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On a dynamical version of a theorem of Rosenlicht

JASON BELL, DRAGOS GHIOCA AND ZINOVY REICHSTEIN

Abstract. Consider the action of an algebraic group G on an irreducible alge-
braic variety X defined over a field k. M. Rosenlicht showed that orbits in general
position in X can be separated by rational invariants. We prove a dynamical ana-
logue of this theorem, where G is replaced by a semigroup of dominant rational
maps X 99K X . Our semigroup G is not required to have the structure of an
algebraic variety and can be of arbitrary cardinality. This generalizes earlier work
of E. Amerik and F. Campana, where k = C and the semigroup G is assumed to
be generated by a single endomorphism.

Mathematics Subject Classification (2010): 14E05 (primary); 14C05, 37F10
(secondary).

1. Introduction

Throughout this paper we will work over a base field k. By a k-variety we will
mean a separated reduced scheme of finite type over k. By an irreducible k-variety
we shall mean “irreducible over k”, not necessarily absolutely irreducible.

Our starting point is the following classical theorem of M. Rosenlicht [15,
Theorem 2], [16].

Theorem 1.1. Consider the action of a smooth algebraic groupG on an irreducible
algebraic variety X defined over a field k.

(a) There exists a G-invariant dense open subvariety X0⇢ X and a G-equivariant
morphism � : X0 ! Z (where G acts trivially on Z ), with the following prop-
erty. For any field extension K/k and any K -point x 2 X0(K ), the orbit G · x
equals the fiber ��1(�(x));

(b) moreover, for any Z as in part (a), the field of invariants k(X)G is a purely in-
separable extension of �⇤k(Z), and one can choose Z and � so that �⇤k(Z) =

k(X)G (in characteristic zero, this is automatic).
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In short, for points x, y in general position in X , distinct G-orbits G · x and
G · y can be separated by rational G-invariant functions. In particular, G-orbits
in X0 are closed in X0. The rational map � : X 99K Z , with k(Z) = k(X)G , is
unique up to birational isomorphism. It is called the rational quotient for the G-
action on X . See [14, Chapter 2] for details on this construction and its applications,
[11] for computational aspects, and [13] for a generalization to actions of infinite-
dimensional algebraic groups.

The purpose of this note is to prove a dynamical version of this result, where the
algebraic group G is replaced by a semigroup of dominant rational maps X 99K X .
Here the semigroup G is not required to have the structure of an algebraic variety,
and can be of arbitrary cardinality. Our main result is Theorem 1.2 below.

Theorem 1.2. Let k be a field, X be an irreducible quasi-projective k-variety, and
G be a semigroup of dominant rational k-maps X 99K X .

Then there exists a dense open subvariety X0, a countable collection of closed
G-invariant subvarieties Y1,Y2, · · · ( X0 and a dominant morphism � : X0 ! Z
with the following properties:

(a) let K/k be a field extension and x, y 2 X0(K ) be K -points which do not
lie in the indeterminacy locus of any g 2 G, or on Yi for any i > 1. Then
�(x) = �(y) if and only if G · x = G · y in XK ;

(b) � � g = �, as rational maps X 99K Z , for any g 2 G;
(c) for any dense open subvariety X0 ⇢ X and a dominant morphism � : X0 ! Z

satisfying (a) and (b), the field of invariants k(X)G is a purely inseparable
extension of �⇤k(Z). Moreover, one can choose X0, Z and � so that �⇤k(Z) =

k(X)G (in characteristic zero, this is automatic);
(d) each Yd isG-invariant in the following sense. Suppose K/k is a field extension

and x 2 Yd(K ) does not lie in the indeterminacy locus of any g 2 G. Then
g(x) 2 Yd(K ) for every g 2 G.

Furthermore, if G is a monoid (i.e., contains the identity morphism X ! X) then:

(e) X0 can be chosen to be g-invariant for every g 2 G which is an automorphism
of X (i.e., g�1 exists in G, and g, g�1 are both regular);

(f) if x 2 X0(K ) is as in part (a), then the fiber ��1(�(x)) of x in X0 equals
(G · x) \ X0.

In short, for points x , y in very general position in X , distinct orbit closures G · x
and G · y can be separated by rational G-invariant functions. Here, as usual, “very
general position” means “away from a countable union of proper subvarieties”.

Note that the G-orbit of x 2 X (K ) in the setting of Theorem 1.1 is a K -
subvariety of X ; it is defined as the image of the orbit map G ! X , taking g 2 G
to g · x . In the dynamical setting of Theorem 1.2 the orbit G · x is just a collection
of K -points g · x , as g ranges over G. The closure G · x is a K -subvariety of X in
both cases. Several remarks are in order:
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(1) in the case where k = C and the semigroup G is generated by a single dom-
inant rational map X 99K X , Theorem 1.2 was proved by E. Amerik and
F. Campana. Their result, [1, Theorem 4.1], is stated more generally, in the
setting of Kähler manifolds. Theorem 1.2 was motivated by our attempt to
find a purely algebraic characteristic-free proof of this result;

(2) the idea behind our construction of the map � in Theorem 1.2 is as follows.
Assuming X ⇢ Pn , we set �(x) to be to the class of the orbit closure G · x ⇢

Pn in the Hilbert scheme Hilb(n) of subschemes of Pn . The challenge is to
show that this defines a rational map

� : X 99K Hilb(n).

