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Local homogeneity and dimensions of measures

ANTTI KÄENMÄKI, TAPIO RAJALA AND VILLE SUOMALA

Abstract. We introduce two new concepts, local homogeneity and local Lq -
spectrum, both of which are tools that can be used to study the local structure of
measures. Combining homogeneity and Lq -spectrum estimates, we introduce a
newmethod to bound the local dimensions of measures in general doubling metric
spaces. As an application, we reach a new level of generality and obtain many
new results in the study of conical densities and porous measures in Euclidean
spaces and also in general doubling metric spaces.

Mathematics Subject Classification (2010): 28A12 (primary); 28A80, 54E35,
28A78, 28D20 (secondary).

1. Introduction

In geometric measure theory and fractal geometry, it is common to encounter prob-
lems of the following type: given a measure µ and a set A of positive/full µ-
measure, we have some local geometric information (on various densities, porosity,
tangent measures, sceneries etc.) around all points of the set (or in a set of pos-
itive/full measure) and we want to gain some global information (on dimension,
measure, rectifiability, and other geometric properties) from this. For example, if
the set A is porous in the sense that for some % > 0, for all x 2 A, and all small
r > 0, there is a ball B(y, %) ⇢ B(x, r) \ A, one is lead to ask how the dimension
of A depends on the value of %. This question and its many variations have been
under careful investigations in the past [6, 13, 25, 26, 32, 33, 39–41, 46, 52, 55, 59]
also due to intrinsic interest, but mostly since many important sets and measures in
analysis and dynamics satisfy such, or related, porosity conditions. These sets and
measures may arise in geometric analysis [33, 39, 46, 56, 62, 64], in the study of Ju-
lia sets [50,51], singular integrals [10], infinite iterated function systems [63], or as
random sets [7,27]. The survey [58] gives some further background and motivation.

More generally, if we know how the set (or the measure) is distributed in small
balls, we may use this information to bound its dimension from above. The notions

The authors acknowledge the support of the Academy of Finland, projects #114821, #126976,
#271983, and #137528.
Received April 1, 2015; accepted September 7, 2015.
Published online December 2016.



1316 ANTTI KÄENMÄKI, TAPIO RAJALA AND VILLE SUOMALA

of average homogeneity [24] and local entropy averages [22, 59] have been used
to obtain quantitative dimension bounds for a measure based on its distribution in
small balls or cubes; see also [6]. On the other hand, if µ is a measure of given
dimension on a Euclidean space, it is a classical problem in geometric measure
theory to estimate how it is distributed in different directions or cones. This leads
to the study of conical densities [8, 9, 11, 18, 31, 32, 35, 38, 40, 44, 54, 60], which
originate from the dichotomy between rectifiable and purely unrectifiable sets, and
are intimately connected to the existence of tangents, see [15, 41]. This theory has
been further applied to various porosity questions [31, 32, 40] and in the study of
removability of Lipschitz harmonic functions [35, 42]. In the study of fractals and
dynamical systems, it is natural to analyse properties of measures using globally
observable parameters arising from the asymptotic behaviour of the system, such as
the Lyapunov exponent. The entropy dimension and Lq -dimensions are concepts
that measure the average distribution of the measure. In many cases, these global
characteristics can then be related to the local regularity properties of the measure
such as exact dimensionality and also to the values of the local dimension maps;
see [4, 12, 17, 20, 45, 68].

In this article, the major objects of interest are the upper and lower local di-
mensions of measures defined as

dimloc(µ, x) = lim sup
r#0

logµ(B(x, r))
log r

,

dimloc(µ, x) = lim inf
r#0

logµ(B(x, r))
log r

,

whenever µ is a measure on a metric space X and x 2 X . Large part of the analysis
on measures aims at estimating these dimensions. The essential suprema and infima
of the local dimensions are the upper and lower packing and Hausdorff dimensions
of the measure whereas investigating the level set structure of the local dimension
maps leads to an important branch of multifractal analysis. The main purpose of this
article is to introduce two new concepts, local homogeneity and local Lq -spectrum.
Both of these are shown to be useful tools in the study of local structure of measures.

We will next describe our main results. For notation and definitions of the
basic concepts, we refer to Section 2 below. In Subsection 2.3, we introduce lo-
cal versions of the classical Lq -spectra and dimensions. Using these concepts, in
Subsections 3.1–3.3, we generalize the results of [17,20,45,47] on the relations be-
tween the Hausdorff, entropy, packing, and Lq -dimensions for measures to metric
spaces. The most important aspect of this generalization is that we consider local
spectrum and dimension in place of the global counterparts. This is an advantage,
when one wants to use these to estimate the values of dimloc(µ, x) and dimloc(µ, x),
as will be apparent in the proofs of the main results, and as illustrated by various
examples. In [29], we apply this new local spectrum to develop some multifractal
analysis in metric spaces. Furthermore, in [28], the local spectrum is applied as a
tool to show that certain doubling measures have small packing dimension, gener-
alizing a result of Wu [67]. In Subsection 3.2, we will turn to the local homogeneity
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of measures. In our main result, Theorem 3.5, we show that, for any locally finite
Borel regular measure µ, the upper local dimension dimloc(µ, x) is bounded from
above by the local homogeneity dimension dimhom(µ, x) at µ-almost all points.
The value of dimhom(µ, x) is the infimum of exponents s so that “large parts” of
B(x, r) in terms of µ can be covered by ��s balls of radius �r for all small r, � > 0;
see (2.9) for a detailed definition. We believe that this relation between dimloc and
dimhom will turn out to be a useful tool in analysing fractal measures in general
metric spaces. To illustrate the applicability of this result, we obtain new estimates
on the dimension of porous measures; see Theorems 4.2 and 4.7. For instance, in
Theorem 4.7, we show that if X is a metric space carrying a measure ⌫ such that
ars  ⌫(B(x, r)) brs for all balls B(x, r) ⇢ X with 0< r < diam(X), then there
is a uniform constant c > 0 such that for any measure µ on X , we have the estimate

dimloc(µ, x)  s � c por1(µ, x)s

for µ-almost all x 2 X . Here por1(µ, x) is the porosity of the measure µ at x
analogous to the set porosity discussed above. See Section 4 for the exact defini-
tion. To the best of our knowledge, this is the first nontrivial result related to the
dimension of porous measures in a non-Euclidean setting. As another application
of the local homogeneity estimates, we obtain in Theorem 4.1 a new upper conical
density result for measures with large packing dimension. This improves a result
of [11] where a corresponding statement was proved for the Hausdorff dimension.
The method of [11] is based on the use of the average homogeneity from [24], and
it only works for the Hausdorff dimension.

Although the definitions of the local homogeneity and Lq -dimensions are
somewhat technical and giving rigorous proofs for our results requires care, the
advantage of our method is that it gives unified approach to various problems that
have before required the use of separate ideas. As a by-product of our results, we
also simplify and generalize the proofs of many existing results. For instance using
a quantitative version of the statement dimloc(µ, x)  dimhom(µ, x) (see Theorem
3.8), the proof of the Euclidean porosity result, Theorem 4.2, reduces to a rather
straightforward geometric problem and is much simpler than the proofs of the ear-
lier partial results in [5, 6, 23].

It turns out that the definitions of local homogeneity and local Lq -spectrum
are of different nature since the order of taking limits is different. In defining the
local homogeneity, we first let the scale tend to zero and only after that increase
the resolution. This allows us to handle non-uniform properties, like porosity, with
ease. On the other hand, the local Lq -spectrum sees some slight differences in the
behaviour of the measure to which the local homogeneity is blind. This difference
is made manifest in examples in Section 5. Despite these differences, in the proof
of our main results in Subsections 3.1–3.2, we are able to combine the Lq -spectrum
and homogeneity estimates in order to obtain an upper bound for dimloc(µ, x). This
is the most important new method introduced in the paper. It builds on a simple use
of a covering theorem for balls of equal radii which is valid on any doubling metric
space, see Lemma 2.1. This makes the approach fairly general and, in our opinion,
makes the proofs more natural and straightforward in the Euclidean setting as well.
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In many recent studies the relations between the dimension and geometry of
measures in Euclidean spaces are studied using a probabilistic approach and the
dyadic self-similar structure ofRd . For instance, see [21,22,24,53,58,59]. Since we
work in a general doubling metric space, our approach is more robust and slightly
less probabilistic. We remark that the paper [53], that appeared after an earlier
version of this paper was made available, was partly inspired by the present work.
In that paper, the authors use the method of local entropy averages to bound the local
homogeneity, leading to further applications. Furthermore, in a recent paper [30],
ergodic-theoretical methods were employed to study similar geometric properties of
measures. The paper [2] (which as well appeared subsequent to an earlier version of
this paper) gives a treatment of a local spectrum from a different perspective. There
the local spectrum is applied for functions, measures, and more general distributions
in the setting of Euclidean spaces, see also [3].

ACKNOWLEDGEMENTS. We are grateful to Marianna Csörnyei for help in con-
structing Example 5.6.

We also thank an anonymous referee for many valuable comments and sug-
gestions on an earlier version of the manuscript. In particular, our original proof
of Theorem 3.8 was more technical and the current presentation is largely based on
suggestions by that referee.

2. Preliminaries

2.1. Basic notation

In writing down constants we often use notation such as c = c(· · · ) to emphasize
that the constant depends only on the parameters listed inside the parentheses.

We work on a metric space (X, d) which we usually assume to be doubling.
This means that there is N = N (X) 2 N (the doubling constant of ) X such that
any closed ball B(x, r) = {y 2 X : d(x, y)  r} with centre x 2 X and radius
r > 0 can be covered by N balls of radius r/2. Since we use only one distance d in
the space X , we simply denote (X, d) by X .

Notice that even if x 6= y or r 6= t , it may happen that B(x, r) = B(y, t). For
notational convenience, we keep to the convention that each ball comes with a fixed
center and radius. This makes it possible to use notation such as 5B = B(x, 5r)
without referring to the centre or radius of the ball B = B(x, r).

In this article, a measure exclusively refers to a nontrivial Borel regular (outer)
measure defined on all subsets of X so that bounded sets have finite measure.

We call any countable collection B of pairwise disjoint closed balls a packing.
We also call B a packing of the subset A ⇢ X if the centres of the balls of B lie in
the set A, and a �-packing if all the balls in B have radius �. A �-packing B of A is
termed maximal if for every x 2 A there is B 2 B so that B(x, �) \ B 6= ;. Note
that if B is a maximal �-packing of A, then 2B covers A. Here 2B = {2B : B 2 B}.
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Observe that a doubling metric space is separable. Hence for each � > 0 and
A ⇢ X there exists a maximal �-packing of A. Moreover, the 5r-covering theorem
is applicable in every doubling metric space; see [41, Theorem 2.1].

Instead of �-packings defined above, the theory developed in this paper could
be presented by using �-separated sets, i.e. sets {xi } ⇢ A for which d(xi , x j ) > �
whenever xi 6= x j . Yet another option would be to define the necessary concepts us-
ing partitions or generalized dyadic cubes. We chose the packing approach mainly
because of personal taste and since we wanted our packing balls to be geometrically
(and not only algebraically) disjoint. The partition definition is sometimes more
useful in computations. In [29], we use that approach to develop some multifractal
analysis in metric spaces.

The doubling property can be stated in several equivalent ways. For instance,
the following formulations are sometimes convenient. The proof is a simple exer-
cise (see, e.g., [19, 36]).

