matrix of Aa with respect to the chosen basis B. In the
rest of the paper, we shall sometimes identifyea 2 H+

g and (0,ea) 2 {0} ⇥ H+

g ⇢

V2g(R) ⇥ H+

g ' X+

2g,a.
For any t 2 6, there exists by definition of6a a polarized isogeny (Aa, �a) !

(Ag,[⇡]t , �[⇡]t ). Besides, t is a torsion point of A[⇡]t := Ag,[⇡]t , whose order we
denote by N (t).
Definition 5.1. For any t 2 6, define its complexity to be
max

�
minimal degree of polarized isogenies (Aa, �a) ! (A[⇡]t , �[⇡]t ), N (t)

�
.

In addition, define the complexity of any point of e6 to be the complexity of its
image in 6.

5.2. Application of Pila-Wilkie

The goal of this subsection is to prove the following proposition:

Proposition 5.2. Let Y , ea be as in the last subsection. Let " > 0. There exists a
constant c = c(Y,ea, ") > 0 with the following property:

For every n > 1, there exist at most cn" definable blocks Bi ⇢
eY such that

[Bi contains all points of complexity at most n in eY \
e6.

Lemma 5.3. There exist constants c0,  depending only on g and ea such that for
anyet 2

eY\
e6 of complexity n, there exists a (v, h) 2 P2g(Q)+ such that (v, h)ea =et

and H((v, h)) 6 c0n .



THE ANDRÉ-PINK-ZANNIER CONJECTURE 247

Proof. Let t = unif(et). By [19, Proposition 4.1], there exist
• a polarized isogeny f : Ag,[⇡]t ! Aa;
• a symplectic basis B0 for H1(Ag,[⇡]t , Z) with respect to the polarization �[⇡]t

such that the rational representation h1 of f with respect to the chosen bases satis-
fies that H(h1) is polynomially bounded in deg( f ).

But unifG(ht1ea) = [⇡]t by (4.3). Hence there exists a h2 2 0G such that
h2ht1ea = ⇡(et) 2 FG . By [22, Lemma 3.2], H(h2) is polynomially bounded in the
norm of ht1 ·ea.

Now define h := h2ht1. We have then hea = ⇡(et) and
H(h) 6 c0 deg( f )0

where c0 > 0 and 0 > 0 depend only on g andea.
Next writeet = (etV ,⇡(et)) 2 F . Let v := etV , then v 2 V2g(Q) since t is a

torsion point of Ag,[⇡]t . Besides, the denominator of v is precisely the order of the
torsion point t . But by choice, F ' [0, N )2g ⇥ FG ⇢ V2g(R) ⇥ H+

g ' X+

2g,a
(see Theorem 2.1.(3)). Therefore up to a constant depending on nothing, H(v) is
bounded by its denominator, i.e., the order of the torsion point t of Ag,[⇡]t .

To sum it up, (v, h) is the element of P2g(Q)+ which we desire.

Now we can prove Proposition 5.2 with the help of Lemma 5.3.

Proof of Proposition 5.2. Let

� : P2g(R)+ ! X+

2g,a

(v, h) 7! (v, h)ea.
The set R := ��1(eY ) = ��1(unif�1(Y ) \ F) is definable because � is semi-
algebraic and unif|F is definable. Hence we can apply the family version of the
Pila-Wilkie theorem ( [21, 3.6]) to the definable set R: for every " > 0, there
are only finitely many definable block families B( j)(") ⇢ R ⇥ Rm and a constant
C1(R, ") such that, for every T > 1, the rational points of R of height at most
T are contained in the union of at most C1T " definable blocks Bi (T, "), taken (as
fibers) from the families B( j)("). Since � is semi-algebraic, the image under � of
a definable block in R is a finite union of definable blocks in eY . Furthermore the
number of blocks in the image is uniformly bounded in each definable block family
B( j)("). Hence � (Bi (T, ")) is the union of at most C2T " blocks in eY , for some new
constant C2(Y,ea, ") > 0.

By Lemma 5.3, for any pointet 2
eY \

e6 of complexity n, there exists a rational
element � 2 R such that � (� ) =et and H(� ) 6 c0n . By the discussion in the last
paragraph, all such � ’s are contained in the union of at most C1(c0n)" definable
blocks. Therefore all points of eY \

e6 of complexity n are contained in the union of
at most C1C2c0"n" blocks in eY .
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5.3. Galois orbit

In this section we shall deal with the Galois orbit. We handle the case ofQ-points at
first and then use the standard specialization argument to prove the result for general
points of 6 \ Y .

Proposition 5.4. Suppose a 2 Ag(Q). There exist positive constants c01 = c01(g),
c02 = c02(g, k(a)) and c

0

3 = c03(g) satisfying the following property:
For any point t 2 6 \ Y \ Ag(Q) of complexity n,

[k(t) : Q] > c01
nc02

hF (Aa)c
0

3

where k(t) is the definition field of t .

Proof. Define (as Gaudron-Rémond [7])

(Ag,[⇡]t ) := ((14g)64g
2
[k([⇡]t) :Q]max(hF (Ag,[⇡]t ),log[k([⇡]t) :Q],1)2)1024g

3
.

Take a point t 26\Y \Ag(Q) of complexity n. Denote by k([⇡]t)) the definition
field of [⇡]t . Denote by N (t) the order of t as a torsion point of A[⇡]t := Ag,[⇡]t .
There are two cases.
Case i
n=minimal degree of polarized isogenies (Aa, �a) ! (A[⇡]t , �[⇡]t ). Then by [7,
Théorème 1.4] and [18, Theorem 5.6],

n 6 (Ag,[⇡]t ).

On the other hand, by a result of Faltings [2, Chapter II, Section 4, Lemma 5],

hF (Ag,[⇡]t ) 6 hF (Aa) + (1/2) log n.

Now the conclusion for this case follows from the two inequalities above and the
easy fact [k(t) : Q] > [k([⇡]t) : Q].
Case ii
n = N (t). By [7, Théorème 1.2], there exist positive natural numbers l, simple
Abelian varieties A1, . . . , Al over a finite extension k0 of k([⇡]t) (Ai and A j can
be isogenous to each other over Q for i 6= j) and an isogeny

' : Ag,[⇡]t !

lY
i=1

Ai (5.1)

such that ' is defined over k0, deg' 6 (Ag,[⇡]t ) and [k0
: k([⇡]t)] 6 (Ag,[⇡]t )

g.
Call pi : A ! Ai the composite of ' and the i-th projection

Ql
i=1 Ai ! Ai (8i =

1, . . . , l).
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Now t 2 A is a torsion point of order Ag,[⇡]t . Without any loss of generality
we have

N (p1(t)) > N (pi (t))

where N (pi (t)) is the order of pi (t) as a torsion point of Ai .

