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Symmetry properties of some solutions
to some semilinear elliptic equations

ALBERTO FARINA, ANDREA MALCHIODI AND MATTEO RIZZI

Abstract. In this paper we prove some symmetry results for entire solutions to
the semilinear equation�1u = f (u), with f nonincreasing in a right neighbour-
hood of the origin. We consider solutions decaying only in some directions and
we give some sufficient conditions for them to be radially symmetric with respect
to those variables, such as periodicity or the pointwise decay of some derivatives.
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1. Introduction

In this paper we consider positive bounded solutions to the equation

�1u = f (u) (1.1)

on RN . The nonlinearity will always be a C1 function decreasing in a right neigh-
borhood of the origin, that is

f 0(s)  0 for s 2 (0, "), for some " > 0, and f (0) = 0. (1.2)

The aim is to establish some symmetry results. In [5] Gidas, Ni and Nirenberg
proved the following result:

Theorem 1.1 ([5]). Let u > 0 be a solution to equation (1.1), with f satisfying
condition (1.2). Assume furthermore that

u(x) ! 0 as |x | ! 1. (1.3)

Then, up to a translation, u is radially symmetric and decreasing to 0, that is u =

u(|x |), with @u/@r(x) < 0, for any x 6= 0.
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The main problem we are concerned with is the following: if we replace the
decay hypothesis (1.3) by the weaker assumptions that u is bounded and satisfies

u(y, z) ! 0 as |z| ! 1, uniformly in y, (1.4)

where we have set x = (y, z), with y 2 RM , z 2 RN�M , is it true that u is radially
symmetric in z, that is u = u(y, |z � z0|), for some z0, with u j (y, z) < 0 for
z j > z0j , 1  j  N � M , where we have set u j = @u/@z j?

In the sequel, we will give some sufficient conditions for this to be true. An
example of sufficient condition to get symmetry is periodicity in the y variables.

We say that a function u : RN
! R is periodic in y of period T = (T1, . . . , TM)

if, for any (y, z) 2 RN ,

u(y + Tje j , z) = u(y, z) for 1  j  M

where {e1, . . . , eM} denotes the standard basis of RM .

Theorem 1.2. Let u > 0 be a bounded solution to equation (1.1), with f satisfying
(1.2). Let us write x = (y, z) 2 RM

⇥ RN�M , and assume that

(i) u is periodic in y, and
(ii) u(y, z) ! 0 as |z| ! 1, uniformly in y.

Then u is radially symmetric and decreasing with respect to z, that is u = u(y, |z�

z0|), and u j (y, |z � z0|) < 0 for z j > z j0 , 1  j  N � M , for some z0 2 RN�M .

Remark 1.3. In particular, in the case M = 0, this result reduces to Theorem 1.1
by Gidas, Ni and Nirenberg, of which we give an alternative proof.

An interesting case is represented by the semilinear equation

�1u + u = u p (1.5)

with 1 < p < N+1
N�3 if N > 3 and p > 1 if 2  N  3. This equation arises

naturally in several scientific contexts, for example as the nonlinear-Schrodinger
equation in quantum mechanics but also in biology, for instance in the study of the
reaction-diffusion system proposed by Gierer and Meinhardt in 1972. For further
information, we refer to the papers [6, 9].

Dancer in [3] showed that, for sufficiently large T , there exists a solution uT
to (1.5) fulfilling the following properties:

• uT (x) is even and periodic in y with period T ,
• uT (x) is radially symmetric in z,
• uT (y, z) ! 0 exponentially fast as |z| ! 1, uniformly in y,

where we have set x = (y, z) 2 R ⇥ RN�1.
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Theorem 1.2, in the case M = 1, shows that any solution which is even and pe-
riodic in y and decays in the other variables has to be symmetric in z, like Dancer’s
solution. These results with periodicity will be proved in Sections 2 and 3.

After that, we will consider solutions fulfilling (1.4) and

for any xN , rx 0u(x 0, xN ) ! 0 as |x 0

| ! 1. (1.6)

In order to investigate the behaviour of this kind of solutions, it is useful to study
the problem (with f (0) = 0)

8><
>:

�v00
= f (v) on R

v � 0
v(t) ! 0 as |t | ! 1.

(1.7)

By the Cauchy uniqueness theorem, v > 0 or v ⌘ 0. We will show that, if there
exists a positive solution to (1.7), then it is unique. It turns out that it is worth
distinguishing the cases in which such a positive solution exists or not.

Theorem 1.4. Let f be a function fulfilling condition (1.2) such that problem (1.7)
admits no positive solution. If u > 0 is a bounded solution to

8><
>:

�1u = f (u) in RN

u(x 0, xN ) ! 0 as |xN | ! 1, uniformly in x 0

rx 0u(x 0, xN ) ! 0 as |x 0
| ! 1, for any xN

(1.8)

then u is radially symmetric, that is u = u(|x � y|), for an appropriate y 2 RN .

We observe that, if f (t) = 0 for any 0 < t < �, for some � > 0, then problem
(1.7) has no positive solution. In fact, for t large enough, v has to be affine, that
is v(t) = at + b, but v(t) ! 0 as t ! 1, hence a = b = 0; by the Cauchy
uniqueness theorem, v ⌘ 0. As a consequence, in this case, Theorem 1.4 holds.
For this kind of nonlinearities, in dimension N = 2, we can get a non-existence
result:

Corollary 1.5. Let N = 2. Let f be a C1(R) function such that f (t) = 0 for any
0 < t < �, for a suitable � > 0. Then the only bounded solution u � 0 to (1.8) is
u ⌘ 0.

A relevant example of nonlinearity of this type is f (u) = ((u � �)+)p, with
p > 1. In this case, when N � 3 and 1 < p < N+2

N�2 , L. Dupaigne and A. Farina
in [4] showed that the radially symmetric solution is unique and found the explicit
expression

u(x) =

(
�R(|x |) + � for |x |  R
↵|x |2�N for |x | � R
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where

R =

 
1

�(N � 2)

Z 1

0
�
p
1 (r)r N�1dr

!(p�1)/2

,

↵ = �RN�2 and �R is the unique radially symmetric and radially decreasing solu-
tion to the problem

8>>><
>>>:

�1�R = �
p
R for |x |  R

�R = 0 on |x | = R
�R > 0 in |x | < R
@�R
@r < 0 for 0 < |x |  R.

This example shows that, in dimension N � 3, Corollary 1.5 is not true.
With similar techniques, we obtain a lower bound for the L1-norm of nontriv-

ial solutions to equation (1.5), decaying in one variable and fulfilling (1.6). In [8],
Kwong showed that there exists a unique (up to a translation) positive radially sym-
metric solution to equation (1.5), that we will denote by U . We observe that

maxU >

✓
p + 1
2

◆ 1
p�1

.