Lemma 2.1. For a metric space X , the following claims (1)-(4) are equivalent and
each of them implies (5):

(1) X is doubling;
(2) There are s > 0 and c > 0 such that for all R > r > 0 any ball of radius R

can be covered by c(r/R)�s balls of radius r;
(3) There are s > 0 and c > 0 such that if R > r > 0 and B is an r-packing of a

closed ball of radius R, then the cardinality of B is at most c(r/R)�s;
(4) For every 0<�<1 there is a constant M = M(X, �) 2 N, satisfying the fol-

lowing: if B is a collection of closed balls of radius � > 0 so that �B is pair-
wise disjoint, then there are �-packings {B1, . . . ,BM} so that B =

SM
i=1 Bi ;

(5) There is M = M(X) 2 N such that if A ⇢ X and � > 0, then there are
�-packings of A, B1, . . . ,BM whose union covers A.

Remark 2.2. (1) It follows by elementary arguments that s = log2 N will do in
(2) and (3). The infimum over all admissible exponents s in (2) and (3) is usually
called the Assouad dimension of X (see [19,36]). Thus, doubling metric spaces are
precisely the metric spaces with finite Assouad dimension.

(2) Observe that (5) is Besicovitch’s covering theorem ( [41, Subsection 2.7])
for balls with equal radius. The following consequence of (5) is sometimes very
useful: if µ is a measure on X and A ⇢ X , then there is a �-packing B of A for
� > 0, such that X

B2B
µ(B) � cµ(A). (2.1)

Here c > 0 depends only on the doubling constant N .
We say that a measure µ on X is doubling if there is a constant c � 1 so that

0 < µ
�
B(x, 2r)

�
 cµ

�
B(x, r)

�
< 1

for all x 2 X and r > 0. A complete doubling metric space always supports dou-
bling measures; see [28,37,65–67]. Recall that the support of a measure µ, denoted
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by spt(µ), is the smallest closed subset of X with full µ-measure. Furthermore, we
say that a measure µ on X is s-regular (for s > 0) if there are constants a, b > 0
so that

ars  µ
�
B(x, r)

�
 brs

for all x 2 spt(µ) and 0 < r  diam(X). It is clear that each s-regular measure is
doubling. A metric space X is called s-regular if it carries an s-regular measure µ
with spt(µ) = X . In this case, a simple volume argument can be used to verify the
conditions (2) and (3) of Lemma 2.1. Therefore an s-regular metric space is dou-
bling. More generally, each metric space carrying a doubling measure is a doubling
metric space.

A measure µ on X has the density point property if

lim
r#0

µ
�
A \ B(x, r)

�
µ
�
B(x, r)

� = 1 (2.2)

for µ-almost all x 2 A whenever A ⇢ X is µ-measurable. In general, the den-
sity point property is not necessarily valid for all measures in a doubling metric
space; see Example 5.6. Nevertheless, in the proofs, it can be often replaced by the
following weaker result.

Lemma 2.3. If µ is a measure on a separable metric space X and A ⇢ X is µ-
measurable, then

lim
r#0

µ
�
B(x, r) \ A

�
µ
�
B(x, 5r)

� = 0

for µ-almost all x 2 A.

Proof. Define E" = {x 2 A : lim supr#0 µ
�
B(x, r) \ A

�
/µ

�
B(x, 5r)

�
> "} for

all " > 0. The claim follows if we can show that µ(E") = 0 for all " > 0.
Fix " > 0 and for ⌘ > 0, let G⌘ be an open set containing E" such that µ(G⌘ \

E") < ⌘. Applying the 5r-covering theorem for the collection {B(x, r) : x 2

E" and r > 0 such that B(x, r) ⇢ G⌘ and µ
�
B(x, r) \ A

�
> "µ

�
B(x, 5r)

�
}, we

obtain a disjoint subcollection B such that 5B covers E". Thus

"µ(E")  "
X
B2B

µ(5B) <
X
B2B

µ(B \ A)  µ(G⌘ \ A)  µ(G⌘ \ E") < ⌘.

Letting ⌘ # 0 implies µ(E") = 0, as required.

Remark 2.4. (1) The constant 5 in Lemma 2.3 can be replaced by any constant
C > 2. This is because in the 5r-covering theorem, we may replace 5 by any such
C . Furthermore, if Besicovitch’s covering theorem holds in X , then the constant 5
in Lemma 2.3 can be replaced by 1. This can be seen just by applying Besicovitch’s
covering theorem (instead of the 5r-covering theorem) in the proof of Lemma 2.3.
In particular, this observation shows that in Euclidean spaces every measure has the
density point property.
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(2) The following upper density point property is true for all measures in any
doubling metric space X : if µ is a measure on X and A ⇢ X is µ-measurable, then

lim sup
r#0

µ
�
A \ B(x, r)

�
µ
�
B(x, r)

� = 1

for µ-almost all x 2 A. This follows from Lemma 2.3 and the fact that even if
a measure is not doubling, it has arbitrary small “doubling scales” at each typical
point; see e.g. [11, Lemma 2.2].

2.2. Local dimensions

We are mostly interested in estimating the upper and lower local dimensions of the
measure µ at x defined by

dimloc(µ, x) = lim sup
r#0

logµ(B(x, r))
log r

,

dimloc(µ, x) = lim inf
r#0

logµ(B(x, r))
log r

,

respectively. If the upper and lower dimensions agree, we call their mutual value
the local dimension of the measure µ at x and write dimloc(µ, x) for this common
value.
Remark 2.5. (1) If µ is an s-regular measure, then trivially dimloc(µ, x) = s for
all x 2 spt(µ).

(2) If A is a Borel set, then dimloc(µ|A, x)=dimloc(µ, x) and dimloc(µ|A, x)=
dimloc(µ, x) for µ-almost all x 2 A. This can be proven similarly as Lemma
2.3 once we observe that if the statement fails, then there is " > 0 such that
lim supr#0 r"µ

�
B(x, r)

�
/µ

�
A \ B(x, 5r)

�
> 0 in a set of positive measure.

2.3. Local Lq -spectrum and Lq -dimensions

Let µ be a measure on X , the set A ⇢ X a bounded set, q 2 R, and r > 0. The
(global) Lq -spectrum of µ on A is defined by

⌧q(µ, A) = lim inf
�#0

log Sq(µ, A, �)

log �
, (2.3)

where

Sq(µ, A, �) = sup
⇢X
B2B

µ(B)q : B is a �-packing of A \ spt(µ)

�

is the Lq -moment sum of µ on A at the scale �. Furthermore, the local Lq -spectrum
of µ at x is

⌧q(µ, x) = lim
r#0

⌧q
�
µ, B(x, r)

�
. (2.4)
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Given A ⇢ X and q 6= 1, we define the (global) Lq -dimension of µ on A by
setting

dimq(µ, A) = ⌧q(µ, A)/(q � 1)

and the local Lq -dimension of µ at x by

dimq(µ, x) = lim
r#0

dimq
�
µ, B(x, r)

�
= ⌧q(µ, x)/(q � 1).

We also denote ⌧q(µ) = ⌧q(µ, X) and dimq(µ) = dimq(µ, X) in the case spt(µ)
is bounded.
Remark 2.6. (1) The limit in (2.4) exists as Sq(µ, A, �)  Sq(µ, B, �) whenever
� > 0 and A ⇢ B. The use of lim inf in (2.3) guarantees the concavity of the
Lq -spectrum; see Lemma 2.7 (4).

(2) If q � 0 and A is closed, then the definition of ⌧q(µ, ·) does not change if
we ignore spt(µ) in the definition of Sq(µ, ·). That is, we can repeat the definition
with

Sq(µ, A, �) = sup
⇢X
B2B

µ(B)q : B is a �-packing of A
�

(if q = 0, we interpret 0q = 0). Also, if (�n)
1

n=1 is a decreasing sequence tending
to 0 with limn!1 log �n+1/ log �n = 1, then it follows from Lemma 2.1(5) that
the lim inf in the definition of ⌧q may be taken along the sequence (�n)

1

n=1. These
simple facts will be used frequently in what follows.

(3) If µ is an s-regular measure on X with spt(µ) = X , then dimq(µ, A) =

s for all bounded A ⇢ X with µ(A) > 0 and, consequently, dimq(µ, x) =

dimloc(µ, x) for all x 2 X . Indeed, given q 2 R, we find constants 0 < c1(A) <
c2(A) < 1 so that c1�s(q�1)

 Sq(µ, A, �)  c2�s(q�1) for all 0 < � < 1. This
implies ⌧q(µ, A) = s(q � 1) and thus dimq(µ, A) = s.

(4) There are measures for which dimq(µ, x) is constant almost everywhere,
but this constant is not the same as dimq(µ); see Examples 5.1 and 5.2.

(5) Recall from Remark 2.5 (2) that for any Borel set A the restriction measure
µ|A has the same upper and lower local dimension as the original measure µ for
µ-almost all points in A. This is not true for the Lq -dimension. As an example in
the case q < 1, take µ = L2 +H1

|L on [0, 1]2, where L2 is the Lebesgue measure
and H1

|L is the length measure on a line L ⇢ [0, 1]2. Now there exist constants
c1, c2 > 0 so that for every r > 0 we have Sq

�
µ, B(x, r), �

�
= c1r2�2(q�1) and

Sq
�
µ|L , B(x, r), �

�
= c2r�q�1 for all � > 0 small enough. Thus ⌧q(µ, x) = ⌧q(µ)

and ⌧q(µ|L , x) = ⌧q(µ|L) for all x 2 L . Since spt(µ|L) = spt(µ) \ L , we also
have ⌧q(µ|L) = ⌧q(µ, L). Therefore,

⌧q(µ, x) = ⌧q(µ) = 2(q � 1) < q � 1 = ⌧q(µ|L) = ⌧q(µ, L)

and
dimq(µ, x) = 2 > 1 = dimq(µ|L , x)
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for all x 2 L . For q > 1 we can instead define a measure on the real line by letting
⌫ = L2 +

P
n2N 2�n�qn , where {q1, q2, . . .} is an enumeration of the rationals.

Then dimq(⌫, x) = 0 while dimq(⌫|R\Q, x) = 1 for all x 2 R.
We list some of the basic properties of the Lq -spectrum in the following lem-

mas.

Lemma 2.7. If µ is a measure on a doubling metric space X , the set A ⇢ X is a
bounded set with µ(A) > 0, setting q0 = inf{q 2 R : ⌧q(µ, A) > �1}, and s as
in Lemma 2.1(2)–(3), then:

(1) ⌧1(µ, A) = 0;
(2) min{0, (q � 1)s}  ⌧q(µ, A)  max{0, (q � 1)s} for all 0  q < 1;
(3) 0  dimq(µ, A)  s for all 0  q < 1 with q 6= 1;
(4) the mapping q 7! ⌧q(µ, A) is concave on (q0,1);
(5) the mapping q 7! dimq(µ, A) is continuous and decreasing on both (q0, 1)

and (1,1).

Furthermore, if x 2 spt(µ), then all the claims above remain true if ⌧q(µ, A) is
replaced by ⌧q(µ, x) and dimq(µ, A) by dimq(µ, x).

Proof. We prove the claims for ⌧q(µ, A). The statements for ⌧q(µ, x) follow by
simply taking A = B(x, r) and letting r # 0. It suffices to show (2) and (4)
since the other claims follow easily from these two. Fix a 2 A and define U =

B
�
a, diam(A) + 1

�
.