The “quotient variety” Z will then be defined as the closure of the image of
this map in Hilb(n). This argument is in the same spirit as the proofs of Theo-
rem 1.1 in [15] and of [1, Theorem 4.1], with Hilbert schemes replacing Chow
varieties or Barlet spaces used in these earlier proofs. To further illustrate our
approach, we give a short proof of Theorem 1.1(a) using the Hilbert scheme
in the last section;

(3) a conjecture of A. Medvedev and T. Scanlon [12, Conjecture 7.14] asserts that
in the case where k is algebraically closed of characteristic 0, G is generated
by a single regular endomorphism X ! X and k(X)G = k (i.e., Z is a point),
X has a k-point with a dense G-orbit. (See also [2, Conjecture 7].) Over
C the Medvedev-Scanlon conjecture follows from the above-mentioned [1,
Theorem 4.1]. In the case where k is an algebraically closed uncountable field
of arbitrary characteristic, it was proved by the first author, D. Rogalski and S.
Sierra [4, Theorem 1.2]. Corollary 6.1 belowmay be viewed as a strengthening
of [4, Theorem 1.2].
Over a countable field, the Medvedev-Scanlon conjecture (which was, in turn,
motivated by an earlier related conjecture of S.-W. Zhang [18, Conjecture
4.1.6]) remains largely open. It has been established only in a small number
of special instances (see, in particular, [12, Theorem 7.16] and [3, Theorem
1.3]), and no counterexamples are known;

(4) if the semigroup G is not assumed to be countable, then the points x, y 2

X0(K ) in part (a) are not truly in very general position, since they are required
to lie away from the indeterminacy loci of (possibly uncountably many) ele-
ments g 2 G. This requirement is imposed to make sure that the orbits G · x
and G · y are well defined. In Section 5 we will prove a variant of Theorem 1.2,
where the orbit G · x is defined more generally, as

G · x := {g(x) | g 2 G is defined at x}. (1.1)

With this definition, we will show that rational G-invariant functions on X
separate orbit closures in very general position, even if G is uncountable; see
Proposition 5.1. Our proof is based on replacing G by a suitable countable
subsemigroup H . Note that the new “exceptional subvarieties” of X0, re-
sulting from replacing G by H (which we denote by Wi in the statement of
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Proposition 5.1) are generally bigger than the subvarieties Yi in the statement
of Theorem 1.2 and are only H -invariant, not necessarily G-invariant;

(5) in the case where X is not quasi-projective, Theorem 1.2 and Proposition 5.1
can be applied to a quasi-projective dense open subvariety X 0

⇢ X . Note
however that replacing X by X 0, and thus viewing elements of G as dominant
rational maps X 0 99K X 0, may make the condition on x, y 2 X0(K ) in part (a)
more stringent by enlarging the indeterminacy loci of these rational maps;

(6) examples 6.4 and 6.5 show that if we replace the countable collection of
{Yi , i � 1} of proper subvarieties of X by a finite collection, Theorem 1.2
will fail, even in the simplest case, where the semigroup G is generated by a
single dominant morphism � : X ! X . Note that in Example 6.4, � is an
automorphism.

ACKNOWLEDGEMENTS. The authors are grateful to E. Amerik, M. Borovoi,
B. Poonen, T. Scanlon and T. Tucker for helpful comments.

2. A dense collection of rational sections

In this section we will consider the following situation. Let X be an irreducible
k-variety, V be a closed subvariety of X ⇥ Pn , and ⇡ : V ! X be the projection
to the first factor, and s� : X 99K V be a collection of rational sections X 99K V ,
indexed by a set 3. We will denote the scheme-theoretic fiber ⇡�1(x) of a point
x 2 X by Vx .

Vx

⇡

✏✏

⇢ V

⇡

✏✏

⇢ X ⇥ Pn

x 2 X

VV
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Note that we do not assume that V is irreducible and do not impose any restrictions
on the cardinality of 3.

For notational simplicity, we will sometimes identify {x} ⇥ Pn with Pn and
thus think of Vx as a closed subscheme of Pn . Similarly, since each s� is of the
form x 7! (x, s0�(x)) for some rational map s

0

� : X ! Pn , we will sometimes, by a
slight abuse of notation, identify s� with s0� and view s� as a rational map X 99K Pn .

If K/k is a field extension, we will denote by X (K )0 the collection of K -
points of X lying away from the indeterminacy locus of s�, for every � 2 3. In
other words, for x 2 X (K )0, s�(x) is defined for every � 2 3. Note that if 3 is
large enough, X (K )0 may be empty for some fields K/k, even if K is algebraically
closed. On the other hand, the generic point ⌘ of X lies in X (Kgen)0, where Kgen =

k(X) is the function field of X .
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Proposition 2.1. Assume that the union of s�(X) over all � 2 3 is dense in V .
Then there exists a countable collection {Yi , i > 1} of proper subvarieties of X
with the following property: for any field extension K/k and x 2 X (K )0 away fromS

1

i=1 Yi , the set
{s�(x) | � 2 3}

is Zariski dense in the fiber Vx := ⇡�1(x).

Proof. By generic flatness (see, e.g., [5, Theorem 14.4]), after replacing X by a
dense open subvariety, we may assume that ⇡ is flat. Let us denote the Hilbert
polynomial of the fiber Vx by pVx . Since ⇡ is flat, pVx is independent of the choice
of x 2 X . In particular, if ⌘ is the generic point of X , then

pVx = pV⌘ (2.1)

Note that if I (Vx ) ⇢ K [t0, . . . , tn] is the homogeneous ideal of Vx in Pn , and
I (Vx )[d] is the K -vector space of homogeneous polynomials of degree d in I (Vx ),
then

pVx (d) :=

✓
n + d
d

◆
� dimK (I (Vx )[d]) for d � 0.

Thus for d � 0, dimK (I (Vx )[d]) depends only on d and not on the choice of a
field extension K/k or a point x 2 X (K ).

