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Hartogs-type extension for unbounded sets in C2
via construction of Riemann domains

AL BOGGESS, ROMAN J. DWILEWICZ AND ZBIGNIEW SLODKOWSKI

Abstract. This paper generalizes the results in [2] about holomorphic extension
of CR functions from the boundary of a domain, and gives a class of counterex-
amples to the conjecture formulated in [2] and [4] that for tube-like domains� in
C2 which do not contain complex lines in the closure�, any CR function defined
on the boundary b� can be holomorphically extended to �. This investigation
has led to interesting new results about Hartogs-type extension for unbounded
domains in C2 via construction of Riemann domains. It should be noted that
the Hartogs-type theorems not only play an important role in Complex Analysis
of Several Variables, but are also significant in Algebraic Geometry and Partial
Differential Equations.

Mathematics Subject Classification (2010): 32V25 (primary); 32V10, 32D15,
32D26 (secondary).

1. Introduction

The classic Hartogs theorem roughly states that if� is a bounded domain inCn , for
n � 2, then any holomorphic function defined in a neighborhood of the boundary
b� can be holomorphically extended to the inside of �. Later on, this theorem was
generalized by Severi [29], Kneser [14], Fichera [9], Martinelli [17] to the assertion
that CR functions defined only on the boundary b� extend holomorphically to the
inside of �, see [25]. In the case of extensions of CR functions, there are some
differentiability assumptions on the boundary b�. If the holomorphic extension
concerns any CR function, we will call � a Hartogs-type domain.

In recent years there has been a renewed interest in Hartogs type theorems;
just to mention few: Merker and Porten [18–20], Porten [24], Coltoiu and Rup-
penthal [6], Ohsawa [21], Øvrelid and Vassiliadou [22], Harz-Shcherbina-Tomassi-
ni [12], and the authors [2–4]. The Hartogs-type theorems not only play an impor-
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tant role in Complex Analysis of Several Variables, but are also significant in Alge-
braic Geometry and Partial Differential Equations. Except for the standard version
of the Hartogs theorem, there are many variations, like Ivashkovich [13] for mero-
morphic maps into compact Kähler manifolds, Laurent-Thiebaut and Leiterer [15]
for differential forms, Palamodov [23] or Damiano-Struppa-A.Vajiac-M.Vajiac [7]
for systems of partial differential equations, or Sarkis [26] and Dwilewicz and
Merker [8] for complex projective spaces. The latter can be considered for com-
pact complex manifolds. In the case of complex projective spaces, the holomorphic
extension is proved for CR functions defined on compact real hypersurfaces, which
are globally minimal (any two points of the hypersurface can be connected by a
piece wise smooth curve which is tangent to the complex space). In view of some
deep work of Siu [27, 28], there is evidence to suggest that all smooth compact hy-
persurfaces inCPn are globally minimal. From these short comments it is clear that
Hartogs-type extension theorems are related to many deep and important problems
in various areas of mathematics. For historical remarks on the classical Hartogs
result [11], classical Bochner tube theorem [1] and its generalization for CR func-
tions [5], see [2] and Range [25].

Most of the previous work on the Hartogs theorem considered bounded do-
mains in Cn or domains inside compact manifolds, such as CPn . In a series of
papers [2–4] carried out by the authors, the Hartogs theorem in unbounded do-
mains has been considered. For an unbounded domain in Cn , there is an obvious
necessary condition for a domain to be of Hartogs type, namely that � cannot con-
tain any global analytic varieties. In this paper, we focus on C2 with coordinates
(z, w) and define ⇡(z, w) = z. In the case of tube-like domains� inC2, i.e., where
⇡(�) is bounded, then the necessary condition is equivalent to the requirement that
� cannot contain any complex line. In [2] and [4] we gave examples that show that
this condition is not sufficient for a domain to be of Hartogs-type. Also in these
papers we stated the following:
Conjecture. If a tube-like domain in C2 does not contain complex lines in its clo-
sure, then the domain is of Hartogs-type.

It should be mentioned that, in 1987, G. Lupacciolu [16] proved a theorem
related to this conjecture: Let � ⇢ Cn , n � 2, be an unbounded domain with
connected boundary @� of class C1. If we can find an algebraic hypersurface
W of Cn such that eW \

e� = ;, where tilde means the closure of these sets in
CPn � Cn

= CPn \ CPn�1
1

, then any continuous CR function on @� extends
holomorphically and uniquely to �.