If 0 < � < 1 and B is any �-packing of A, then Lemma 2.1(3) gives M 

C��s , where M is the cardinality of B. Therefore Hölder’s inequality implies

X
B2B

µ(B)q 

(
µ(U)qM1�q

 C1�qµ(U)q�s(q�1) if 0  q  1
µ(U)q if q � 1.

In addition, if B satisfies (2.1), then we estimate

X
B2B

µ(B)q �

(
cqµ

�
A
�q if q  1

cqµ(A)qM1�q
� cqC1�qµ(A)q�s(q�1) if q � 1.

The claim (2) follows by taking logarithms and letting � # 0. To show (4), let B be
a �-packing of A \ spt(µ). For every q, p � q0 and � 2 (0, 1) we have

X
B2B

µ(B)�q+(1��)p


✓X
B2B

µ(B)q
◆�✓X

B2B
µ(B)p

◆1��

(2.5)

by Hölder’s inequality. The claim follows.
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Lemma 2.8. If µ is a measure on a compact doubling metric space X , then

⌧q(µ) = min{⌧q(µ, x) : x 2 spt(µ)}

for every q 2 R. In particular,

dimq(µ) =

(
max{dimq(µ, x) : x 2 spt(µ)} if q < 1
min{dimq(µ, x) : x 2 spt(µ)} if q > 1.

Proof. According to Remark 2.6(1), we have ⌧q(µ)  ⌧q(µ, x) for every x 2

spt(µ). Since the second claim follows immediately from the first one, it remains
to show that there exists x 2 spt(µ) for which ⌧q(µ, x)  ⌧q(µ). First we cover
spt(µ) with finitely many balls {B(yi , 12 )}

k1
i=1, yi 2 spt(µ). Then, for every j and

� > 0, we have

Sq
�
µ, B(y j , 12 ), �

�
 Sq(µ, X, �) 

k1X
i=1

Sq
�
µ, B(yi , 12 ), �

�

 k1 max
i2{1,...,k1}

Sq
�
µ, B(yi , 12 ), �

�
.

(2.6)

Let (� j )1j=1 be a decreasing sequence tending to zero so that

lim
j!1

log Sq(µ, X, � j )

log � j
= lim inf

�#0

log Sq(µ, X, �)

log �
= ⌧q(µ).

Then, for every j 2 N, choose i j 2 {1, . . . , k1} so that

Sq
�
µ, B(yi j ,

1
2 ), � j

�
= max

i2{1,...,k1}
Sq

�
µ, B(yi , 12 ), � j

�
.

Now for some i 2 {1, . . . , k1} the set { j 2 N : i j = i} is infinite. Considering a
suitable subsequence of (� j )1j=1 and using (2.6), we get

lim inf
�#0

log Sq
�
µ, B(x1, 12 ), �

�
log �

= ⌧q(µ),

where x1 = yi .
Next we repeat the above argument by replacing 1

2 with
1
4 and spt(µ) by

spt(µ) \ B(x1, 12 ). Then we find x2 2 B(x1, 12 ) so that

lim inf
�#0

log Sq
�
µ, B(x2, 14 ), �

�
log �

= lim inf
�#0

log Sq
�
µ, B(x1, 12 ), �

�
log �

= ⌧q(µ).

Continuing inductively, we find a sequence xi 2 spt(µ) with d(xi+1, xi )  2�i and

lim inf
�#0

log Sq
�
µ, B(xi , 2�i ), �

�
log �

= ⌧q(µ)
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for every i 2 N. Since spt(µ) is compact, for x = limi!1 xi , we eventually get

lim inf
�#0

log Sq
�
µ, B(x, 2�i+2), �

�
log �

 lim inf
�#0

log Sq
�
µ, B(xi , 2�i ), �

�
log �

for all i 2 N and thus ⌧q(µ, x)  ⌧q(µ).

Remark 2.9. If µ is a measure on a doubling metric space X and A ⇢ X is com-
pact, then an easy modification of the above proof shows that for each q 2 R
there exists x 2 A \ spt(µ) so that ⌧q(µ, x)  ⌧q(µ, A). Then dimq(µ, A) 

max{dimq(µ, x) : x 2 A \ spt(µ)} for q < 1 and dimq(µ, A) � min{dimq(µ, x) :

x 2 A \ spt(µ)} for q > 1. The sets where these maximums and minimums are
obtained can be extremely small in terms of µ measure, see Examples 5.1, 5.2.

2.4. Local homogeneity and homogeneity dimension

Let µ be a measure on X , x 2 X , and �, ", r > 0. Define for all 3 > 1

hom3
�,",r (µ, x) = sup

n
#B : B is a (�r)-packing of B(x, r)

so that µ(B) > "µ
�
B(x,3r)

�
for all B 2 B

o
.

(2.7)

The local �-homogeneity and the local homogeneity dimension (with a parameter
3) of a measure µ at x are defined as

hom3
� (µ, x) = lim

"#0
lim sup
r#0

hom3
�,",r (µ, x), (2.8)

dim3
hom(µ, x) = lim inf

�#0

log hom3
� (µ, x)

� log �
, (2.9)

respectively. We interpret log 0 = 0 to ensure dim3
hom(µ, x) � 0.

Remark 2.10. (1) The limit in (2.8) exists as hom3
�,"2,r (µ, x)  hom0

�,"1,r (µ, x)
for all 0 < "1 < "2 and 3 � 0 > 1.

(2) The definition of dim3
hom is quite technical. It may be helpful to compare

it to the definition of the Assouad dimension given in Remark 2.2(1). The local
homogeneity dimension may be considered as a kind of local Assouad dimension
for the measure µ around x : it is the least possible exponent s so that for all small
�, r > 0 the ball B(x, r) has a �-packing of size ��s such that the µ measure of the
packing balls is comparable to µ

�
B(x,3r)

�
.

(3) If µ is an s-regular measure on X with spt(µ) = X , then

dim3
hom(µ, x) = dimloc(µ, x) = s

for all x 2 X . Indeed, a simple volume argument implies that for all x 2 X , r > 0
and 0 < � < 1, we have c1��s

 sup{#B : B is a (�r)-packing of B(x, r)} 

c2��s . On the other hand, if " = "(�) > 0 is small, we have µ
�
B(y, �r)

�
>

"µ
�
B(x, r)

�
.
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The next lemma shows that, at a typical point, the choice of the parameter3 in
the definition of homogeneity does not play any role. Therefore, in the applications,
we may choose a convenient value for 3.

Lemma 2.11. If µ is a measure on a doubling metric space X and 3 > 0 > 1,
then dim3

hom(µ, x) = dim0
hom(µ, x) for µ-almost every x 2 X .

Proof. According to Remark 2.10(1), we have dim3
hom(µ, x)  dim0

hom(µ, x) for
all x 2 X . The main point in the proof of the opposite inequality is the observation
that if B is a �-packing of B(x, r), then for constants c1 = c1(3,0) > 0 and
c2 = c2(N ,3,0) > 0 there are y 2 B(x, r) and a �-packing B0

⇢ B of B(y, cr)
such that B(y,3c1r) ⇢ B(x,0r) and #B0

� c2#B.
In order to deliver full details of the proof, we assume to the contarary that

there exists a set A ⇢ X with µ(A) > 0 and t > 0 so that

dim3
hom(µ, x) < t < dim0

hom(µ, x)

for all x 2 A. Let c = (0 � 1)/230q where q 2 N is chosen so that 0q�1
�

5/(0 � 1). According to Lemma 2.1(2) there exists M 2 N such that a ball of
radius r can be covered by M balls of radius min{c,0�q

}r for all r > 0. Going
into a subset of A, if necessary, we find r0, ", � > 0 so that � < 0�q ,

hom3
�,",r (µ, x) < ��t/M2

for every 0 < r < r0 and x 2 A, and

lim sup
r#0

hom0
c�,",0qr (µ, x) > ��t

for all x 2 A. Recalling Lemma 2.3, we may also assume that

µ
�
B(x,0r) \ A

�
< "��tµ

�
B(x, 50r)

�
/M2 (2.10)

for all 0 < r < r0 and x 2 A. Next we fix x 2 A and choose 0 < r < r0/0qc so
that

hom0
c�,",0qr (µ, x) > ��t .

Since A \ B(x,0qr) can be covered by M balls of radius r with centers in A \

B(x,0qr), we find w 2 A \ B(x,0qr) and a (0qc�r)-packing B0 of B(w, r) so
that #B0

� ��t/M and

µ(B) > "µ
�
B(x,0q+1r)

�
� "µ

�
B(w, 50r)

�
(2.11)

for all B 2 B0. Covering B(w, r) by M balls of radius cr , we see that at least one
of the balls, say B(y, cr), has a (0qc�r)-packing B ⇢ B0 so that

#B � ��t/M2. (2.12)
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Since B(z,30qcr) ⇢ B(w, 50r) for z 2 B(y, 2cr) we now have

hom3
�,",0qcr (µ, z) > ��t/M2

for all z 2 B(y, 2cr), and, consequently, A \ B(y, 2cr) = ;. Using (2.10)–(2.12),
we estimate

µ
�
B(w,0r) \ A

�
< #B"µ

�
B(w, 50r)

�


X
B2B

µ(B)  µ
�
B(y, 2cr)

�

= µ
�
B(y, 2cr) \ A

�
.

Since B(y, 2cr) ⇢ B(w,0r) we arrive at a contradiction.

Remark 2.12. (1) Let µ be a measure on X . Then, for every µ-measurable A ⇢ X ,
we have

dim3
hom(µ|A, x) = dim3

hom(µ, x)

for µ-almost all x 2 A. This is easily seen by combining Lemma 2.3 and Lemma
2.11 with the estimates µ

�
A \ B(x, 53r)

�
� "µ

�
B(x,3r)

�
and µ(Bi \ A) �

µ(Bi ) � "µ
�
B(x, 5r)

�
for Bi ⇢ B(x, r) and r, " > 0 small enough.

(2) The equality of Lemma 2.11 does not have to hold at every point x 2 X
even when X = R2. To see this take

µ =

1X
k=1

1
k!
H1

|S1(0,2�k),

where H1
|S1(0,2�k) is the length measure on S1(0, 2�k) = {y 2 R2 : |y| = 2�k

}.
Then we have dim3/2hom

�
µ, (0, 0)

�
= 1, but dim5/2hom

�
µ, (0, 0)

�
= 0.

(3) The definitions of local homogeneity and local Lq -spectrum make sense
in any metric space in which balls are totally bounded. However, we will consider
only doubling metric spaces since the doubling condition is needed in most of our
proofs.

3. Main results

3.1. Relating Lq-dimensions with local dimensions

The Lq -spectrum of a measure is an essential tool in multifractal analysis and it has
been investigated in many works, see e.g. [1, 17, 20, 34, 45, 48, 57] and [14, 16, 49]
and references therein. It turns out that the well known Hausdorff and packing
dimension estimates for a measure via its global Lq -spectrum generalize to the
setting of local spectrum in doubling metric spaces. The following theorem is a
local metric space version of the results obtained e.g. in [20, Theorem 1.3], [45,
Theorem 1.1], and [17, Theorem 1.4]. See also [47, Corollary 1.3].
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Theorem 3.1. If µ is a measure on a doubling metric space X , then

lim
q#1

dimq(µ, x)  dimloc(µ, x)  dimloc(µ, x)  lim
q"1

dimq(µ, x) (3.1)

for µ-almost all x 2 X .

The proof of Theorem 3.1 is postponed until the end of this section. We remark
that all the inequalities in (3.1) can be strict; see e.g. Remark 5.5.