Let K/k be a field and x 2 X (K )0. Denote by Wx the closure of {s�(x) | � 2

3} in Vx . Clearly Wx ⇢ Vx ⇢ PnK and thus I (Vx ) ⇢ I (Wx ). We want to show that
for x 2 X (K )0 in very general position, Wx = Vx . Our first step towards this goal
is the following simple lemma.

Lemma 2.2. Let A and B be closed subschemes of the projective space Pn . If
B ⇢ A and A and B have the same Hilbert polynomial, then A = B.

Proof. Assume the contrary. Then there exists a homogeneous polynomial
r(t0, . . . , tn) such that r is identically 0 on B but not on A. Let d := deg(r).
Choose a linear form l(t0, . . . , tn) such that no power of l is identically 0 on A \ Z ,
where Z is the hypersurface in Pn cut out by r . (Note that we can always choose
l = t j for some j = 0, . . . , n.) Then li r lies in I (B)[d + i] but not in I (A)[d + i]
for every i > 0. Hence dim(I (B)[d + i]) > dim(I (A)[d + i]) for every i > 0,
contradicting our assumption that A and B have the same Hilbert polynomial.

Proposition 2.1 now reduces to the following:

Claim 2.3. For every d > 1 there exists a proper closed subvariety Yd ⇢ X such
that dim(I (Wx )[d]) = dim(I (V⌘))[d] for any field K/k and any x 2 X (K )0 away
from Yd .

Indeed, Claim 2.3 tells us that, for x 2 X (K )0 away from Y1[Y2[. . . , we have
pWx = pV⌘ . Combining this with (2.1), we obtain pWx = pVx . Since Wx ⇢ Vx ,
Lemma 2.2 now tells us that Wx = Vx , as desired.
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The rest of the proof will be devoted to establishing Claim 2.3. We begin by
observing that it suffices to prove this claim for d = 1. Indeed, if we settle this case,
we will be able to deduce Claim 2.3 for any d > 1, after replacing V by its image
under

(id,Verd) : X ⇥ Pn ! X ⇥ PN ,

where N :=

�n+d
d

�
and Verd is the d-fold Veronese embedding.

In the case where d = 1, set r := pV⌘(1) = n+ 1� dim(I (V⌘)[1]). Claim 2.3
now reduces to
Claim 2.4. Let ⌘ 2 X (k(X)) be the generic point of X . Suppose the linear span
of the k(X)-points {s�(⌘) | � 2 3} in Pnk(X) is of dimension r . Then there exists a
closed subvariety Y1 ⇢ X such that for any field extension K/k and any x 2 X (K )0

away from Y1, the linear span of the K -points {s�(x) | � 2 3} is of dimension r .
To prove Claim 2.4, write Pn as P(V), where V is the underlying (n + 1)-

dimensional vector space and let

1 :=

(
([v1], . . . , [vr ]) 2 (Pn)r | v1 ^ · · · ^ vr = 0 in

r̂
(V)

)
.

For each (�1, . . . , �r )2 3r , let s�1,...,�r : X 99K (Pn)r be given by

x 7! (s�1(x), . . . , s�r (x)).

Let Z�1,...,�r ⇢ X be the union of the indeterminacy loci of s�1, . . . , s�r and

U�1,...,�r := X \ Z�1,...,�r .

Then s�1,...,�r : U�1,...,�r ! (Pn)r is a regular map, and s�1�1,...,�r (1) is a closed
subvariety of U�1,...,�r . Note that in some cases s

�1
�1,...,�r

(1) = U�1,...,�r . This
will happen if and only if s�1,...,�r (⌘) 2 1. For example, s�1�1,...,�r (1) = U�1,...,�r
whenever �i = � j for some i 6= j .

By our assumption there exist ↵1, . . . ,↵r 2 3 such that s↵1,...,↵r (⌘) 62 1. Then

Y1 := Z↵1,...,↵r [ s�1↵1,...,↵r (1)

is a proper closed subvariety of X with the desired property. This completes the
proof of Claim 2.4 and thus of Claim 2.3 and Proposition 2.1.

Remark 2.5. In the sequel it will be convenient for us to define Y1 more symmet-
rically as follows:

Y1 :=

\
(�1,...,�r )23r

(Z�1,...,�r [ s�1�1,...,�r (1)) .

Note also that Claim 2.4 concerns only field-valued points of Y1. Thus the scheme
structure of s�1�1,...,�r (1) does not make a difference here; we are only interested in
the underlying variety.
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3. The Hilbert scheme and proof of Theorem 1.2(a), (b), (d), (e), (f)

The Hilbert scheme Hilb(n), constructed by A. Grothendieck [10], classifies closed
subschemes of Pn in the following sense. A family of subschemes of Pn parame-
trized by a scheme X is, by definition, a closed subscheme

V ⇢ X ⇥ Pn

such that the projection ⇡ : V ! X to the first factor is flat. As we mentioned in the
previous section, if X is irreducible, then every fiber of ⇡ has the same Hilbert poly-
nomial. Families of subschemes of Pn parametrized by X are in a natural (functorial
in X) bijective correspondence with morphisms X ! Hilb(n). Note that Hilb(n)
is not a Noetherian scheme; it is a disjoint union of (infinitely many) schemes of
the form Hilb(n, p), where p is a fixed Hilbert polynomial. Each Hilb(n, p) is a
projective variety defined over Z; it parametrizes families of subschemes of Pn with
Hilbert polynomial p.

We are now ready to proceed with the proof of Theorem 1.2. In this section we
will construct a dense open subvariety X0 ⇢ X , a dominant morphism � : X0 ! Z ,
and a countable collection of proper k-subvarieties Yd ⇢ X0. We will prove parts
(a), (b), (d), (e) and (f) of Theorem 1.2 and defer the proof of part (c) to the next
section.