Lemma 5.5.

N (t) 6 (Ag,[⇡]t )N (p1(t))g and [k(t) : Q] > [k(p1(t)) : Q]/(Ag,[⇡]t )
2g.

where k(p1(t)) is the definition field of p1(t).

Proof. Denote by N ('(t)) the order of '(t) as a torsion point of
Ql

i=1 Ai . It is
clear that

N ('(t)) > N (t)/ deg' > N (t)/(Ag,[⇡]t ).

On the other hand, N ('(t)) = lcd(N (p1(t)), . . . , N (pl(t))) 6 N (p1(t))g. Now
the first inequality follows.

For the second inequality, first of all since ' and
Ql

i=1 Ai are both defined over
k0, we have

[k('(t)) : Q] 6 [k(t)k0

: Q] = [k(t) : Q][k(t)k0

: k(t)] 6 [k(t) : Q][k0

: k]
6 [k(t) : Q](Ag,[⇡]t )

g.

Next since all Abelian varieties A1,. . . ,Al are defined over k0, we have then

[k('(t))k0

: Q] > [k(p1(t)) : Q].

But

[k('(t))k0

: Q] = [k('(t))k0

: k0

][k0

: k][k : Q]

6 [k('(t)) : k][k0

: k][k : Q]

= [k('(t)) : Q][k0

: k]
6 [k('(t)) : Q](Ag,[⇡]t )

g.

Now the second inequality follows from the three inequalities above.

By [3, Corollaire 1.5],

[k(p1(t)) : Q] > c00(g)
N (p1(t))1/(2g)

log N (p1(t))(hF (A1) + log N (p1(t)))
. (5.2)

By the comment below [7, Corollaire 1.5], we may assume

hF (A1) 6 hF (Ag,[⇡]t ) +

1
2
log (Ag,[⇡]t ). (5.3)
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By assumption of this case, there exists an isogeny Aa ! Ag,[⇡]t of degree 6 n.
So by Faltings [2, Chapter II, Section 4, Lemma 5],

hF (Ag,[⇡]t ) 6 hF (Aa) + (1/2) log n. (5.4)

Now because [k(t) : Q] > [k([⇡]t) : Q], the conclusion of Case ii now follows
from Lemma 5.5, (5.2), (5.3) and (5.4).

Corollary 5.6. Suppose a is defined over a finitely generated field k. There exist
positive constants c1 = c1(Aa, k) and c2 = c2(Aa, k) satisfying the following
property: for any point t 2 6 \ Y of complexity n defined over a finitely extension
k(t) of k,

[k(t) : k] > c1nc2 .

Proof. This follows from Proposition 5.4 and a specialization argument. The case
where n = minimal degree of polarized isogenies (Aa, �a) ! (A[⇡]t , �[⇡]t ) is
proved by Orr [19, Theorem 5.1] (possibly combined with [18, Theorem 5.6]). The
case where n = N (t), the order of t as a torsion point of Ag,[⇡]t , follows from
the standard specialization argument introduced by Raynaud (see [19, Section 5]
or [27, Section 7]).

6. End of the proof in the torsion case

In this section Y is always an irreducible subvariety of Ag, a 2 Ag and 6 is the set
of all a-strongly special points of Ag.

Theorem 6.1. If Y \6
Zar

= Y , then the union of all positive-dimensional weakly
special subvarieties contained in Y is Zariski dense in Y .

Proof. Let61 be the set of points t 2 Y\6 such that there is a positive-dimensional
block B ⇢

eY with t 2 unif(B). Let Y1 be the Zariski closure of 61. Let k be the
finitely generated field k(a). Enlarge k if necessary such that both Y and Y1 are
defined over k.

Let t be a point in Y \6 of complexity n. By Corollary 5.6, there exist positive
constants c1 and c2 depending only on g, Aa and k such that

[k(t) : k] > c1nc2/2.

But all Gal(k/k)-conjugates of t are contained in Y \6 and have complexity n. By
Proposition 5.2, the preimages in F of these points are contained in the union of
c(Y,ea, c2/4)nc2/4 definable blocks, each of these blocks being contained in eY .

For n large enough, c1nc2/2 > cnc2/4. Hence for n � 0, there exists a defin-
able block B ⇢

eY such that unif(B) contains at least two Galois conjugates of t ,
and therefore dim B > 0 since blocks are connected. So being in unif(B), those
conjugates of t are in 61. But Y1 is defined over k, so t 2 Y1.
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In summary, all points of Y \ 6 of large enough complexity are in 61. This
excludes only finitely many points of Y \6. So Y1 = Y .

Let 62 be the set of points t 2 Y \6 such that there is a positive-dimensional
connected semi-algebraic set B0

⇢
eY with t 2 unif(B0). Let Y2 be the Zariski

closure of 62. By definition of blocks, 62 = 61, and hence Y2 = Y1 = Y . But the
Ax-Lindemann theorem (in the form of Theorem 3.7) implies that the irreducible
component Z of unif(B0)

Zar containing t is weakly special. Moreover dim(Z) > 0
since dim(B0) > 0. Therefore every point t 2 62 is contained in some positive-
dimensional weakly special subvariety of Ag. Now the conclusion follows.

Proof of Theorem 1.5. Let S be the smallest connected mixed Shimura subvariety
containing Y . Assume S is associated with the connected mixed Shimura datum
(P,X+). Let (G,X+

G ) := (P,X+)/Ru(P). By Theorem 6.1 and [5, Theorem
12.2], such a non-trivial group N exists: N is the maximal normal subgroup of P
such that the following hold:

• there exists a diagram of Shimura morphisms

(then S0 is by definition a connected Shimura variety of Kuga type);
• the union of positive-dimensional weakly special subvarieties which are con-
tained in Y 0

:= [⇢](Y ) is not Zariski dense in Y 0;
• Y = [⇢]

�1(Y 0).