In fact, up to a translation, we can assume that maxU = U(0), that is U(x) =

v(|x |), where v is a solution to the ODE

�v00

�

N � 1
r

v0(r) = f (v(r))

with f (t) = t p � t . Multiplying the equation by v0 and integrating, we get

d
dr

✓
1
2
�
v0(r)

�2
+ F(v(r))

◆
= �

N � 1
r

(v0)2 < 0

for r > 0, with F(t) =
1
p+1 t

p+1
�
1
2 t
2. So the energy E(r) =

1
2 (v

0(r))2+ F(v(r))
is strictly decreasing and E(r) ! 0 as r ! 1. Therefore E(r) > 0 for any r , in
particular E(0) = F(U(0)) > 0, hence maxU > (p + 1/2)1/p�1.

This observation will be useful to prove the following:

Proposition 1.6. Let u > 0 be a bounded solution to equation (1.5) satisfying
condition (1.4) with z = xN . Assume that rx 0u(x 0, xN ) ! 0 as |x 0

| ! 1, for any
xN . Then

||u||1 �

✓
p + 1
2

◆1/p�1
.
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Anyway, there are examples of nonlinearities for which problem (1.7) admits a
positive solution, such as f (u) = |u|p�1u � u. In order to deal with this case, we
consider the energy-like functional

H(u, x 0) =

Z
1

�1

1
2

⇣
u2N � |rx 0u|2g

⌘
� F(u)dxN

and, for any � 2 R, the momentum

E�(u, x 0) =

Z
1

�1

(xN � �)

✓
1
2
�
u2N � |rx 0u|2

�
� F(u)

◆
dxN .

In the above definitions, we have denoted by F(u) =

R u
0 f (t)dt , the primitive of f

vanishing at the origin.
Remark 1.7. If f 0(0) < 0, condition (1.4) with z = xN is sufficient for the energy
and the momentum to be well defined and finite, since u and ru actually decay
exponentially in xN , that is

u(x), |ru(x)|  Ce�� |xN | for |xN | � B, (1.9)

for suitable constants B > 0, � > 0.
If f 0(0) = 0, we need some further assumptions about u in order for these

defintions to be well posed, that is |H(u, x 0)|, |E�(u, x 0)| < 1. In this context, we
require

u(x)  C|xN |
�(1+� ) for |xN | > B (1.10)

for suitable constants B > 0, � > 0. We will show in section 3 that this condition
is sufficient for H(u, x 0) and E�(u, x 0) to be well defined and finite, provided f 2

C2(RN ).

Theorem 1.8. Let u > 0 be a bounded solution to equation (1.1) satisfying condi-
tion (1.10), with f 2 C2(R) satisfying (1.2). Assume furthermore that:

(a) There exists xN 2 R and � > 0 such that u(x 0, xN ) � � > 0, for any x 0
2

RN�1, and
(b) rx 0u(x 0, xN ) ! 0 as |x 0

| ! 1, for any xN .

Then u is symmetric in xN , that is u = u(x 0, |xN � �|), for some � 2 R, and
uN (x 0, xN ) > 0 if xN < �.

Remark 1.9. In Theorem 1.8 we can assume that there exists a positive solution
to Problem (1.7), otherwise, by Theorem 1.4, there are no solutions u fulfilling
hypothesis of Theorem 1.8.

Section 3 will be devoted to the proof of this theorem, that holds in any dimen-
sion N � 2. In Theorem 1.8, we would like to be able to drop assumption (a). Up
to now, we have been able to do so only in dimension N = 2.
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Theorem 1.10. Let N = 2. Let u > 0 be a bounded solution to equation (1.1)
satisfying condition (1.10), with f 2 C2(R) satisfying (1.2). Assume furthermore
that u1(x1, x2) ! 0 as |x1| ! 1, for any x2. Then u is symmetric in x2, that is
u = u(x1, |x2 � �|), for some � 2 R.
Remark 1.11. If f 0(0) < 0, thanks to (1.9), Theorems 1.8 and 1.10 hold even if
we replace condition (1.10) with the weaker assumption (1.4).
Remark 1.12. In dimension N = 2, Theorem 1.10 is an extension of Theorem 1.1
of [2] to more general nonlinearities, since we do not need to take f (u) = u+g(u),
with g satisfying their assumptions ( f 1), ( f 2) and ( f 3). On the other hand, we
need some more regularity, we take f 2 C2 instead of C1,� .

Unfortunately, if f is flat near the origin, condition (1.4) does not necessarily
imply (1.10), at least in dimension N � 3. In fact, the solution constructed by L.
Dupaigne and A. Farina in [4] in dimension N = 3 decays as |x |�1 (see the above
discussion for the explicit expression). This function, seen as a solution in higher
dimension, is a counter-example in dimension N � 4 too.

In Section 5, we consider solutions to (1.1) decaying in N � 1 variables, and
we prove an extension of Theorem 1.1:
Theorem 1.13. Let N � 5. Let u > 0 be a bounded solution to equation (1.1),
with f 2 C2(R) satisfying (1.2). Assume that

u(x 0, xN ) ! 0 as |x 0

| ! 1, uniformly in xN (1.11)
and

for some x 0

0, u(x
0

0, xN ) ! 0 as xN ! 1 . (1.12)
Then u is radially symmetric.
Remark 1.14. We observe that, if we assume f 2 C1 with f 0(0) < 0, then, thanks
to the exponential decay (apply (1.9) N � 1 times), Theorem 1.13 holds in any
dimension N � 2.
Remark 1.15. In dimension 2  N  4, Theorem 1.13 holds under the assumption

u(x), |ru(x)|  C|x 0

|
�

N�1+�
2 for |x 0

| � B (1.13)
for suitable constants B > 0, � > 0 and f 2 C1.

In order to deal with the case f 0(0) = 0, we study the decay rate at infinity of
functions fulfilling (1.11). This will be carried out in section 6.

2. Starting the moving plane procedure

First we define, for � 2 R, u�(x) = u(x 0, 2� � xN ), 6� = {xN < �}. In the
following proposition, we prove that the moving plane procedure can be started. In
order to do so, it is enough to replace condition (1.4) with the weaker assumption

u(x 0, xN )  " in the subspace {xN > �0} (2.1)
for a suitable �0 2 R, if f is nonincreasing in the interval (0, ").
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Proposition 2.1 (Initialization). Let u > 0 be a bounded solution to equation
(1.1) fulfilling (2.1). Assume that f satisfies (1.2). Then u � u� � 0 in 6�, for any
� � �0.