By our assumption X is a quasi-projective variety. In other words, X is a
locally closed subvariety of some projective space Pnk . Let V ⇢ X ⇥ Pn be the
Zariski closure of the union of the graphs of g : X 99K X ⇢ Pn , as g ranges over
G. Let ⇡ : V ! X be the projection

V := {(x, g(x)) | x 2 X , g 2 G}

⇡

✏✏

⇢ X ⇥ Pn

X

(3.1)

to the first factor and X0 ⇢ X be the flat locus of ⇡ , i.e. the largest dense open
subvariety of X over which ⇡ is flat, and V0 := ⇡�1(X0). (Recall that X0 is dense
in X by generic flatness.) We now view V0 ⇢ X0 ⇥ Pn as a family of subschemes
of Pn parametrized by X0. By the universal property of the Hilbert scheme this
family induces a morphism � : X0 ! Hilb(n). Denote the closure of the image of
this morphism by Z . If K/k is a field extension and x, y 2 X0(K ) then by our
construction

�(x) = �(y) if and only if Vx = Vy . (3.2)

Here we identify {x} ⇥ PnK and {y} ⇥ PnK with PnK .
We may view each g 2 G as a rational section X0 ! V0 given by x 7!

(x, g(x)), as in the previous section. By the definition of V , the union of the images
of these sections is dense in V0. Thus by Proposition 2.1 there exists a countable
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collection of proper k-subvarieties Yi ⇢ X0, such that for any field extension K/k
and any x 2 X0(K ) away from the union of these subvarieties,

Vx = G · x in PnK . (3.3)

Choose Y1,Y2, . . . using the formula in Remark 2.5.
(a) By (3.2), �(x) = �(y) if and only if Vx = Vy in PnK . By (3.3), and Vx =

G · x , Vy = G · y, where the closure is taken in PnK . This shows that �(x) = �(y)
if and only if G · x and G · y ⇢ XK have the same closure in PnK . On the other
hand, G · x and G · y have the same closure in PnK if and only if they have the same
closure in XK .

(b) It suffices to show that the rational maps � � g and � : X 99K Hilb(n) agree
on the generic point ⌘ of X for every g 2 G. Choose g 2 G and fix it for the rest of
the proof. Then ⌘ and µ := g(⌘) are Kgen-points of X , where Kgen := k(X). Since
g is dominant, neither ⌘ nor µ lie on any proper subvariety of X defined over k. In
particular, they do not lie in the indeterminacy locus of any h 2 G or on Yi for any
i > 1. By (3.2), proving that �(⌘) = �(µ) is equivalent to showing that

V⌘ = Vµ in PnKgen , (3.4)

where V⌘, Vµ 2 PnKgen are the fibers of ⌘ and µ, respectively, under � : V ! X in
PnKgen .

Since ⌘, µ 2 X0(Kgen) do not lie on Yi for any i > 1, part (a) tells us that
V⌘ = G · ⌘ and Vµ = G · µ. Now recall that µ = g(⌘). Thus G · µ ⇢ G · ⌘ and
consequently, Vµ ⇢ V⌘. Since ⇡ : V ! X is flat over X0, the fibers V⌘ and Vµ

have the same Hilbert polynomial, and (3.4) follows from Lemma 2.2.
(d) Once again, after replacing X by its image under the Veronese embedding

Verd , we may assume without loss of generality that d = 1, as in the proof of
Proposition 2.1. By our assumption g is regular at x 2 Y1(K ) for every g 2 G.
Thus the condition that x 2 Y1 is equivalent to (g1(x), . . . , gr (x)) 2 1 for every
g1, . . . , gr 2 G; see the formula for Y1 in Remark 2.5. We want to show that
g(x) 2 Y1, i.e.,

g(x) 2 Zg1,...,gr [ s�1g1,...,gr (1)

for every g1, . . . , gr 2 G (once again, see the formula in Remark 2.5).
Choose a particular r-tuple g1, . . . , gr 2 G. If one of the endomorphisms

g1, . . . , gr is not defined at g(x), then g(x) 2 Zg1,...,gr , and we are done. On the
other hand, if g(x) lies in the domain of every gi , then gi (g(x)) = (gi � g)(x) for
i = 1, . . . , r . Since x 2 Y1, we have (g1 � g, . . . , gr � g)(x) 2 1. In other words,
g(x) 2 s�1g1,...,gr (1), as desired.

(e) If g is an automorphism of X , then the variety V ⇢ X⇥Pn defined in (3.1),
is g-invariant, where g acts on X ⇥ Pn via the first factor. Consequently, the pro-
jection ⇡ : V ! X is g-equivariant, and the flat locus X0 ⇢ X of ⇡ is invariant
under g.
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(f) By part (b), �((G · x) \ X0) = �(x) and thus

(G · x) \ X0 ⇢ ��1(�(x)), (3.5)

where the closure is taken in X0. If y 2 X0 and �(y) = �(x), then by (3.2), Vy =

Vx . Since G is a monoid, y 2 Vy and thus y 2 Vx . In other words, ��1(�(x)) \

X0 ⇢ Vx \ X0. Combining this with (3.5), we obtain

(G · x) \ X0 ⇢ ��1(�(x)) ⇢ Vx \ X0 . (3.6)

On the other hand, by (3.3), G · x is dense in Vx . Thus (G · x) \ X0 is dense in
Vx \ X0, i.e.,

(G · x) \ X0 = Vx \ X0 .

We conclude that both inclusions in (3.6) are equalities. In particular, (G · x)\X0=
��1(�(x)), as desired.