(1) We prove the theorem by induction on g. When g = 1, the only non-trivial
case is when Y is a curve. But then Y must be weakly special by Theorem 6.1.
Remark that this case has also been proved by André [1, Lecture 4] when he
proposed the mixed André-Oort conjecture.
When dim([⇡](Y )) = 0, this is the Manin-Mumford conjecture by Corol-
lary 4.6. Hence we only have to deal with the case dim([⇡](Y )) = 1. Remark
that in this case [⇡](Y ) is weakly special by the main result of [19], and hence
equals unifG

�
G 00(R)+ey� for some G 00 < GSp2g of positive dimension andey 2 H+

g . Now there are two cases:
If dim([⇡ 0

](Y 0)) = 0, then [⇡ 0
](Y 0) is a point. In this case Y 0 is a subvariety

of an Abelian variety. The hypothesis Y \6 = Y implies that Y 0 contains a
Zariski dense subset of torsion points. Therefore by the result of the Manin-
Mumford conjecture, Y 0 is a special subvariety, i.e., the translate of an Abelian
subvariety by a torsion point. But the union of positive-dimensional weakly
special subvarieties which are contained in Y 0

:= [⇢](Y ) is not Zariski dense,
so Y 0 is a point. Therefore Y is weakly special by definition.
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If dim([⇡ 0
](Y 0)) = 1, then N/Ru(N ) is trivial because the dimension of

[⇡](Y ) = unifG
�
G 00(R)+ey)� is 1. Therefore VN := Ru(N ) < V2g is non-

trivial since N is non-trivial.
Denote for simplicity by B := [⇡ 0

](Y 0) = unif0G(G 00(R)+⇢(ey)) and X :=

[⇡ 0
]
�1(B). Then X ! B is a family of Abelian varieties of dimension g0.

We have g0 < g since VN is non-trivial. Besides, X ! B is non-isotrivial
because otherwise G 00 acts trivially on V2g/VN , and therefore G 00 C P 0. This
contradicts the maximality of N . Hence there exists, up to taking finite covers
of X ! B, a cartesian diagram

such that both i and iB are finite. Apply induction hypothesis to i(Y 0) ⇢ Ag0 ,
we get that i(Y 0) is weakly special. By the geometric interpretation of weakly
special subvarieties (Proposition 1.1), i�1(i(Y 0)) is irreducible. Therefore
Y 0

= i�1(i(Y 0)) since they are of the same dimension. So Y 0 is a weakly
special subvariety of S0 (again by Proposition 1.1). But then Y 0 must be a
point by definition of Y 0. Hence Y is weakly special by definition.

(2) This part of the theorem is the intersection of the André-Oort conjecture and
Conjecture 1.2. It holds in a more general situation (see the forthcoming thesis
[6, Theorem 4.3.2]). The proof, which requires more background knowledge
about mixed Shimura varieties, is similar to [5, Theorem 13.6], except that the
lower bound used in that article is replaced by a result similar to (but weaker
than) Corollary 5.6. More explicitly: since a 2 Ag is a special point, every a-
strongly special point is a special point of Ag. Therefore Y 0 contains a Zariski
dense subset of special points. Besides, Y is a-special if and only if Y is a
special subvariety of Ag by Proposition 1.1.
Suppose that Y is not a-special. Then Y 0 is not a special subvariety of S0. On
the other hand, Y 0 is defined over a number field since every point in 60

a is.
Define VN := Ru(N ) < V2g and GN := N/VN CG < GSp2g. The reductive
group G decomposes as an almost direct product Z(G)H1 . . . Hr with all Hi ’s
simple. Without any loss of generality, we may assume that H1,. . . ,Hl are
the simple factors of G which appear in the decomposition of GN . Define
G?

N := Hl+1 . . . Hr . Define T := MT(a), then T is a torus since a is a special
point ofAg.
Let G1 := G?

NT . This is a subgroup of G (and therefore a subgroup of
GSp2g). Moreover, it defines a connected Shimura subdatum (G1,X+

G1) of
(GSp2g, H+

g ) and hence its associated connected Shimura subvariety SG1 of
Ag such that a 2 SG1 . Recall that (P 0,X 0+) = (P,X+)/N and (G 0,X 0+

G ) =

(G,X+

G )/GN . Therefore the natural Shimura morphisms

(G1,X+

G1) ,! (G,X+

G ) ⇣ (G 0,X 0+

G )

identify X+

G1 and X
0+

G .
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Recall that P = V o G gives rises to a connected mixed Shimura datum
(P,X+). So V := Ru(P) is a G1-module such that the action of G1 on
V induces a Hodge-structure of type {(�1, 0), (0,�1)} on V . Therefore by
[24, 2.17], there exists a connected mixed Shimura datum (P1,X+

1 ) such that
P1 = V oG1 and (G1,XG1) = (P1,X+

1 )/V . (P1,X+

1 ) is a connected mixed
Shimura subdatum of (P,X+). Since N C P , we have VN C P1. Now we
have the following diagram of Shimura morphisms:

Then the map ⇢ � j � ⇢0�1
: (P2,X+

2 ) ! (P 0,X 0+) is well-defined and is
a Shimura morphism. Hence Y 0 is a special subvariety of S0 if and only if
Y2 := ([⇢] � [ j] � [⇢0

]
�1)�1(Y 0) is a special subvariety of S2. Hence it suffices

to prove that Y2 is special. But X+

2 and X 0+ are identified under ⇢ � j � ⇢0�1

by the discussion in the last paragraph, so the union of positive-dimensional
weakly special subvarieties of Y2 is not Zariski dense in Y2 by choice of Y 0.
Therefore we are left to prove that the set of special points of Y2 which do not
lie in any positive-dimensional special subvariety is finite. Remark that Y2 is
defined over a number field (which we call k) since Y 0 is.
Take the pure part of the diagram above, we get the following diagram of Shi-
mura morphisms between pure Shimura data and pure Shimura varieties:

Therefore X+

G2 can be seen as a subset of X
+

G , and hence of H+

g . Since
Y\60

a = Y , we have Y 0
\ [⇢](60

a) = Y 0. But then by the identification of
X+

2 and X 0+, we get that in S2, the subset of torsion points over a0, where Aa0

is isogenous to Aa , is Zariski dense in Y2.
For any torsion point t over a0 such that Aa0 is isogenous to Aa , take a rep-
resentative et 2 unif�12 (t) in the fundamental set F as in [5, Section 10.1]
(this fundamental set is similar to the one defined in Theorem 2.1.(3)). De-
note by V2 := Ru(P2), which is a Q-vector group. Then et = (etV ,etG) 2