Remark 2.2. In particular, this proposition holds true if we assume that

u(x 0, xN ) ! 0 as xN ! 1 uniformly in x 0.

Proof. We assume by contradiction that it is possible to find � � �0 such that the
open set �� = {u � u� < 0} \ 6� is not empty. By the monotonicity of f near the
origin, we get that, for any nonempty connected component ! of ��,(

�1(u � u�) = f (u) � f (u�) � 0 in !

u � u� = 0 on @!.

Hence, by the maximum principle for possibly unbounded domains (see [1, Lemma
2.1]), we conclude that u � u� � 0 in !, a contradiction.

In view of this proposition, we can define (continuation)

� = inf{�0 : u � u� � 0 in 6�,8� � �0}. (2.2)

By construction, we see that � < 1.

Lemma 2.3. Let u � 0 be a bounded solution to equation (1.1) fulfilling (2.1).
Assume that f satisfies (1.2).

(i) If � = �1, then uN ⌘ 0 or uN (x) < 0 for any x 2 RN .
(ii) If u satisfies condition (1.4) and � = �1, then u ⌘ 0.
(iii) If u satisfies condition (1.4) and f 0(t)  0 for t > 0, then u ⌘ 0.

Proof. (i) If � = �1, that is the moving plane method does not stop, then uN 

0. Since uN verifies the linearized equation �1uN = f 0(u)uN , by the strong
maximum principle, we get that uN ⌘ 0 or uN < 0 in the whole RN .

(ii) If � = �1, the monotonicity, together with condition (1.4), yields that
u ⌘ 0.

(iii) If f 0(t)  0 for any t > 0, then � = �1; hence, by statement (ii),
u ⌘ 0.

Proposition 2.4. Let u > 0 be a bounded solution to equation (1.1) fulfilling (2.1).
Assume that f satisfies (1.2). Assume, in addition, that � > �1.

(i) For any positive integer k, there exists ��1/k  �k < � and a point xk 2 6�k ,
with {xkN } bounded, such that

u
�
xk
�

< u�k

�
xk
�
. (2.3)
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(ii) If, in addition, u is periodic in xN , then the sequence xk can be chosen to be
bounded.

Proof. (i) It follows from the definition of � that we can choose a sequence � �

1/k  �k < � and a point xk 2 6�k such that u(xk) < u�k (xk). By construction,
we have that xkN < �k < �; what remains to prove is that we can choose these
sequences in such a way that xkN is bounded from below. We define

3 =

n⇣
(�k)k ,

⇣
xk
⌘
k

⌘
: � � 1/k  �k < �, xk 2 6�k and u

⇣
xk
⌘

< u�k

⇣
xk
⌘o

and we argue by contradiction. We assume that for any couple of sequences (�̃, x̃)=�
(�k)k, (xk)k

�
2 3, we have xkN ! �1. Hence, once we fix B > 0 and such a

couple (�̃, x̃), we can find k such that xkN < �B, for k � k. Now, if we set

k0(�̃, x̃) = min
n
k : xkN < �B, for k � k

o
,

we have that xkN < �B for k � k0(�̃, x̃), while xk0(�̃,x̃)�1
� �B.

After that we set

k0 = sup
n
k0(�̃, x̃) : (�̃, x̃) 2 3

o
;

if k0 = 1, the family {k0(�̃, x̃) : (�̃, x̃) 2 3} would be a diverging sequence k j of
positive integers, that we can assume to be increasing and such that k j > j . For any
j , we set i = k j � 1 and consider the corresponding couple (�̃, x̃): we set µi = �i
and si = xi . The couple (µ, s) still belongs to 3 and siN � �B, a contradiction.

Therefore, we have that k0 < 1 and, for any k � k0, u � u�k � 0 in {�B <

xN < �k}. Now, if we choose B so large that u(x) < " for xN > 2(� � 1) � B, we
have, for k � k0 (

�1(u � u�k ) = f (u) � f (u�k ) � 0 in !

u � u�k = 0 on @!,

where ! is any connected component of the set �k = {xN < �B} \ {u � u�k <
0}. Therefore, by the maximum principle for possibly unbounded domains (see [1,
Lemma 2.1]), we get that u � u�k � 0 in !, hence �k = ;, that is u � u�k � 0 in
6�k , for k � k0.

The same is true for any � > �k0+1. Otherwise, we would be able to find a
couple (�, x�) such that u(x�) < u�(x�), with x�

2 6� and � > �k0+1. As a
consequence, � = �̃k0+1, for an appropriate �̃, so u � u� � 0 in 6�, which is not
possible.

(ii) It follows from the periodicity that we can redefine xk in order for (x 0)k to
be bounded.
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3. Results with periodicity

Now we can proceed with the proof of Theorem 1.2 in the case M = N � 1.

Proof. At first we note that, by statement (ii) of Lemma 2.3, � > �1, otherwise
u ⌘ 0. Since u � u� � 0 in 6�, the strong maximum principle yields that either
u ⌘ u� or u > u� in 6�. Now we argue by contradiction and assume that the
second possibility holds true. We take a sequence of real numbers �k and a sequence
of points xk 2 6�k as in Proposition 2.4. By the boundedness of xk , we have that,
up to a subsequence, xk ! x1, so, by (2.3), we get that u(x1)  u�(x

1). Since
we are assuming that u > u� in 6�, we have that x1

N = �. By the Hopf lemma, we
obtain that uN (x 0, �) < 0, but the mean value theorem yields that

0 < u�k

�
xk
�
� u

�
xk
�

= 2
�
�k � xkN

�
uN

⇣
(x 0)k, ⇠ k

⌘

with xkN < ⇠ k < 2�k � xkN . Letting k ! 1, we conclude that uN (x1) � 0, a
contradiction. Hence we have u = u� in 6�.

Now let us consider the general case. In next proposition, hypothesis (ii) of
Theorem 1.2 can be replaced by the weaker assumptions

(
u(y, z0, zN ) ! 0 as |z0| ! 1, uniformly in the other variables
u(y, z0, zN ) ! 0 as zN ! 1, uniformly in the other variables.

(3.1)

Under these hypotheses, it is possible to define � < 1 as before.

Proposition 3.1. Let u > 0 be a bounded solution to equation (1.1) satisfying
condition (3.1). Assume that f satisfies (1.2). Assume furthermore that � > �1.

(i) Then, for any positive integer k, there exists � � 1/k  �k < � and a point
xk = (yk, zk) 2 6�k , with {zk} bounded, such that

u
�
xk
�

< u�k

�
xk
�
.

