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The monodromy representation
of Lauricella’s hypergeometric function FC

YOSHIAKI GOTO

Abstract. We study the monodromy representation of the system EC of differ-
ential equations satisfied by Lauricella’s hypergeometric function FC of m vari-
ables. Our representation space is the twisted homology group associated with
an integral representation of FC . We find generators of the fundamental group
of the complement of the singular locus of EC , and we give relations for these
generators. We express the circuit transformations along these generators, using
the intersection forms defined on the twisted homology group and its dual.

Mathematics Subject Classification (2010): 33C65 (primary); 32S40, 14F35
(secondary).

1. Introduction

Lauricella’s hypergeometric series FC of m variables x1, . . . , xm with complex pa-
rameters a, b, c1, . . ., cm is defined by

FC(a, b, c; x) =

1X
n1,...,nm=0

(a, n1 + · · · + nm)(b, n1 + · · · + nm)

(c1, n1) · · · (cm, nm)n1! · · · nm !

xn11 · · · xnmm ,

where x = (x1, . . . , xm), c = (c1, . . . , cm), c1, . . . , cm 62 {0,�1,�2, . . .}, and
(c1, n1) = 0(c1 + n1)/0(c1). This series converges in the domain

DC :=

(
(x1, . . . , xm) 2 Cm

����
mX
k=1

p
|xk | < 1

)
,

and admits an Euler-type integral representation (2.3). The system EC(a, b, c) of
differential equations satisfied by FC(a, b, c; x) is a holonomic system of rank 2m
with the singular locus S given in (2.1). There is a fundamental system of solutions
to EC(a, b, c) in a simply connected domain in DC � S, which is given in terms of
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Lauricella’s hypergeometric series FC with different parameters; see (2.2) for their
expressions.

In the case m = 2, the series FC(a, b, c; x) and the system EC(a, b, c) are
called Appell’s hypergeometric series F4(a, b, c; x) and system E4(a, b, c) of dif-
ferential equations. The monodromy representation of E4(a, b, c) has been studied
from several different points of view, see [5,6,8,12]. On the other hand, there were
few results of the monodromy representation for general m. In [2] Beukers studies
the monodromy representation of A-hypergeometric system and gives representa-
tion matrices for many kinds of hypergeometric systems as examples of his main
theorem. However, it seems that his method is not applicable for Lauricella’s FC .

In this paper we study the monodromy representation of EC(a, b, c) for gen-
eral m, by using twisted homology groups associated with the integral represen-
tation (2.3) of FC(a, b, c; x) and the intersection form defined on the twisted ho-
mology groups. Our consideration is based on the method for Appell’s E4(a, b, c)
in [5].

Let X be the complement of the singular locus S. The fundamental group of
X is generated by m + 1 loops ⇢0, ⇢1, . . . , ⇢m which satisfy

⇢i⇢ j = ⇢ j⇢i (1  i, j  m), (⇢0⇢k)
2

= (⇢k⇢0)
2 (1  k  m).

Here, ⇢k (1  k  m) turns the divisor (xk = 0), and ⇢0 turns the divisor

Y
"1,...,"m=±1

 
1+

mX
k=1

"k
p

xk

!
= 0

around the point
⇣
1
m2 , . . . ,

1
m2

⌘
. In the appendix, we show this claim by applying

the Zariski theorem of Lefschetz type. Note that, for m = 2, an explicit expression
of the fundamental group of X is given in [8].

We thus investigate the circuit transformationsMi along ⇢i , for 0  i  m.
We use the 2m twisted cycles {1I }I⇢{1,...,m} constructed in [4], which represent
elements in the m-th twisted homology group and correspond to the solutions (2.2)
to EC(a, b, c). We obtain the representation matrix ofMk (1  k  m) with
respect to the basis {1I }I easily. The eigenvalues ofMk are exp(�2⇡

p

�1ck) and
1. Both eigenspaces are 2m�1-dimensional and spanned by half subsets of {1I }I .
On the other hand, it is difficult to representM0 directly with respect to the basis
{1I }I . Thus we study the structure of the eigenspaces ofM0. We find out that it is
quite simple; our main theorem (Theorem 5.6) is stated as follows. The eigenvalues
ofM0 are (�1)m�1 exp(2⇡

p

�1(c1 + · · · + cm � a � b)) and 1. The eigenspace
W0 of eigenvalue (�1)m�1 exp(2⇡

p

�1(c1+· · ·+cm �a�b)) is one-dimensional
and spanned by the twisted cycle D1···m defined by some bounded chamber. Further,
the eigenspace W1 of eigenvalue 1 is characterized as the orthogonal complement
of W0 = CD1···m with respect to the intersection form.

As a corollary, we express the linear mapMi (0  i  m) by using the
intersection form. Our expressions are independent of the choice of a basis of the
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twisted homology group. To representMi by a matrix with respect to a given basis,
it is sufficient to evaluate some intersection numbers. In particular, the images
of any twisted cycles byM0 are determined only from the intersection number
with the eigenvector D1···m ; see Corollary 5.7. In Section 6, we give the simple
representation matrix ofMi with respect to a suitable basis, and write down the
examples for m = 2 and m = 3.

The irreducibility condition of the system EC(a, b, c) is known to be

a �

X
i2I

ci , b �

X
i2I

ci 62 Z

for any subset I of {1, . . . ,m}, as in [7]. Throughout this paper, we assume that the
parameters a, b, and c = (c1, . . . , cm) are generic, which means that we add other
conditions to the irreducibility condition; for details, refer to Remark 7.6.

ACKNOWLEDGEMENTS. The author thanks Professor Keiji Matsumoto for his use-
ful advice and constant encouragement. He is also grateful to Professor Jyoichi
Kaneko for helpful discussions. He thanks the referee for suggesting some im-
provement in the previous version of the article.

2. Differential equations and integral representations

In this section we collect some facts about Lauricella’s FC and the system EC of
differential equations that it satisfies.

Notation 2.1. (i) Throughout this paper, the letter k always stands for an index
running from 1 to m. If no confusion is possible,

Pm
k=1 and

Qm
k=1 are often

simply denoted by
P
(or

P
k) and

Q
(or

Q
k), respectively. For example,

under this convention FC(a, b, c; x) is expressed as

FC(a, b, c; x) =

1X
n1,...,nm=0

�
a,
P
nk
� �
b,
P
nk
�

Q
(ck, nk) ·

Q
nk !

Y
xnkk .

(ii) For a subset I of {1, . . . ,m}, we denote the cardinality of I by |I |.

Let @k (1  k  m) be the partial differential operator with respect to xk . We set
✓k := xk@k , ✓ :=

P
k ✓k . Lauricella’s FC(a, b, c; x) satisfies differential equations

[✓k(✓k + ck � 1) � xk(✓ + a)(✓ + b)] f (x) = 0, 1  k  m.

The system generated by them is called Lauricella’s hypergeometric system
EC(a, b, c) of differential equations.
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Fact 2.2 ([7, 11]). The system EC(a, b, c) is a holonomic system of rank 2m with
the singular locus

S :=

 Y
k
xk · R(x) = 0

!
⇢ Cm

R(x1, . . . , xm) :=

Y
"1,...,"m=±1

 
1+

X
k

"k
p

xk

!
.

(2.1)

If c1, . . . , cm 62 Z, then the vector space of solutions to EC(a, b, c) in a simply
connected domain in DC � S is spanned by the following 2m functions:

f I :=

Y
i2I

x1�cii · FC

 
a + |I | �

X
i2I

ci , b + |I | �

X
i2I

ci , cI ; x

!
, (2.2)

where I is a subset of {1, . . . ,m}, and the row vector cI = (cI1, . . . , c
I
m) of Cm is

defined by

cIk =

(
2� ck (k 2 I )
ck (k 62 I ).

Note that the solution (2.2) for I = ; is f (= f;) = FC(a, b, c; x), and R(x) is an
irreducible polynomial of degree 2m�1 in x1, . . . , xm .

Fact 2.3 (Euler-type integral representation [1, Example 3.1]). For sufficiently
small positive real numbers x1, . . . , xm , if c1, . . . , cm, a �

P
ck 62 Z, then

FC(a, b, c; x) admits the following integral representation:

FC(a,b, c; x)=
0(1� a)Q

0(1� ck) · 0
�P

ck � a � m � 1
�

·

Z
1

Y
t�ckk ·

⇣
1�
X

tk
⌘P ck�a�m

·

✓
1�
X xk

tk

◆
�b
dt1^· · ·^dtm,

(2.3)

where 1 is the twisted cycle made by an m-simplex [1, Sections 3.2-3].

This twisted cycle coincides with1; = 1 introduced in Section 4. In the case
of m = 2, we show a figure of 1 in Example 4.1.

3. Twisted homology groups and local systems

For twisted homology groups and the intersection form between twisted homology
groups, refer to [1, 13], or [4, Section 3].
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Put X := Cm
� S and

v(t) := 1�

X
k
tk, w(t, x) :=

Y
k
tk ·

 
1�

X
k

xk
tk

!
,

X :=

(
(t, x) 2 Cm

⇥ X

�����
Y
k
tk · v(t) · w(t, x) 6= 0

)
.

There is a natural projection

pr : X ! X; (t, x) 7! x,

and we define Tx := pr�1(x) for any x 2 X . We regard Tx as an open submanifold
of Cm by the coordinates t = (t1, . . . , tm). We consider the twisted homology
groups on Tx with respect to the multivalued function

ux (t) :=

Y
t1�ck+bk · v(t)

P
ck�a�m+1w(t, x)�b

=

Y
t1�ckk ·

⇣
1�

X
tk
⌘P ck�a�m+1

·

✓
1�

X xk
tk

◆
�b

(the second equality holds under the coordination of branches). We denote the k-th
twisted homology group by Hk(Tx , ux ), and the locally finite one by Hl f

k (Tx , ux ).
Facts 3.1 ([1, 4]).

(i) Hk(Tx , ux ) = 0, Hl f
k (Tx , ux ) = 0, for k 6= m.

(ii) dim Hm(Tx , ux ) = 2m .
(iii) The natural map Hm(Tx , ux ) ! Hl f

m (Tx , ux ) is an isomorphism (the inverse
map is called the regularization).

Hereafter, we identify Hl f
m (Tx , ux ) with Hm(Tx , ux ), and call an m-dimensional

twisted cycle by a twisted cycle simply. Note that the intersection form Ih is defined
between Hm(Tx , ux ) and Hm(Tx , u�1

x ).
For x, x 0

2 X and a path ⌧ in X from x to x 0, there is the canonical isomor-
phism

⌧⇤ : Hm(Tx , ux ) ! Hm(Tx 0, ux 0).