Lemma 3.2. If X is a doubling metric space, A ⇢ X bounded, r > 0, µ a measure
on X , q 2 R and 0 < � < r , then there is an r-packing B of A so that

Sq(µ, A, �)  c
X
B2B

Sq(µ, B, �) ,

where c = c(N ) 2 N.

Proof. Using Lemma 2.1(5), we choose r-packings of A, say B1, . . . ,BM where
M = M(N ) 2 N, whose union covers A. Fix 0 < � < r and let B0 be a �-packing
of A \ spt(µ) such that 2

P
B2B0 µ(B)q > Sq(µ, A, �). If B0

B = {B0
2 B0

:

the center point of B0 is in B} for all B 2

SM
i=1 Bi , then

X
B0

2B0

µ(B0)q 

MX
i=1

X
B2Bi

X
B0

2B0

B

µ(B0)q 

MX
i=1

X
B2Bi

Sq
�
µ, B, �

�
.

Thus 2M
P

B2Bi Sq
�
µ, B, �

�
� Sq(µ, A, �) for some i .

Lemma 3.3. If µ is a measure on a doubling metric space X , then for any q �

0 and " > 0, there is a countable covering of X by bounded sets A for which
supx2A ⌧q(µ, x)  ⌧q(µ, A) + ".

Proof. We may cover X by countably many sets of the form

A↵ = {x 2 X : ↵ < ⌧q(µ, x) < ↵ + "}.

If x 2 A↵ , then there exist r > 0 and �0 > 0 such that Sq
�
µ, B(x, r), �

�
< �↵ for

all 0 < � < �0. Thus, A↵ can be covered by countably many sets of the form

A↵,r,�0,R = {x 2 A↵ \ B(x0, R) : Sq
�
µ, B(x, r), �

�
< �↵ for all 0 < � < �0}.

By Lemma 3.2, we find an r-packing B of A↵,r,�0,R so that

log Sq(µ, A↵,r0,�0,R, �)

log �
�

log c
P

B2B Sq
�
µ, B, �

�
log �

�

log(#Bc�↵)

log �
,

where c = c(N ) 2 N. Since B has at most M = M(r, R, N ) 2 N elements by
Lemma 2.1(3), we get ⌧q(µ, A↵,r,�0,R) � ↵ by letting � # 0.
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The following lemma can be considered as a global version of Theorem 3.1.

Lemma 3.4. If µ is a measure on a doubling metric space X and A ⇢ X is
bounded, then

dimq(µ, A)  µ- ess infx2A dimloc(µ, x)
 µ- ess supx2A dimloc(µ, x)  dimp(µ, A)

for all 0 < p < 1 < q.

Proof. Let q > 1. If s > µ- ess inf{dimloc(µ, x) : x 2 A} and An = {x 2

A \ spt(µ) : µ
�
B(x, 2�n)

�
> 2�ns

}, then
P

1

n=1 µ(An) = 1 by the Borel-Cantelli
Lemma. Thus, there are arbitrarily large n such that µ(An) > n�2. Fix such an n
and let B be a (2�n)-packing of An satisfying (2.1). Then

Sq(µ, A, 2�n) �

X
B2B

µ(B)q =

X
B2B

µ(B)µ(B)q�1

�

X
B2B

µ(B)2�ns(q�1)
� cµ(An)2�ns(q�1)

� cn�22�ns(q�1).

Taking logarithms and letting n ! 1, this implies ⌧q(µ, A)  s(q � 1) and,
consequently, dimq(µ, A)  s as required.

If 0 < p < 1, then we complete the proof by repeating the above argument
with q replaced by p, s < µ- ess sup{dimloc(µ, x) : x 2 A}, and An = {x 2

A \ spt(µ) : µ
�
B(x, 2�n)

�
< 2�ns

}.

Proof of Theorem 3.1. The proof follows simply by combining Lemmas 3.3 and
3.4. Indeed, for q > 1 and " > 0, decompose X into countably many bounded sets
A for which supx2A ⌧q(µ, x)  ⌧q(µ, A) + ". Lemma 3.4 then implies that

dimq(µ, x) � "/(q � 1)  dimq(µ, A)  dimloc(µ, x)

for µ-almost all x 2 A. The leftmost inequality of (3.1) follows now by letting
" # 0. Recall that the limit exists by Lemma 2.7(5). The proof in the case 0 < q < 1
is similar.

3.2. Upper bound for local dimensions via local homogeneity dimension

In this section, we prove our main result showing that the local homogeneity di-
mension is almost everywhere at least as large as the upper local dimension.

Theorem 3.5. If µ is a measure on a doubling metric space X and 3 > 1, then

dimloc(µ, x)  dim3
hom(µ, x)

for µ-almost all x 2 X .
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Theorem 3.5 is obtained as a corollary to a more quantitative result, Theorem
3.8, which will be essential in our applications in Section 4. Before we turn to The-
orem 3.8, we exhibit some auxiliary results. We first observe that the homogeneity
can be used to bound the Lq -moment sums.

Lemma 3.6. If X is a doubling metric space and 0 < � < 1, then there is M =

M(�, N ) 2 N so that for every measure µ on X and for all x 2 X , and r, " > 0 we
have

Sq
�
µ, B(x, r), �r

�


�
hom3

�,",r (µ, x)1�q + M"q
�
µ
�
B(x,3r)

�q
,

with any 3 > 1 and 0 < q < 1,.

Proof. IfB is a (�r)-packing of B(x, r) andB0
={B 2 B : µ(B) > "µ

�
B(x,3r)

�
},

then Hölder’s inequality implies
X
B2B0

µ(B)q  hom3
�,",r (µ, x)1�qµ

�
B(x,3r)

�q
.

On the other hand, sinceX
B2B\B0

µ(B)q  #B"qµ
�
B(x,3r)

�q

and #B  M(�, N ) by Lemma 2.1(3), the claim follows.

Lemma 3.7. If X is a doubling metric space, q, � are positive and smaller than
1, and m > 0, then there exists a constant " = "(q, �,m, N ) > 0 satisfying
the following: if µ is a measure on X , 3 > 1, and A ⇢ X is bounded so that
hom3

�,",r (µ, x)  ��m for all x 2 A and 0 < r < r0, then there is a constant
c = c(N ,3) � 1 so that

Sq(µ, A, �r)  c�m(q�1)Sq(µ, A,3r)

for all 0 < r < r0.

Proof. Let " > 0 be so small that M"q  �m(q�1), where M is as in Lemma 3.6.
According to Lemma 3.2, there are c = c(N ) 2 N and an r-packing B of A so that

Sq(µ, A, �r)  c
X
B2B

Sq(µ, B, �r)  c
X
B2B

2�m(q�1)µ(3B)q

by Lemma 3.6, the homogeneity assumption and the choice of ". The claim now
follows since

P
B2B µ(3B)q  c(N ,3)Sq(µ, A,3r) by Lemma 2.1(4).

The following theorem is our main quantitative result concerning local homo-
geneity of measures.
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Theorem 3.8. If X is a doubling metric space, 0 < m < s, and 3 > 1, then
there exists a constant �0 = �0(m, s, N ,3) > 0 satisfying the following: for every
0 < � < �0 there is "0 = "0(�,m, N ) > 0 so that for each measure µ on X we
have

lim sup
r#0

hom3
�,",r (µ, x) � ��m (3.2)

for all 0 < "  "0 and for µ-almost all x 2 X that satisfy dimloc(µ, x) > s.

Proof. Fix 0<q<1. Let �0>0 be so small that log(c3m(q�1))/ log((�0/3)q�1)>
(s � m)(q � 1), where c = c(N ,3) > 0 is as in Lemma 3.7. Fix 0 < � < �0 and
let " = "(q, �,m, N ) > 0 be as in Lemma 3.7. Given x0 2 X and positive R, and
r0, it suffices to show that dimloc(µ, x)  s for µ-almost every point in the set

A = {x 2 B(x0, R) : hom3
�,",r (µ, x) < ��m for all 0 < r < r0}.

According to Lemma 3.7, we have Sq(µ, A, �r/3)  c�m(q�1)Sq(µ, A, r) for all
0<r<r0. A simple induction gives Sq

�
µ, A, (�/3)nr0

�
 cn�nm(q�1)Sq(µ, A, r0)

for all n 2 N. Therefore

⌧q(µ, A) = lim inf
n!1

log Sq
�
µ, A, (�/3)nr0

�
log

�
(�/3)nr0

� � m(q � 1) +

log(c3m(q�1))

log(�/3)

and so dimq(µ, A)  s by the choice of �0. Lemma 3.4 then gives dimloc(µ, x)  s
at µ-almost all points x 2 A.

Remark 3.9. In general, it is possible that dimq(µ, x) > c > 0 for all 0 < q < 1
almost everywhere while dimhom(µ, x) = 0; see Example 5.4. It is essential in
the proof of Theorem 3.8 that in the set A, where we have uniform estimates for
hom3

�,",r (µ, x), we can use dimhom(µ, x) to bound dimq(µ, A) from above.

Proof of Theorem 3.5. Assume to the contrary that there are A ⇢ X with µ(A) >
0 and 0 < m < s such that dim3

hom(µ, x) < m < s < dimloc(µ, x) for all
x 2 A. It follows from Theorem 3.8 that there is �0 = �0(m, s, N ,3) > 0 so
that hom3

� (µ, x) � ��m for every 0 < � < �0 and for µ-almost all x 2 A. Thus
dim3

hom(µ, x) � m for µ-almost all x 2 A giving a contradiction.

3.3. Entropy dimension

We complete the discussion on dimq by treating the case q = 1. This is done
by defining for A ⇢ X with µ(A) > 0 the (global) upper and lower entropy
dimensions of µ on A as

dim1(µ, A) = lim sup
�#0

Z
A

logµ
�
B(y, �)

�
log �

dµ(y),

dim1(µ, A) = lim inf
�#0

Z
A

logµ
�
B(y, �)

�
log �

dµ(y),
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respectively. If they agree, then their common value is denoted by dim1(µ, A).
Here and hereafter, for A ⇢ X and a µ-measurable f : X ! R, we use notationZ
A
f (y) dµ(y) = µ(A)�1

R
A f (y) dµ(y) whenever the integral is well defined.

The local upper and lower entropy dimensions at x 2 spt(µ) are then defined as

dim1(µ, x) = lim sup
r#0

dim1
�
µ, B(x, r)

�
,

dim1(µ, x) = lim inf
r#0

dim1
�
µ, B(x, r)

�
.

(3.3)

Our results on dim1(µ, x) are local metric space versions of the corresponding
global Euclidean results. For instance, see [20, Theorem 4.1] and [17, Theorem
1.4]. The case q = 1 is different from q 6= 1 in the sense that it cannot be studied
solely by using Borel-Cantelli type arguments. Also, in the main result of this sec-
tion, Theorem 3.11, the density point property is a crucial assumption and it cannot
be replaced by the weaker and more general condition given by Lemma 2.3 as is
the case q 6= 1.