(ii) If, in addition, u is periodic in y, then the sequence xk can be taken in such a
way that it is bounded.

This is a generalisation of Proposition 2.4, for which we have nevertheless presented
an independent proof.

Proof. As in the proof of Proposition 2.4, by definition of �, we can find a sequence
of real numbers � � 1/k  �k < � and a sequence of points xk = (yk, zk) 2 6�k
such that (2.3) holds. The difference is that now we want to prove that this sequence
can be chosen in such a way that zk is bounded. In order to do so we will argue by
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contradiction. By construction, we know that zkN  �. In the notation of Proposition
2.4, we define, for R > 0 and (�̃, x̃) 2 3, the number

k0(R, �̃, x̃) = inf
n
k0 : zkN  �R, |(z0)k | � R 8k � k0

o
.

Now we put
k0(R) = sup

n
k0(R, �̃, x̃)

o
;

exactly as in Proposition 2.4, we get that k0(R) < 1, for any R > 0 and u�u�k � 0
in 6�k \ QR for any k � k0, where we have set QR = {|z0|  R, zN � �R}.

By the decay assumptions, if R is large enough, we have that u(y, z) < "
for |z0| > R and u�k (y, z) < " for zN < �R and for any k. Hence, if we set
�k = {u � u�k < 0} \ 6�k , we get that, for any connected component ! of �k ,(

�1(u � u�k ) = f (u) � f (u�k ) � 0 in !

u � u�k = 0 on @!,

hence, by the maximum principle for possibly unbounded domains (see [1, Lemma
2.1]), ! = ;, as desired.

The conclusion of the proof of Theorem 1.2 is similar to what we have done in
the case M = N�1. As first we observe that, by the behaviour of u for zN ! �1,
applying Lemma 2.3, we get � > �1. Then we take a sequence xk = (yk, zk) as in
Proposition 3.1; up to a subsequence, we can assume that xk ! x1

= (y1, z1).
Passing to the limit in (2.3), we can see that u(y1, z1)  u�(y

1, z1). If u > u�
in 6�, we get that (y1, z1) 2 @6�, but this contradicts the Hopf lemma, as we
have seen above.

4. Results without periodicity

As first we observe that condition (1.6) enables us to relate the study of equation
(1.1) to the study of the one-dimensional problem (1.7). The results concerning this
one-dimensional problem are probably known, for sake of completeness we present
the proofs.

Before giving these proofs, let us fix some terminology. If u is a bounded solu-
tion to (1.1), then for any sequence |xk | ! 1, it is possible to find a subsequence
such that uk(x) = u(x + xk) ! u1(x) in the C2loc(RN ) sense, and u1 is still
a solution. In the sequel, this kind of solutions, obtained as a limit of sequences
constructed as above, will be referred to as profiles. In the sequel, we will say that
a profile is one-dimensional if it is a function depending just on the xN�variable.

Lemma 4.1. Let u be a bounded solution to equation (1.1) satisfying (1.4) with
z = xN , and with f fulfilling (1.2). Then any profile is one-dimensional if and only
if (1.6) holds.
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Proof. If any profile is one-dimensional, for any |(x 0)k | ! 1, there is a subse-
quence such that uk(x) = u(x 0

+ (x 0)k, xN ) ! v(x) in C2,↵loc (RN ), with v j ⌘ 0,
for 1  j  N � 1. This implies, in particular, that ukj ! 0 pointwise, there-
fore u j ((x 0)k, xN ) ! 0 for any xN 2 R. Since the sequence (x 0)k is arbitrary, we
conclude that u j (x 0, xN ) ! 0 as |x 0

| ! 1, for any xN .
The converse is true because C2loc convergence implies pointwise conver-

gence.

Now we are going to study Problem (1.7). For solutions satisfying

v(t)  C|t |�(1+� ) for any |t | � M

for suitable constants M > 0, � > 0, we define

H(v) =

Z
1

�1

1
2
(v0)2 � F(v)dt (4.1)

and, for any � 2 R,

E�(v) =

Z
1

�1

(t � �)

✓
1
2
(v0)2 � F(v)

◆
dt.

In order to show that H(v) and E(v) are well defined and finite for such solutions,
we prove the following:

Lemma 4.2. Let v > 0 be a solution to Problem (1.7). Then:

(i) v is symmetric with respect to �, for some � 2 R, and v0(t) > 0 for any t < �;
(ii) For any t 2 R, we have 12 (v0(t))2 + F(v(t)) = 0;
(iii) If we assume, in addition, that v(t)  C|t |�(1+� ), for some � > 0, then

|v0(t)|  C|t |�(1+� ), for any |t | � B.

Proof. (i) Since v(t) ! 0 as t ! 1, the solution must have a maximum point at
t = �, for some � 2 R. In particular it satisfies the Cauchy problem

8><
>:

�v00
= f (v) on R

v(�) = vmax
v0(�) = 0.

A computation shows that v�(t) = v(2� � t) satisfies the same Cauchy problem,
hence v� = v. If v had another critical point µ 6= �, it would also be symmetric
with respect to µ, and hence periodic, but this is not possible because it tends to 0
at infinity.
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(ii) Multiplying the ODE by v0 and integrating we obtain the relation

0 

1
2
(v0)2 = �F(v) + C,

where C is a suitable constant. Letting t ! 1, we get that C � 0. If we had
C > 0, we would get that (v0)2 ! 2C > 0 as t ! 1, which is not possible
because v ! 0 as t ! 1. Finally we get that C = 0 and v0

! 0 as t ! 1.
(iii) If f 0(0) < 0, the claim follows from the exponential decay of the deriva-

tive, so we can assume that f 0(0) = 0. We assume by contradiction that for any
positive integer k, we can find |tk | > k such that |v0(tk)| > k|tk |�(1+� ). Now we set

vk(t) = |tk |�v(|tk |t).

A computation shows that, for k large enough and for any 12 < |t | < 2, we have

⇣
vk
⌘

0

(t) = |tk |1+�
p

�2F(v(|tk |t))  |tk |1+�
q
2C|tk |�2(1+� )

|t |�2(1+� )
 C.

However, we can see that

(vk)0(tk/|tk |) � |tk |1+� k|tk |�(1+� )
= k, (4.2)

a contradiction.

Proposition 4.3. If a nontrivial solution to Problem (1.7) exists, then it is unique
up to a translation.

It follows from the Cauchy uniqueness theorem that any nontrivial solution
to Problem (1.7) is strictly positive. Nevertheless, we point out that a nontrivial
solution does not always exist, for instance if f (u) = ((u � �)+)p with � > 0, as
we will see later.