V2(Q) ⇥ (H+

g \ M2g(Q)) and hence we can define its height. By choice of
F , H(etV ) is bounded by N (t), the order of t as a torsion point of Aa0 . But up
to constants depending only on a (or more explicitely, only on H(ea)), H(etG)
is polynomially bounded from above by the minimal degree of the isogenies
Aa0 ! Aa . This follows from [19, Section 4.2, Proposition 4.1]. But the
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minimal degree of the isogenies Aa0 ! Aa is polynomially bounded from
above by the Galois orbit of a0. This follows from [19, Theorem 5.1]. Hence
by [5, Proposition 13.3],

|Gal(Q/k)t | �g,ea H(et)µ(g,ea)

for some µ(g,ea) > 0. Hence for H(et) � 0, Pila-Wilkie [21, 3.2] implies
that 9� 2 Gal(Q/k) such that g� (t) is contained in a connected semi-algebraic
subset of unif�12 (Y2) \ F of positive dimension. Now the Ax-Lindemann
theorem (Theorem 3.7) implies that � (t) is then contained in some weakly
special subvariety Z of S2 such that dim Z > 0. Hence ��1(Z) is weakly
special containing a special point t , and therefore ��1(Z) is special of positive
dimension. To sum it up, the heights of the elements of

{et 2 unif�12 (Y2) \F special and unif2(et) is not contained in
a positive-dimensional special subvariety of S2}

are uniformly bounded from above. Therefore this set is finite by Northcott’s
theorem.

7. Proof of the non-torsion case

We prove Theorem 1.6 in this section. Let Y be a curve in Ag, let s 2 Ag(C)
and let 6 be the generalized Hecke orbit of s. For simplicity, we will denote by
(A, �) := (Ag,[⇡]s, �[⇡]s) the polarized Abelian variety attached to [⇡](s) in this
section. Assume that s is not a torsion point of A. Throughout this section, we
assume that Y is not contained in a fiber of [⇡] : Ag ! Ag (otherwise this is a
special case of the Mordell-Lang conjecture, which is proved in a series of works
of Vojta, Faltings and Hindry).

We fix some notation here. Let B be a symplectic basis of H1(A, Z) with
respect to the polarization �. Let esG 2 H+

g be the period matrix of (A, �) with
respect to the basis B, then unifG(esG) = [⇡]s. Now letes = (esV ,esG) 2 V2g(R) ⇥

H+

g ' X+

2g,a be a point in ⇡
�1(esG) \ unif�1(s). In the whole section, we will fix B

to be the Q-basis of V2g as in Subsection 4.1.
Denote by k the definition field of s. Then A is defined over the finitely gener-

ated field k.

7.1. Complexity of points in a generalized Hecke orbit

Let unif : X+

2g,a ! Ag be the uniformization map and let F be the fundamental set
in X+

2g,a defined in Theorem 2.1.(3). Let

eY := unif�1(Y ) \F and e6 := unif�1(6) \F .
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Let t 2 6. Let ft be as in Corollary 4.6 (i.e., a polarized isogeny (A, �) !

(Ag,[⇡]t , �[⇡]t ) of minimal degree). Define

nt := min{n 2 N| 9' 2

�
End(A, �)

�
such that nt 2 ft

�
'(s) + A(C)tor

�
}.

The existence of such an nt is guaranteed by Corollary 4.6. Furthermore, let st :=

unif ((esV /nt ,esG)) 2 Ag,[⇡]s = A. Then there exist by definition of nt

• 't 2 End ((A, �));
• �t a torsion point of A

such that
ft ('t (st ) + �t ) = t. (7.1)

The notation nt , ft , 't , st and �t will be used throughout this section.
Definition 7.1. Define the complexity of t 2 6 to be

max (nt , N (�t ))

where N (�t ) is the order of �t . In addition, define the complexity of any point of e6
to be the complexity of its image in 6.

The fact that this complexity is a “good enough” parameter will be proved in
Subsection 7.3.

7.2. Galois orbit

In contrast to the torsion case, we deal with the Galois orbit at first for the non-
torsion case. Keep the notation of the beginning of this section and Subsection 7.1.

Proposition 7.2. Let t 2 6 be of complexity n, then

[k(t) : k] > c3nc4

where c3 = c3(A, �, s) and c4 = c4(A, �, s) are two positive constants.

Proof. By [19, Theorem 5.1] and [18, Theorem 5.6], there exist positive constants
c5 = c5(A, �) and c6 = c6(A, �) such that

deg( ft ) 6 c5[k(t) : k]c6 . (7.2)

The Abelian variety A is defined over k. By the main result of [13] and the standard
specialization argument introduced by Raynaud (see [19, Section 5] or [27, Section
7]), there exist two positive constants c9 and c10 depending only on A and k such
that for any torsion point q 2 A of order N (q), we have

[k(q) : k] > c9N (q)c10 . (7.3)
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Case i
N (�t )

c10/2 > n2g
2
+4g+1

t . By [9, Proposition 1] or [14, Theorem 2.1.2] and the
standard specialization argument introduced by Raynaud (see [19, Section 5] or [27,
Section 7]), there exists a positive constant c11 = c11(A, s, k) such that

Gal (k('t (st ), A[nt ])/k(A[nt ])) 6 c11n
2g
t .

Hence

[k('t (st )) : k] = |Gal (k('t (st ), A[nt ])/k(A[nt ])) |[k(A[nt ]) : k]

6 c011n
2g2+4g+1
t

(7.4)

for another positive constant c011 depending only on A, s and k. Now by (7.4), (7.3)
and the assumption for this case,

[k('t (st ), �t ) : k('t (st ))] > c12
N (�t )

c10

n2g
2
+4g+1

t

> c12N (�t )
c10/2 (7.5)

for a positive constant c12 = c12(A, s, k).
Since A is defined over the finitely generated field k, every element of Aut(C/k)

induces a homomorphism A(C) ! A(C). It is not hard to prove the following
claim:
Claim. For any �1, �2 2 Aut (C/k('t (st ))), �1('t (st ) + �t ) = �2('t (st ) + �t ) if
and only if ��1

2 �1 2 Aut (C/k('t (st ), �t )).
This claim implies [k('t (st ) + �t ) : k] > [k('t (st ), �t ) : k('t (st ))]. Hence by

(7.5),
[k('t (st ) + �t ) : k] > c12N (�t )

c10/2.