The following proposition shows that the definition of dim1 is consistent with
the basic properties of dimq .
Proposition 3.10. If µ is a measure on a doubling metric space X , then

lim
q#1

dimq(µ, x)  dim1(µ, x)  dim1(µ, x)  lim
q"1

dimq(µ, x)

for all x 2 spt(µ).
The proof of the proposition involves the partition definition of dimq . Since

we do not need the result in this article, we will omit the proof.
A detailed proof can be found in an earlier arXiv version of the manuscript,

see http://arxiv.org/abs/1003.2895v1.
Theorem 3.11. If µ is a measure on a doubling metric space X so that it satisfies
the density point property, then

dimloc(µ, x)  dim1(µ, x)  dim1(µ, x)  dimloc(µ, x) (3.4)

for µ-almost all x 2 X .
Proof. We may assume that the measure is non-atomic as the claim is obvious if
µ({x}) > 0. Given " > 0, we may cover µ-almost all of X by countably many
sets of the form A0

= {y 2 X : t < dimloc(µ, y) < t + "} and each of these
can be covered by countably many sets of the form A = {y 2 A0

: µ
�
B(x, r)

�
<

r t for all 0 < r < q}. For x 2 spt(µ) and 0 < � < q, we haveZ
B(x,r)

logµ
�
B(y, �)

�
log �

dµ(y) �

1
µ
�
B(x, r)

�
Z
A\B(x,r)

logµ
�
B(y, �)

�
log �

dµ(y)

� t
µ
�
A \ B(x, r)

�
µ
�
B(x, r)

� .
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Here we have assumed that µ
�
B(x, r + �)

�
< 1. For small r and � this is the case

since µ has no atoms. Since almost all points x 2 A are density points, we get

dim1(µ, x) = lim inf
r#0

lim inf
�#0

Z
B(x,r)

logµ
�
B(y, �)

�
log �

dµ(y) � t

for µ-almost all x 2 A and consequently dim1(µ, x) � dimloc(µ, x) � " for µ-
almost all x 2 X .

To prove the estimates for the upper dimension, a similar covering argument
as above implies that it suffices to show that if 0 < q, t < 1, then dim1(µ, x)  t
for µ-almost all x 2 A = {y 2 X : µ

�
B(y, r)

�
> r t for all 0 < r < q}. Let

x 2 X and 0 < r < q. For 0 < � < q and t  ↵ < 1, define E�,↵ = {y 2

B(x, r) : µ
�
B(y, �)

�
< �↵

}. By Lemma 2.1(2), E�,↵ can be covered by C��s balls
of radius � with centres in E�,↵ , where s = s(N ) > 0 and C = C(N , r) > 0.
Thus µ(E�,↵)  C�↵�s . Let J = {y 2 B(x, r) : µ

�
B(y, �)

�
> �t }, K = {y 2

B(x, r) : �2s  µ
�
B(y, �)

�
 �t }, and L = {y 2 B(x, r) : µ

�
B(y, �)

�
< �2s}.

Then B(x, r) = J [ K [ L . Moreover,Z
J

logµ
�
B(y, �)

�
log �

dµ(y)  tµ(J )  tµ
�
B(x, r)

�
,

Z
K

logµ
�
B(y, �)

�
log �

dµ(y)  2sµ(K )  2sµ
�
B(x, r) \ A

�
,

Z
L

logµ
�
B(y, �)

�
log �

dµ(y) =

Z
1

2s
µ(E�,↵) d↵  C��s

Z
1

2s
�↵ d↵ =

C�s

� log �
.

Putting these together and letting � # 0 in the last estimate, we get

dim1
�
µ, B(x, r)

�
= lim sup

�#0

Z
B(x,r)

logµ
�
B(y, �)

�
log �

dµ(y)  t+2s
µ
�
B(x, r) \ A

�
µ
�
B(x, r)

�
and, consequently,

dim1(µ, x) = lim sup
r#0

dim1
�
µ, B(x, r)

�
 t

for all density points of A. The claim follows since µ has the density point prop-
erty.

Remark 3.12. (1) By inspecting the above proof, we easily get a global analogue
of Theorem 3.11: if A ⇢ X is bounded and µ(A) > 0, then it holds that

µ- ess supx2A dimloc(µ, x) � dim1(µ, A),

µ- ess infx2A dimloc(µ, x)  dim1(µ, A).

It is worthwhile to notice that the density point property is not needed in this case.
(2) In Examples 5.7 and 5.8, we show that Theorem 3.11 does not hold without

the density point property. This is a remarkable difference between the global and
local entropy dimensions.
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4. Applications

In this section, we use the local homogeneity estimate of Theorem 3.8 as the final
step in proving various new results. In fact, understanding the conical density and
porosity questions in Section 4.1–Section 4.3 below was our main motivation for
investigating the local homogeneity. In addition to Theorem 3.8, the proofs will be
based on already known geometric conclusions.

4.1. Upper conical densities in Euclidean spaces

Let G(d, n) be the Grasmann manifold of all n-dimensional linear subspaces of Rd

and Sd�1
= {y 2 Rd

: |y| = 1} the unit sphere in Rd . Then, given real numbers
0 < ↵  1, and r > 0, for V 2 G(d, d � k), and x 2 Rd we define cones

X (x, r, V,↵) = {y 2 B(x, r) : dist(y � x, V ) < ↵|y � x |}

and, for ✓ 2 Sd�1,

H(x, ✓,↵) = {y 2 Rd
: (y � x) · ✓ > ↵|y � x |}.

With small ↵ the cones X (x, r, V,↵) are small cones around the translate of the
subspace V by x , whereas the cone H(x, ✓,↵) is almost a half-space from the point
x to the direction ✓ .

The distribution of Hausdorff and packing type measures inside cones is well
studied and understood; see, for example, [31,38,40,54,60]. For general measures
the following theorem was proved in [11, Theorem 4.1] under the assumption that
the Hausdorff dimension of the measure is greater than s. We improve this result
by showing that the theorem is true even if we assume a lower bound only for the
packing (i.e. the upper local) dimension of the measure.

Theorem 4.1. If d 2 N and k 2 {0, . . . , d � 1} with s > k, then there exists a
constant c = c(d, k, s,↵) > 0, for 0 < ↵  1, so that for every measure µ on Rd

we have

lim sup
r#0

inf
✓2Sd�1

V2G(d,d�k)

µ
�
X (x, r, V,↵) \ H(x, ✓,↵)

�
µ
�
B(x, r)

� > c

for µ-almost all x 2 Rd that satisfy dimloc(µ, x) > s.

Proof. We can reduce the proof to verifying the following condition (see [11, Prop-
osition 4.5]): for a given q, K 2 N and 1 < t < 1 there exists a constant " =

"(d, k, s, q, K , t) > 0 so that for µ-almost all x 2 {y 2 Rd
: dimloc(µ, y) > s}

we may find arbitrarily small radii r > 0 and ball families B with the following
properties:

(1) B ⇢ B(x, r) for all B 2 B.
(2) The collection tB = {t B : B 2 B} is a packing.
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(3) µ(B) > "µ
�
B(x, 3r)

�
for all B 2 B.

(4) If B0
⇢ B with #B0

� #B/K and V 2 G(d, d � k), then there is a translate of
V intersecting at least q balls from the collection B0.

We will construct the familiesB with the help of Theorem 3.8. Let M=M(Nd , t�1)
be the constant from Lemma 2.1(4), where Nd is the doubling constant of Rd . Let
m = (s + k)/2 and choose 0 < � < min{�0, 14 } so that 4

�k�k�m � 2KMq,
where �0 is as in Theorem 3.8. By Theorem 3.8 there is " = "(m, s, Nd , �) >
0 so that lim supr#0 hom5�,",r (µ, x) � ��m for µ-almost all x 2 Rd that satisfy
dimloc(µ, x) > s. Fix such a point x and let r > 0 so that hom�,", 34 r

(µ, x) >

��m/2. Now there is a (34�r)-packing of B(x, 34r), say B0, with #B0 > ��m/2 so
that µ(B) > "µ

�
B(x, 154 r)

�
� "µ

�
B(x, 3r)

�
for all B 2 B0.

Lemma 2.1(4) gives a subcollection B ⇢ B0 for which tB is also a packing
and #B � #B/M � ��m/(2M). Now, because � 

1
4 , B ⇢ B(x, r) for each

B 2 B. Thus conditions (1)–(3) hold. The only property we need to verify is
the condition (4). Suppose that B0

⇢ B with #B0
� #B/K � ��m/(2KM), and

let V 2 G(d, d � k). The orthogonal projection of B(x, r) into the orthogonal
complement of V can be covered by 4k��k balls of radius 34�r and so some translate
of V must intersect at least

4�k�k#B0

�

4�k�k�m

2KM
� q

balls from the collection B0. Thus also (4) holds and the proof is finished.

4.2. Porous measures on Euclidean spaces

We first define porosity for sets. Let A ⇢ Rd , let k 2 {1, . . . , d} for x 2 A, and
r > 0. We define

pork(A, x, r) = sup{% � 0 : there are y1, . . . , yk 2 Rd such that for every i
A \ B(yi , %r) = ; and %r + |x � yi |  r,
and (yi � x) · (y j � x) = 0 if j 6= i}

and from this the k-porosity of A at x as

pork(A, x) = lim inf
r#0

pork(A, x, r).

We refer to the balls B(yi , %r) in the definition as “holes”. The notion of k-porosity
was introduced in [32].

When we combine this definition with the porosity for measures, defined for
the first time in [13], we obtain k-porosity for measures: let µ be a measure on Rd ,
for k 2 {1, . . . , d}, and x 2 Rd , with r > 0, and " > 0. We set

pork(µ, x, r, ")=sup{% � 0 : there are y1, . . . , yk 2 Rd such that for every i
µ
�
B(yi , %r)

�
 "µ

�
B(x, r)

�
and %r + |x � yi |  r,

and (yi � x) · (y j � x) = 0 if j 6= i}
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and the k-porosity of the measure µ at x is defined to be

pork(µ, x) = lim
"#0
lim inf
r#0

pork(µ, x, r, ").

It follows from [13, Section 2] that pork(µ, x) 
1
2 for µ-almost all x 2 Rd .

We remark that a more precise name for the porosity just defined would be lower
porosity, to distinguish this notion from the upper porosity of sets and measures;
see, e.g., [43, 61].

We provide an upper bound for the upper local dimension of measures with
k-porosity close to the maximum value 12 . In [5], this result was proved for k = 1.
The first estimates for the dimension of sets with 1-porosity close to 12 are from [40]
and [55]. For more recent results on the dimension of porous sets and measures;
see [10, 26, 32, 52] and [5, 6, 13, 23, 31]. It is important to notice both here and in
Theorem 4.7 that even if por1(µ, x) > 0 in a set of positiveµ-measure, it is possible
that µ(A) = 0 for all A ⇢ X with infx2A por1(A, x) > 0; see [5, Theorem 4.1].

Theorem 4.2. If d 2 N, then there exists a constant c = c(d) > 0 so that for every
measure µ on Rd we have

dimloc(µ, x)  d � k +

c
� log

�
1� 2 pork(µ, x)

�

for µ-almost all x 2 Rd .

Remark 4.3. (1) It is rather easy to see that the upper bound in Theorem 4.2 is
asymptotically sharp as pork(µ, x) "

1
2 : for each % < 1

2 there exists a measure
µ on Rd with pork(µ, x) � % while dimloc(µ, x) � d � k � c/ log(1 � 2%) for
µ-almost all x 2 Rd . The easiest way to see this is to consider a regular Cantor set
C ⇢ R with 1-porosity % and to let µ be the natural measure on Ck

⇥ [0, 1]d�k .
(2) The proof of Theorem 4.2 in the case k = 1 given in [5] is based on an

extensive use of dyadic cubes. The interplay between cubes and balls caused many
technical problems, which were finally solved by considering the boundary regions
of cubes separately. The method used there does not work for k-porosity when
k � 2 although the statement itself has nothing to do with co-dimension being one.