Hence the family
H :=

[
x2X

Hm(Tx , ux )

forms a local system on X .
Let � be a twisted cycle in Tx for a fixed x . If x 0 is a sufficiently close point

to x , there is a unique twisted cycle �0 such that
R
�0 ux 0' is obtained by the analytic

continuation of
R
� ux', where

' :=

dt1 ^ · · · ^ dtmQ
tk ·

�
1�

P
tk
� .
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Thus we can regard the integration
R
� ux' as a holomorphic function in x . Fact 2.3

means that the integral
R
1 ux' represents FC(a, b, c; x) modulo Gamma factors.

Let Sol be the sheaf on X whose sections are holomorphic solutions to EC(a, b, c).
The stalk Solx at x 2 X is the space of local holomorphic solutions near x .
Fact 3.2 ([4]). For any x 2 X ,

8x : Hm(Tx , ux ) ! Solx ; � 7!

Z
�
ux'

is an isomorphism.

4. Twisted cycles corresponding to the solutions f I

Fact 2.2 implies that Solx is aC-vector space of dimension 2m and spanned by f I ’s,
for x 2 DC � S. In [4], we construct twisted cycles1I that correspond to f I , for all
subsets I of {1, . . . ,m}. In this section, we review the construction of 1I briefly.

We construct the twisted cycles 1I 2 Hm(Tx , ux ), for fixed sufficiently small
positive real numbers x1, . . . , xm . We set J := I c = {1, . . . ,m} � I . We consider

MI := Cm
�

 [
k

(sk = 0) [ (vI = 0) [ (wI = 0)

!
,

where vI and wI are polynomials in s1, . . . , sm defined by

vI :=

Y
i2I

si ·

 
1�

X
i2I

xi
si

�

X
j2J

s j

!
, wI :=

Y
j2J

s j ·

 
1�

X
i2I

si �

X
j2J

x j
s j

!
.

Let uI be a multivalued function on MI defined as

uI :=

Y
k
sCkk · vAI · wB

I ,

where

A :=

X
ck � a � m + 1, B := �b,

Ci := ci � 1� A (i 2 I ), C j := 1� c j � B ( j 2 J ).

Note that if I = ;, then u; and M; coincide with ux and Tx in Section 3, re-
spectively. We construct the twisted cycle 1̃I in MI with respect to uI . Let " be
a positive real number satisfying " < 1

m+1 and xk < "2

m (we use the assumption
"1 = · · · = "m = " in [4, Section 4]). We consider the closed subset

�I :=

8><
>:(s1, . . . , sm) 2 Rm

���� sk � ",

1�

P
i2I

si � ",

1�

P
j2J

s j � "

9>=
>;
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which is a direct product of an |I |-simplex and an (m � |I |)-simplex, and is con-
tained in the bounded domain8><

>:(s1, . . . , sm) 2 Rm
���� sk > 0,

1�

P
i2I

xi
si �

P
j2J

s j > 0,

1�

P
i2I

si �

P
j2J

x j
s j > 0

9>=
>; .

The orientation of �I is induced from the natural embedding Rm
⇢ Cm . We con-

struct a twisted cycle from �I ⌦ uI . Set L1 := (s1 = 0), . . . , Lm := (sm =

0), Lm+1 := (1 �

P
i2I si = 0), Lm+2 := (1 �

P
j2J s j = 0), and let U(⇢ Rm)

be the bounded chamber surrounded by L1, . . . , Lm, Lm+1, Lm+2, then �I is con-
tained inU . Note that we do not consider the hyperplane Lm+1 (respectively Lm+2),
when I = ; (respectively I = {1, . . . ,m}). For K ⇢ {1, . . . ,m + 2}, we consider
LK := \p2K L p, UK := U \ LK and TK := "-neighborhood of UK . Then we
have

�I = U �

[
K
TK .

Using these neighborhoods TK , we can construct a twisted cycle 1̃I in the same
manner as [1, Section 3.2.4].

We briefly explain the expression of 1̃I . For p = 1, . . . ,m + 2, let l p be the
(m � 1)-face of �I given by �I \ Tp, and let Sp be a positively oriented circle with
radius " in the orthogonal complement of L p starting from the projection of l p to
this space and surrounding L p. Then 1̃I is written as

�I ⌦ uI +

X
;6=K⇢{1,...,m+2}

Y
p2K

1
dp

·

 ✓\
p2K

lp
◆

⇥

Y
p2K

Sp

!
⌦ uI ,

where

di := �i � 1(i 2 I ) d j := � �1
j � 1( j 2 J )

dm+1 := ��1
� 1 dm+2 := ↵�1

Y
�k � 1

and ↵ := e2⇡
p

�1a, � := e2⇡
p

�1b, �k := e2⇡
p

�1ck . We often omit “⌦uI ”.
Example 4.1. In the case of m = 2 and I = ;, we have

1̃ =� +

S1 ⇥ l1
1� � �1

1
+

S2 ⇥ l2
1� � �1

2
+

S4 ⇥ l4
1� ↵�1�1�2

+

S1 ⇥ S2�
1�� �1

1
��
1�� �1

2
�+ S2 ⇥ S4�

1�� �1
2
��
1�↵�1�1�2

�+ S4 ⇥ S1�
1�↵�1�1�2

��
1�� �1

1
� ,

where the 1-chains l j satisfy @� = l1 + l2 + l4 (see Figure 4.1), and the orientation
of each direct product is induced from those of its components. Note that the face
l3 does not appear in this case.
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∆̃

σε

ε

ε

1− s1 − s2 = 0

s1s2 − x1s2 − x2s1 = 0  

σ

l2

l4l1

Figure 4.1. 1̃(= 1) for m = 2.

Using the bijection

◆I : MI ! Tx ; ◆I (s1, . . . , sm) := (t1, . . . , tm),

ti =

xi
si

(i 2 I ), t j = s j ( j 2 J ),

we define the twisted cycle 1I in Tx (= M;) as 1I := (�1)|I |(◆I )⇤(1̃I ). Note that
◆I (�I ) is contained in the bounded domain {(t1, . . . , tm) 2 Rm

| t1, . . . , tm, v(t),
w(t, x) > 0} which is denoted by D1···m in Section 5.

We regard {1I }I as the 2m twisted cycles 1I ’s arranged as (1,11,12, . . . ,
1m,112,113, . . . ,11···m). For a twisted cycle � with respect to ux , we denote by
�_ the twisted cycle with respect to u�1

x , which is defined by the same construction
as used for �.
Fact 4.2 ([4]). We have

8x (1I )=

Q
i2I

0(ci �1) ·
Q
j 62I

0(1�c j ) ·0
✓P

k
ck �a�m+1

◆
0(1�b)

0

✓P
i2I

ci �a� |I |+1
◆

0

✓P
i2I

ci �b� |I |+1
◆ · f I .

The intersection matrix H :=

�
Ih(1I ,1

_

I 0)
�
I,I 0 is diagonal. Further, the (I, I )-

entry HI,I of H is

HI,I = (�1)|I | ·

Q
j 62I

� j ·

✓
↵ �

Q
i2I

�i

◆✓
� �

Q
i2I

�i

◆

Q
k
(�k � 1) ·

✓
↵ �

Q
k

�k

◆
(� � 1)

.

Therefore, the 1I ’s form a basis of Hm(Tx , ux ).
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5. Monodromy representation

Put ẋ :=

⇣
1
2m2 , . . . ,

1
2m2

⌘
2 X . For ⇢ 2 ⇡1(X, ẋ) and g 2 Solẋ , let ⇢⇤g be the

analytic continuation of g along ⇢. Since ⇢⇤g is also a solution to EC(a, b, c), the
map ⇢⇤ : Solẋ ! Solẋ ; g 7! ⇢⇤g is a C-linear automorphism which satisfies
(⇢ · ⇢0)⇤ = ⇢0

⇤
� ⇢⇤ for ⇢, ⇢0

2 ⇡1(X, ẋ). Here, the composition ⇢ · ⇢0 of loops ⇢
and ⇢0 is defined as the loop going first along ⇢, and then along ⇢0. We thus obtain
a representation

M0

: ⇡1(X, ẋ) ! GL(Solẋ )
of ⇡1(X, ẋ), where GL(V ) is the general linear group on aC-vector space V . Since
we can identify Solẋ with Hm(Tẋ , uẋ ) by Fact 3.2, the representationM0 is equiv-
alent to

M : ⇡1(X, ẋ) ! GL(Hm(Tẋ , uẋ )).
Note that, for ⇢ 2 ⇡1(X, ẋ), the mapM(⇢) : Hm(Tẋ , uẋ ) ! Hm(Tẋ , uẋ ) coincides
with the canonical isomorphism ⇢⇤ : Hm(Tẋ , uẋ ) ! Hm(Tẋ , uẋ ) in the local sys-
tem H. The representationM (andM0) is called the monodromy representation,
which is the main object in this paper.

For 1  k  m, let ⇢k be the loop in X defined by

⇢k : [0, 1] 3 ✓ 7!

 
1
2m2

, . . . ,
e2⇡

p

�1✓

2m2
, . . . ,

1
2m2

!
2 X,

where e2⇡
p

�1✓

2m2 is the k-th entry of ⇢k(✓). We take a positive real number "0 so that

"0 < min
n

1
2m2 ,

1
(m�2)2 �

1
m2

o
, and we define the loop ⇢0 in X as ⇢0 := ⌧0⇢

0

0⌧0,
where

⌧0 : [0, 1] 3 ✓ 7!

✓
(1� ✓) ·

1
2m2

+ ✓ ·

✓
1
m2

� "0

◆◆
(1, . . . , 1) 2 X,

⇢0

0 : [0, 1] 3 ✓ 7!

✓
1
m2

� "0e2⇡
p

�1✓
◆

(1, . . . , 1) 2 X,

and ⌧0 is the reverse path of ⌧0.
Remark 5.1. The loop ⇢k (1  k  m) turns the hyperplane (xk = 0), and ⇢0 turns
the hypersurface (R(x) = 0) around the point

⇣
1
m2 , . . . ,

1
m2

⌘
, positively. Note that⇣

1
m2 , . . . ,

1
m2

⌘
is the nearest to the origin in (R(x) = 0) \ (x1 = x2 = · · · = xm) =n

1
m2 (1, . . . , 1),

1
(m�2)2 (1, . . . , 1), . . .

o
.