Proof. Let us assume that there are two solutions v > 0 and w > 0, that are
not one the translated of the other. Up to a translation, we can assume that the
symmetry axes are the same, that is there exists � 2 R such that v = v(|t � �|) and
w = w(|t � �|).

If v(�) = w(�), then we also have v0(�) = w0(�) = 0, since � is a maximum
point for both v and w; therefore, by the Cauchy uniqueness theorem, we get that
v ⌘ w.

Now, assume, for instance, that w(�) > v(�). By continuity, there exists
t0 > � such that w(t0) = v(�). As a consequence, we conclude that

0 > w0(t0) =

p
�2F(w(t0)) =

p
�2F(v(�)) = v0(�),

a contradiction.
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Now, let us prove a quite general lemma, in which we do not need to assume
that u is a solution to some PDE.

Lemma 4.4. Let us denote x = (y, z) 2 RM
⇥ RN�M . Let u : RN

! R be a
continuous function such that

u(y, z) ! 0 as |z| ! 1, uniformly in y.

(i) Assume that for any sequence |yk | ! 1 it is possible to find a subsequence
such that uk(x) = u(y + yk, z) ! 0 in the C0loc sense. Then u(x) ! 0 as
|x | ! 1.

(ii) Let M = 1. Assume that for any sequence yk ! 1 it is possible to find a
subsequence such that uk(x) = u(y + yk, z) ! 0 in the C0loc sense. Then

u(y, z) ! 0 as y ! 1, uniformly in z. (4.3)

Proof. (i) By the decay in z, we have that, for any " > 0, there exists B > 0 such
that |u(y, z)| < " for |z| � B. Since uk ! u1 in the C0loc sense, the convergence
is uniform in the compact set K = {|z|  B, y = 0}. Hence for any sequence
|yk | ! 1, there is a subsequence such that

sup
K

|uk(x)| = sup
|z|B

|u(yk, z)| ! 0,

therefore u(y, z) ! 0 as |y| ! 1, uniformly in z, so we have the statement.
(ii) We essentially repeat the same proof, with the only difference that we con-

sider only sequences yk ! 1.

Now we are going to prove Theorem 1.4.

Proof. For any sequence |(x 0)k | ! 1, by Lemma 4.1, any corresponding profile v
is one-dimensional and satisfies (1.7), so, by our assumption about f , v ⌘ 0. Since
this is true for any profile, Lemma 4.4 yields that u(x) ! 0 as |x | ! 1, hence,
by the result by Gidas, Ni, Nirenberg in [5], u is radially symmetric and radially
decreasing.

Now we can prove Corollary 1.5.

Proof. Assume by contradiction that such a solution exists. Then by Theorem 1.4
it is radially symmetric, that is, up to a translation, u(x) = v(|x |), and harmonic
outside a ball, so u(x) = a log(|x |)+ b, for |x | large enough. If a = 0, by (1.4), we
get b = 0, so u ⌘ 0. Otherwise, a 6= 0 and b 2 R, but this contradicts condition
(1.4).
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Now we can prove Proposition 1.6.

Proof. In the proof, we set F(u) =
1
p+1 |u|

p+1
�

1
2u
2 and f (u) = |u|p�1u � u.

In order to prove the proposition, we will assume by contradiction that 0 <
||u||1 < (p+ 1/2)1/p�1 and we will see that this yields that for any |(x 0)k | ! 1,
the corresponding profile is identically 0, hence, by Lemma 4.4, up to a translation,
u(x) = U(|x |), but, by our assumption, we have that ||u||1 < (p + 1/2)1/p�1 <
maxU , a contradiction.

As before, by Lemma 4.1, we get that any profile is one-dimensional and sat-
isfies (1.7), therefore, by point (i) of Lemma 4.2, we know that v = v(|t � �|), for
an appropriate � 2 R. By symmetry, we get that v0(�) = 0, hence, by point (ii)
of Lemma 4.2, F(v(�)) = 0. Anyway, we have that v(�) = ||v||1  ||u||1 <
(p + 1/2)1/p�1, so we conclude that ||v||1 = 0.

5. Proofs of Theorems 1.8 and 1.10

In this section we are going to deal with the cases in which problem (1.7) has a
positive solution, so we can have a positive profile when we translate in the x 0-
directions. In order to deal with this case, we need to consider the energy H(u, x 0)
and the momentum E�(u, x 0) of a solution, hence we need some further assump-
tions about the decay rate of u in xN . In the next lemma, we see that it is enough
to prescribe the decay rate of u – we do not need any further assumption about the
gradient.

Lemma 5.1. Let u > 0 be a bounded solution to (1.1) with f 2 C2(R) satisfying
(1.2) and f 0(0) = 0. Assume furthermore that u(x)  C|xN |

�↵ for |xN | � B, for
some constants B > 0 and ↵ � 1. Then:

(i) The gradient satisfies

|ru(x)|  C|xN |
�↵ for |xN | � B; (5.1)

(ii) If ↵ � 2, then
|ru(x)|  C|xN |

�(1+↵) for |xN | � B. (5.2)

Proof. (i) Assume by contradiction that (5.1) fails. Then it is possible to find a
sequence of points xk 2 RN , with |xkN | � k, such that

���ru ⇣(x 0)k, xkN
⌘��� � k

���xkN
����↵

.

Now we define

vk
�
x 0, xN

�
=

���xkN
���↵�1

u

 ���xkN
���
 
x 0

+

(x 0)k��xkN ��
!

,
��xkN ��xN

!
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and
� =

⇢
|x 0

| < 1,
1
2

< |xN | < 2
�

.

By the decay rate of u in xN and the fact that |xkN | ! 1, we have

���vk(x)���  C
���xkN

����1 |xN |
�↵

 C,

for any x 2 � and for k large enough. Since f 2 C2 and f 0(0) = 0, we deduce
that | f (u)|/u2 is bounded in a neighbourhood of the origin, so

0 

���1vk(x)
��� =

���xkN
���↵+1

������ f
0
@u

0
@���xkN

���
0
@x 0

+

(x 0)k���xkN
���
1
A ,

���xkN
���xN

1
A
1
A
������

 C
���xkN

���↵+1
u2
0
@���xkN

���
0
@x 0

+

(x 0)k���xkN
���
1
A ,

���xkN
���xN

1
A  C

���xkN
���1�↵���xN

����2↵  C

for any x 2 � and for k large enough.
By elliptic estimates we have that, for any ball B ⇢⇢ �, for any p > 1 and

for any k,

||vk ||W 2,p(B)  C
⇣
||vk ||L1(�) + ||1vk ||L1(�)

⌘
 C.