4. Proof of Theorem 1.2(c)

By part (b), �⇤(k(Z)) ⇢ k(X)G . Let Y be a k-variety whose function field k(Y )

is k(X)G . The inclusions k(Z)
i⇤
,! k(Y ) = k(X)G

 ⇤

,! k(X) = k(X0) induce
dominant rational maps

X0
 

✏✏
�

��

Y

i
✏✏
Z .

After replacing X0, Z , and Y by suitable dense open subvarieties, we may assume
that all three maps in the above diagram are regular.

Let K/k be a field and x, y 2 X0(K ) be as in Theorem 1.2(a). We claim that if
�(x) = �(y) then  (x) =  (y). Indeed, by Theorem 1.2(a), �(x) = �(y) implies
that G · x = G · y in XK . Then

(G · x) \ X0 = (G · y) \ X0 in X0. (4.1)

By our construction,  is G-equivariant, where G acts trivially on Y . Thus  sends
all of (G · x) \ X0 to the point  (x) and all of (G · y) \ X0 to the point  (y) in Y .
By (4.1),  (x) =  (y), as claimed.

In particular, if K/k is field extension and x, y : Spec(K ) ! X are dominant
points, then x and y satisfy the conditions of Theorem 1.2(a) and thus

�(x) = �(y) if and only if  (x) =  (y).
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By Lemma 4.1 below, i is purely inseparable. This proves the first assertion of
Theorem 1.2(c). To prove the second assertion of part (c), we simply replace Z by
Y and � by  .

It remains to prove:

Lemma 4.1. Let � : X
 
! Y i

! Z be dominant maps of irreducible k-varieties.
Suppose that for any pair of dominant points x, x 0

: Spec(K ) ! X , where K/k is
a field extension,

�(x) = �(x 0) if and only if  (x) =  (x 0). (4.2)

Then the field extension k(Y )/ i⇤(k(Z)) is purely inseparable.

Proof. Let F be the algebraic closure of k(X) and x : Spec(F) ! X be the dom-
inant F-point of X obtained by composing the natural projection Spec(F) !

Spec(k(X)) with the generic point Spec(k(X)) ! X . Set z := �(x). The fiber
��1(z) is an F-subvariety of XF . Denote its irreducible components by X1,. . . ,Xn .

By the fiber dimension theorem [9, Théorème 13.1.3], the generic point
xi : Spec(F(Xi )) ! Xi ,! X is dominant for every i = 1, . . . , n. If K/F is
a compositum of F(X1), . . . , F(Xn) over F and (xi )K is the composition of the
projection Spec(K ) ! Spec(F(Xi )) with xi , then

�((x1)K ) = · · · = �((xn)K ) = zK = �(xK ) .

Our assumption (4.2) now tells us that  ((x1)K ) = · · · =  ((xn)K ) =  (xK ).
Since x is, by definition, an F-point of X , we see that ((x1)K)= . . .=  ((xn)K ) =

 (x) descends to a dominant F-point y : Spec(F) ! Y , where i(y) = z. In other
words,  maps each Xi to the single point y 2 Y (F), as depicted in the following
diagram:

X
 

✏✏
�

⌧⌧

X1

!!B
B

B
B

B
B

B
B

. . . Xn

}}||
|
|
|
|
|
|

Y

i
✏✏

y

✏✏
Z z .

Thus  (��1(z)) = y. Equivalently,  ( �1(i�1(z))) = y or i�1(z) = y. Ap-
plying the fiber dimension theorem one more time, we obtain dim(Y ) = dim(Z).
Since z : Spec(F) ! Z is dominant, and F is algebraically closed, the number of
preimages of z in Y equals the separability degree of k(Y ) over i⇤(k(Z)). In our
case the preimage of z is a single point y 2 Y (F); hence, k(Y ) is purely inseparable
over i⇤k(Z). This completes the proof of Lemma 4.1 and thus of Theorem 1.2.

Remark 4.2. We do not knowwhether or not �⇤k(Z) always coincides with k(X)G ,
where Z is the closure of the image of the rational map � : X 99K Hilb(n) we con-
structed. As we have just seen, this is always the case in characteristic zero, so the
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question is only of interest in prime characteristic. An analogous question in the
context of Theorem 1.1 was left open in [15] and was subsequently settled in the
positive by A. Seidenberg in [17].

5. Passing to a countable subsemigroup

The purpose of this section is to prove a refinement of Theorem 1.2, which shows
that � will separate orbit closures in very general position, even if G is uncountable;
see remark (3) in the Introduction. The price we will pay for this strengthening of
Theorem 1.2 is that the new “exceptional subvarieties” Wi ( X0 may no longer
be G-invariant in the sense of Theorem 1.2(d). Note also that Proposition 5.1 be-
low is only of interest if G is uncountable. Otherwise, we can take H = G, and
Proposition 5.1 will be subsumed by Theorem 1.2.

Proposition 5.1. Let X be a quasi-projective irreducible k-variety, and G be a
semigroup of dominant rational maps X 99K X . Under the assumptions of Theo-
rem 1.2, with k(Z) = k(X)G , G has a countable subsemigroup H with the follow-
ing properties. There exists a countable collection {Wi | i > 1} of subvarieties of
X0, such that each Wi ( X0 is H -invariant in the sense of Theorem 1.2(d), and

(a) k(X)G = k(X)H ;
(b) for any field extension F/k and any x, y 2 X0(F) away from the (countably

many) indeterminacy loci of elements of H and away from [i>1Wi , �(x) =

�(y) if and only if H · x = H · y in XF ;
(c) moreover, if x 2 X0(F) as in part (b), G · x = H · x , where G · x is defined

as in (1.1).