Theorem 5.2. The loops ⇢0, ⇢1, . . . , ⇢m generate the fundamental group ⇡1(X, ẋ).
Moreover, if m � 2, then they satisfy the following relations:

⇢i⇢ j = ⇢ j⇢i (1  i, j  m), (⇢0⇢k)
2

= (⇢k⇢0)
2 (1  k  m).
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Remark 5.3. It is shown in [8] that if m = 2, then ⇡1(X, ẋ) is the group generated
by ⇢0, ⇢1, ⇢2 with the relations in Theorem 5.2.

We show this theorem in Appendix A. By this theorem, for the study of the
monodromy representationM, it is sufficient to investigate m + 1 linear maps

Mi :=M(⇢i ) (0  i  m).

Proposition 5.4. For 1  k  m, the eigenvalues ofMk are � �1
k and 1. The

eigenspace ofMk of eigenvalue � �1
k is spanned by the twisted cycles

1I , k 2 I ⇢ {1, . . . ,m}.

That of eigenvalue 1 is spanned by

1I , k 62 I ⇢ {1, . . . ,m}.

In particular, both eigenspaces are of dimension 2m�1.

Proof. By Fact 4.2, the twisted cycle 1I corresponds to the solution

f I =

Y
i2I

x1�cii · FC

 
a + |I | �

X
i2I

ci , b + |I | �

X
i2I

ci , cI ; x

!

to EC(a, b, c). Since the series FC defines a single-valued function around the
origin, we have

M0(⇢k)( f I ) =

⇢
� �1
k f I k 2 I
f I k 62 I.

Therefore, we obtain this proposition.

Corollary 5.5. For 1  k  m, the linear mapMk : Hm(Tẋ , uẋ ) ! Hm(Tẋ , uẋ )
is expressed as

Mk : � 7! � �

�
1� � �1

k
�X
I3k

Ih
�
�,1_

I
�

Ih
�
1I ,1

_

I
�1I .

Further, the representation matrix Mk ofMk with respect to the basis {1I }I is the
diagonal matrix whose (I, I )-entry is⇢

� �1
k I 3 k
1 I 63 k.

Proof. We prove the first claim. By Proposition 5.4, Hm(Tẋ , uẋ ) is decomposed
into the direct sum of the eigenspaces: Hm(Tẋ , uẋ ) = (

L
I3k C1I )�(

L
I 63k C1I ).

Then it is sufficient to show that the claim holds for � = 1I . This is clear by Fact
4.2 and Proposition 5.4. The second claim is obvious.
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For each subset I ⇢ {1, . . . ,m}, we define a chamber DI which gives an
element in Hm(Tẋ , uẋ ). For I = {1, . . . ,m}, we put

D1···m := {(t1, . . . , tm) 2 Rm
| tk > 0 (1  k  m), v(t) > 0, w(t, ẋ) > 0}.

For I = ;, we put

D; = D := {(t1, . . . , tm) 2 Rm
| tk < 0 (1  k  m)}.

For I 6= ;, {1, . . . ,m}, we put

DI :=

⇢
(t1, . . . , tm) 2 Rm

���� ti > 0 (i 2 I ), t j < 0 ( j 62 I ),
v(t) > 0, (�1)m�|I |+1w(t, ẋ) > 0

�
.

The arguments of the factors of uẋ (t) are defined as follows:

ti (i 2 I ) t j ( j 62 I ) v(t) w(t, ẋ)
D1···m 0 � 0 0
D � �⇡ 0 �m⇡

otherwise 0 �⇡ 0 �(m � |I | + 1)⇡

By the identification of Hl f
m (Tx , ux ) and Hm(Tx , ux ) (see below Fact 3.1), we can

consider that the (open) chamber DI defines an element in Hm(Tx , ux ). Note that
if m = 2, then D, D1, D2, and D12 are equal to 16, 17, 18, and 15 in [5],
respectively. We state our main results:

Theorem 5.6. The eigenvalues ofM0 are (�1)m�1Q
k �k · ↵�1��1 and 1. The

eigenspaceW0 ofM0 of eigenvalue (�1)m�1Q
k �k ·↵�1��1 is spanned by D1···m ,

and hence is one-dimensional. The eigenspaceW1 ofM0 of eigenvalue 1 is spanned
by

DI , I ( {1, . . . ,m},

and expressed as

W1 = {� 2 Hm(Tẋ , uẋ ) | Ih(�, D_

1···m) = 0}.

In particular, this space is (2m � 1)-dimensional.

The proof of this theorem is given in Section 7.

Corollary 5.7. The linear mapM0 : Hm(Tẋ , uẋ ) ! Hm(Tẋ , uẋ ) is expressed as

M0 : � 7! � �

 
1+ (�1)m

Y
k

�k · ↵�1��1

!
Ih
�
�, D_

1···m
�

Ih
�
D1···m, D_

1···m
�D1···m .

Proof. By Theorem 5.6, we have Hm(Tẋ , uẋ ) = W0 � W1 = CD1···m � W1. Then
it is sufficient to show that the claim holds for � = D1···m and � 2 W1. This is clear
by Theorem 5.6.
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Proposition 5.8. We have

Ih
�
D1···m,1_

I
�

= Ih
�
1I ,1

_

I
�

= Ih
�
1I , D_

1···m
�
. (5.1)

Thus we obtain

D1···m =

X
I⇢{1,...,m}

1I , (5.2)

Ih
�
D1···m, D_

1···m
�

=

↵� + (�1)m
Q
k

�k

(� � 1)
✓

↵ �

Q
k

�k

◆ . (5.3)

This proposition is also proved in Section 7. By this proposition, we obtain the
following corollary.

Corollary 5.9. The linear mapM0 is expressed as

M0 : � 7! � �

(� � 1)
✓

↵ �

Q
k

�k

◆

↵�
Ih
�
�, D_

1···m
�
D1···m .

Let M0 be the representation matrix ofM0 with respect to the basis {1I }I . Then
we have

M0 = E2m �

(� � 1)
✓

↵ �

Q
k

�k

◆

↵�
NH,

where E2m is the unit matrix of size 2m , N is the 2m ⇥ 2m matrix with all entries 1,
and H =

�
Ih(1I ,1

_

I 0)
�
I,I 0 is the intersection matrix given in Fact 4.2.

Proof. The expression ofM0 follows immediately from Corollary 5.7 and (5.3).
To obtain the representation matrix, we have to show that the representation matrix
of the linear map � 7! Ih(�, D_

1···m)D1···m is given by NH . By Proposition 5.8, we
have

Ih
�
1I ,D_

1···m
�
D1···m = Ih

�
1I ,1

_

I
�
D1···m =

X
I 0
Ih
�
1I ,1

_

I
�
1I 0

= (1,11,12,...,1m,112,113,...,11···m)

0
BBB@
Ih
�
1I ,1

_

I
�

Ih
�
1I ,1

_

I
�

...
Ih
�
1I ,1

_

I
�

1
CCCA,

and hence the claim is proved.
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Remark 5.10. Let ⇢1 be a loop in X turning the hyperplane L1 ⇢ Pm at infinity.
Because of

⇢1 = ⌘"(`1 · · · `m`1···1`1···10 · · · `0···0)
�1,

we can express M(⇢1) by Corollaries 5.5, 5.9, equalities (A.1) and (A.2); see
Appendix A, for the notations ⌘" and `⇤. However, it is too complicated to be
written down. Here we give the eigenvalues ofM(⇢1). Similarly to [9, Section
2.3], it turns out that x�a

m f ( x1xm , . . . ,
xm�1
xm , 1

xm ) is a solution to EC(a, b, c) if and
only if f (⇠1, . . . , ⇠m) is a solution to EC(a, a� cm + 1, (c1, . . . , cm�1, a� b+ 1))
with variables ⇠1, . . . , ⇠m . Then an argument similar to that used for Proposition
5.4 shows that the eigenvalues ofM(⇢1) are ↵ and �. Moreover, both eigenspaces
are of dimension 2m�1.

6. Representation matrices

For 0  i  m, the matrix representation ofMi with respect to the basis {1I }I
is given by Mi in Corollaries 5.5 and 5.9. However, M0 is too complicated to be
written down. In this section we give another basis {10

I }I of Hm(Tẋ , uẋ ) and write
down the representation matrix ofMi with respect to this basis.

In this and the next sections, we use the following formulas.

Lemma 6.1. For a positive integer n and complex numbers �1, . . . , �n , we have

X
N⇢{1,...,n}

Y
l2N

�l
1� �l

=

nY
l=1

1
1� �l

,
X

N⇢{1,...,n}

Y
l2N

1
�l � 1

=

nY
l=1

�l
�l � 1

, (6.1)

X
N⇢{1,...,n}

Y
l2N

(1� �l)
Y
l 62N

�l =

X
N⇢{1,...,n}

(�1)|N |

Y
l2N

(�l � 1)
Y
l 62N

�l = 1, (6.2)

X
N⇢{1,...,n}

Y
l2N

(�l � 1) =

nY
l=1

�l . (6.3)

Proof. Because of

1+

�l
1� �l

=

1
1� �l

, 1+

1
�l � 1

=

�l
�l � 1

,

we obtain (6.1) by induction on n. The equalities (6.2) and (6.3) follow from the
first and the second ones of (6.1), respectively.

Let P be the 2m ⇥ 2m matrix whose (N , I )-entry is
8>>><
>>>:

↵�
Y
j 62I

� j � 1
� j

·

Q
n2N

�n

✓
↵ �

Q
n2N

�n

◆✓
� �

Q
n2N

�n

◆ (N ⇢ I )

0 (N 6⇢ I )
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and {10

I }I be the basis of Hm(Tẋ , uẋ ) defined as�
10,10

1,1
0

2, . . . ,1
0

m,10

12,1
0

13, . . . ,1
0

1···m
�

= (1,11,12, . . . ,1m,112,113, . . . ,11···m) P.

Namely, 10

I is defined by

10

I = ↵�
Y
j 62I

� j � 1
� j

·

X
N⇢I

Q
n2N

�n

✓
↵ �

Q
n2N

�n

◆✓
� �

Q
n2N

�n

◆1N .

Note that P is an upper triangular matrix.
Lemma 6.2. We have✓

↵ �

Q
k

�k

◆✓
� �

Q
k

�k

◆

↵�
Q
k

�k
10

1···m+

X
I({1,...,m}

0
B@ 1Q
i2I

�i
+(�1)m�|I |

Q
k

�k

↵�

1
CA10

I =D1···m .