In the already mentioned paper by Harz-Shcherbina-Tomassini [12], also re-
lated results to the conjecture were obtained. Since a formulation of the main re-
sults is pretty technical, we refer the reader to that paper. Here we only mention
that for each n � 2 the authors constructed (1) an unbounded closed pseudocon-
cave complete pluripolar set E in Cn which contains no analytic variety of positive
dimension, (2) an unbounded strictly pseudoconvex domain � in Cn , and (3) a
smooth CR function f on @� which has a single-valued holomorphic extension
exactly to the set � \ E .
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It appears that the above formulated conjecture does not hold and in this paper
we prove:

Theorem I (see Corollary 3.3). There exists a connected tube-like domain� inC2
with smooth C1 connected boundary b� and with the following properties:

(a) � is a Reinhardt domain with respect tow, i.e., if (z, w) 2 �, then (z, ei✓w) 2

� for all ✓ 2 R;
(b) the closure � of the domain does not contain complex lines;
(c) there is a smooth CR function on b� that cannot be holomorphically extended

to �, i.e., � is not of Hartogs type.

In [2], we stated a result that the above formulated conjecture is true for Reinhardt
domains with respect to w. However this result is not correct in view of Theorem I
above. The process of fixing this result uncovered some interesting ideas on analytic
extensions. Thus the purpose of this paper is two-fold:

(i) provide a class of counter examples to the conjecture formulated above;
(ii) provide an extra condition on the fibers ⇡�1(z)\(C2\�)which when satisfied

does ensure that � is of Hartogs type.

The extra condition in 2. is stated in terms of an equivalence relation defined on the
points in the fiber ⇡�1(z) \ (C2 \ �). Although the equivalence relation is a bit
technical to state in full generality (see sec. 4), this relation, in particular, implies
that any two points (z, w1) and (z, w2) which lie in the same connected component
of C2 \ � are equivalent. Using this equivalence relation, we show the following
results.

Theorem II (see Corollary 4.6). Let � be a domain in C2 which satisfies the
following conditions:

(a) there such is z⇤ that ⇡�1(z⇤)\(C2\�) has at least two non-equivalent points;
(b) for every z0 2 ⇡(C2 \ �) there is an open neighborhood V of z0 such that for

each component H of ⇡�1(V ) \ (C2 \ �), and for every z 2 V , all points in
⇡�1(z) \ H are equivalent.

Then there exists a holomorphic function defined on C2 \ � which cannot be holo-
morphically extended onto C2.
Theorem III (see Theorem 5.1). Let � be a tube-like domain in C2 which is
Reinhardt with respect to w. Moreover, assume � does not contain complex lines.
If for any z 2 ⇡(C2 \ �) all points of ⇡�1(z) \ (C2 \ �) are equivalent, then � is
a Hartogs-type domain.

The organization of the paper is as follows: after notation and definitions in
Section 2 we give a counterexample to the conjecture, in Section 3, based on the
construction of a Riemann domain in terms of (connected) components. The main
results of the paper are proved in Sections 4 and 5.
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2. Notation and definitions

In this paper we consider subsets and domains of C2 and also we will use the pro-
jection ⇡ : C2 �! C, ⇡(z, w) = z, where (z, w) are coordinates in C2.

If S is a subset of C2, the topology and differential structure (if applicable) on
S is induced by C2. A subset S0 ⇢ S is connected if any two points p0, p1 2 S0
can be joined by a C1-piecewise curve '(t), for 0  t  1, with '(t) 2 S0, subject
to '(0) = p0 and '(1) = p1. By a component, S0 ⇢ S, we mean a connected
subset of S such that S0 is both closed and open in S. By a domain in C2 we mean
an open and connected subset, sometimes we will also assume that the boundary is
connected and of some class Ck - the assumptions will always be specified.

We will use the notion of Riemann domain following Robert C. Gunning [10,
Chapter H, page 72]:

A Riemann domain of dimension n is a complex manifold M together with
a nonsingular holomorphic mapping P : M �! Cn , called the projection
of M to Cn .

And we will employ the following statement [10, Chapter H, page 72]:

If M is any Hausdorff topological space that admits a local homeomorphism
P : M �! Cn , then P induces on M the structure of a complex manifold,
the mapping P itself providing local coordinates on M . With this complex
structure, M is evidently a Riemann domain.

Finally, we will also use the following crucial property of one-dimensional Riemann
domains, see [10, Chapter P, page 171, Theorem 6]:

Any one-dimensional Riemann domain is holomorphically convex and has
the property that holomorphic functions separate points.