Our proof will rely on the following elementary lemma.

Lemma 5.2. Let W be an algebraic variety (not necessarily irreducible), and S
be a dense collection of points in W . Then there exists a countable subcollection
S0

⇢ S which is dense in W .

Proof. After replacing W by a dense open subvariety, and removing the points of
S that do not lie in this dense open subvariety we may assume without loss of
generality that W ⇢ An is affine. Let I (W ) be the ideal of W in k[x1, . . . , xn]
and I (W )[d] be the finite-dimensional vector space of polynomials of degree  d
vanishing on W . It is easy to see that for each d there is a finite subset Sd ⇢ S such
that I (Sd)[d] = I (W )[d]. Taking S0

= [
1

d=1Sd , we obtain I (S
0)[d] = I (W )[d]

for every d > 1. Thus I (S0) = I (W ) and S0 is dense in W .

Proof of Proposition 5.1. We will assume that X ⇢ Pn is a locally closed subva-
riety of Pn for some n � 1. Let V ⇢ X ⇥ Pn be the closure of the union of the
images of

sg : X 99K X ⇥ Pn ,
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over all g 2 G, as in (3.1). Applying Lemma 5.2 to the generic points of the closures
of the images of sg, as g 2 G, we see that there exists a countable collection of
elements {hi | i > 1} such that the images of shi are dense in V . Let H be the
countable subsemigroup of G generated by these hi . Denote the flat locus of the
projection ⇡ : V ! X by X0 ⇢ X and the morphism associated to ⇡ , viewed
as a family of subschemes over X0, by � : X0 ! Hilb(n), as before. Arguing as
in Section 3, we see that there exists a countable collection {Wi | i > 1} of H -
invariant closed subvarieties of X0 such that for any field extension K/k and any
point x 2 X0(K ) away from [i>1Wi and from the indeterminacy locus of every
h 2 H , Vx = H · x in X ; cf. (3.3). Now �(x) = �(y) if and only if Vx = Vy if and
only if H · x = H · y. This proves part (b).

(c) Since H · x ⇢ G · x ⇢ Vx , we have H · x = G · x = Vx .
(a) By our construction, �⇤ k(Z) ⇢ k(X)G ⇢ k(X)H , and by Theorem 1.2(c),

k(X)H is purely inseparable over �⇤ k(Z). Thus k(X)H is purely inseparable over
k(X)G .

It remains to show that, in fact, k(X)H = k(X)G . Choose a 2 k(X)H . Then
a satisfies some purely inseparable polynomial p(t) 2 k(X)G[t]. For any g 2 G,
g(a) also satisfies p(t). Since a is the only root of p(t) in k(X), we conclude that
g(a) = a. In other words, a 2 k(X)G , i.e., k(X)H = k(X)G , as desired.

6. A variant of the Medvedev-Scanlon conjecture and examples

The following corollary of Proposition 5.1 is a generalization of the Medvedev-
Scanlon conjecture [12, Conjecture 7.14] in the case where the base field k is un-
countable; cf. Remark (3) in the Introduction.

Corollary 6.1. Let k be an uncountable algebraically closed field, X be an irre-
ducible k-variety, and G be a semigroup of dominant rational maps X 99K X . If
k(X)G = k then G · x is dense in X for some x 2 X (k).

Here G · x := {g(x) | g 2 G is defined at x}, as in (1.1).

Proof. After replacing X by a dense open subvariety, we may assume that X is
quasi-projective. Let X0 ⇢ X be a dense open subvariety, and � : X0 ! Z be
a morphism such that �⇤k(Z) = k(X)G , and H be countable subsemigroup of G
such that k(X)H = k(X)G , as in Proposition 5.1.

Since k(X)H = k(X)G = k, the variety Z is a single point. Let S ⇢ X0(k) be
the set of k-points of X0 away from the exceptional subvarietiesWi for every i > 1,
and away from the indeterminacy locus of every h 2 H . Since k is algebraically
closed and uncountable, S is Zariski dense in X0. By Proposition 5.1(b),

Y = H · x is independent of the choice of x 2 S. (6.1)

Since h : X 99KX is dominant for every h2H , we see that the union
S

x2S H · x is
dense in X . On the other hand, by (6.1), this union equals Y , which is closed in X .
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We conclude that Y = X , i.e., H · x = X and consequently, G · x = X for every
x 2 S.

We note that in [7], it is proved that if X is an Abelian variety, and G is a
finitely generated, commutative semigroup of dominant rational maps X 99K X ,
then Corollary 6.1 holds for any algebraically closed field k of characteristic 0 (re-
gardless of the cardinality of k).

The following example shows that if we don’t assume that k is uncountable,
then the Medvedev-Scanlon’s conjecture [12, Conjecture 7.14] can fail in prime
characteristic.
Example 6.2. Let p be a prime number, and X = Am be an m-dimensional affine
space defined over an algebraically closed field k of characteristic p, and G be
the semigroup generated by the Frobenius endomorphism � : X ! X . Then
k(X)<�>

= k. On the other hand, there exists a point x 2 Am(k) with a Zariski
dense orbit under � if and only if trdegFp (k) � m.

The following example shows that Proposition 5.1 will fail if we require H to
be finitely generated, rather than just countable.
Example 6.3. Let X be a complex Abelian variety of dimension > 1, and G be
the group of translations on X by torsion points of X (C). Then G is countable
and C(X)G = C. On the other hand, any finitely generated subgroup H of G
is finite, and [C(X) : C(X)H ] < 1. Hence, C(C)G ( C(X)H for any finitely
generated H .