Proof. By the definition, the left-hand side is equal to✓
↵�

Q
k

�k

◆✓
� �

Q
k

�k

◆

↵�
Q
k

�k
· ↵�

X
N⇢{1,...,m}

Q
n2N

�n

✓
↵ �

Q
n2N

�n

◆✓
� �

Q
n2N

�n

◆1N

+

X
I({1,...,m}

Y
j 62I

(� j � 1)

0
B@ ↵�Q

k
�k

+ (�1)m�|I |
Y
i2I

�i

1
CA

⇥

X
N⇢I

Q
n2N

�n

✓
↵ �

Q
n2N

�n

◆✓
� �

Q
n2N

�n

◆1N

�
.

(6.4)

Clearly the coefficient of11···m in (6.4) is 1. The coefficient of1N (N 6= {1, . . . ,m})
is Q

n2N
�n

✓
↵�

Q
n2N

�n

◆✓
��

Q
n2N

�n

◆

⇥

0
BBB@

✓
↵�

Q
k

�k

◆✓
��

Q
k

�k

◆
Q
k

�k
+

X
I�N

I 6={1,...,m}

Y
j 62I

(� j�1)

0
B@ ↵�Q

k
�k

+(�1)m�|I |
Y
i2I

�i

1
CA
1
CCCA
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which equals to 1 by the equalities (6.2) and (6.3). Therefore, by using (5.2), we
conclude that (6.4) is equal to

X
I⇢{1,...,m}

1I = D1···m .

Corollary 6.3. For 0  i  m, let M 0

i be the representation matrix ofMi with
respect to the basis {10

I }I . Then we have

M 0

0 = E2m � N0, M 0

k = Mk + Nk (1  k  m),

where Ni is defined as follows. The (I, I 0)-entry of N0 (respectively Nk) is zero,
except in the case of I 0 = ; (respectively k 2 I 0 and I = I 0 � {k}). The (I,;)-entry
of N0 is 8>>>>>>>><

>>>>>>>>:

✓
↵ �

Q
k

�k

◆✓
� �

Q
k

�k

◆

↵�
Q
k

�k
I = {1, . . . ,m}

1Q
i2I

�i
+ (�1)m�|I |

Q
k

�k

↵�
otherwise.

The (I 0 � {k}, I 0)-entry of Nk is 1.

In particular, M 0

k (1  k  m) is upper triangular, M 0

0 is lower triangular, and
the (;,;)-entry of M 0

0 is

1�

✓
1+ (�1)m

Q
�k

↵�

◆
= (�1)m�1

Y
�k · ↵�1��1.

Proof. First, we evaluate M 0

0. By Corollary 5.9, it is sufficient to show that the
matrix representation of the linear map

� 7!

(� � 1)
✓

↵ �

Q
k

�k

◆

↵�
Ih(�, D_

1···m)D1···m

is given by N0. By Fact 4.2 and Proposition 5.8, we have

(� � 1)
✓

↵ �

Q
k

�k

◆

↵�
Ih(10

I 0, D
_

1···m)D1···m =

 X
N⇢I 0

(�1)|N |

!Y
i2I 0

�i
�i � 1

· D1···m,
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and hence we obtain

(� � 1)
✓

↵ �

Q
k

�k

◆

↵�
Ih(10

I 0, D
_

1···m)D1···m =

⇢
D1···m I 0 = ;

0 otherwise.

Thus Lemma 6.2 shows the claim.
Next, we evaluate M 0

k (1  k  m). We have to show that

Mk(1
0

I ) =

⇢
10

I k 62 I
� �1
k 10

I + 10

I�{k} k 2 I.

If k 62 I , then the subsets N of I also satisfy k 62 N , and hence we haveMk(1N ) =

1N by Proposition 5.4. This implies thatMk(1
0

I ) = 10

I , for k 62 I . We assume
k 2 I . For a subset N of I � {k}, we have

Mk(1N ) = 1N =

✓
� �1
k +

�k � 1
�k

◆
1N , Mk(1N[{k}) = � �1

k 1N[{k}.

Then we obtain

Mk(1
0

I )=� �1
k 10

I +

�k�1
�k

· ↵�
Y
j 62I

� j�1
� j

·

X
N⇢I�{k}

Q
n2N

�n

✓
↵�

Q
n2N

�n

◆✓
��

Q
n2N

�n

◆1N

=� �1
k 10

I +↵�
Y

j 62I�{k}

� j � 1
� j

·

X
N⇢I�{k}

Q
n2N

�n

✓
↵ �

Q
n2N

�n

◆✓
� �

Q
n2N

�n

◆1N

=� �1
k 10

I + 10

I�{k}.

Example 6.4. We write down M 0

i (0  i  m) for m = 2, 3.

(i) In the case of m = 2, the representation matrices M 0

0,M
0

1,M
0

2 are as follows:

M 0

0 =

0
BBB@

�
�1�2
↵� 0 0 0

�
1
�1

+
�1�2
↵� 1 0 0

�
1
�2

+
�1�2
↵� 0 1 0

�
(↵��1�2)(���1�2)

↵��1�2
0 0 1

1
CCCA ,

M 0

1 =

0
BB@
1 1 0 0
0 1

�1
0 0

0 0 1 1
0 0 0 1

�1

1
CCA , M 0

2 =

0
BB@
1 0 1 0
0 1 0 1
0 0 1

�2
0

0 0 0 1
�2

1
CCA .

These are equal to the transposed matrices of those in [5, Remark 4.4].
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(ii) In the case of m = 3, the representation matrices M 0

0,M
0

1,M
0

2,M
0

3 are as fol-
lows:

M 0

0 =

0
BBBBBBBBBBBBBB@

�1�2�3
↵� 0 0 0 0 0 0 0

�
1
�1

�
�1�2�3

↵� 1 0 0 0 0 0 0
�
1
�2

�
�1�2�3

↵� 0 1 0 0 0 0 0
�
1
�3

�
�1�2�3

↵� 0 0 1 0 0 0 0
�

1
�1�2

+
�1�2�3

↵� 0 0 0 1 0 0 0
�

1
�1�3

+
�1�2�3

↵� 0 0 0 0 1 0 0
�

1
�2�3

+
�1�2�3

↵� 0 0 0 0 0 1 0
�

(↵��1�2�3)(���1�2�3)
↵��1�2�3

0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCA

,

M 0

1 =

0
BBBBBBBBBBB@

1 1 0 0 0 0 0 0
0 1

�1
0 0 0 0 0 0

0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1

�1
0 0 0

0 0 0 0 0 1
�1
0 0

0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

�1

1
CCCCCCCCCCCA

, M 0

2 =

0
BBBBBBBBBBB@

1 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1

�2
0 0 0 0 0

0 0 0 1 0 0 1 0
0 0 0 0 1

�2
0 0 0

0 0 0 0 0 1 0 1
0 0 0 0 0 0 1

�2
0

0 0 0 0 0 0 0 1
�2

1
CCCCCCCCCCCA

,

M 0

3 =

0
BBBBBBBBBBB@

1 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1

�3
0 0 0 0

0 0 0 0 1 0 0 1
0 0 0 0 0 1

�3
0 0

0 0 0 0 0 0 1
�3

0
0 0 0 0 0 0 0 1

�3

1
CCCCCCCCCCCA

.

7. Proof of the main theorem

In this section we prove Theorem 5.6. Since dim Hm(Tẋ , uẋ ) = 2m , it is sufficient
to show that DI ’s are eigenvectors and linearly independent. First, we evaluate
the intersection numbers Ih(1I , D_

I 0). Second, we show the linear independence
of {DI }I by evaluating the determinant of the matrix

�
Ih(1I , D_

I 0)
�
I,I 0 . Third, we

prove the properties of the eigenspace ofM0 of eigenvalue 1. Finally, we show
that D1···m is an eigenvector ofM0 of eigenvalue (�1)m�1Q

k �k · ↵�1��1.
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7.1. An expression of D1···m

We prove Proposition 5.8 using imaginary cycles and the1I ’s introduced in Section
4.

Fix any s0 2 �I , and set

p

�1Rm
I :=

n
s0 +

p

�1(⌘1, . . . , ⌘m) | (⌘1, . . . , ⌘m) 2 Rm
o

⇢ MI ,

which is called an imaginary cycle. By arguments similar to those in the proof
of [4, Proposition 4.3 and Theorem 4.4], we can prove that the integration of u'
on (◆I )⇤(

p

�1Rm
I ) also gives the solution f I to EC(a, b, c), under some condi-

tions for the parameters a, b, c. Therefore, (◆I )⇤(
p

�1Rm
I )_ is orthogonal to the

cycles 1I 0 (I 0 6= I ) with respect to Ih (cf. [5, Proof of Lemma 4.1]), and hence
(◆I )⇤(

p

�1Rm
I )_ is a constant multiple of 1_

I . Note that both D1···m and ◆I (�I )

intersect ◆I (
p

�1Rm
I ) at ◆I (s0) transversally. Since D1···m and ◆I (�I ) have a same

orientation (cf. [4, Remark 4.5 (i)]), we have

Ih
✓
D1···m, (◆I )⇤

⇣
p

�1Rm
I

⌘
_

◆
= Ih

✓
1I , (◆I )⇤

⇣
p

�1Rm
I

⌘
_

◆
.

Thus we obtain

1_

I =

Ih
�
1I ,1

_

I
�

Ih(D1···m, (◆I )⇤(
p

�1Rm
I )_)

· (◆I )⇤
⇣
p

�1Rm
I

⌘
_

,

which implies the first equality of (5.1) because of

Ih
�
D1···m,1_

I
�
=

Ih
�
1I ,1

_

I
�

Ih
⇣
D1···m,(◆I )⇤

�p
�1Rm

I
�
_

⌘ · Ih
✓
D1···m,(◆I )⇤

⇣
p

�1Rm
I

⌘
_

◆

= Ih
�
1I ,1

_

I
�
.