Before proving Theorem 4.2, we will exhibit a couple of geometric lemmas
concerning k-porous sets.

Lemma 4.4. If A ⇢ B(x0, r) ⇢ Rd is so that pork(A, z, r) � % for every z 2 A,
then the set A can be covered with c(1 � 2%)k�d balls of radius (1 � 2%)r , where
c > 0 depends only on d.

Proof. The proof is based on geometric arguments similar to these used in [26,
Theorem 2.5], [5, Lemmas 3.4 and 3.5], and [52, Lemma 5.1]. In the proof, we will
omit some of the elementary, if tedious, details.
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Let c1, c2, c3 > 0 be small constants. We may assume that % > 1
2 � c1. A

simple compactness argument implies that Rd can be covered by m = m(d, c2)
cones {H(0, ✓i , 1� c2)}mi=1. Observe that H(0, ✓i , 1� c2) is a cone to the direction
✓i 2 Sd�1 with a small opening angle.

For each point y 2 A, denote the centres of the holes obtained from the k-
porosity on the scale r by y1, . . . , yk . Thus, A\B(yi , %r) = ; and |yi�y|+%r  r
for every i , and (yi � y) · (y j � y) = 0 whenever i 6= j . We observe that A may be
divided into mk sets of the form

Ai =

�
y 2 A : y j � y 2 H(0, ✓i j , 1� c2) for every j 2 {1, . . . , k}

 
.

where i = (i1, . . . , ik) 2 {1, . . . ,m}
k . Since (yi � y) · (y j � y) = 0 for all y 2 A

and all i 6= j , it follows that actually most of the sets Ai are empty. Fix i so that
Ai 6= ; and choose x so that Ai \ B(x, c3r) 6= ;. Define

Mj = B(x, 2c3r) \ @

✓ [
y2Ai\B(x,c3r)

B(y j , %r)
◆

for all j 2 {1, . . . , k} and let

M =

k\
j=1

Mj .

Here @C is the topological boundary of a given set C .
By simple (but rather technical) geometric inspections, we observe that if c1,

c2, and c3 are chosen small enough (depending only on d), then the following asser-
tions are true: if f is the orthogonal projection from M to the k-dimensional linear
subspace

Tk
j=1 ✓?

i j , then

| f (y) � f (z)|  |y � z|  2| f (y) � f (z)|

for all y, z 2 M , so f is bi-Lipschitz with constant 2. Moreover, dist(y,M) 

2
p

d(1 � 2%)r for all y 2 Ai \ B(x, c3r). These estimates easily imply that
B(x, c3r) \ Ai may be covered by c4(1� 2%)k�d balls of radius (1� 2%)r , where
c4 depends only on d and the choice of c3. On the other hand, the set Ai \ B(x, r)
is clearly covered by 22dc�d3 balls of radius c3r and finally A is covered by less than
mk22dc�d3 c4(1� 2%)k�d balls of radius (1� 2%)r .

Next we turn the previous lemma into a homogeneity estimate.

Lemma 4.5. If 0 < % < 1
2 and µ is a measure on Rd such that µ(A) > 0, where

A ⇢ {x 2 Rd
: pork(µ, x) > %}, then for each " > 0 there is a Borel set A" ⇢ A

with µ(A") > 0 such that

lim sup
r#0

hom51�2%,",r (µ, x) < c(1� 2%)k�d

for every x 2 A", where c > 0 depends only on d.
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Proof. Let " > 0 and take r0 > 0 so that the set

A" = {x 2 A : pork(µ, x, r, "/2) � % for all 0 < r < r0}

has positiveµ-measure. Now take a density point x 2 A" and a radius 0 < r  r0/5
for which

µ
�
A" \ B(x, 5r)

�
µ
�
B(x, 5r)

� > 1� ". (4.1)

Let B be a ((1 � 2%)r)-packing of B(x, r) so that µ(B) > "µ
�
B(x, 5r)

�
for all

B 2 B. Write AB for the centres of the balls in B. For each B 2 B choose
y 2 A" \ B. Because of (4.1), such a point y exists. A direct calculation using the
k-porosity at y on the scale r implies that

pork(AB, x, r) � % � 2(1� 2%),

where x is the centre of B. Since this holds for all x 2 AB, Lemma 4.4 implies that
AB may be covered by c

�
1� 2

�
% � 2(1� 2%)

��k�d
= 5k�dc(1� 2%)k�d balls of

radius 5(1� 2%)r . Here c = c(d) is the constant of Lemma 4.4. It now follows that
#B = #AB  10d5k�dc(1� 2%)k�d yielding the claim. It is important to note here
that we are not covering the set A" as it generally is not even porous.

Proof of Theorem 4.2. Let 1 < c = c(d) < 1 be the constant of Lemma 4.5 and
let 0 < % < 1

2 . From the proof of Theorem 3.8 we observe that there exists a
constant 0 < c1 = c1(d) < 1 so that for any 0 < m < s the choice �0 = c1/(m�s)

1
will suite as �0 = �0 = (m, s, 5, Nd) in the claim of Theorem 3.8. Our aim is then
to apply Theorem 3.8 with

m = d � k +

log c
� log(1� 2%)

, s = m +

log c1
log(1� 2%)

,

and � = 1� 2%. Let t = (m + s)/2 and take M = M(Nd , 1
10 ) from Lemma 2.1(4).

Here Nd is the doubling constant of Rd .
Let �0 = �0(m, s, Nd) be the constant in Theorem 3.8. Because we chose the

parameters so that

�0 � c
1

m�s
1 = 1� 2⇢ = �,

we may apply Theorem 3.8. Let " to be the constant "0 = "0(m, s, Nd , �) of Theo-
rem 3.8.

Proving the theorem now easily reduces to showing that dimloc(µ, x)  s
almost everywhere on the set A = {y 2 Rd

: pork(µ, y) > %}. We may assume
that µ(A) > 0 since otherwise there is nothing to prove. Suppose to the contrary
that there exists a set A0

⇢ A with positive measure such that dimloc(µ, x) > s for
all x 2 A0. Using Lemma 4.5, we find a set A" ⇢ A0 with µ(A") > 0 so that

lim sup
r#0

hom51�2%,",r (µ, x) < c(1� 2%)�d+k
= (1� 2%)�m
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for all x 2 A". Now Theorem 3.8 implies that dimloc(µ, x)  s for µ-almost all
x 2 A". This contradiction finishes the proof.

Remark 4.6. A measure µ is called (%, p)-mean k-porous at x if for all " > 0
and for all sufficiently large n, there are at least pn values l 2 {1, . . . , n} with
pork(µ, x, 2�l , ") � %. It follows from [5] that for any measure µ on Rd , one
has dimloc(µ, x)  d � p � c(d)/ log(1 � 2%) for µ-almost all x 2 {y 2 Rd

:

µ is (%, p)-mean 1-porous at y}. In light of Theorem 4.2 it is natural to ask whether
this holds also for mean k-porous measures: if µ is a measure on Rd , with k 2

{1, . . . , d}, for 0 < % < 1/2, and 0 < p < 1, is it true that

dimloc(µ, x)  d � pk � c/ log(1� 2%)

for µ-almost all x 2 {y 2 X : µ is (%, p)-mean k-porous at y}? An affirmative
answer to this question was recently obtained in [53].

4.3. Porous measures on s-regular metric spaces

If we consider k-porosity with k = 1 there is no orthogonality condition on the
direction of holes. By replacing the Euclidean distance |x � y1| by d(x, y1) in the
definition, it makes perfect sense to investigate 1-porosity, which we simply call
porosity, in a general metric space (X, d).

If X is an s-regular metric space, then for any A ⇢ X with infx2A por1(A, x) �

%, the packing dimension of A is at most s � c%s ; see [25, Theorem 4.7]. Recall
that X is s-regular if there exists a measure ⌫ on X and constants a, b > 0 so that

ars  ⌫
�
B(x, r)

�
 brs (4.2)

for all x 2 X and 0 < r  diam(X). Our result for measures in this direction is the
following.

Theorem 4.7. If X is an s-regular metric space and µ is a measure on X , then

dimloc(µ, x)  s � c por1(µ, x)s

for µ-almost all x 2 X , where c > 0 depends only on s and the constants a and b
of (4.2).

In the proof of Theorem 4.2, we used a known estimate for k-porous sets via
a density point argument. In the proof of Theorem 4.7 we will only be able to use
Lemma 2.3 as the density point property is not true in every s-regular metric space.
To prove Theorem 4.7, we recall the following estimate from [25, Corollary 4.6].

Lemma 4.8. If X is an s-regular metric space with an s-regular measure ⌫, then
there exist constants c1, c2, c3 > 0 depending only on s and the constants a and b
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of (4.2) that satisfy the following: if x 2 X , rp > 0, 0 < r < c3 min{rp, diam(X)},
A ⇢ B(x, r), and por1(A, y, r 0) � % > 0 for all y 2 A and 0 < r 0 < rp, then

⌫
�
A(r 00)

�
 c1⌫

�
B(x, r)

�⇣r 00

r

⌘c2%s

for all 0 < r 00 < r .

Now we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. Let ⌫ be an s-regular measure on X with spt(⌫) = X and let
the constants c1, c2, c3 > 0 be as in Lemma 4.8. Let 0 < % < 1

2 and choose �0 > 0
so small that log(c1b/a)/ log(1/�) < (ac2%s)/(4sb) for all 0 < �  �0. We are
going to apply Theorem 3.8 with

m0

= s �

c2a
2b

(%/4)s +

log(c1b/a)
� log �0

, s0 = s �

c2a
4b

(%/4)s,

and 0 < � < min{1, % diam(X)/2, �0, �0}, where �0 = �0(m0, s0, N , 10) > 0 is as
in Theorem 3.8. Let " > 0 be the constant "0 = "0(m0, s0, N , �) > 0 from Theorem
3.8.

It is clearly sufficient to prove that we have dimloc(µ, x)  s � c%s for almost
all x 2 A", where

A" =

�
x 2 X : por1(µ, x, r, "/2) � % for all 0 < r < r0

 
.

We note that A" is a Borel set (a careful inspection of the definitions shows that it
is in fact closed). Let x 2 A" be such that

lim
r!0

µ
�
B(x, r) \ A"

�
µ
�
B(x, 5r)

� = 0.

Recall that by Lemma 2.3 this is true for µ-almost every x 2 A".
Take 0 < r < min{1, r0/8} so small that

µ
�
B(x, 2r) \ A"

�
µ
�
B(x, 10r)

� < ". (4.3)

Our goal is to show that for any (�r)-packing B of

A =

�
y 2 B(x, r) : µ

�
B(y, �r)

�
> "µ

�
B(x, 10r)

� 
the set AB = {y 2 A : y is the centre point of some B 2 B} satisfies the assump-
tions of Lemma 4.8. Using Lemma 4.8, we are able to estimate the cardinality of
B and hence also hom10�,",r (µ, x). The desired upper bound for dimloc(µ, x) then
follows from Theorem 3.8.
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Fix a (�r)-packing B of A and y 2 AB. Assume first that 0 < r 0 < 2�r/%.
If B(y, %0r/4) \ B

�
y, ( a2b )

1/s%r 0/4
�

= ;, then it follows from the s-regularity of ⌫
that

a(%r 0/4)s  ⌫
�
B(y, %r 0/4)

�
= ⌫

�
B(y, ( a2b )

1/s%r 0/4)
�


a
2 (%r

0/4)s

which is impossible. Hence there exists a point z2 B(y, %r 0/4)\B
�
y, ( a2b )

1/s%r 0/4
�
.