Since t = ft ('t (st ) + �t ), we have therefore

[k(t) : k] > c12
N (�t )

c10/2

deg( ft )
. (7.6)

Now the conclusion for this case follows from (7.2), (7.6) and the definition of
complexity (recall that k is the definition field of s, and therefore depends only
on s).
Case ii
N (�t )

c10/2 6 n2g
2
+4g+1

t . Roughly speaking, this case follows from the Kummer
theory [9, Appendix 2]. Here are the details of the proof:

Let 1 := End ((A, �)) s and let 1 := End(A)s ⇢ A. Then 1 is a finitely
generated subgroup of A. Let k0 be the smallest field over which all points of1 are
defined, then k0 depends only on A and s. Then1 ⇢ A(k0). Let10

:= Q1\ A(k0)
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and let 10

:= Q1 \ A(k0). Then 10 contains 1. By the Lang-Néron theorem, the
group A(k0) is finitely generated (because k0 is finitely generated overQ). Therefore
1

0 is finitely generated and rank10

= rank1. Hence [1
0

: 1] is a finite number
depending only on k0, and hence only on A and s. On the other hand,1 ⇢ 1\10

⇢

1+ A(k0)tor. So [1 \10
: 1] is a finite number depending only on k0, and hence

only on A and s. Therefore by

[10

: 1] = [10

: 1 \10

][1 \10

: 1] 6 [1
0

: 1][1 \10

: 1],

there exists c13 > 0 depending only on A and s such that [10
: 1] = c13.

For each t 2 6, define another number n0

t := min{n 2 N| nt 2 ft
�
A(k0) +

A(C)tor
�
}. Let s0 2 A(k0) be such that n0

t t = ft (s0 + A(C)tor). Then because
t = ft ('t (st ) + �t ), we have

s† := s0 � n0

t't (st ) 2 A(C)tor.

But n0

t't (st ) + s† 2 10, so

n0

t = min{n 2 N| nt 2 ft (10

+ A(C)tor)}. (7.7)

However by definition,

nt = min{n 2 N| nt 2 ft (1+ A(C)tor). (7.8)

Compare (7.7) and (7.8), we get

nt/n0

t 6 [10

: 1] 6 c13. (7.9)

By [9, Lemma 14] or [14, Corollary 2.1.5] and the standard specialization argu-
ment introduced by Raynaud (see [19, Section 5] or [27, Section 7]), there exists a
positive constant c14 = c14(A, k0) such that

Gal
⇣
k0
�
't (st ), A[n0

t N (�t )]
�
/k0

�
A[n0

t N (�t )]
�⌘

> c14n0

t .

But t = ft ('t (st ) + �t ), so

[k(t) : k] > [k0(t) : k0

] >
[k0('t (st ) + �t ) : k0

]

deg( ft )
>

c14n0

t
deg( ft )

. (7.10)

Now the conclusion follows from (7.2), (7.9) and (7.10).

7.3. Néron-Tate height in family

Next we prove that the complexity defined in Definition 7.1 is a good parameter.
More explicitly we dispose of the following proposition:
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Proposition 7.3. Let Y , s and 6 be as in the beginning of this section. Let t 2 6.
Let ft , nt , st , 't and �t be as in Section 7.1. Then

deg('t ) 6 c7nc8t and deg( ft ) 6 c07n
c08
t

for some positive constants c7 = c7(g,Y, s), c07 = c07(g,Y, s) and c8 = c8(g,Y, s),
c08 = c08(g,Y, s).

We shall prove this proposition with the help of a well-chosen family of Néron-
Tate heights, i.e., the one related to the symmetric and relatively ample Gm-torsor
Lg ! Ag with respect to Ag ! Ag defined in Theorem 2.2. We shall use the
Moriwaki height (see [16]), which is defined for points over finitely generated fields.
Then we shall use a theorem of Silverman-Tate [28, Theorem A].

Pink explained in [24, Chapter 8 and 9] that Lg extends over Q to a relative
ample Gm-torsor Lg ! Ag over Ag ! Ag, where Ag (respectively Ag) is a
compactification of Ag (respectivelyAg).2 By abuse of notation we denote also by
Lg the relative ample line bundle associated to the Gm-torsor. LetM be an ample
line bundle overQ overAg which extends overQ to an ample line bundleM over
Ag. For a � 0, the line bundle L := Lg ⌦ [⇡]

⇤M⌦a over Ag is ample.
Let t 2 6 be as in Proposition 7.3. Recall that k is the definition field of s.

Hence t 2 Ag(k). Let d be the transcendence degree of k and let B = (B; H1, . . . ,
Hd) be a big polarization of k, namely, a collection of a normal projective arith-
metic variety B whose function field is k and nef smooth hermitian line bundles
H1, . . . , Hd onB satisfying the bigness condition of Moriwaki [16, page 103, above
Theorem A]. Consider the arithmetic Moriwaki height associated to B

hB
Ag,L

: Ag(k) ! R

defined in [16, page 103].
For any point b 2 Ag(k), Lg,b is an ample line bundle over the Abelian variety

Ag,b defined over k. Now consider the Néron-Tate height bhB
Lg,b

on Ab as in [16,
Subsection 3.4]. For any point P 2 Ag(k), we shall denote

bhB
Lg

(P) :=
bhB

Lg,[⇡]P
(P).

Lemma 7.4. Let s1 and s2 be two points of Ag(k). Assume that there exists a
polarized isogeny

f : (Ag,[⇡]s1, �[⇡]s1) ! (Ag,[⇡]s2, �[⇡]s2)

such that s1 = f (s2). ThenbhB
Lg

(s2) = (deg f )1/gbhB
Lg

(s1).

2 For experts of mixed Shimura varieties, we are in the situation of [24, 9.2] since we are consid-
ering (following Pink’s notation) (P2g,X+

2g) ! (P2g,a,X+

2g,a), so this follows from [24, 6.25,
8.6, 8.13, 9.13, 9.16, 9.24, 12.4].
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Proof. By the moduli interpretation of Lg (Theorem 2.2), f ⇤Lg,[⇡]s2 =L
⌦(deg f )1/g
g,[⇡]s1 .