The second equality of (5.1) is shown as

Ih
�
1I ,D_

1···m
�
= (�1)m Ih

�
D1···m,1_

I
�
_

= (�1)m Ih
�
1I ,1

_

I
�
_

= Ih
�
1I ,1

_

I
�
,

where g(↵,�, �1, . . . , �m)_ := g(↵�1,��1, � �1
1 , . . . , � �1

m ) for g(↵,�, �1, . . . , �m)
2 C(↵,�, �1, . . . , �m). The orthogonality of the 1I ’s implies

D1···m =

X
I

Ih
�
D1···m,1_

I
�

Ih
�
1I ,1

_

I
� 1I =

X
I

1I ,
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which is equality (5.2). Hence the self-intersection number of D1···m is

Ih
�
D1···m, D_

1···m
�

=

X
I
Ih
�
1I ,1

_

I
�

=

X
I

(�1)|I |

Q
j 62I

� j ·

✓
↵ �

Q
i2I

�i

◆✓
� �

Q
i2I

�i

◆

Q
k
(�k � 1) ·

✓
↵ �

Q
k

�k

◆
(� � 1)

=

↵� + (�1)m
Q
k

�k

(� � 1)
✓

↵ �

Q
k

�k

◆ .

At the last equality, we use (6.3). Therefore, Proposition 5.8 is proved.

7.2. Intersection numbers

For I, I 0 ⇢ {1, . . . ,m}, we evaluate the intersection number Ih(1I , D_

I 0). By
Proposition 5.8, we may assume I 0 6= {1, . . . ,m}. We set

J := {1, . . . ,m} � I, J 0

:= {1, . . . ,m} � I 0,
I0 := I \ I 0, I1 := I \ J 0, J0 := J \ I 0, J1 := J \ J 0.

Using ◆I , we have Ih(1I , D_

I 0)= Ih(1̃I , D̃_

I 0), where D̃I 0 := (�1)|I | · (◆I )
�1
⇤

(DI 0).
Note that the orientation of D̃I 0 is also induced from the natural embedding Rm

⇢

Cm . Thus �I and D̃I 0 have the same orientation. For I 0 6= ;, D̃I 0 is a chamber⇢
(s1, . . . , sm) 2 Rm

���� si > 0 (i 2 I 0), s j < 0 ( j 62 I 0),
(�1)|I1|vI (s) > 0, (�1)|I1|+|J 0

|+1wI (s) > 0

�

loaded the branch of uI by the assignment of arguments as follows:

si (i 2 I 0) si (i 2 I1) si (i 2 J1) vI (s) wI (s)
argument 0 ⇡ �⇡ |I1|⇡ (|I1| � (|J 0

| + 1))⇡

In fact, the conditions for vI and wI are simply given by

1�

X
i2I

xi
si

�

X
j2J

s j > 0, 1�

X
i2I

si �

X
j2J

x j
s j

< 0,

respectively, because |J 0
| = |I1| + |J1|. In the case I 0 = ; (then I0 = J0 = ;),

D̃; = D̃ is a chamber

{(s1, . . . , sm) 2 Rm
| sk < 0 (1  k  m)}

loaded the branch of uI by the assignment of arguments as follows:

si (i 2 I1) si (i 2 J1) vI (s) wI (s)
argument ⇡ �⇡ |I1|⇡ (|I1| � m)⇡
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Lemma 7.1. If I 0 6= ; and I ⇢ J 0, we have Ih(1̃I , D̃_

I 0) = 0.

Proof. By the assumption, we have J0 = J \ I 0 = I 0 6= ;. For (s1, . . . , sm) 2 D̃I 0 ,
we show that at least one of the s j ’s ( j 2 J0) satisfies 0 < s j < mx j . Because of
mx j < m ·

"2

m < ", it implies that the chamber D̃I 0 is included in the "-neighborhood
of (s j = 0), and hence D̃I 0 does not intersect 1̃I . Thus, the lemma is proved. We
assume that all of the s j ’s ( j 2 J0) satisfy s j � mx j . By

0 > 1�

X
i2I

si �

X
j2J

x j
s j

= 1�

X
i2I1

si �

X
j2J0

x j
s j

�

X
j2J1

x j
s j

,

si < 0 (i 2 I1) and s j < 0 ( j 2 J1), we have

1 < 1�

X
i2I1

si �

X
j2J1

x j
s j

<
X
j2J0

x j
s j

.

However, the inequalities

X
j2J0

x j
s j



X
j2J0

x j
mx j

=

X
j2J0

1
m

 1

lead to a contradiction to 1 <
P

j2J0
x j
s j .

We consider in the case of I 0 6= ;. By Lemma 7.1, we may assume that I 6⇢ J 0. If
we consider x1, . . . , xm ! 0, the condition (�1)|I1|vI (s) > 0 may be replaced with
1�

P
j2J s j > 0, and (�1)|I1|+|J 0

|+1w(s) > 0 may be replaced with 1�
P

i2I si <

0 to judge if s belongs to a central area of D̃I 0 . This observation means that we can
evaluate the intersection number Ih(1̃I , D̃_

I 0) like that of the regularization of VI
and V 0

I 0
_ by omitting the difference of the branches of uI , where

VI :=

(
(s1, . . . , sm) 2 Rm

���� sk > 0, 1�

X
i2I

si > 0, 1�

X
j2J

s j > 0

)
,

V 0

I 0 :=

8><
>:(s1, . . . , sm) 2 Rm

����
sk > 0 (k 2 I 0), sk < 0 (k 2 J 0),

1�

P
i2I

si < 0, 1�

P
j2J

s j > 0

9>=
>; . (7.1)
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Note that the chamber V 0

I 0 is not empty, because of I 6⇢ J 0. In the case of I 0 = ;,
we can see that the above claim is valid, by replacing (7.1) with

V 0

:= {(s1, . . . , sm) 2 Rm
| sk < 0 (1  k  m)}

(note that 1�

P
i2I si > 0 and 1�

P
j2J s j > 0 hold clearly). Recall that when we

construct the twisted cycle 1̃I , the exponents of (si = 0), (s j = 0), (1�

P
i2I si =

0) and (1�

P
j2J s j = 0) are

ci � 1, 1� c j , �b,
mX
k=1

ck � a � m + 1,

respectively, where i 2 I and j 2 J ; see [4, Section 4].

Theorem 7.2. For I 0 6= ;, we have

Ih
⇣
1̃I , D̃_

I 0
⌘

= (�1)m�|J1|�1
·

Y
k2J 0

1
1� �k

·

1
1� �

·

2
6641+

X
KI(I0
KJ⇢J0

 Y
i2KI

1
�i � 1

·

Y
j2KJ

� j

1� � j

!

+

↵Q
k �k � ↵

X
KI(I0
KJ(J0

 Y
i2KI

1
�i � 1

·

Y
j2KJ

� j

1� � j

!3775 .

(7.2)

For I 0 = ;, we have

Ih(1̃I , D̃_) = (�1)|I | ·

mY
k=1

1
1� �k

. (7.3)

Proof. Let s0 be an intersection point of 1̃I and D̃I 0 . We denote the difference of
the branches of uI at s0 by �I,I 0 , namely,

�I,I 0 :=

the value uI (s0) with respect to the branch defined on 1̃I

the value uI (s0) with respect to the branch defined on D̃I 0
.

Note that �I,I 0 is independent of the choice of the intersection point s0. We prove
the theorem by two steps.
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Step 1: We show that

Ih
⇣
1̃I , D̃_

I 0
⌘

= �I,I 0 · (�1)m�(|J 0
|+1)

·

Y
i2I1

1
�i � 1

·

Y
j2J1

1
� �1
j � 1

·

1
��1

� 1

·

2
6641+

X
KI(I0
KJ⇢J0

 Y
i2KI

1
�i � 1

·

Y
j2KJ

1
� �1
j � 1

!
(7.4)

+

1
↵�1Q

k
�k�1

X
KI(I0
KJ(J0

 Y
i2KI

1
�i � 1

·

Y
j2KJ

1
� �1
j � 1

!3775 (I 0 6= ;),

Ih(1̃I , D̃_) = �I,; · (�1)m�m
·

Y
i2I

1
�i � 1

·

Y
j2J

1
� �1
j � 1

. (7.5)

We prove (7.4), by using results in [10]. Obviously, we have

VI \ V 0

I 0 =

8<
:(s1, . . . , sm) 2 Rm

������
s j = 0 ( j 2 J 0), 1�

P
i2I

si = 0,

si � 0 (i 2 I 0), 1�

P
j2J

s j � 0

9=
; ,

which implies that the intersection number Ih(1̃I , D̃_

I 0) is equal to the product of

�I,I 0 ·

Y
i2I\J 0

1
�i � 1

·

Y
j2J\J 0

1
� �1
j � 1

·

1
��1

� 1

and the self-intersection number of the twisted cycle determined by the chamber
8<
:(s1, . . . , sm) 2 Rm

������
s j = 0 ( j 2 J 0), 1�

P
i2I

si = 0,

si > 0 (i 2 I 0), 1�

P
j2J

s j > 0

9=
;

in the (m�(|J 0
|+1))-dimensional space L :=

T
j2J 0(s j = 0)\(1�

P
i2I si = 0).

To evaluate this self-intersection number, we investigate the non-empty intersec-
tions of (si = 0) (i 2 I 0), (1�

P
j2J s j = 0) with L .

(i) Without (1�

P
j2J s j = 0): we choose subsets K of I 0 such that

T
k2K (sk =

0) \ L 6= ;. By the condition 1�

P
i2I si = 0, we have

\
k2K

(sk = 0) \ L 6= ; , K \ I ( I , K = KI [ KJ (KI ( I, KJ ⇢ J ).
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(ii) With (1 �

P
j2J s j = 0): we choose subsets K of I 0 such that

T
k2K (sk =

0) \ (1 �

P
j2J s j = 0) \ L 6= ;. By the conditions 1 �

P
i2I si = 0 and

1�

P
j2J s j = 0, we have
\
k2K

(sk = 0) \

⇣
1�

X
j2J

s j = 0
⌘

\ L 6= ;

, K \ I ( I, K \ J ( J , K = KI [ KJ (KI ( I, KJ ( J ).

Therefore, the self-intersection number is equal to

(�1)m�(|J 0
|+1)

·

2
6641+

X
KI(I0
KJ⇢J0

 Y
i2KI

1
�i � 1

·

Y
j2KJ

1
� �1
j � 1

!

+

1
↵�1Q

k
�k � 1

X
KI(I0
KJ(J0

 Y
i2KI

1
�i � 1

·

Y
j2KJ

1
� �1
j � 1

!3775 ,

and hence (7.4) is proved. We can obtain the equality (7.5) in a similar way.
Step 2: We evaluate �I,I 0 . We consider the differences of the branches of the factors
of uI at an intersection point of 1̃I and D̃I 0 .