3. A counterexample to the conjecture

In this section we give a counterexample to the statement in [2], which has been
mentioned in the Introduction. The counterexample is based on the construction of
a Riemann domain of dimension n = 1. The proofs are sometimes only outlined
since more precise arguments are given in Section 4.

3.1. Construction of a Riemann domain based on (connected) components

We consider a domain W ⇢ C2 which satisfies the following condition:

For every z0 2 ⇡(W ) there is an open neighborhood V ⇢ C of z0 such
that for each component H of ⇡�1(V ) \ W , and for every z 2 V , the
fiber ⇡�1(z) \ H is connected or empty (see Figure 3.1).

(3.1)
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Figure 3.1. The domain W and the projection.

For example (see Figure 3.2), the domain

W =

n
(z, w) 2 C2; Re z <

�
|w|

2
� 1

�2o

does not satisfy (3.1) for z0 = 0. As another example, consider the spiral

S =

n�
ei |w|, w

�
2 C ⇥ C

o
=

n
(z, w); z = ei |w|

o

and let W be a tubular neighborhood of S of uniform (but small) thickness. Then
W satisfies (3.1).

z = ei|w|

Cz Cz 0

H

0 z z

1

1 Rez

|w||w|
Rez< (|w|2− 1)2

Figure 3.2. Examples.
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Define the following equivalence relation on W :

(z1, w1) ⇠ (z2, w2)

if and only if

8><
>:
z1 = z2 and
(z1, w1), (z2, w2) belong to the same

component of ⇡�1(z1) \ W.

(3.2)

Let eW be the set of equivalence classes of (z, w) 2 W , denoted [z, w]. Let e⇡ :

W �!
eW = W/ ⇠ be defined as e⇡(z, w) = [z, w]. Define P :

eW �! C by
P([z, w]) = z. Note that P �e⇡ = ⇡ as maps from C2 to C.

We endow eW with the quotient topology whereby a set U ⇢
eW is open if and

only ife⇡�1(U) is open inC2. We now describe the basis of neighborhoods for each
point Z0 = [z0, w0] 2

eW in this topology. Choose a neighborhood V ⇢ C of z0
satisfying condition (3.1), and let H be the unique component of ⇡�1(V )\W con-
taining (z0, w0). Then H is an open set in C2 and ⇡(H) is an open neighborhood
of z0 in C. Let {Vn} be a basis sequence of connected open neighborhoods in C of
z0 such that V � ⇡(H) � V 1 � V1 � V 2 � . . . ,

Vn � V n+1,
\
n
Vn = {z0}.

Denote Hn := ⇡�1(Vn) \ H , for n = 1, 2, . . . . In view of (3.1), ⇡�1(z) \ H is
connected and nonempty for each z 2 Vn ⇢ ⇡(H) and so [⇡�1(z) \ H ] is an ele-
ment of eW . SinceTn Vn = {z0}, we see that eHn = e⇡(Hn) is a local neighborhood
basis for Z0. It is also easy to show that P :

eW �! C is a local homeomorphism
and hence that eW is Hausdorff (details are in Section 4). Consequently, eW together
with the projection P , is a Riemann domain.

3.2. Non-extendable holomorphic functions

In order to get a non-extendable holomorphic function, we need another assump-
tion, namely:

There exists a point z⇤ 2 ⇡(W ) such that ⇡�1(z⇤) \ W has at least
two components. Equivalently, this means that P�1(z⇤) has at least two
distinct points, say [z⇤, w1] and [z⇤, w2] in eW .

(3.3)

Proposition 3.1. If W satisfies (3.1) and (3.3) then there is a holomorphic function
F : W �! C which cannot be extended to an entire function on C2.

Proof. We use the fact alluded to earlier in Gunning (see Section 2) namely the
fact that there is a holomorphic function f :

eW �! C which separates points ineW . Define F : W �! C by F(z, w) = f ([z, w]). Since all points (z, w) in
a connected component of ⇡�1(z) \ W lie in the same equivalence class, [z, w],
it is clear that F is well defined. It is also clear that F is independent of w on
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any connected component of ⇡�1(z) \ W since F(z, w) is the constant given by
f ([z, w]). If F had an extension F to all of C2, then F would have to be globally
independent of w. On the other hand, since W satisfies (3.3), eW has two distinct
points, [z⇤, w1] and [z⇤, w2] and so

F(z⇤, w1) = f ([z⇤, w1]) 6= f ([z⇤, w2]) = F(z⇤, w2)

and this contradicts the fact that F is independent of w. Thus, F has no extension
to C2.