The following examples show that the countable collection {Yi , i � 1} of
proper “exceptional” subvarieties of X cannot be replaced by a finite collection in
the statement of Theorem 1.2.
Example 6.4. Let E be an elliptic curve over k, let X = E ⇥ E , let � be an
automorphism of X given by � (x, y) := (x, x+ y), and let G ⇠

! N (or G ⇠

! Z) be
generated by � as a semigroup (or as a group). In this case Z and � are unique (up
to birational isomorphism), and it is easy to see that � is just projection to the first
factor, � : X ! Z := E . The fiber Xz = {z} ⇥ E is the closure of a single orbit if
and only if z is of infinite order in E . Thus the “exceptional set” Y1 [ Y2 [ . . . has
to contain countably many “vertical” curves {z} ⇥ E , as z ranges over the torsion
points of E .

Example 6.5. Let X = Pn and G ⇠

! N be the cyclic semigroup generated by a sin-
gle dominant morphism � : X ! X of degree � 2. Assume that k is algebraically
closed. Then the exceptional collection Y1,Y2, . . . is dense in X ; in particular, it
cannot be finite.

Proof. We claim that trdegk k(X)G < n. Indeed, assume the contrary. Then the
field extension k(X)/k(X)G is algebraic and finitely generated; hence, it is finite.
Now we can view � ⇤

: k(X) ! k(X) as a k(X)G-linear transformation of a finite-
dimensional k(X)G-vector space k(X). Since � ⇤ is injective, we conclude that it is
also surjective, and thus � : X ! X has degree 1, contradicting our choice of � .
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The claim tells us that the general fiber (and hence, every non-empty fiber) of
the map � : X ! Z has dimension > 1. Suppose x 2 X (k) is a periodic point
of X , i.e., � n(x) = x for some n > 1. Then G · x is finite, and thus G · x is
0-dimensional. Consequently, G · x cannot be dense in the fiber ��1(�(x)), so x
has to lie in the exceptional locus Y1 [ Y2 [ . . . . On the other hand, by a result of
N. Fakhruddin [6, Corollary 5.3] periodic k-points for � are dense in X = Pn .

7. Rosenlicht’s theorem revisited

In this section we will give a proof of Theorem 1.1(a) under the assumption that X
is quasi-projective, in the spirit of the arguments in this paper. The idea is to modify
Rosenlicht’s original proof by replacing the Chow variety with the Hilbert scheme.
Note that part (b) of Theorem 1.1 follows from part (a) by the same argument we
used in Section 4.

Denote our G-action on X by ↵ : G ⇥ X ! X , and consider the graph of this
action, i.e., the k-morphism

 = (pr2,↵) : G ⇥ X ! X ⇥ X ⇢ X ⇥ Pn,

where pr2 : G ⇥ X ! X is projection to the second factor.

Lemma 7.1. There exist integers d > 0 and e > 1, and a G-invariant dense open
subvarietyU ⇢ X defined over k, such that for every field extension K/k and every
x 2 U(K ), the orbit G · x has exactly e geometrically irreducible components, each
of dimension d.

Proof. The orbit G · x ' G/Gx has
#G

[Gx : (G0)x ]
=

#G · # (G0)x
#Gx

geometrically

irreducible components, each of dimension dim(G) � dim(Gx ). Here G0 denotes
the connected component of G, Gx the stabilizer of x in G, (G0)x the stabilizer of
x in G0, and # H := [H : H0] the number of geometrically irreducible components
of an algebraic group H . Thus it suffices to chooseU so that dim(Gx ), # (G0)x and
#Gx are independent of the choice of x 2 U .

Let S and S0 be the preimages of the diagonal 1 2 X ⇥ X under  in G ⇥ X
and G0 ⇥ X , respectively. The stabilizers Gx and (G0)x are the fibers of (x, x) 2

1 under  |S and  |S0 . Let ⌘ be the generic point of 1 ' X . The points x 2

X such that  �1
|S (x) has the same dimension (respectively, the same number of

geometrically irreducible components) as  �1
|S (⌘) lie in a dense open subvariety

U1 (respectively, U2) of X ; see [9, Théorème 13.1.3] (respectively, [9, Proposition
9.7.8]). Similarly, the points x 2 X such that  �1

|S0 (x) has the same number of
geometrically irreducible components as  �1

|S0 (⌘) lie in a dense open subvariety
U3 ⇢ X . Taking U = U1 \ U2 \ U3, we see that dim(Gx ), # (G0)x and #Gx are
independent of the choice of x 2 U .
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It remains to check that U1, U2 and U3 are G-invariant (and hence, so is U ).
This follows from the fact that  |S : S ! 1 ' X and  |S0 : S0 ! 1 are both
G-equivariant. Here G acts on G ⇥ X via c ⇥ ↵, where c denotes the conjugation
action of G on itself. The morphism  : G ⇥ X ! X ⇥ X is equivariant under this
action and hence, so are  |S and  |S0 .

From now on, we will replace X by the dense open subvariety U , as in Lem-
ma 7.1, and thus assume that G ·x has e geometrically irreducible components, each
of dimension d, for every x 2 X .

Denote the closure of the image of  in X ⇥ Pn by V . Set ⇡ : V ! X to be
the restriction of the natural projection X ⇥ Pn ! X to V , and Vx := ⇡�1(x) to be
the fiber of ⇡ over a point x 2 X , as in (3.1).

Lemma 7.2. Let K/k be a field and x : Spec(K ) ! X be a dominant point of X .
Then:

(a) G · x is dense in Vx ;
(b) Vx is geometrically reduced and has e geometrically irreducible components,

each of dimension d.