(i) The argument of sk on 1̃I and D̃I 0 are given follows:

k 2 I 0 = I0 [ J0 k 2 I1 k 2 J1
1̃I 0 ⇡ ⇡

D̃I 0 0 ⇡ �⇡

Since the exponent of s j ( j 2 J ) is C j = 1� c j + b, the contribution by the
branch of

Q
k s

Ck
k is

Q
j2J1(�

�1
j �).

(ii) We have

vI =

Y
i2I

si ·

 
1�

X
j2J

s j �

X
i2I

xi
si

!
,

and the term
P

i2I
xi
si does not concern the difference of the branches. By (i)

and the fact that s 2 V 0

I 0 satisfies 1 �

P
j2J s j > 0, both the argument of vI

on 1̃I and that on D̃I 0 are |I1|⇡ , and hence the contribution by the branch of
vAI is 1.

(iii) We have

wI =

Y
j2J

s j ·

 
1�

X
i2I

si �

X
j2J

x j
s j

!
,
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and the term
P

j2J
x j
s j does not concern the difference of the branches. By (i)

and the fact that s 2 V 0

I 0 satisfies8><
>:
1�

P
i2I

si < 0 I 0 6= ;

1�

P
i2I

si > 0 I 0 = ;,

the arguments of wI on 1̃I and D̃I 0 at the intersection points are as follows:

(argument on 1̃I ) =

(
(|J1| + 1)⇡ I 0 6= ;

|J1|⇡ I 0 = ;,

(argument on D̃I 0) =

(
(|I1| � |J 0

| � 1)⇡ I 0 6= ;

(|I1| � m)⇡ = �|J1|⇡ I 0 = ;.

Here, note that m = |J 0
| = |I1|+|J1|, if I 0 = ;. Because of |J 0

| = |I1|+|J1|,
we obtain

(difference of the arguments of wI )

=

(
(|J1| + 1)⇡ � (|I1| � |J 0

| � 1)⇡ = 2(|J1| + 1)⇡ I 0 6= ;

|J1|⇡ � (�|J1|)⇡ = 2|J1|⇡ I 0 = ;.

Since the exponent of wI is B = �b, the contribution by the branch of wB
I is(

��(|J1|+1) I 0 6= ;

��|J1| I 0 = ;.

We thus have

�I,I 0 =

Y
j2J1

(� �1
j �) · ��(|J1|+1) (I 0 6= ;), �I,; =

Y
j2J1

(� �1
j �) · ��|J1|.

By Step 1, we obtain (7.2) and (7.3).

To simplify the equality (7.2), we use Lemma 6.1. We summarize the results
in this subsection.
Corollary 7.3. If I 0 6= ;, {1, . . . ,m} then we have

Ih
�
1I ,D_

I 0
�
= (�1)|I |+|I 0|�1

·

mY
k=1

1
1� �k

·

Q
i2I0

�i � 1

1� �
·

Q
k

�k � ↵
Q
j2J0

� j

Q
k �k � ↵

. (7.6)

This equality holds even if I ⇢ J 0. For I 0 = ;, we have

Ih
�
1I , D_

�
= (�1)|I | ·

mY
k=1

1
1� �k

. (7.7)
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Proof. Recall that Ih(1I , D_

I 0) = Ih(1̃I , D̃_

I 0). The equality (7.7) coincides with
that in Theorem 7.2. If I ⇢ J 0, then we have I0 = I \ I 0 = ;, and hence

Q
i2I0 �i �

1 = 0. Thus the right-hand side of (7.6) is 0, which is compatible with Lemma 7.1.
Then we have to show that the right-hand side of (7.2) is equal to that of (7.6). By
(6.1), we have

1+

X
KI(I0
KJ⇢J0

 Y
i2KI

1
�i � 1

·

Y
j2KJ

� j

1� � j

!
= (�1)|I0| ·

 Y
i2I0

�i � 1

!
·

Y
k2I 0

1
1� �k

,

X
KI(I0
KJ(J0

 Y
i2KI

1
�i � 1

·

Y
j2KJ

� j

1� � j

!

= (�1)|I0| ·

 Y
i2I0

�i � 1

!
·

 
1�

Y
j2J0

� j

!
·

Y
k2I 0

1
1� �k

.

Therefore, we obtain

Ih
�
1I ,D_

I 0
�
= Ih

⇣
1̃I , D̃_

I 0
⌘

= (�1)m�|J1|�1
·

Y
k2J 0

1
1� �k

·

1
1� �

· (�1)|I0| ·

 Y
i2I0

�i � 1

!

⇥

Y
k2I 0

1
1� �k

·

0
B@1+

↵Q
k

�k � ↵
·

 
1�

Y
j2J0

� j

!1CA

= (�1)|I1|+|J0|�1
·

mY
k=1

1
1� �k

·

Q
i2I0

�i � 1

1� �
·

Q
k

�k � ↵
Q
j2J0

� j

Q
k

�k � ↵
.

Here we use m = |I0| + |I1| + |J0| + |J1|. Further, since

|I1| + |J0| = |I \ I 0c| + |I c \ I 0| = |I [ I 0| � |I \ I 0| = |I | + |I 0| � 2|I \ I 0|,

we have (�1)|I1|+|J0|�1
= (�1)|I |+|I 0|�1.

Lemma 7.4. If I 0 6= {1, . . . ,m} then Ih(D1···m, D_

I 0) = 0.

Proof. This is obvious, since

D1···m ⇢ {(s1, . . . , sm) 2 Rm
| sk > xk (1  k  m)},

DI 0 \ {(s1, . . . , sm) 2 Rm
| sk � xk (1  k  m)} = ;.
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7.3. Linear independence

Let 30 be the matrix (Ih(1I , DI 0))I,I 0 with I, I 0 arranged in the same way as in
the basis {1I }I (see Section 3). In this subsection, we evaluate the determinant of
30.

Theorem 7.5. We have

det30

=

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

�

 
↵��

mY
k=1

�k

! ✓Q
k

�k+↵

◆2m�1
�1

(1��)2m�1
✓Q

k
�k�↵

◆2m�1 ·

mY
k=1

1
(1��k)2

m�1 m: odd,

 
↵�+

mY
k=1

�k

! ✓Q
k

�k+↵

◆2m�1
�2

(1��)2m�1
✓Q

k
�k�↵

◆2m�1
�1

·

mY
k=1

1
(1��k)2

m�1 m: even.

In particular, we obtain det30 6= 0, hence {DI }I is linearly independent.

Remark 7.6. In this paper we assume that the parameters a, b, and c=(c1, . . . , cm)
are generic. In fact, it is sufficient for our proof of Theorem 5.6 to assume the
irreducibility condition of the system EC(a, b, c)

a �

X
i2I

ci , b �

X
i2I

ci 62 Z (I ⇢ {1, . . . ,m}),

and the conditions

c1, . . . , cm 62 Z, a �

mX
k=1

ck 62

1
2
Z, a + b �

mX
k=1

ck +

m + 1
2

62 Z.

To compute det30, we change 30 by elementary transformations, while keeping
the determinant unchanged, as follows. Add the first, second, . . ., (2m � 1)-th row
of 30 to the 2m-th row of 30; then 2m-th row becomes

 
Ih

 X
I

1I , D_

!
, . . . , Ih

 X
I

1I , D_

2···m

!
, Ih

 X
I

1I , D_

1···m

!!

=

�
Ih
�
D1···m, D_

�
, . . . , Ih

�
D1···m, D_

2···m
�
, Ih

�
D1···m, D_

1···m
��

=

�
0, . . . , 0, Ih

�
D1···m, D_

1···m
��
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by Lemma 7.4. It means that

det30 = Ih
�
D1···m, D_

1···m
�
· det30,

where 30 is the leading principal minor of 30 of size 2m � 1. By Proposition 5.8
and Corollary 7.3, we have

det30 =

↵� + (�1)m
Q
k

�k

(1� �)2m�1
✓Q

k
�k � ↵

◆2m�1 ·

mY
k=1

1
(1� �k)2

m
�1 · det3,

where 3 is a (2m � 1) ⇥ (2m � 1) matrix whose (I, I 0)-entry is

3I,I 0 := (�1)|I |+|I 0|�1
·

 Y
i2I\I 0

�i � 1

!
·

0
@ mY
k=1

�k � ↵
Y

j2I c\I 0
� j

1
A I 0 6= ;,

3I,; := (�1)|I |.

We write

3 =

0
BB@

3(0, 0) 3(0, 1) · · · 3(0,m � 1)
3(1, 0) 3(1, 1) · · · 3(1,m � 1)

...
...

. . .
...

3(m � 1, 0) 3(m � 1, 1) · · · 3(m � 1,m � 1)

1
CCA ,

where 3(k, k0) is the
�m
k
�

⇥

�m
k0

�
matrix. Note that the entries of 3(k, k0) are the

(I, I 0)-entries of 3 with |I | = k, |I 0| = k0.
We compute det3. Put3(0)

:= 3. We take3(n) by induction on n as follows:
for n � 1, we define 3(n) by replacing the columns of I 0 (|I 0| � n + 1) of 3(n�1)

with

3
(n�1)
⇤,I 0 +

X
K 0

⇢I 0
|K 0

|=n

(�1)|I
0
|+n+1

Q
k

�k + (�1)n↵
Q

j2K 0c
\I 0

� j

Q
k

�k + (�1)n↵
· 3

(n�1)
⇤,K 0

,

where 3
(n�1)
⇤,I 0 is the column of I 0 of 3(n�1). Straightforward calculations show the

following result:

Lemma 7.7.

(i) det3(n)
= det3, 3(n)

;,; = 1;
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(ii) If |I 0| � n + 1, then

3
(n)
I,I 0 = (�1)|I |+|I 0|�1

·

2
664
 Y
i2I\I 0

�i � 1

!
·

0
@ mY
k=1

�k � ↵
Y

j2I c\I 0
� j

1
A

�

X
K⇢I\I 0
0<|K |n

0
@Y
i2K

(�i � 1) ·

0
@ mY
k=1

�k + (�1)|K |↵
Y

j2Kc
\I 0

� j

1
A
1
A
3
775 ;

(iii) k  n =) 3(n)(k, k0) = O (k0 > k);
(iv) 3(n)(1, 1), . . . ,3(n)(n + 1, n + 1) are diagonal;
(v) 1  |I |  n + 1 =) 3

(n)
I,I = �

Q
i2I (�i � 1) ·

�Q
k �k + (�1)|I |↵

�
.

Note that the columns of I 0 for |I 0|  n and the rows of I for |I |  n � 1 are equal
to those of 3(n�1). Using this lemma, we prove Theorem 7.5.