So we have

bhB
Lg

(s2) =
bhB

Lg,[⇡]s2
( f (s1)) =

bhB
L

⌦(deg f )1/g
g,[⇡]s1

(s1)

= (deg f )1/gbhB
Lg,[⇡]s1

(s1) = (deg f )1/gbhB
Lg

(s1).

Now we start proving Proposition 7.3.

Proof of Proposition 7.3. Denote by " : Ag ! Ag the zero section.
Following Silverman [28, Section 2, page 200], we define the canonical heightbhBL by bhB

L(P) := limn!1 n�2hB
Ag,L

(nP), 8P 2 Ag(k).

Then bhB
L =

bhB
Lg

.

Apply [28, Theorem A]: there exist constants c15 = c15(g) > 0 and c16 = c16(g)
such that

|
bhB

Lg
(t) � hB

Ag,L
(t)| < c15hB

Ag,"⇤L
([⇡]t) + c16 (7.11)

for any t 2 Ag(k). Remark that the original theorem of Silverman is a statement
for points over global fields, but his proof easily extends to points over finitely
generated fields for the Moriwaki height [16].

We need the following lemma, which uses the fact that Y is a curve in an
essential way:

Lemma 7.5. There exist two constants c17 > 0 and c18 depending only on Y such
that

hB
Ag,L

(t) 6 c17hB
Ag,"⇤L

([⇡]t) + c18

Proof. The idea is due to Lin-Wang [11, proof of Proposition 2.1]. The following
notation will be used only in this proof: denote by B = [⇡](Y ) and X = [⇡]

�1(B).
By abuse of notation, we will not distinguish [⇡] and [⇡]|X . Remark that X ! B
is a non-isotrivial family of Abelian varieties.

Let Y 0 be a smooth resolution of Y ⇢ Ag, then X ⇥B Y 0
! Y 0 is also a

non-isotrivial family of Abelian varieties of dimension g and we write "Y 0 : Y 0
!

X⇥BY 0 to be the zero-section. Let f : Y 0
! Ag be the natural morphism. Consider

the following commutative diagram
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Now let t 0 2 Y 0(k) be such that f (t 0) = t . Then up to bounded functions,

hB
Ag,L

(t) = hB
X,Lg |X

(t) hB
Ag,"⇤L

([⇡]t) = hB
B,"⇤L|X

([⇡]t)

= hB
X,L|X

( f (t 0)) = hB
B,"⇤L|X

( f � [⇡](t 0))

= hB
Y 0, f ⇤L|X

(t 0) = hB
Y 0,( f �[⇡])⇤"⇤L|X

(t 0)

= hB
Y 0,"⇤Y 0

p⇤

1L|X
(t 0).

Since Y is a curve, the morphism [⇡] � f : Y 0
! B is finite. Therefore p⇤

1L|X is
ample. So "⇤Y 0

p⇤

1L|X is ample. Hence there exist two constants c17 > 0 and c18
depending only on Y 0 (and hence only on Y ) such that

hB
Y 0, f ⇤L|X

(t 0) 6 c17hB
Y 0,"⇤Y 0

p⇤

1L|X
(t 0) + c18 (7.12)

for any t 0 2 Y 0. Now the conclusion follows.

Now for any t 2 Y \6, by (7.1) and Lemma 7.4,

bhB
Lg

(t) =

deg( ft )1/g deg('t )1/g

n2t
bhB

Lg
(s). (7.13)

But for any t 2 6, we have the following result of Moriwaki [17, Proposition 3.2
and Lemma 1.6.3]:

|hB
F (A[⇡]t ) � hB

F (A)| 6 c19 log deg( ft ) (7.14)

where c19 depends only on B, and hence k. Here hF is the Faltings’ modular height
defined by Moriwaki in [17, Proposition 3.4(1)] (which he denotes by hB

mod). This
is the generalization of the stable Faltings height for Abelian varieties over Q.

Moreover Moriwaki proved [17, Proposition 4.1] that there exists a positive
constant c20 and c21 depnding only on g,M and B such that���c20hB

F (A[⇡]t ) � hB
Ag,"⇤L

([⇡]t)
��� 6 c21 (7.15)

for any t 2 Ag(k).
Now (7.11), Lemma 7.5, (7.13), (7.14) and (7.15) together imply

deg('t )1/g

n2t
deg( ft )1/gbhB

Lg
(s) 6 (c15 + c17)c20

⇣
c19 log deg( ft ) + hB

F (A)
⌘

+ (c15 + c17)c21 + c16 + c18.

Since deg('t ) > 1, we get that deg( ft ) is polynomially bounded in nt .
On the other hand, letting deg( ft ) ! 1, we see that there exist two positive

constants M0 and c22 depending on nothing such that deg('t )1/g 6 c22n2t for any
t 2 Y \6 with deg( ft ) > M0. But if deg( ft ) 6 M0, then deg( ft ) takes values in a
finite set {1, . . . ,M0}. So deg('t ) is bounded polynomially in nt from above.
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7.4. Application of the Pila-Wilkie theorem

Keep the notation of the beginning of this section and Subsection 7.1.

Proposition 7.6. Let Y andes be as in the beginning of this section. Let " > 0.
There exists a constant C = C(Y, s, ") > 0 with the following property:

For every n > 1, there exist at most Cn" definable blocks Bi ⇢
eY such that

[Bi contains all points of complexity n of eY \
e6.

Proof. The proof starts with the following lemma:

Lemma 7.7. There exist constants C 0 and  0 depending only on g andes such that
For anyet 2

eY \
e6 of complexity n, there exists a (v, h) 2 P2g(Q)+ such that

(v, h) ·es =et and H ((v, h)) 6 C 0n 0 .