Proof. (a) To check that G · x is dense in Vx , we may pass to the algebraic closure
K . For each K -point g 2 G, consider the section sg : X ! V taking x to (x, g · x),
where g · x := ↵(g, x). Since G is smooth, K -points are dense in G, and thus the
union of the images of the sections sg, over all g 2 G(K ), is dense in V . Since the
point x is dominant, Proposition 2.1 now tells us that the points g · x are dense in
Vx , as g ranges over G(K ). Thus G · x is dense in Vx .

(b) Since G is smooth, G · x is geometrically reduced. Moreover, by our
assumption G · x has e geometrically irreducible components, each of dimension d.
(b) now follows from (a).

Lemma 7.3. There is a dense open G-invariant subvariety X0 ⇢ X such that:

(a) ⇡ is flat over X0;
(b) the G-action on X0 lifts to a G-action on VX0;
(c) the fiber Vx is geometrically reduced and has e geometrically irreducible com-

ponents, each of dimension d for any x 2 X0;
(d) the orbit G · x contains a dense open subvariety of Vx , for any x 2 X0.

In the case where X is closed in Pn , parts (a) and (b) are obvious, because V ⇢

X ⇥ X is invariant under the diagonal G-action on X ⇥ X , and consequently, the
flat locus of the projection ⇡ : V ! X is G-invariant. Since we do not assume that
X is closed in Pn , we need to work a bit harder to lift the G-action to V , over a
dense open subvariety of X .

Proof of Lemma 7.3. By generic flatness, ⇡ is flat over some dense open (but not
necessarily G-invariant) subvariety U ⇢ X . The flat family ⇡ : VU ! U induces
a morphism � : U ! Hilb(n). We claim that � (viewed as a rational map X 99K
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Hilb(n)) is G-equivariant, where G acts trivially on Hilb(n). To prove this, let
K = k(X), ⌘ 2 X (K ) be the generic point of X . We want to show that �(g ·

⌘) = �(⌘) for every g 2 G(K ) or equivalently, V⌘ = Vg·⌘. By Lemma 7.2(a),
Vg⌘ = G · (g⌘) = G · ⌘ = V⌘, and the claim follows.

The domain X0 ⇢ X of the rational map � : X 99K Hilb(n) is thus a G-
invariant dense open subvariety X0 of X containing U . The morphism � : X0 !

Hilb(n) corresponds to a family V 0
⇢ X0 ⇥ Pn , which is flat over X0. Over U ,

V and V 0 coincide. To prove part (a), it suffices to show that they coincide over
X0 (and thus V is flat over X0). Since G ⇥ U is dense in G ⇥ X ,  (G ⇥ U) is
dense in V . Hence, VX0 is the Zariski closure of VU in X0 ⇥ Pn . On the other
hand, by [8, Théorème 2.3.10], V 0 is the Zariski closure of V 0

U . Since VU = V 0

U ,
we conclude that VX0 = V 0. This completes the proof of part (a).

For notational convenience, we will replace X by X0 and thus assume that ⇡
is flat over X .

(b) Since � is G-equivariant, � � ↵ = � � pr2 : G ⇥ X ! X ! Hilb(n),
and thus the flat family of subvarieties of Pn over G ⇥ X corresponding to � � ↵ is
G ⇥ V . By the universal property of Hilb(n), ↵ lifts to � such that the following
diagram commutes:

G ⇥ V

id⇥⇡
✏✏

� // V
⇡

✏✏
G ⇥ X ↵

// X
� // Hilb(n).

Lifting the morphisms G ⇥ (G ⇥ X) ! X given by (g, h, x) ! ↵(g,↵(h, x)) and
(g, h, x) ! ↵(gh, x) to G ⇥ G ⇥ V ! V , and using the universal property of
Hilb(n), we see that � is a G-action on V .

(c) Let ⌘ be the generic point of X . By Lemma 7.2(b), V⌘ is geometrically re-
duced and has e geometrically irreducible components, each of dimension d. By [8,
Corollaire 2.3.5], V has e geometrically irreducible components, each of dimension
d. In particular, for any x 2 X , each geometrically irreducible component of the
fiber Vx is of dimension > d.

By [9, Théorème 12.2.4], the points x 2 X , such that Vx is geometrically
reduced and has exactly e geometrically irreducible components lie in a dense open
subvariety X0 ⇢ X . By part (b), ⇡ is G-equivariant morphism V ! X ; hence, X0
is G-invariant.

Since ⇡ : V ! X is flat, dim(Vx ) is constant, as x ranges over X . Since
dim(V⌘) = d, we conclude that dim(Vx ) = d for every x 2 X . As we saw above,
each geometrically irreducible component of Vx has dimension > d. Thus each
geometrically irreducible component of Vx has dimension d, and part (c) follows.

(d) By our assumption, for any x 2 X0, the orbit G · x has exactly e geometri-
cally irreducible components, each of dimension d. By part (c), the same is true of
Vx , and Vx is reduced. Thus G · x is Zariski dense in Vx for every x 2 X0.
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We are now ready to complete the proof of Theorem 1.1(a). Let � : X0 !

Hilb(n) be the morphism induced by the flat family ⇡ : VX0 ! X0, as in Lemma 7.3.
Set Z to be the image of �. It remains to show that �(x) = �(y) if and only if
G · x = G · y for any x, y 2 X0. By our construction, �(x) = �(y) if and only
Vx = Vy . We thus need to check that Vx = Vy if and only if G · x = G · y.

Indeed, suppose Vx = Vy . By Lemma 7.3(d), each orbit G · x , G · y contains
a dense open subvariety of Vx = Vy . Thus G · x \ G · y 6= ; and consequently,
G · x = G · y. Conversely, suppose G · x = G · y. Using Lemma 7.3(d) once again,
we see that Vx = G · x = G · y = Vy , as desired.
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