3.3. Example of a Reinhardt domain which is not of Hartogs type

We consider domains W ⇢ C2 which are Reinhardt in w, i.e., if (z, w) 2 W , then
(z, ei✓w) 2 W for all ✓ 2 R.
Proposition 3.2. There is a Reinhardt domain in C2 satisfying the assumptions
(3.1) and (3.3) and such that:
(i) W � (C \ D(0, R)) ⇥ C for some 0 < R < +1;
(ii) the boundary of W is connected;
(iii) C2 \ W is connected.

Proof. We take the space C ⇥ R+ with coordinates (z = x + iy, s). In this space
we define a surface S, which will be the union of two surfaces S1 and S2.
Definition of S1. The surface S1 is defined as:

S1 = {(z, 2) 2 C ⇥ R+; z 2 C} \

⇢
(z = rei✓ , 2) 2 C ⇥ R+;

for 1  r  4, and 0  ✓ 

2⇡
3

�
,

S1 (in shaded gray) is illustrated in Figure 3.3.

S1

430 2
x

y
4

spiral starts 
here

1

2π
3

belong to S1
this part does not

3π
4

Figure 3.3. The domain S1.
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−1 0 1

|w|

3 42
S1⊂C×{2}plane

S2

−4 −3 −2

Figure 3.4. A spiral inside the cylinder |z| < 7.

Definition of S2. The surface S2 (see Figure 3.4) is defined in polar coordinates as

S2 =

⇢
(⇢ cos ✓, ⇢ sin ✓, 2+ ✓); for ⇢(✓) < ⇢ < R(✓), and 0  ✓ <

11
4

⇡

�
,

where the functions r(✓) and R(✓) are

r(✓) = 2�

2✓
3⇡

for 0  ✓ 

11
4

⇡

R(✓) = 3+

2✓
3⇡

for 0  ✓ 

11
4

⇡.

We note that the surface S = S1 [ S2 in Figure 3.4 is smooth (C1) except on the
line segment

{(z = r, w = 2); for 2 < r < 3}

that connects S1 and S2. Moreover S1 and S2 can be easily deformed near the
interval so that S1 [ S2 is smooth.

We define the domain W as the union of three pieces:

W = W1 [ W2 [ [(C \ D(0, 7)) ⇥ C],

where W1 and W2 are neighborhoods of S1 and S2, defined as follows:

W1=
�
(z, w)2C2; (z, 2) 2 S1, 1 < |w| < 3

 
W2=

⇢
(z, w)2C2;

�
z=⇢ei✓ , 2+ ✓

�
2 S2,

��
|w| � (2+ ✓)

�� < 1, 0✓ <
11
4

⇡

�
.
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By construction, the domain W satisfies the conditions (i)-(iii) of Proposition 3.2.
It remains to show that W satisfies the assumptions (3.1) and (3.3). Condition (3.3)
is satisfied by any z⇤ 2 C with 2 < |z⇤| < 3.

To check condition (3.1), take any point z0 2 C. For z0 we want to show that
there is an open neighborhood V of z0 such that for each connected component H
of ⇡�1(V ) \ W , and for every z 2 V , the fiber ⇡�1(z) \ H is either connected
or empty. If z0 2 C, then we can let V be any disc |z � z0| < �, where � > 0 is
sufficiently small. The proposition is proved.

Corollary 3.3. There exists a domain � in C2 with the following properties:
1. � is a connected tube-like domain with smooth C1 connected boundary b�;
2. � is a Reinhardt domain with respect to w;
3. the complement C2 \ � is connected;
4. the closure � of the domain does not contain complex lines;
5. there is a smooth CR function on b� that cannot be holomorphically extended
to �, i.e., � is not of Hartogs type.

Proof. It is “almost” enough to take� = C2 \W , where W was constructed in the
proof of Proposition 3.2. “Almost” means that we have to change a few things:
1� � is “slightly” bigger than C2 \ W , i.e., C2 \ W ⇢ �, in particular, b� ⇢ W ;
2� the boundary b� is “close” enough to bW in order to guarantee that no vertical
complex lines are contained in �;

3� the boundary b� is C1.
It is easy to achieve these properties, for instance we “shrink” the domain W by a
distance ", where " > 0 is sufficiently small. After shrinking the domain W , we
can smooth-out near the crease where W1 joins with W2 as well as the juncture of
W1 with the cylinder, and also the boundaries bW1 and bW2 which lie inside the
cylinder |z| < 7+ ".