Proof. Let t := unif(et). Then t 2 6 and therefore we dispose of a relation as
(7.1). Let f 0

t := ft � 't , then f 0

t : (A, �) ! (Ag,[⇡]t , �[⇡]t ) is a polarized isogeny.
Moreover, there exists a �0t 2 A(Q)tor such that N (�0t ) 6 N (�t ) deg('t ) and

t = f 0

t (st + �0t ). (7.16)

Claim. There exists a symplectic basis B0 for H1(A[⇡]t , Z) with respect to the
polarization �[⇡]t such that the height of � f 0 2 GSp2g(Q)+ (the matrix expression
of f 0

t in coordinates B with respect to B0) is polynomially bounded in deg( f 0

t ) =

deg('t ) deg( ft ) from above (see the beginning of this section for B).
This claim follows from [19, Proposition 4.1]: remark that f 0

t is a polarized
isogeny instead of an arbitrary isogeny, hence the endomorphism q 2 End(A) in
[19, 4.3] equals [deg't ]1/g, and therefore the u 2 (End A)⇤ in [19, 4.6] can be taken
to be 1A.

Then unifG(� f 0 ·esG) = [⇡]s. Besides lete�0t = (e�0t,V ,esG) 2 F be such that
unif(e�0t ) = �0t . Thene�0t,V 2 V2g(Q) and, by (7.16) and (4.3),

unif
✓
� f 0

✓esV
nt

+
e�0t,V ,esG

◆◆
= t.

So there exists an element � = (�V , �G) 2 0 such that

� � f 0

✓esV
nt

+
e�0t,V ,esG

◆
=et,

i.e.,

et =

✓
�V + �G� f 0

✓esV
nt

+
e�0t,V

◆
, �G� f 0esG

◆
=

✓
�V + �G� f 0

e�0t,V ,
�G� f 0

nt

◆
·es.
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Denote by

(v, h) :=

✓
�V + �G� f 0

e�0t,V ,
�G� f 0

nt

◆
,

then (v, h) is an element of P2g(Q)+ such that (v, h)es = et . Now we prove that
H ((v, h)) is polynomially bounded in the complexity n of et . To prove this, it
suffices to prove that nt , H(e�0t,V ), H(� f 0), H(�G) and H(�V ) are all polynomially
bounded in n.

The fact that nt is bounded by n follows directly from the definition of com-
plexity.

For H(e�0t,V ): becausee�0t 2 F ' [0, N )2g⇥FG (where N is the level structure,
and hence depend on nothing), we have e�0t,V 2 [0, N )2g. Therefore H(e�0t,V ) is
bounded up to a constant by the denominator of e�0t,V , which equals N (�0t ). But
N (�0t ) 6 deg('t )N (�t ), hence it suffices to bound both deg('t ) and N (�t ) by n.
Now deg('t ) is polynomially bounded in nt , and hence by n, by Proposition 7.3.
By definition of complexity, N (�t ) 6 n.

For H(� f 0): by choice, H(� f 0) is polynomially bounded in deg( ft ) deg('t ),
which is polynomially bounded in nt by Proposition 7.3. Hence H(� f 0) is polyno-
mially bounded in n by definition of complexity.

For H(�G): remark �G� f 0esG = ⇡(et) 2 FG . By [22, Lemma 3.2], H(�G)
is polynomially bounded in ||� f 0esG ||. Therefore H(�G) is polynomially bounded,
with constants depending on ||esG ||, by n.

For H(�V ): remark �V +�G� f 0
e�0t,V +�G� f 0esV /nt =etV 2 [0, N )2g (where N

is the level structure, and hence depend on nothing). Therefore H(�V ) is polyno-
mially bounded in ||�G� f 0

e�t,V + �G� f 0esV /nt ||. Therefore H(�V ) is polynomially
bounded, with constants depending on ||esV ||, by n.

Let � : P2g(R)+ ! X+

2g,a be the map (v, h) 7! (v, h) ·es.
The set R = ��1(eY ) = ��1(unif�1(Y ) \ F) is definable because � is semi-

algebraic and unif|F is definable. Hence we can apply the family version of the
Pila-Wilkie theorem ( [21, 3.6]) to the definable set R: for every " > 0, there
are only finitely many definable block families B( j)(") ⇢ R ⇥ Rm and a constant
C 0

1(R, ") such that for every T > 1, the rational points of R of height at most T
are contained in the union of at most C 0

1T
" definable blocks Bi (T, "), taken (as

fibers) from the families B( j)("). Since � is semi-algebraic, the image under � of
a definable block in R is a finite union of definable blocks in eY . Furthermore the
number of blocks in the image is uniformly bounded in each definable block family
B( j)("). Hence � (Bi (T, ")) is the union of at most C 0

2T
" blocks in eY , for some new

constant C 0

2(Y,ea, ") > 0.
By Lemma 7.7, for any pointet 2

eY \
e6 of complexity n, there exists a rational

element � 2 R such that � (� ) =et and H(� ) 6 C 0n 0 . By the discussion in the last
paragraph, all such � ’s are contained in the union of at most C 0

1(C
0n 0

)" definable
blocks. Therefore all points of eY \

e6 of complexity n are contained in the union of
at most C 0

1C
0

2C
0"n 0" blocks in eY .
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7.5. End of proof of Theorem 1.6

Now we are ready to finish the proof of Theorem 1.6.
Let 61 be the set of points t 2 Y \6 such that there is a positive-dimensional

block B ⇢
eY with t 2 unif(B). Let Y1 be the Zariski closure of 61. Let k be a

number field such that both Y and Y1 are defined over k.
Let t be a point in Y \ 6 of complexity n. By Proposition 7.2, there exist

positive constants c5 and c6 depending only on (A, �) and s such that

[k(t) : k] > c5nc6 .

All Gal(k/k)-conjugates of t are contained in Y \ 6 and have complexity n. By
Proposition 7.6, the preimages in F of these points are contained in the union of
C(Y, s, c6/2)nc6/2 definable blocks, each of these blocks being contained in eY .

For n large enough, c5nc6 > Cnc6/2. Hence for n � 0, there exists a defin-
able block B ⇢

eY such that unif(B) contains at least two Galois conjugates of t ,
and therefore dim B > 0 since blocks are connected. So being in unif(B), those
conjugates of t are in 61. But Y1 is defined over k, so t 2 Y1.

In summary, all points of Y \ 6 of large enough complexity are in 61. This
excludes only finitely many points of Y \6. So Y1 = Y .

Let 62 be the set of points t 2 Y \ 6 such that there is a connected positive-
dimensional semi-algebraic set B0

⇢
eY with t 2 unif(B0). Let Y2 be the Zariski

closure of 62. By definition of blocks, 62 = 61, and hence Y2 = Y1 = Y .
Now since dim(Y ) = 1, the conclusion follows from Theorem 3.7.