Now we take p > N and we conclude: by the Sobolev embedding C1,↵(B) ⇢

W 2,p(B) and since the ball is arbitrary, we have that ||rvk ||L1(�) is uniformly
bounded with respect to k.

On the other hand, an explicit computation gives that
������rvk

0
@0, xkN���xkN

���
1
A
������ =

���xkN
���↵���ru((x 0)k, xkN )

��� � k ! 1,

a contradiction.
(ii) The proof is the same as before, with the only difference that now we set

vk(x 0, xN ) =

���xkN
���↵u

0
@���xkN

���
0
@x 0

+

(x 0)k���xkN
���
1
A ,

���xkN
���xN

1
A .

The only point where we use that ↵ � 2 is to say that ||1vk ||L1(�) is uniformly
bounded with respect to k.
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By this lemma we see that, if u fulfills (1.10), then the gradient satisfies

|ru(x)|  C|xN |
�(1+� ) for |xN | � M , (5.3)

for suitable constants M > 0, � > 0, so it is possible to define the energy and the
momentum, even if f 0(0) = 0.

Now we recall that, under condition (1.4), it is possible to start the moving
plane procedure from the positive xN direction (see Proposition 2.1) and define �
as in (2.2).

It is possible to show that, under assumption (a) of Theorem 1.8, any profile is
positive and we can find a profile v that is symmetric with respect to �.

Proposition 5.2. If u > u� in 6�, then there exists a positive solution v which is
symmetric about the hyperplane {xN = �}.

Proof. We take a sequence xk as in Proposition 2.4 and we define

uk(x) = u
�
x 0

+ (x 0)k, xN
�
.

By the Ascoli-Arzelá theorem, up to a subsequence, uk converges to a non-negative
solution v to equation (1.1).

Now we want to prove that v > 0. We point out that |(x 0)k | ! 1. If not,
by the boundedness of xkN , it would be possible to find a subsequence x

k
! x1.

Hence, passing to the limit in (2.3), we would get that u(x1)  u�(x
1); since

u > u� in 6�, we get that x1
2 @6�, which contradicts the Hopf lemma. In fact,

still by (2.3) and by Lagrange theorem, we have that

0 < u�k (x
k) � u

�
xk
�

= 2
�
�k � xk

�
ukN
�
0, ⇠ k

�
,

for an appropriate xkN < ⇠ k < 2�k � xkN . Therefore, passing to the limit, we get
that uN (0, �) � 0, which contradicts the Hopf lemma.

We are now in position to show that v > 0. In fact, H(uk, x 0) = H(u, x 0
+

(x 0)k) ! H(v, x 0), so |H(v, x 0)| > � > 0, hence v > 0.
It remains to prove that such a profile is symmetric. Since the translation is

orthogonal to the xN direction, we have that uk � uk
�
in 6�, hence v � v� in 6�.

By the strong maximum principle, we can see that v > v� or v ⌘ v� in6�; we want
to exclude the first possibility. In order to do so, we take a subsequence such that
xkN ! x1

N and pass to the limit in (2.3), and we obtain that v(0, x1)  v(0, x1).
Now we observe that, if v > v�, we get that x1

N = �, which contradicts the Hopf
lemma, exactly as above.

In view of condition (1.10), the decay in xN holds both for xN ! 1 and for
xN ! �1, therefore we can also start the moving plane procedure from the left,
and define

� = sup{�0 : u � u� � 0 in 6̃�,8�  �0},

where 6̃� = {xN > �}.
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As above, by construction, we get � > �1. Furthermore, we can prove that
�  �. If not, we would have uN � 0 in {xN < �} and uN  0 in {xN > �}, so
uN = 0 in {� < xN < �}. By the strong maximum principle we get, for instance,
that uN ⌘ 0 in 6�, hence u ⌘ 0.
Remark 5.3. If � = �, then u is symmetric with respect to xN , that is u =

u(x 0, |xN � �|).
To conclude the proof of Theorem 1.8, we have to rule out the possibility � <

�. In order to do so, we prove the following:

Proposition 5.4. Let u > 0 be a bounded positive solution to equation (1.1) satis-
fying (1.10), with f as in (1.2). Assume furthermore that:

(i) |H(u, x 0)| � � > 0 for |x |0 large enough;
(ii) There exists µ such that Eµ(u, x 0) ! 0 for x 0

! 1.

Then u(x) = u(x 0, |xN � �|), for a suitable � 2 R (that is, u is symmetric in xN ).

Proof. We divide the proof in two steps.
(i) If u > u� in 6�, then � = µ.
We define

ũ(x) = u(x 0, xN + � � µ)

and
ũk(x) = ũ

⇣
x 0

+ (x 0)k, xN
⌘

.

It is worth to remark that the profile of the translated solution ũ coincides with
the translation of the profile ṽ, that is ũk ! ṽ, up to a subsequence. Since v is
symmetric about the hyperplane {xN = �}, ṽ is symmetric about the hyperplane
{xN = µ}, therefore, if we set

g(x) =

1
2
�
u2N � |rx 0u|2

�
� F(u),

then we have

0=Eµ

�
ṽ,x 0

�
= lim
k!1

Eµ

�
ũk,x 0

�
= lim
k!1

Eµ

⇣
ũ,x 0

+(x 0)k
⌘

= lim
k!1

Z
1

�1

(xN �µ)g
⇣
x 0

+(x 0)k,xN +��µ
⌘
dxN

= lim
k!1

⇢Z
1

�1

(zN �µ)g
⇣
x 0

+(x 0)k,zN
⌘
dzN �

Z
1

�1

(��µ)g
⇣
x 0

+(x 0)k,zN
⌘
dzN

�

= lim
k!1

n
Eµ

⇣
u,x 0

+(x 0)k
⌘
�(��µ)H

⇣
u,x 0

+(x 0)k
⌘o

=�(��µ)H(v,x 0).

Since H(v,x 0) 6=0, we have �=µ.
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(ii) � = µ = �.
In order to prove the statement, we start the reflection from the left and obtain
that either u is symmetric about the hyperplane {xN = �} or u > u� in 6̃�; in
the second case, exactly as in Proposition 2.4, we are able to construct a sequence
� < �k < � + 1/k and a sequence of points sk 2 6̃�k such that u(sk) < u�k (sk),
with |(s0)k | ! 1 and {skN } bounded. Passing to the limit, we get a profile w which
is symmetric about the hyperplane {xN = �}. Since � = µ, we have

0= lim
k!1

E�

⇣
u,x 0

+(s0)k
⌘
= lim
k!1

Z
1

�1

(xN ��)g
⇣
x 0

+(s0)k,xN
⌘
dxN

= lim
k!1

⇢Z
1

�1

(xN ��)g
⇣
x 0

+(s0)k,xN
⌘
dxN �

Z
1

�1

(���)g
⇣
x 0

+(s0)k,xN
⌘
dxN

�

=E�(w,x 0)�(���)H(w,x 0)=�(���)H(w,x 0).