To show that there exists a smooth CR function on b� that cannot be holomor-
phically extended to �, we take the holomorphic function constructed in Proposi-
tion 3.1 for the domain W constructed in Proposition 3.2. Obviously the restriction
of the function to the boundary b� is CR and it cannot be holomorphically extended
to �. The corollary is proved.

Remark 3.4. It should be noted that although the domain � from the corollary
looks complicated, topologically it is pretty simple. Namely it is easy to see that
• � is homeomorphic to D(0, 1) ⇥ C,
• C2 \ � is homeomorphic to [C \ D(0, 1)] ⇥ C, so in particular, the complement
of � is connected.

Finally we make some comments about the above corollary. In papers [2] and [4]
by the authors, we formulated by following:
Conjecture. A tube-like domain in C2 which does not contain complex varieties
in its closure is a Hartogs-type domain. (By complex varieties we mean closed
complex varieties in C2 of dimension at least one.)
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In view of Corollary 3.3, this conjecture is false and further conditions are
needed to ensure that a tube-like domain is Hartogs. The conjecture does not even
hold for Reinhardt domains in C2 with respect to one coordinate.

4. Construction of Riemann domains based on equivalent components

In the previous section we described an equivalence relation on the set W by stat-
ing that (z, w1) ⇠ (z, w2) if both points lie in the same connected component of
⇡�1(z) \ W (and points with different z-coordinates are not equivalent). We also
constructed a domain whose boundary is not of Hartogs type by ensuring that there
were at least two non-equivalent points (z, w1) 6⇠ (z, w2) in W . One might guess
that if W has the property that if (z, w1) ⇠ (z, w2) for all such points in W , then
its boundary is of Hartogs type. This result is true for Reinhardt domains with re-
spect to the w-variable. In fact, this result holds for domains with a weaker form of
equivalence which we now describe.

4.1. Definition of conjugate and equivalent components

Let W be a domain in C2 and ⇡ : W �! C the projection ⇡(z, w) = z.
We say that two points (z, w1) and (z, w2) are conjugate if there are two C1

paths

t !

�
zt , wt

↵

�
= (z(t), w↵(t)) 2 W, for ↵ = 1, 2 and t 2 [0, 1]

such that
z↵(0) = z, w↵(0) = w↵ for ↵ = 1, 2

w1(t) = w2(t) for t near 1,
see Figure 4.1. Note that it is required that the z-coordinate of both path functions
be the same. In particular, if z1 6= z2, then (z1, w1) and (z2, w2) are not conju-
gate. Let Zt↵ be the component of ⇡�1(z(t)) containing (zt , wt

↵). Note that from

zt

Z1

Z2 Z2
t

Z1
t

(zt, w2)t

(zt, w1)t

Z1 = Z2for t near 1
t t

Figure 4.1. Conjugate components.
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the definition of the paths, it may be the case that Zt1 \ Zt2 is empty for small t
but that one must have Zt1 = Zt2 for t near 1. It is also clear that any two points
which are equivalent as defined in Section 3 are conjugate via this definition (in-
deed just connect (z, w1) and (z, w2) to each other along a path that only varies
in w).

A

equivalent but not conjugate components

conjugate components

C
z

B
conjugate components

π −1(z)

Figure 4.2. Illustration of conjugate and equivalent components.

The above definition of conjugation is reflexive and symmetric, but it is not transi-
tive. For example in Figure 4.2, A is conjugate to B and B is conjugate to C , but
A is not conjugate to C because any two paths starting at A and C and connecting
to a common point cannot have the same z-component. To obtain an equivalence
relation, define (z, w1) ⇠ (z, w2) if there is a finite chain of points

(z, w1) = (z, ⇣1), (z, ⇣2), . . . , (z, ⇣N ) = (z, w2) 2 W

such that (z, ⇣ j ) is conjugate to (z, ⇣ j+1) for j = 1, . . . , N � 1. It is easy to show
that “⇠” is transitive and hence is an equivalence relation.

Let bW be the set of all equivalence classes ofW under the above defined equiv-
alence relation. Denote by b⇡ : W �!

bW the natural projection b⇡(z, w) = [z, w],
which the equivalence class of (z, w), and define P :

bW �! C as P([z, w]) = z.
We endow bW with the quotient topology, i.e., bU ⇢

bW is open if b⇡�1(bU) is open
in W .