8. Variants of the main conjecture

In the previous sections we have discussed the intersection of a subvariety of Ag
with the set of division points of the polarized isogeny orbit of a given point (1.1).
The goal of this section is twofold: one is to replace the given point by a finitely
generated subgroup of one fiber of Ag ! Ag (remark that the fiber is an Abelian
variety), the other is to replace the polarized isogeny orbit by the isogeny orbit. In
particular we will prove that although these changes to Conjecture 1.2 a priori seem
to generalize the conjecture, both can actually be implied by Conjecture 1.2 itself.

In the rest of the section, fix a point b 2 Ag, which corresponds to a polarized
Abelian variety (A, �) := (Ag,b, �b). Let 3 be any finitely generated subgroup
of A.
Theorem 8.1. Let Y be an irreducible subvariety of Ag. Let 60 be the set of divi-
sion points of the polarized isogeny orbit of 3, i.e.,

60 = {t 2 Ag| 9n 2 N and a polarized isogeny f : (A, �) ! (Ag,[⇡]t , �[⇡]t )

such that nt 2 f (3)}.

Assume that Conjecture 1.2 holds for all g. If Y \60
Zar

= Y , then Y is weakly
special.
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Proof. The proof is basically the same as Pink [25, Theorem 5.4] (how Conjec-
ture 1.2 implies the Mordell-Lang conjecture).

Suppose rank3 = r � 1. Let Vr
2g be the direct sum of r copies of V2g as

a representation of GSp2g. Then the connected mixed Shimura variety associated
with Vr

2g o GSp2g is the r-fold fiber product of Ag over Ag, and so its fiber over b
is Ar . Denote by

� : Ag ⇥Ag . . . ⇥Ag Ag ! Ag

the summation map (remark that both varieties are Abelian schemes overAg).
Now the homomorphisms

P2g,a = V2g o GSp2g ,! Vr
2g o GSp2g ,! V2gr o GSp2gr

(v, h) 7! ((v, . . . , v), h)) 7! ((v, . . . , v), (h, . . . , h))

induce Shimura immersions

.

For simplicity we shall not distinguish a point inAg (respectivelyAg) and its image
in Agr (respectivelyAgr ). Then Agr,b = Ar .

Fix generators a1,. . . ,ar�1 of 3 and set ar := �a1 � . . . � ar�1. Let 30 be
the division group of 3, i.e., 30

= {s| 9n 2 N such that ns 2 3} ⇢ A. Then [25,
Lemma 5.3] asserts that

30

= 3⇤

a1 + . . . +3⇤

ar = �
�
3⇤

a1 ⇥ . . . ⇥3⇤

ar
�

(8.1)

where (as Pink defined) 3⇤

ai := {s 2 A| 9m, n 2 Z \ {0} such that ns = mai }.
Now consider

3† := ��1(Y ) \

�
f r

�
3⇤

a1 ⇥ . . . ⇥3⇤

ar
�
| f : (A, �) ! (Ag,b0, �b0)

a polarized isogeny
 
.

We have

� (3†) = Y \ �
⇣�

f r
�
3⇤

a1 ⇥ . . . ⇥3⇤

ar
�
| f : (A, �) ! (Ag,b0, �b0)

a polarized isogeny
 ⌘

= Y \

�
f r

�
�
�
3⇤

a1 ⇥ . . . ⇥3⇤

ar
��

| f : (A, �) ! (Ag,b0, �b0)

a polarized isogeny
 

= Y \

�
f r

�
30

�
| f : (A, �) ! (Ag,b0, �b0) a polarized isogeny

 
(8.1).
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Because Y \60
Zar

= Y , Y \ { f (30)| f : (A, �) ! (Ag,b0, �b0) a polarized isogeny}
is Zariski dense in Y (as subsets of Ag). Therefore � (3†) is Zariski dense in Y (as
subsets of Ag ⇥Ag . . . ⇥Ag Ag, and hence as subsets of Agr ). Let Y † be the Zariski
closure of 3† in Ag ⇥Ag . . . ⇥Ag Ag. Then Y † is also a subvariety of Agr . Since
taking Zariski closures commutes with taking images under proper morphisms, we
deduce that � (Y †) = Y . So there exists an irreducible component Y 0 of Y † such
that � (Y 0) = Y .

For any polarized isogeny f : (A, �) ! (Ag,b0, �b0), the generalized Hecke or-
bit of (a1, . . . , ar ) 2 Ar as a point onAgr contains f r (3⇤

a1⇥. . .⇥3⇤

ar ) by Corollary
4.5. Therefore the intersection of Y 0 with generalized Hecke orbit of (a1, . . . , ar ) in
Agr is Zariski dense in Y 0. Hence Conjecture 1.2 for Agr implies that Y 0 is weakly
special. Therefore Y = � (Y 0) is also weakly special by the geometric interpretation
of weakly special subvarieties of Ag and of Agr (Proposition 1.1).

Corollary 8.2. Let Y be an irreducible subvariety of Ag. Let 60

0 be the set of
division points of the isogeny orbit of 3, i.e.,

60

0 =

�
t 2 Ag| 9n 2 N and an isogeny f : A ! Ag,[⇡]t such that nt 2 f (3)

 
.

Assume that Conjecture 1.2 holds for all g. If Y \60

0
Zar

= Y , then Y is weakly
special.

Proof. Recall Zarhin’s trick (see [18, Proposition 4.4]): for any isogeny f : A !

A0 between polarized Abelian varieties, there exists u 2 End(A4) such that f 4 �

u : A4 ! (A0)4 is a polarized isogeny.
Now let i : Ag ,! A4g be the natural embedding. Then 34 := End(A4)i(3)

is a finitely generated subgroup of A4 = A4g,i(b) and hence

60

0 ⇢

�
t 2 A4g| 9n 2 N and a polarized isogeny f : (A4, �⇥4) ! (A4g,[⇡]t , �[⇡]t )

such that nt 2 f (34)
 
.

Now the conclusion follows from Theorem 8.1.
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Math. 148 (2012), 1–27.

[9] M. HINDRY, Autour d’une conjecture de Serge Lang, Invent. Math. 94 (1988), 575–603.
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[18] M. ORR, “La conjecture d’André-Pink: Orbites de Hecke et sous-variétés faiblement
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