Since %r 0/4 < �r , we have AB \ B
�
z, ( a2b )

1/s%r 0/4
�

= ; and as ( a2b )
1/s%r 0/4 +

d(y, z)  %r 0/2 < r 0, it follows that por1(AB, y, r 0) � ( a2b )
1/s%/4 for all 0 < r 0 <

2�r/%.
Let us next assume that 2�r/%  r 0

 8r . If A" \ B(y, �r) = ;, then (4.3) and
the definition of A would imply that

µ
�
B(y, �r)

�
 µ

�
B(x, 2r) \ A"

�
< "µ

�
B(x, 10r)

�
 µ

�
B(y, �r)

�
.

Hence there must be a point z 2 A" \ B(y, �r). The definition of A" in turn
guarantees the existence of a point w 2 X such that µ

�
B(w, %r 0)

�


"
2µ

�
B(z, r 0)

�
and %r 0

+ d(z, w)  r 0. Now

%r 0/2+ d(y, w)  %r 0/2+ d(y, z) + d(z, w)  %r 0

+ d(z, w)  r 0

and AB\B(w, %r 0/2)=; because for anyw0
2 B(w, %r 0/2)we haveµ

�
B(w0, �r)

�


µ
�
B(w, %r 0)

�


"
2µ

�
B(z, r 0)

�
< "µ

�
B(x, 10r)

�
, as B(z, r 0) ⇢ B(x, 10r). There-

fore por1(AB, y, r 0) � %/2 for 2�r/%  r 0
 8r and consequently, for 2�r/% 

r 0
 4( ba )

1/sr we have por1(AB, y, r 0) � min{1, 2(ab )
1/s

}%/2.
Now let 4( ba )

1/sr < r 0 < diam(X) and put t =
1
4 (

a
b )
1/sr 0

+ 2r . Then t <
3
4 (

a
b )
1/sr 0 and thus

⌫
�
B(y, t)

�
 bts < a

�3r 0

4
�s

 ⌫
�
B(y, 34r

0)
�
.

So there exists w 2 B(y, 34r
0) \ B(y, t). Now AB \ B

�
w, 14 (

a
b )
1/sr 0

�
⇢ B(x, r) \

B
�
w, 14 (

a
b )
1/sr 0

�
= ; and thus por1(AB, y, r 0) �

1
4 (

a
b )
1/s .

Putting the three estimates together, we have

por1(AB, y, r 0) � ( a2b )
1/s%/4

for all y 2 AB and 0 < r 0 < diam(X). We can now use Lemma 4.8 to conclude

#Ba(�r)s 

X
B2B

⌫(B) = ⌫
�
AB(�r)

�
 c1⌫

�
B(x, r)

�
�
c2a
2b (%/4)s

 c1brs�
c2a
2b (%/4)s

for all 0 < r < c3 diam(X). Since this is true for all (�r)-packings B of A, and
(4.3) is true for all small r > 0, we get

lim sup
r#0

hom10�,",r (µ, x) 
c1b
a �

c2a
2b (%/4)s�s < ��m0

for µ-almost every x 2 A". Therefore, by Theorem 3.8, we have dimloc(µ, x) 

s0 = s �
c2a
4b (%/4)s for µ-almost every x 2 A". This completes the proof.
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Remark 4.9. Independently of our work, based on probabilistic ideas introduced
in [22], it was recently proved in [59] that dimloc(µ, x)  d�c(d)p%d forµ-almost
all x 2 {y 2 Rd

: µ is (%, p)-mean 1-porous at y} for measures in Rd . It is natural
to ask whether an analogous estimate

dimloc(µ, x)  s � cp%s

for µ-almost all x 2 {y 2 X : µ is (%, p)-mean 1-porous at y} is valid in the setting
of Theorem 4.7 with a constant c > 0 depending only on the s-regularity data. This
remains an open problem.

5. Examples and further remarks

So far in this article we have studied the relations between the local versions of
Lq -spectrum, dimension and homogeneity, and shown how these concepts can be
used in estimating the dimension of measures. Below, we give few straightforward
examples of situations where the local Lq -dimension seem to be more reasonable
than the global one. In [29], we show how the local Lq -spectrum can be used
to develop local multifractal formalism; see also [2] for another account on local
multifractal analysis.

In Examples 5.1–5.4, we use the fact that the Lq -spectrum can be defined
using the dyadic cubes. For the global spectrum this is well known in the Euclidean
setting and it is easy to see that this remains valid for the local spectrum. A detailed
proof in the general metric setting can be found in an earlier arXiv version of the
manuscript, see http://arxiv.org/abs/1003.2895v1.
Example 5.1. We construct a probability measure µ on Rd so that for all 0q<1
we have dimq(µ)=d while dimq(µ, x)=0=dimloc(µ, x) for µ-almost all x 2Rd .

Our measure µwill be a countable sum of weighted Dirac measures on [0, 1]d .
Let us denote by Qn the dyadic subcubes of [0, 1]d of side-length 2�n . At step 1,
we let n1 = 1 and attach a point mass of size 2�d to the centre point of all but
one dyadic subcubes of [0, 1)d in Q 2 Q1. Let Q1 2 Q1 be the one remaining
cube of measure 2�d . At step 2 we choose a large integer n2 2 N and attach
a point mass of magnitude 2�n2dµ(Q1) to all but one of its dyadic subcubes in
Qn1+n2 . We continue inductively, at the k-th stage we choose the one remaining
cube Qk�12Qn1+···+nk�1 , choose a large integer nk and attach a point mass of size
2�nkdµ(Qk�1) to the centre points of all but one dyadic subcubes of Qk�1 in the
collectionQn1+···+nk .

At the k-th stage we have for all 0 < q < 1 that
1

log 2�nk
log

X
Q2Qnk

µ(Q)q 

1
log 2�nk

log
✓ X

Q2Qnk
Q⇢Qk�1

µ(Q)q
◆

=

log
�
2nkd(1�q)µ(Qk�1)q

�
log 2�nk

=(q�1)d + q
logµ(Qk�1)

log 2�nk
.
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Thus, choosing the numbers nk large enough, we can ensure that

⌧q(µ) = lim inf
n!1

1
log 2�nk

log
X

Q2Qnk

µ(Q)q  (q � 1)d.

On the other hand, it is well known and easy to see that ⌧q(µ) � (q � 1)d for all
measures µ on Rd with bounded support; see Lemma 2.7(2). Therefore it follows
that dimq(µ) = d. Furthermore, it is clear from the construction that ⌧q(µ, x) =

dimq(µ, x) = dimloc(µ, x) = 0 for µ-almost all x 2 Rd .
Example 5.2. If µ is the sum of a Dirac point mass at the origin and the Lebesgue
measure on the unit cube of Rd , we see that dimq(µ) = 0 whereas dimq(µ, x) =

d = dimloc(µ, x) for all q > 1 and all x 2 [0, 1]d \ {0}.
In Rd , the Lq -spectrum estimates can be used directly to gain information

on the dimension of porous measures, but the results obtained this way are some-
what weaker than the results obtained from the local homogeneity estimates in Sec-
tion 4.2 above; see Remark 4.3(3). One motivation for investigating the local Lq -
spectrum in metric spaces was to find out which are of these two methods, if any,
is stronger. Also, in the view of Theorems 3.5 and 3.1, it is interesting to compare
dim3

hom(µ, x) to limq"1 dimq(µ, x). In the following two examples we show that
there is no general relationship between these two values. We present the examples
inR but similar constructions work in any dimension. The first example also shows
that a measure may have large homogeneity even if it is of packing dimension zero.
Example 5.3. We construct an example in R so that limq"1 dimq(µ, x) = 0 while
dimhom(µ, x) = 1 for µ-almost all x 2 R. The idea is to apply a construction
resulting to a zero dimensional measure on a Cantor set. The large homogeneity is
obtained by performing infinitely many (but extremely seldom so that it does not
affect the value of dimq ) construction steps where the measure is distributed almost
uniformly inside the construction intervals of that level.

We first pick a sequence 0 < "i # 0 and then choose integers mi , ni ! 1 so
that

k +

Pk
j=1m jPk

j=1(n j + m j )
< "k (5.1)

for all k 2 N. In the first step of the construction, we put µ([0, 2�n1
]) = µ([1 �

2�n1, 1]) =
1
2 . Then we divide both intervals [0, 2�n1

] and [1 � 2�n1, 1] into 2m1
dyadic subintervals of length 2�n1�m1 each getting 2�m1 portion of their parent’s
measure.

We continue the construction inductively. In the k-th step, we perform the first
step construction inside each of the construction intervals of level k just by replacing
n1 and m1 with nk and mk , respectively.

As mk ! 1 it is clear that hom3
� (µ, x) ⇡

1
� for all x 2 spt(µ) and all small

� > 0. Thus dim3
hom(µ, x) = 1 for all x 2 spt(µ). On the other hand, it follows
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easily from (5.1), that ⌧q(µ, x) = dimq(µ, x) = 0 = dimq(µ) for all x 2 spt(µ)
and 0 < q < 1.
Example 5.4. We construct an example in R so that limq"1 dimq(µ, x) = 1 but
dim3

hom(µ, x) = 0 for µ-almost all x 2 R. The idea is to perform a Cantor type
construction resulting to a zero dimensional measure, but add “one-dimensional”
perturbation which affects only a dense set of measure zero, but nevertheless, guar-
antees that the dimq(µ, x) is large for all x 2 spt(µ).

Fix numbers 0 < qk " 1 and integers nk, lk 2 N so that nk ! 1 andP
1

k=1 2�lk < 1. In what follows, we choose a sequence of integers mk ! 1.
First of these, m1, is taken so that

m1(1� q1) � l1q1
n1l1 + m1

> 1
2 (1� q1).

The numbers m2,m3, . . . will be defined inductively below.
We begin the step 1 of the construction by setting µ([0, 2�n1

]) = µ([1 �

2�n1, 1]) =
1
2 . Iterating this in a self-similar manner for l1 steps, we get 2

l1 dyadic
subintervals of [0, 1] of length 2�n1l1 each of measure 2�l1 . We choose one of these
intervals, say I , and divide it into 2m1 dyadic subintervals of length 2�m1

|I | and of
measure 2�m1µ(I ). Inside the other 2l1 � 1 construction intervals of length 2�n1l1

we choose just the outermost subintervals of length 2�l1n1�m1 and let both of these
intervals have the same measure (half of the measure of their parent).

In the beginning of the step k, for k � 2, we have some dyadic intervals say
I1, . . . , INk of equal length, denoted by 2�Mk . We perform the step 1 construction
inside each of these intervals, but replace n1, l1, and m1 by nk , lk , and mk , respec-
tively. We choose mk so large that for each I = I j , the dyadic subintervals Ji of I
of size 2�Mk�nklk�mk chosen in the construction satisfy

log
�P

i µ(Ji )qk )
�

log(2Mk+nkll+mk )
�

log
�
2mk(1�qk)

�
2�lkµ(I )

�qk �
log(2Mk+nklk+mk )

>
k

k + 1
(1� qk).