4.2. Examples

Example 4.1. In Figure 4.2 and Figure 4.3 there are components which are conju-
gate, components which are equivalent but not conjugate, and components which
are not equivalent.
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inequivalent

zCz plane

π −1(z)

components

Figure 4.3. Inequivalent components.

Example 4.2. In Figure 4.4 we construct a Reinhardt domain W in C2 such that
there exists z0 2 ⇡(W ) and there exists a component Y0 of ⇡�1(z0) with the fol-
lowing property:

circular tubes
removed

Cz

componentsinequivalent

z0

π −1(z)

π −1(z0)

|w|

Y0

Figure 4.4. Inequivalent components in a neighborhood.

For any neighborhood V of z0, let H = HV be a component of ⇡�1(V ) containing
Y0, then there exists z 2 V , for z 6= z0, such that ⇡�1(z) \ H has inequivalent
points.
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4.3. Properties of the set of equivalence classes of components

In this subsection we make the following additional assumption about the set W ⇢

C2. Let W be an open connected subset of C2 with connected boundary bW and
connected complement C2 \ W . Moreover let W satisfy the following condition:

For every z0 2 ⇡(W ), there is an open set V of z0 in C such that for
each component H of ⇡�1(V ) \ W , and for every z 2 V , all points in
⇡�1(z) \ H are equivalent.

(4.1)

Remark 4.3. We would like to justify the assumption (4.1) imposed on the domain
W . Later, we need to ensure that the quotient topology on bW is locally homeomor-
phic to an open domain inC, and also that bW is Hausdorff. Without the assumption
(4.1), as Example 4.2 shows, there will be a problem to prove these properties.

Lemma 4.4. Under the assumptions on the domain W , including (4.1), we have:
(i) there is a natural projection P :

bW �! C onto ⇡(W ), where ⇡ : C2 �! C,
is given by ⇡(z, w) = z;

(ii) P is a local homeomorphism;
(iii) bW is a Hausdorff space;
(iv) bW is a Riemann domain.

Proof. If z 2 ⇡(W ), then ⇡�1(z) \W is not empty, say (z, w) 2 ⇡�1(z) \W , and
the point (z, w) determines the class [z, w] 2

bW . Clearly, P([z, w]) = z, so (i) is
proved.

To prove the second part of the lemma, let bZ0 2
bW with P(bZ0) = z0. By

assumption, there is a neighborhood V of z0 such that, for the component H con-
taining Z0 and for each z 2 V , all points of H \ ⇡�1(z) are equivalent. This
implies that the projection ⇡ is one-to-one from (H \ ⇡�1(V ))/⇠ onto V \ ⇡(H)
and actually a homeomorphism, taking into account the quotient topology on bW .

We will prove that bW is Hausdorff. Take two distinct points bZ1 = [z1, w1] andbZ2 = [z2, w2]. There are two cases to consider: (1) z1 6= z2 and (2) z1 = z2 = z0
but [z0, w1] 6= [z0, w2].

If P(bZ1) = z1 6= z2 = P(bZ2), then clearly we can find open disjoint neigh-
borhoods V1 of z1 and V2 of z2 in C. The sets P�1(V1) and P�1(V2) are open and
disjoint neighborhoods of bZ1 and bZ2.

So now we consider the case where bZ1 = [z0, w1] and bZ2 = [z0, w2], withbZ1 6=
bZ2, as in Figure 4.5. We can find an open neighborhood V of z0 and com-

ponents H1 and H2 in ⇡�1(V ) \ W containing (z0, w1) and (z0, w2), respectively.
The components H1 and H2 are disjoint, because otherwise, if H1 = H2 =: H
and in each fiber ⇡�1(z) \ H all points are equivalent, we get contradiction with
the assumption bZ1 6=

bZ2. We claim that there is a neighborhood V0 of z0 in C
such that [H1 \ ⇡�1(V0)] and [H2 \ ⇡�1(V0)] are disjoint. If not, then for any
neighborhood U of z0 in C there is z = zU , zU 2 U , and there are two points
(zU , ⇣1) 2 ⇡�1(z) \ H1 and (zU , ⇣2) 2 ⇡�1(z) \ H2 that are equivalent, i.e.,⇣

zU , ⇣1
⌘

⇠

⇣
zU , ⇣2

⌘
.
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not equivalent componentsequivalent components

U

π −1(zU) π −1(z0)

(zU, ζ1)

(zU, ζ2)

(z0, w1)
(z0, w1)

(z0, w2)

(z0, w2)

zU z0

Figure 4.5. Illustration of the proof that bW is Hausdorff; actually the situation in the
figure cannot take place under the assumptions of the theorem and whenU is sufficiently
small.