Proof of Theorem 7.5. By Lemma 7.7,3(m�2) is the lower triangular matrix whose
diagonal entries are given by (i) and (v). Hence we obtain

det30 =

↵� + (�1)m
Q
k

�k

(1� �)2m�1
✓Q

k
�k � ↵

◆2m�1 ·

mY
k=1

1
(1� �k)2

m
�1 · det3(m�2)

= (�1)m ·

↵� + (�1)m
Q
k

�k

(1� �)2m�1
✓Q

k
�k � ↵

◆2m�1 ·

mY
k=1

1
(1� �k)2

m�1

⇥

Y
;6=I({1,...,m}

 
mY
k=1

�k + (�1)|I | ↵

!
.

If m is odd we have

Y
;6=I({1,...,m}

 
mY
k=1

�k + (�1)|I |↵

!
=

 
mY
k=1

�k �↵

!2m�1
�1

·

 
mY
k=1

�k +↵

!2m�1
�1

.

If m is even we have

Y
;6=I({1,...,m}

 
mY
k=1

�k + (�1)|I |↵

!
=

 
mY
k=1

�k �↵

!2m�1

·

 
mY
k=1

�k +↵

!2m�1
�2

.

Therefore, the proof of Theorem 7.5 is completed.
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7.4. The eigenspace ofM0 associated to 1

By Lemma 7.4 and Theorem 7.5, to prove Theorem 5.6 we have to show that

• M0(DI ) = DI for I ( {1, . . . ,m},
• M0(D1···m) =

⇥
(�1)m�1Q

k �k · ↵�1��1⇤
· D1···m .

In this subsection we show the first claim. The second one is proved in the next
subsection.

Hereafter, we use the coordinates (s1, . . . sm) =

✓
t1
x1

, . . . ,
tm
xm

◆
. The functions

v(t) and w(t, x) are expressed as

1�

mX
k=1

xksk,
mY
k=1

(xksk) ·

 
1�

mX
k=1

1
sk

!
,

respectively. Let

v0(s, x) := 1�

mX
k=1

xksk, w0(s) :=

mY
k=1

sk ·

 
1�

mX
k=1

1
sk

!
.

If x1, . . . , xm are positive real numbers then we have

tk T 0 , sk T 0, v(t) T 0 , v0(s, x) T 0, w(t, x) T 0 , w0(s) T 0,

and hence the expressions of the DI ’s are as follows:

D1···m : sk>0 (1km), v0(s,x)>0, w0(s)>0,
D : sk<0 (1km),

DI (otherwise): si >0 (i2 I ), s j <0 ( j 62 I ), v0(s,x)>0, (�1)m�|I |+1w0(s)>0.

Note that, if x = (x1, . . . , xm) moves, then only the divisor (v0(s, x) = 0) varies.
Recall that the loop ⇢0 is homotopic to the composition ⌧0⇢

0

0⌧0, where

⌧0 : [0, 1] 3 ✓ 7!

✓
(1� ✓) ·

1
2m2

+ ✓ ·

✓
1
m2

� "0

◆◆
(1, . . . , 1) 2 X,

⇢0

0 : [0, 1] 3 ✓ 7!

✓
1
m2

� "0e2⇡
p

�1✓
◆

(1, . . . , 1) 2 X,

for a sufficiently small positive real number "0. Since variations along the paths ⌧0
and ⌧0 give trivial transformations of the cycles DI ’s, we have to consider the vari-
ation along ⇢0

0 for a sufficiently small "0. Let x !

⇣
1
m2 , . . . ,

1
m2

⌘
, then (v0(s, x) =

0) and (w0(s) = 0) are tangent at (s1, . . . , sm) = (m, . . . ,m). Thus D1···m is a
vanishing cycle. Each DI (I ( {1, . . . ,m}) survives as x !

⇣
1
m2 , . . . ,

1
m2

⌘
, and

its variation along ⇢0

0 is too slight to change the branch of ux on it. This implies that
M0(DI ) = DI for I ( {1, . . . ,m}.
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7.5. An eigenvector ofM0 associated to the eigenvalue (�1)m�1Q
k �k ·↵�1��1

In this subsection, we showM0(D1···m) = [(�1)m�1Q
k �k · ↵�1��1

] · D1···m .
As mentioned in the previous subsection, it is sufficient to consider the variation
of D1···m along ⇢0

0 for a sufficiently small "0. Thus we may consider that D1···m is
contained in a small neighborhood of s = (m, . . . ,m) in Rm .

Putting x1 = · · · = xm =
1
m2 � "0, we have

v0(s, ⇢0

0(0)) = 1�

✓
1
m2

� "0

◆ mX
k=1

sk .

We use the coordinates system

(s01, . . . , s
0

m�1, s
0

m) :=

 
s1 � m, . . . , sm�1 � m,

mX
k=1

sk � m2
!

.

Note that sl = s0l + m (1  l  m � 1) and sm = s0m �

Pm�1
l=1 s0l + m. Then the

origin (s01, . . . , s
0

m) = (0, . . . , 0) corresponds to (s1, . . . , sm) = (m . . . ,m). Let U
be a small neighborhood of (s01, . . . , s

0

m) = (0, . . . , 0) so that sk > 0 (1  k  m).
In U , we have

v0(s, ⇢0

0(0)) > 0 , 1�

✓
1
m2

� "0

◆
(s0m + m2) > 0 , s0m <

m2
1
m2 � "0

· "0,

w0(s) > 0 , 1�

mX
k=1

1
sk

> 0 , s0m >
m�1X
l=1

s0l � m +

1

1�

m�1P
l=1

1
s0l+m

.

Hence D1···m is expressed as8>>><
>>>:

(s01, . . . , s
0

m) 2 U

���������
m�1X
l=1

s0l � m +

1

1�

m�1P
l=1

1
s0l+m

< s0m <
m2

1
m2 � "0

· "0

9>>>=
>>>;

.

Let ✓ move from 0 to 1, then the arguments of 1
m2 �"0e2⇡

p

�1✓ at the start point and
the end point are equal. Thus the argument of m2

1
m2

�"0e2⇡
p

�1✓ · "0e2⇡
p

�1✓ increases

by 2⇡ , when ✓ moves from 0 to 1. Put

f (s01, . . . , s
0

m�1) :=

m�1X
l=1

s0l � m +

1

1�

m�1P
l=1

1
s0l+m

.
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Then (s01, . . . , s
0

m�1) = (0, . . . , 0) is a critical point of f , and the Hessian matrix
H f (0, . . . , 0) at this point is positive definite. The Morse lemma implies that f is
expressed as

m�1X
l=1

z2l ,

with appropriate coordinates (z1, . . . , zm�1) around the origin. Therefore, the claim
M0(D1···m) = [(�1)m�1Q

k �k · ↵�1��1
] · D1···m is obtained from the following

result:

Lemma 7.8. For y, �, µ 2 C, we put

Zy := Cm
�

  
zm �

m�1X
l=1

z2l = 0

!
[ (y � zm = 0)

!
⇢ Cm,

⌫y(z) :=

 
zm �

m�1X
l=1

z2l

!�

· (y � zm)µ,

where z1, . . . , zm are coordinates of Cm . We consider the twisted homology groups
Hm(Zy, ⌫y) (y 2 C). Let �y 2 Hm(Zy, ⌫y) (y > 0) be expressed by the twisted
cycle defined by the domain

D(y) :=

(
(z1, . . . , zm) 2 Rm

�����
m�1X
l=1

z2l < zm < y

)
,

and let �0 be the element in Hm(Z1, ⌫1), which is obtained by the deformation of �1
along y = e2⇡

p

�1✓ as ✓ : 0 ! 1. Then we have

�0

= (�1)m�1e2⇡
p

�1(�+µ)
· �1.

Proof. It is easy to see that the domain D(y) is expressed by (⇠1, . . . , ⇠m) 2 [0, 1]m
as

zl = (2⇠l � 1)

vuuty⇠m
m�1Y
j=l+1

(1� (2⇠ j � 1)2) (1  l  m � 1),

zm = y⇠m .

The functions zm �

Pm�1
l=1 z2l and y � zm are expressed as

y⇠m

 
1�

m�1X
l=1

(2⇠l � 1)2
m�1Y
j=l+1

⇣
1�

�
2⇠ j � 1

�2⌘!
, y(1� ⇠m), (7.8)
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respectively. We consider the variation along y = e2⇡
p

�1✓ as ✓ : 0 ! 1. The
expression of the domain D(1) by (⇠1, . . . , ⇠m) 2 [0, 1]m is changed. However, by
a bijection

r : ⇠l 7! 1� ⇠l (1  l  m � 1), ⇠m 7! ⇠m,

the expression coincides with the original one with contributions to orientation.
Further, both arguments of zm �

Pm�1
l=1 z2l and y � zm increase by 2⇡ , and the

expressions (7.8) are invariant under the bijection r . Therefore, we obtain

�0

= (�1)m�1e2⇡
p

�1(�+µ)
· �1.

Appendix

A. The fundamental group

In this appendix we prove Theorem 5.2. We assume m � 2.
We regard Cm as a subset of Pm and put L1 := Pm � Cm . Then we can

consider that S [ L1 is a hypersurface in Pm , and

X = Cm
� S = Pm � (S [ L1).

By a special case of the Zariski theorem of Lefschetz type (refer to [3, Proposi-
tion 4.3.1]), the inclusion L � (L \ (S [ L1)) ,! X induces a surjection

⌘ : ⇡1 (L � (L \ (S [ L1))) ! ⇡1(X),

for a line L in Pm , which intersects S [ L1 transversally and avoids its singular
parts. Note that generators of ⇡1(L� (L \ (S[ L1))) are given by m+2m�1 loops
going once around each of the intersection points in L \ S ⇢ Cm . To define loops
in X explicitly, we specify such a line L in the following way. Let r1, . . . , rm�1 be
positive real numbers satisfying

r1 <
1
4
, rk <

rk�1
4

for 2  k  m � 1,

and let " = ("1, . . . , "m�1) be sufficiently small positive real numbers such that
"1 < · · · < "m�1. We consider lines

L0 :(x1, . . . , xm�1, xm) = (r1, . . . , rm�1, 0) + t (0, . . . , 0, 1) t 2 C,

L" :(x1, . . . , xm�1, xm) = (r1, . . . , rm�1, 0) + t ("1, . . . , "m�1, 1) t 2 C

in Cm . We identify L" with C by the coordinate t . The intersection point L" \

(xk = 0) is coordinated by t = �
rk
"k

< 0, for 1  k  m � 1. The intersection
point L" \ (xm = 0) is coordinated by t = 0. L" and (R(x) = 0) intersect
at 2m�1 points. We coordinate the intersection points L" \ (R(x) = 0) by t =
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ta1···am�1, (a1, . . . , am�1) 2 {0, 1}m�1. The correspondence is as follows. We
denote the coordinates of the intersection points L0 \ (R(x) = 0) by

t (0)a1···am�1 :=

 
1+

m�1X
k=1

(�1)ak
p

rk

!2
.