The former estimate is obtained by summing over the range of intervals where the
measure was distributed uniformly. As qk " 1, we clearly get limq"1 dimq(µ, x) �

1 for all x 2 spt(µ). On the other hand, as nk ! 1, and
P

k 2�lk < 1, it follows
that for µ-almost all x 2 R, we have hom3

� (µ, x)  C for all 0 < � < 1 with some
universal constant C > 0. Thus, in particular, dim3

hom(µ, x) = 0 for almost all x .
Remark 5.5. (1) From the previous example, it follows that a strict inequality
dimloc(µ, x) < limq"1 dimq(µ, x) is possible almost everywhere in Theorem 3.1.
We note that also

lim
q#1

dimq(µ, x) < dimloc(µ, x) (5.2)

is possible in a set of positive measure. A simple example is given by letting µ =

L1|[0,1] +

P
n2N 2�n�qn where L1 is the Lebesgue measure and {q1, q2, q3, . . .} is

dense in [0, 1]. In order to get an example where (5.2) holds almost everywhere,
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one can use a similar idea as in Example 5.4 but this time one has to construct a one
dimensional measure with a dense zero dimensional perturbation.

(2) We note that also the other inequalities in Theorem 3.1 can be strict. For
instance, see [4, Proposition 3.1].

We finish the article by constructing a doubling metric space in which the den-
sity point property does not hold. This space is then further modified in Examples
5.7 and 5.8 to show that the inequalities in Theorem 3.11 may fail in a set of positive
measure without the density point property; see Remark 3.12(2).

Example 5.6. Let Nn be a sequence of integers and set In = {0, . . . , Nn}. We
define an auxiliary function f : (N [ {0})2 ! [0,1) by setting

f (i, j) = f ( j, i) =

8><
>:
0 if i = j
2�i if i 6= 0 and j = 0
(2�i

+ 2� j ) if i, j 6= 0 and i 6= j.
(5.3)

We now set 6 =

Q
1

n=1 In and denote its elements by i = i1i2 · · · , j = j1 j2 · · · ,
and so on. We also denote 60 = {?} and 6n =

Qn
j=1 I j for all n 2 N. If i 2 6

and n 2 N, then we let i|n = i1 · · · in 2 6n . For n 2 N and i 2 6n we denote
[i] = {j 2 6 : j|n = i}. If i,j 2 6 so that i 6= j, then we let i ^ j denote
their longest common beginning. Let |i| denote the length of a word i (with the
convention |?| = 0) and ij the concatenation of two words i,j with |i| < 1.

Let "? = 1 and for i 2

S
n 6n , let

(
0 < "i0  2�Nn"i
0 < "ii  2�i"i if 0 6= i 2 In+1.

(5.4)

With these parameters we now define a distance e : 6 ⇥ 6 ! [0,1) on 6 by
setting

e(i,j) =

(
0 if i,j 2 6 so that i = j
"i^j f (i|i^j|+1, j|i^j|+1) if i,j 2 6 so that i 6= j.

This is indeed a distance: the triangle inequality follows easily from (5.4) and the
definition of f .

Let us next show that 6 is doubling. For this, we choose i 2 6, a real number
0 < r < diam(6)  1 and fix n so that "i|n+1  r < "i|n . We also choose k 2 N
so that 2�k"i|n  r < 2�k+1"i|n . If k > 1, we get B(i, 2r) ⇢ B(i, r)[B(i0, r)[
B(i1, r), where i0 = i1 · · · in0in+2 · · · and i1 = i1 · · · in(k� 1)in+2 · · · . If k = 1,
then B(i, 2r) ⇢ B(i, r)[B(i2, r)[B(i3, r), where i2 = i1 · · · in�10in+1 · · · and
i3 = i1 · · · in�1Nnin+1 · · · . In any case, we see that 6 is doubling with a doubling
constant 3.
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To finish the construction, fix Nn = n3 and let µ be a probability measure on
6 that satisfies

µ([i0]) = n�2µ([i]),

µ([i j]) = N�1
n (1� n�2)µ([i]) ,

(5.5)

for all j 2 {1, . . . , Nn}, i 2 6n , and n � 2. If A = {i 2 6 : i j 6= 0 for all j 2 N},
then µ(A) > 0 since

Q
1

n=2(1� n�2) > 0.
Let i 2 A and define ri,n = "i|n2�in+1 for all n 2 N. For each i 2 A it follows

that B(i, ri,n) = [i|n+1] [ [i0
] for all n 2 N, where i0

= i1 · · · in0 2 6n+1. Thus
we get

µ
�
A \ B(i, ri,n)

�
µ(B(i, ri,n))



µ([i|n+1])

µ([i|n+1]) + µ([i0
])

=

N�1
n (1� n�2)µ([in])�

N�1
n (1� n�2) + n�2�µ([in])

=

1� n�2

1� n�2
+ n

.

(5.6)

In particular, as n ! 1, we see that the density point property is not valid for µ.
Example 5.7. In this example, we modify the previous example to obtain
dim1(⌫,i) > dimloc(⌫,i) in a set of positive measure. We continue with the same
notation as in Example 5.6. The space6 is modified by gluing infinitely many small
metric spaces into A: Denote by S the collection of all finite words i 2

S
1

n=06n
that contain no zeros. For each i 2 S, let (Xi, di) be a doubling metric space with
diameter at most diame([i0]) and with a uniform doubling constant (independent
of i). Let X = A [

S
i2S Xi and define a distance d on X by

d(x, y)=d(y, x)=

8>>><
>>>:

e(x, y) if x, y 2 A
di(x, y) if x, y 2 Xi
e(x,i000 · · · ) if x 2 A and y 2 Xi
e(i000 · · · ,j000 · · · ) if x 2 Xi, y2 Xj and i 6=j.

(5.7)

Since diamdi(Xi)  diame([i0]) and the doubling constant of Xi is uniformly
bounded, it is readily checked that (X, d) is a doubling metric space.

If µ is a measure on 6 and ⌫i are measures on Xi with ⌫i(Xi) = µ([i0]),
we define a measure ⌫ on X by setting

⌫ = µ|A +

X
i2S

⌫i . (5.8)

Then ⌫|A = µ|A and ⌫(X) = µ(6). Moreover, since Xi|n ⇢ BX (i, ri,n)),
⌫(BX (i, ri,n)) = µ(B6(i, ri,n)), and ⌫(Xi|n ) = µ([i0

]), (5.6) yields

⌫(Xi|n )

⌫(B(i, ri,n))
�! 1, (5.9)

as n ! 1 for all i 2 A ⇢ X .



LOCAL HOMOGENEITY AND DIMENSIONS OF MEASURES 1347

We now specify Xi and ⌫i: let Xi be a Euclidean interval of length diam6([i0])
and let ⌫i be the length measure on Xi normalized so that ⌫i(Xi) = µ([i0]).
Then

lim
�#0

Z
Xi

log ⌫
�
B(y, �)

�
log �

d⌫(y) = ⌫(Xi)

and combined with (5.9), this yields

dim1(⌫,i) � lim
n!1

lim sup
�#0

Z
B(i,ri,n)

log ⌫
�
B(y, �)

�
log �

d⌫(y) � 1.

All the above is valid for any choice of the "i, and by choosing them small enough,
we can easily guarantee that dimloc(⌫,i) = 0 for all i 2 A. This proves that the
latter estimate of Theorem 3.11 may fail if the density point property is not satisfied.
Example 5.8. In this example, we modify the above examples to show that the
density point property is needed also for the first estimate of Theorem 3.11. To
obtain dim1(⌫,i) = 0 for i 2 A we simply can replace the glued pieces Xi in the
previous example by singletons. But since we simultaneously want dimloc(⌫,i) >
0, we have to modify the construction such that on most scales, the measure ⌫ is
very uniformly distributed.

Let kn be a strictly increasing sequence of integers and J = {kn : n 2 N}.
Let Nkn = n3 and Nn = 2 if n /2 J . For n 2 J , let In = {0, . . . , Nn} and for
n 2 {0, 1, 2, . . .} \ J , let In = {1, 2} (so that 0 2 In if and only if n 2 J ). Define 6
as in Example 5.6 and for i 2 6n , let(

"i0 = 2�Nn"i
"ii = 2�i"i for 0 6= i 2 In+1

(5.10)

if n 2 J and
"i1 = "i2 =

"i

2
(5.11)

otherwise.
Define a distance e on 6 by e(i,i) = 0, and for i 6= j, let

e(i,j) = "i^j f (i|i^j|+1, j|i^j|+1),

provided that |i ^ j| 2 J ( f is as in (5.3)) and

e(i,j) =

"i^j

2
otherwise. Again, it is a direct consequence of (5.3) and (5.10)–(5.11) that e is a
distance.

Let µ be a probability measure on 6 such that for i 2 6kn , n � 2,

µ([i0]) = n�2µ([i]),

µ([i j]) = N�1
n (1� n�2)µ([i]) for 0 6= j 2 Ikn+1 ,
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and
µ([i1]) = µ([i2]) =

µ([i])

2
if |i| /2 J .

As in the previous example, let A (resp. S) be the collection of all infinite
(resp. finite) words that contain no zeros. For each n 2 N and i 2 S \ 6kn , let
Xi = {xi} be a metric space consisting solely of one point. Define X = A [S
n2N

S
i2S\6kn

Xi and ⌫ = µ|A+

P
n2N,i2S\6kn

µ([i0])�xi . Let d be a distance
on X defined via (5.7).

As in Example 5.7 above, it follows that ⌫(A) > 0, Xi|n ⇢ B(i, ri,n), and
that (5.9) holds for i 2 A, and ri,n = "i|kn 2

�ikn+1 . Moreover, a simple calculation
implies

lim
�#0

Z
Xikn

log ⌫
�
B(y, �)

�
log �

d⌫(y) = 0,

lim sup
�#0

Z
B(i,ri,n)\Xikn

log ⌫
�
B(y, �)

�
log �

d⌫(y)  C⌫(B(ikn , ri,n) \ Xikn ),

whereC > 0 depends only on the doubling constant of X . These estimates, together
with (5.9) imply that dim1(⌫,i) = 0 for all i 2 A.

Again, the above holds regardless of the choice of kn and thus we can choose
the sequence (kn) so that

dimloc(⌫,i) = 1 (5.12)

for all i 2 A. To see this, observe first that if there were no sequence (kn), i.e. if
J = ;, then it would be clear that

dimloc(⌫,i) = dimloc(µ,i) = lim inf
n!1

logµ([i|n])

log "i|n
= 1. (5.13)

and since Nkn , and the ratios 0 < diam([ii])/ diam([i]) = "ii/"i for i 2 6kn , and
i 2 Ikn do not depend on the choice of kn , we can choose kn � kn�1 inductively
such that (5.12) remains true.
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[64] J. VÄISÄLÄ, Porous sets and quasisymmetric maps, Trans. Amer. Math. Soc. 299 (1987),
525–533.

[65] A. L. VOL0BERG and S. V. KONYAGIN, A homogeneous measure exists on any compactum
in Rn , Dokl. Akad. Nauk 278 (1984), 783–786.

[66] A. L. VOL0BERG and S. V. KONYAGIN, On measures with the doubling condition, Izv.
Math. 51 (1987), 666–675.

[67] J.-M. WU, Hausdorff dimension and doubling measures on metric spaces, Proc. Amer.
Math. Soc. 126 (1998), 1453–1459.

[68] L. S. YOUNG, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Sys-
tems 2 (1982), 109–124.

University of Jyvaskyla
Department of Mathematics and Statistics
P.O. Box 35 (MaD)
FI-40014 University of Jyvaskyla, Finland
antti.kaenmaki@jyu.fi
tapio.m.rajala@jyu.fi

University of Oulu
Department of Mathematical sciences
P.O Box 3000
FI-90014 University of Oulu, Finland
ville.suomala@oulu.fi