On the other hand, if the neighborhoodU is sufficiently small, using the assumption
(4.1), we can find two curves

(z(t), w1(t)) and (z(t), w2(t)) for 0  t  1

that join the points⇣
zU , ⇣1

⌘
with

�
z0, ew1� and

⇣
zU , ⇣2

⌘
with

�
z0, ew2�,

for some choice of ew1, ew2 with�
z0, ew1� ⇠ (z0, w1) and

�
z0, ew2� ⇠ (z0, w2).

So we get (z0, w1) ⇠ (z0, w2) by transitivity and this implies bZ1 =
bZ2, contrary to

the assumption. Therefore we conclude that the open sets corresponding to [H1 \

⇡�1(V0)] and [H2 \ ⇡�1(V0)] are disjoint neighborhoods of bZ1, bZ2 respectively
and hence bW is Hausdorff.

Using points (ii) and (iii) just proved, we can introduce a complex structure
on bW using the local homeomorphism P . Consequently, bW is a one-dimensional
complex manifold and the mapping P is holomorphic. Also the natural projectionb⇡ : W �!

bW is holomorphic.
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4.4. Construction of a non-extendable holomorphic function
and domains which are not of Hartogs type

In this section we prove the following result analogous to Proposition 3.1.

Theorem 4.5. Suppose that W is a connected open subset of C2 with connected
boundary bW and connected complement. Also assume that W satisfies condition
(4.1) from Subsection 4.3, and additionally there is z⇤ such that ⇡�1(z⇤)\W has at
least two inequivalent points. Then there is a holomorphic function f : W �! C
that cannot be extended to a holomorphic function F : ⇡�1(⇡(W )) �! C, in
particular, F cannot be extended to an entire function on C2.

Proof. The proof here is very similar to the one we gave in Subsection 3.2. By
assumption, there is a z⇤ 2 C and w1, w2 2 C such that [z⇤, w1], [z⇤, w2] 2

bW
with [z⇤, w1] 6= [z⇤, w2]. By Gunning [10, Theorem 6 in Chapter P, page 171],
there is a holomorphic function f on bW with f ([z⇤, w1]) 6= f ([z⇤, w2]).

Define the function F : W �! C as

F(z, w) = f ([z, w]), that is F = f �b⇡ on bW .

The function F is well defined on W and is holomorphic since f and b⇡ are holo-
morphic. Moreover, from the definition of the function F and from the condition
(4.1), the function F is locally independent of w, therefore

@F
@w

(z, w) = 0.

We conclude now that F cannot have a holomorphic extension G : ⇡�1(⇡(W ))�!

C. This extension would satisfy @G
@w ⌘ 0, and so G is independent of w,

G(z, w) = G(z) for z 2 ⇡(W ).

This implies
f
⇣⇥
z⇤, w1

⇤⌘
= G

�
z⇤
�

= f
⇣⇥
z⇤, w2

⇤⌘

which contradicts f ([z⇤, w1]) 6= f ([z⇤, w2]).

Corollary 4.6. Let � be a domain in C2 with connected smooth boundary and
which satisfies the conditions:

(a) for every z0 2 ⇡(C2 \ �) there is an open neighborhood V of z0 such that for
each component H of ⇡�1(V ) \ (C2 \ �), and for every z 2 V , all points in
⇡�1(z) \ H are equivalent;

(b) there is z⇤ such that ⇡�1(z⇤)\(C2\�) has at least two non-equivalent points.

Then there exists a holomorphic function defined on C2 \ � which cannot be holo-
morphically extended onto C2.
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Proof. Since � is connected and the smooth boundary b� is connected, it is an
easy exercise to prove that the complementC2 \� is connected. SinceW = C2 \�
satisfies the conditions (a) and (b), we can use Theorem 4.5 to find a holomorphic
function on W which cannot be holomorphically extended to ⇡�1(⇡(W )), in par-
ticular to C2, which is what we wanted to prove.

5. Reinhardt domains which are of Hartogs type

In this section we give a sufficient condition for a Reinhardt tube-like domain to be
of Hartogs type.