By this definition, we have

t (0)a1···am�1 < t (0)a0

1···a
0

m�1

() a1 � a0

1 = · · · = ar�1 � a0

r�1 = 0, ar = 1, a0

r = 0
() a1 · · · am�1 > a0

1 · · · a0

m�1,

where a1 · · · am�1 is regarded as a binary number. For example, if m = 4 then

t (0)111 < t (0)110 < t (0)101 < t (0)100 < t (0)011 < t (0)010 < t (0)001 < t (0)000.

Since L" is sufficiently close to L0, ta1···am�1 is supposed to be arranged near to
t (0)a1···am�1 .

We can show that L0 does not pass the singular part of (R(x) = 0). This
implies that for sufficiently small "k’s, L" also avoids the singular parts of S [ L1.
Thus, ⌘" : ⇡1 (L" � (L" \ (S [ L1))) ! ⇡1(X) is a surjection.

Let `k be the loop in L" � (L" \ S) going once around the intersection point
L" \ (xk = 0), and let `a1···am�1 be the loop in L" � (L" \ S) going once around the
intersection point ta1···am�1 . Each loop approaches the intersection point through the
upper half-plane of the t-space; see Figure A.1.

0 ε
r1
e1

_ r2
e2

_ t11 t10 t01 t00
!1 !2 !3 !11 !10 !01 !00

Figure A.1. `⇤ for m = 3.

It is easy to see that

⌘"(`k) = ⇢k (1  k  m), ⌘"(`1···1) = ⇢0. (A.1)

Further, we have
⇢i⇢ j = ⇢ j⇢i for 1  i, j  m,

since the fundamental group of (C⇥)m is Abelian. To investigate relations among
the ⌘"(`a1···am�1)’s, we consider these loops in L0 � (L0 \ S). By the above defini-
tion, we can define the `a1···am�1’s as loops in L0�(L0\ S). Since L0 is sufficiently
close to L", the image of `a1···am�1 under

⌘ : ⇡1 (L0 � (L0 \ (S [ L1))) ! ⇡1(X)
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coincides with ⌘"(`a1···am�1) as elements in ⇡1(X). Though ⌘ is not a surjection,
relations among the ⌘(`a1···am�1)’s in ⇡1(X) can be regarded as those among the
⌘"(`a1···am�1)’s.

Lemma A.1.
(i) ⌘(`a1···ak�10ak+1···am�1) = ⇢k⌘(`a1···ak�11ak+1···am�1)⇢

�1
k .

(ii) ⌘(`1···1) = ⇢m�1⌘(`1···1`1···10`
�1
1···1)⇢

�1
m�1.

Temporarily, we admit this lemma. By (i), we have

⌘"(`a1···am�1) = ⌘(`a1···am�1) =

⇣
⇢
b1
1 · · · ⇢

bm�1
m�1

⌘
· ⌘(`1···1) ·

⇣
⇢
b1
1 · · · ⇢

bm�1
m�1

⌘
�1

(A.2)

=

⇣
⇢
b1
1 · · · ⇢

bm�1
m�1

⌘
· ⇢0 ·

⇣
⇢
b1
1 · · · ⇢

bm�1
m�1

⌘
�1

as elements in ⇡1(X), where (b1, . . . , bm�1) := (1 � a1, . . . , 1 � am�1). This
implies that the loops ⇢0, . . . , ⇢m generate ⇡1(X), since the images of the `k’s and
`a1···am�1’s by ⌘" generate ⇡1(X). By (ii) and the above argument, we obtain

⇢0 = ⌘(`1···1) = ⇢m�1⌘
⇣
`1···1`1···10`

�1
1···1

⌘
⇢�1
m�1

= ⇢m�1 · ⇢0 · ⇢m�1⇢0⇢
�1
m�1 · ⇢�1

0 · ⇢�1
m�1,

that is, (⇢0⇢m�1)2 = (⇢m�1⇢0)2. Changing the definitions of L0 and L", we obtain
the relations

(⇢0⇢k)
2

= (⇢k⇢0)
2 (1  k  m).

For example, if we put

L" : (x1, x2, . . . , xm) = (0, r1, . . . , rm�1) + t (1, "1, . . . , "m�1) t 2 C,

then a similar argument shows (⇢0⇢m)2 = (⇢m⇢0)2. Therefore, the proof of Theo-
rem 5.2 is complete.

Proof of Lemma A.1. For ✓ 2 [0, 1], let L(✓) be the line defined by

L(✓) :(x1, . . . , xk, . . . , xm�1, xm)

= (r1, . . . , e2⇡
p

�1✓rk, . . . , rm�1, 0) + t (0, . . . , 0, 1) (t 2 C).

Note that L(0) = L(1) = L0. We identify L(✓) with C by the coordinate t . It is
easy to see that the intersection points of L(✓) and (R(x) = 0) are given by the
following 2m�1 elements:

t (✓)
a1···am�1 :=

0
BB@1+

m�1X
j=1
j 6=k

(�1)a jpr j + (�1)ak
p

rke⇡
p

�1✓

1
CCA
2

.
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The points 1+

P
j 6=k(�1)a j

pr j +(�1)akprke⇡
p

�1✓ are in the right half-plane for
any ✓ 2 [0, 1], since

Pm�1
j=1

pr j <
Pm�1

j=1 2� j < 1. Let ✓ move from 0 to 1, then

(a) t (1)a1···ak�10ak+1···am�1
= t (0)a1···ak�11ak+1···am�1

,
t (1)a1···ak�11ak+1···am�1

= t (0)a1···ak�10ak+1···am�1
,

(b) t (✓)
a1···ak�10ak+1···am�1

moves in the upper half-plane,
(c) t (✓)

a1···ak�11ak+1···am�1
moves in the lower half-plane.

For example, the ta1a2a3’s move as Figure A.2, for m = 4 and k = 2.

0 t111 t011 t010 t001 t000t110 t101 t100

Figure A.2. ta1a2a3 for m = 4, k = 2.

We put P(✓) := C � {t (✓)
a1···am�1 | a j 2 {0, 1}} that is regarded as a subset of L(✓).

Let "0 be a sufficiently small positive real number, and we consider the fundamental
group ⇡1(P(✓), "0). As mentioned above, the `a1···am�1’s are defined as elements in
⇡1(P(0), "0) = ⇡1(P(1), "0). Let ✓ move from 0 to 1, then the `a1···am�1’s define
the elements in each ⇡1(P(✓), "0) naturally. The properties (a), (b), (c) imply the
following.

Lemma A.2. `a1···ak�10ak+1···am�1 in ⇡1(P(0), "0) changes to `a1···ak�11ak+1···am�1 in
⇡1(P(1), "0).

We give the proof of this lemma below. By this variation, the base point moves
around the divisor (xk = 0), since the base point "0

2 P(✓) corresponds to the
point (r1, . . . , e2⇡

p

�1✓rk, . . . , rm�1, "0) 2 L(✓). It implies the conjugation by ⇢k
in ⇡1(X). Hence we obtain the relation (i).

To prove (ii), we use a similar argument for k = m�1 and `1···1 2 ⇡1(P(0), "0).
Let ✓ move from 0 to 1, then `1···1 changes into a loop in P(1), which goes once
around t (1)1···1 = t (0)1···10 and approaches this point through the lower half-plane (see
Figure A.3). Since such a loop is homotopic to `1···1`1···10`

�1
1···1, we obtain (ii).

Proof of Lemma A.2. We show that the variations of the ta0

1···a
0

m�1
’s do not inter-

fere with the moving of the loop `a1···ak�10ak+1···am�1 . We put t̃
(✓)
a1···am�1 := 1 +P

j 6=k(�1)a j
pr j + (�1)akprke⇡

p

�1✓ . This satisfies (t̃ (✓)
a1···am�1)

2
= t (✓)

a1···am�1 .
Since each t̃ (✓)

a1···am�1 is in the right half-plane, t
(✓)
a1···am�1 does not meet the half-line

(�1, 0] ⇢ R. For each ✓ , P̃(✓) := (the right half-plane) �{t̃ (✓)
a1···am�1 | a j 2 {0, 1}}

is homeomorphic to P(✓) � (�1, 0] by the map

h : P̃(✓) �! P(✓) � (�1, 0]; z 7�! z2.
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q = 0 q = 1

t(0)
1 ... 10t(0)

1 ... 1
t(1)       = t(0) 
1 ... 10 1 ... 1

t(1)       = t(0) 
1 ... 1 1 ... 10q : 0 → 1 

!1 ... 1  !1 ... 1!1 ... 10!1 ... 1  –1

Figure A.3. The variation of `1···1.

It is sufficient to show that the points t̃ (✓)
a1···am�1’s do not interfere with the moving

of the loop ˜̀a1···ak�10ak+1···am�1 in P̃(✓), which satisfies h⇤( ˜̀a1···ak�10ak+1···am�1) =

`a1···ak�10ak+1···am�1 . Since each t̃
(✓)

a0

1···a
0

k�11a
0

k+1···a
0

m�1
moves in lower half-plane, it

does not interfere with the moving of ˜̀a1···ak�10ak+1···am�1 . We consider the variation
of t̃ (✓)

a0

1···a
0

k�10a
0

k+1···a
0

m�1
for (a0

1, . . . ,a
0

k�1,a
0

k+1, . . . ,a
0

m�1) 6= (a1, . . . ,ak�1,ak+1, . . . ,

am�1). By definition, t̃ (✓)

a0

1···a
0

k�10a
0

k+1···a
0

m�1
� t̃ (✓)

a1···ak�10ak+1···am�1
does not depend on

✓ . Thus, t̃ (✓)

a0

1···a
0

k�10a
0

k+1···a
0

m�1
moves parallel to t̃ (✓)

a1···ak�10ak+1···am�1
. This implies that

t̃ (✓)

a0

1···a
0

k�10a
0

k+1···a
0

m�1
does not interfere with the moving of ˜̀a1···ak�10ak+1···am�1. There-

fore, the proof is complete.
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