Since H(w,x 0) 6=0, then �=�.

Now we can recollect our results to conclude the proof of Theorem 1.8.

Proof. The idea is to apply Proposition 5.4. Therefore, we have to check that hy-
pothesis (i) and (ii) are satisfied. First we will prove that H(u, x 0) tends to a fi-
nite positive limit as |x 0

| ! 1. In order to do so, we take an arbitrary sequence
|(x 0)k | ! 1 and we prove that, up to a subsequence, H(u, (x 0)k) converges to a
positive limit which is indipendent of the chosen sequence.

By the Arzelá-Ascoli theorem, for any sequence |(x 0)k | ! 1, we can find
a subsequence such that uk(x) = u(x 0

+ (x 0)k, xN ) converges to a nonnegative
profile v, which still verifies �1v = f (v). By hypothesis (a), we have that v > 0;
by Lemma 4.1, we get that v is one-dimensional, that is v = v(xN ). Moreover, by
condition (1.10) we get that v(xN )  C|xN |

�(1+� ) for |xN | � B.
As a consequence, v is a solution to problem (1.7) for which the energy H(v)

and the momentum E�(v) are well defined and finite. Moreover,

H
⇣
u, (x 0)k

⌘
= H(uk, 0) ! H(v, 0) = H(v) =

Z
1

�1

(v0)2 > 0.

By the uniqueness of the positive solution to (1.7), proven in Proposition 4.3, we get
that the limit does not depend on the particular choice of the sequence |(x 0)k | ! 1,
hence

H(u, x 0) ! H(v) > 0 as |(x 0)| ! 1.
In the same way as above, it is possible to prove that E0(u, x 0) ! E0(v) as |(x 0)| !

1. Therefore

Eµ(u, x 0) = E0(u, x 0) � µH(u, x 0) ! E0(v) � µH(v),

so it is enough to take µ = E0(v)/H(v).
This concludes the proof of Theorem 1.8.
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Now we prove Theorem 1.10. In the proof, we will use a result by Malchiodi,
Gui and Xu (see [7], Proposition 2). If N = 2, they show that H(u, x1) is actually
independent of x1, hence it may be referred to as H(u). If H(u) 6= 0, we can apply
Proposition 5.4 with µ = E0(u)/H(u), and the proof is finished.

It remains to deal with the case H(u) = 0. We claim that in this case u is
radially symmetric, that is, up to a translation, u = u(|x |), where x = (x1, x2) 2

R2.

Proposition 5.5. In the hypothesis of Theorem 1.10, if H(u) = 0, then u is radially
symmetric.

Proof. In view of Lemma 4.4, it is enough to show that any profile is identically 0
and apply the result by Gidas, Ni and Nirenberg in [5].

Assume, by contradiction, that one can find a sequence |xk1 | ! 1 whose
correspondent profile v is stricly positive. By Lemma 4.1, this profile is one-
dimensional, therefore it is the unique (up to a translation) solution to Problem
(1.7), hence we already know that H(v) =

R
1

�1
(v0)2 > 0. On the other hand, by

the dominated convergence theorem, we have that H(v) = H(u) = 0, a contradic-
tion.

6. Solutions decaying in N � 1 variables

Now we are considering solutions to equation (1.1) fulfilling (1.11). The nonlin-
earity will always satisfy (1.2), sometimes it will be required to be of class C2,
sometimes C1 will be enough.

For such solutions, we define the energy-like functional

H(u, xN ) =

Z
RN�1

1
2
�
|rx 0u|2 � u2N

�
� F(u)dx 0.

We point out that, in order for such a functional to be well defined and finite, we
need some further information about the decay rate of u, for example it is enough
to consider solutions u fulfilling (1.13).
Remark 6.1. If f 0(0) < 0, any solution satisfying (1.11) actually decays exponen-
tially in x 0, and the same is true for the gradient, that is

u(x), |ru(x)|  Ce�� |x 0
| for |x 0

| � B,

for some B > 0, � > 0, and this is true in any dimension N � 2, hence there are
no problems to defineH(u, xN ).

It is interesting to understand what happens in the case f 0(0) = 0. It turns out
that, at least in dimension N � 5, if f 2 C2, any solution fulfilling (1.11) actually
decays fast enough in x 0, so it is still possible to define H(u, xN ). In dimension
2  N  4, it is possible to do the same under hypothesis (1.13).



1228 ALBERTO FARINA, ANDREA MALCHIODI AND MATTEO RIZZI

Moreover, we recall that in [7] Malchiodi, Gui and Xu showed that H(u, xN )
actually depends only on u, hence it will be referred to simply asH(u).

Lemma 6.2. Let u > 0 be a bounded solution to (1.1), with f 2 C1 satisfying
(1.2) and f 0(0) = 0. Assume furthermore that (1.11) holds. Then

ru(x 0, xN ) ! 0 as |x 0

| ! 1, uniformly in xN .

Proof. Assume, by contradiction, that it is possible to find a � > 0 and a sequence
|(x 0)k | ! 1 such that

sup
xN

���ru ⇣(x 0)k, xN
⌘��� � 2�.

So we can take a sequence xkN 2 R such that |ru((x 0)k, xkN )| � � and define
uk(x) = u(x + xk). Up to a subsequence, uk ! v in C2,↵loc (RN ), and v � 0 is still
a solution to equation (1.1). Now we observe that, on the one hand

uk(0) = u(xk) ! 0 = v(0),

hence, by the strong maximum principle, v ⌘ 0. On the other hand,

� 

���ru ⇣(x 0)k, xkN
⌘��� =

���ruk(0)��� ! |rv(0)| = 0,

a contradiction.

Lemma 6.3. Let us denote x = (y, z) 2 RM
⇥ RN�M . Assume that N � M � 3.

Let u > 0 be a bounded C2(RN ) function such that �1u  0 for |z| � r , for some
r > 0. Assume furthermore that

u(y, z) ! 0 as |z| ! 1, uniformly in y. (6.1)

Then
u(x)  C|z|2�(N�M) for |z| � R (6.2)

for a suitable constant R > 0.

Proof. We will give an estimate of u by dominating it with a barrier. In this con-
struction we use the function v(y, z) = |z|2�(N�M), because we know that v > 0
and 1v = 0 on RN , for N � M � 3. We observe that, for any � > 0 and � 2 R,

�1
�
u � (� + �v)

�
 0 for |z| � r .