Theorem 5.1. Let � ⇢ C2 be a tube-like domain along the w-axis, i.e., ⇡(�) is
bounded where ⇡(z, w, ) = z, with the following properties:

1. � is open, connected and with smooth C1 connected boundary M = b�;
2. ⇡(�) ⇢ ⇡

�
C2 \ �

�
;

3. � is a Reinhardt domain with respect to w.

If for any z 2 ⇡(C2 \�) all points of ⇡�1(z)\ (C2 \�) are equivalent, then� is a
Hartogs-type domain, i.e., any smooth (C1) CR function f defined on b� can be
holomorphically extended to �.

Proof. Let us start with some elementary observations. We have

⇡(�) ⇢ ⇡(�),

and also we note that ⇡(�) and ⇡(C2 \ �) are open sets. Assumption 1. implies
that the complement of � is connected, and assumption 2. implies that ⇡(C2 \

�) = C. The projection ⇡(�) is bounded but not necessarily compact. If R >
0 then ⇡

�
� \ {|w|  R}

�
is compact. Since � is a Reinhardt tube-like domain

with respect to w, the complement C2 \ � is also a Reinhardt domain with respect
to w.

Let f be a C1 CR function defined on the boundary M = b�. Since � is
a tube-like domain, we know that it can be represented as the difference of two
holomorphic functions

f =

�
f +

� f �
���
b� , f +

2H (�)\C1(�), f �

2H
�
C2\�

�
\C1

�
C2\�

�
. (5.1)

Take the function f � defined on C2 \ � and take a point P = (z0, w1) 2 C2 \ �
and expand it into the Laurent series with respect to w for small |z � z0| and small��
|w| � |w1|

��,
f �(z, w) =

1X
j=�1

a j (z)w j . (5.2)

We note that the coefficients a j (z) are holomorphic functions for z near z0.
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x

y

Ω

z0

γ

Q

P A

Cz

|w|

π (Ω)

π (A)

Figure 5.1. Tube-like Reinhardt domain and curves joining the points A, P and Q.

Suppose Q = (z0, w2) is another point in the same fiber, ⇡�1(z0), as P (see Fig-
ure 5.1). A Laurent series expansion of f � for z near z0 and small

��
|w| � |w2|

��
gives

f �(z, w) =

1X
j=0

b j (z)w j . (5.3)

We claim a j (z) = b j (z) for z near z0. We use the property that (z0, w1) and
(z0, w2) are equivalent. Since equivalent points are endpoints of a finite chain of
conjugate points, we can assume that (z0, w1) and (z0, w2) are conjugate. There-
fore, there are two paths, C1 and C2, of the form

C1 : [0, 1] 3 t �! (z(t), w1(t)), P = (z(0), w1(0)) = (z0, w1)

C2 : [0, 1] 3 t �! (z(t), w2(t)), Q = (z(0), w2(0)) = (z0, w2)

such that w1(t) = w2(t) for t near t = 1. For j = 1, 2, let S j (t) be the component
of ⇡�1(z(t)) in C2 \ � containing (z(t), w j (t)). Clearly S1(t) = S2(t) for t near
t = 1. By the uniqueness of the Laurent coefficients, we obtain that a j (z) = b j (z)
for z near z(1). By unique continuation, we see that a j ⌘ b j in a neighborhood of
the entire path {z(t); 0  t  1}. In particular a j ⌘ b j near z0.

Having shown that the Laurent coefficients a j and b j are the same, we will
now show that f �

2 H(C2 \ �) extends to an entire function.
Let A be a point in C2 \ � with ⇡(A) /2 ⇡(�) (see Figure 5.1). Let z0 be

a point in ⇡(�). Since ⇡(�) ⇢ ⇡(C2 \ �) (by assumption), we can find a point
P 2 C2 \ � such that ⇡(P) = z0. Since C2 \ � is connected, there is a smooth
curve � joining point A with point P .
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For z /2 ⇡(�) the function w 7! f �(z, w) is entire and thus the Laurent coef-
ficient functions a j (z) = 0 for j < 0. By unique continuation and the uniqueness
of Laurent coefficients (which we have just proved), we conclude that a j (z) = 0
for j < 0 for (z, w) near the entire path � . In particular, a j (z) = 0 for j < 0 and z
near z0. Since z0 2 ⇡(�) was arbitrarily chosen, we conclude that a j ⌘ 0 on ⇡(�),
for j < 0, and hence

f �(z, w) =

1X
j=0

a j (z)w j , (5.4)

is entire on C2.
In view of (5.1), f can be extended to� as f +

� f �
2 H(�), thus establishing

that � is a Hartogs domain.
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