By the decay in |z|, we deduce that, for any " > 0, we can find ⇢ = ⇢(") > 0 such
that u(y, z) < " for |z| � ⇢. Now we set R = max{⇢, r}. We fix 0 < � < ",
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x0 = (y0, z0) such that |z0| > R and we take A > |z0| so large that u < � for
|z| � A. Hence we have

(
u < � < � + �R2�(N�M) for |z| = A
u < " < �R2�(N�M) < � + �R2�(N�M) for |z| = R

if we choose � > "RN�M�2. Therefore, by the maximum principle for possibly
unbounded domains (see [1, Lemma 2.1]) applied to the region C = {x 2 RN

:

R < |z| < A}, we get u  � + �v on C , in particular u(x0)  � + �v(x0). Letting
� ! 0, we have the statement.

Corollary 6.4. Let u > 0 be a bounded solution to (1.1), with f satisfying (1.2).

(i) If N � 4 and u satisfies (1.11), then

u(x 0, xN )  C|x 0

|
3�N for |x 0

| � B (6.3)

for a suitable constant B > 0.
(ii) If N � 3 and u(x) ! 0 as |x | ! 1, then

u(x)  C|x |2�N for |x | � B (6.4)

for a suitable constant B.

Proof. It is enough to apply Lemma 6.3 with M = 1 in case (i) and with M = 0 in
case (ii).

Lemma 6.5. Let u > 0 be a bounded soqqqlution to (1.1), with f 2 C2(R) satis-
fying (1.2).

(i) If N � 5 and u satisfies (1.11), then

|ru(x 0, xN )|  C|x 0

|
2�N for |x 0

| � B (6.5)

for a suitable constant B > 0.
(ii) If N � 4 and u(x) ! 0 as |x | ! 1, then

|ru(x)|  C|x |1�N for |x | � B (6.6)

for a suitable constant B > 0.

Proof. It is enough to apply statement (ii) of Lemma 5.1 with ↵ = N � 3 in case
(i) and ↵ = N � 2 in case (ii).
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Lemma 6.6. Let u > 0 be a bounded solution to the (1.1), with f 2 C2(R) satis-
fying the (1.2). Assume furthermore that (1.11) holds.

(i) Let N � 5. ThenH(u) is well defined and finite.
(ii) If 2  N  4, the same is true under condition (1.13).

Proof. As above, we can assume that f 0(0) = 0, otherwise the result follows from
the exponential decay.

(i) Applying Lemma 6.5, we get that
Z

|x 0
|�M

u2j dx
0

 C
Z

1

M
r2(2�N )r N�2dr

that is finite because N � 5.
By the assumption f 0(0) = 0 and f 2 C2, we get that F(u)/u3 is bounded in

a neighbourhood of the origin. If N � 5, this yields that
����
Z

|x 0
|�R

F(u)dx 0

����  C
Z

1

R
r3(3�N )r N�2dr < 1.

(ii) If 2  N  4, condition (1.13) yields that
Z

|x 0
|�M

u2j dx
0

 C
Z

1

M
r�(N�1+� )r N�2dr < 1

and

����
Z

|x 0
|�R

F(u)dx 0

����  C
Z

1

R
r�3 N�1+�

2 r N�2dr < 1.

Let N � 4. For a solution u > 0 to (1.1) such that u(x) ! 0 as |x | ! 1, we
define

J (u) =

Z
RN

1
2
|ru|2 � F(u)dx .

We point out that, if f 0(0) < 0, any positive solution decaying to 0 decays expo-
nentially, so the restirction on the dimension is not necessary, we can define J (u)
for any N � 1.

Anyway by Corollary 6.4 and Lemma 6.5, in dimension N � 4, even if
f 0(0) = 0, the fact that u ! 0 as |x | ! 1 is sufficient to guarantee that J (u)
is well defined and finite. In factZ

RN
|ru|2  C

Z
1

0
r2(1�N )r N�1dr < 1
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and ����
Z

RN
F(u)

����  C
Z

1

0
r3(2�N )r N�1dr < 1.

In dimension 1  N  3, the decay to 0 is not sufficient to define J (u), at least if
f 0(0) = 0. In order to do so, we have to assume some further conditions about the
decay of u, for instance

u(x), |ru(x)|  C|x |�
N+�
2 for |x | � B (6.7)

for appropriate constants B > 0, � > 0.
In the next lemma, wewill compute explicitlyJ(u), andwewill see that J(u)>0.

Lemma 6.7. Let u > 0 be a solution to the problem
8><
>:

�1u = f (u) in RN

u > 0
u(x) ! 0 as |x | ! 1

with f 2 C2(R) satisfying (1.2).

(i) If N � 4, then

J (u) =

1
N

Z
RN

|ru|2 > 0. (6.8)

(ii) If 1  N  3, the same formula holds if u fulfills condition (6.7) and f 2 C1.

Remark 6.8. If f 2 C1(R) with f 0(0) < 0, thanks to the exponential decay (6.1),
formula (6.8) holds in any dimension N � 1.

Proof. If N = 1, condition (6.7) guarantees that J (u) is well defined and finite. By
statement (ii) of Lemma 4.2, 12 (u

0)2 + F(u) = 0, therefore J (u) =

R
1

�1
(u0)2 > 0,

unless u ⌘ 0.
Now we observe that, in any dimension N � 2 and for any nonlinearity f

fulfilling (1.2), any solution to (6.7) is radially symmetric, that is, up to a translation,
u(x) = v(|x |), where v satisfies the ODE

�v00

�

N � 1
r

v0

= f (v).

We multilpy the ODE by v0r N and integrate to obtain

�

Z
1

0
v00v0r Ndr � (N � 1)

Z
1

0
(v0)2r N�1dr =

Z
1

0
f (v)v0r Ndr.
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Integrating by parts we get
Z

1

0
f (v)v0r Ndr =

⇥
F(v)r N

⇤
1

0 � N
Z

1

0
F(v)r N�1dr

and

2
Z

1

0
v00v0r Ndr =

⇥
(v0)2r N

⇤
1

0 � N
Z

1

0
(v0)2r N�1dr.

If f 0(0) < 0, thanks to the exponential decay, all integrals are well defined and
finite and all boundary terms vanish. Finally, we get

N � 2
2N

Z
1

0
(v0)2r N�1dr =

Z
1

0
F(v)r N�1dr. (6.9)

If N=2, we already see that
R

1

0 F(v)r N�1dr=0, hence J (u)= 1
2
R

1

0 (v0)2rdr > 0.
In higher dimension, a computation show that J (u)= 1

N
R

1

0 (v0)2r N�1dr>0.
If f 0(0) = 0, we have no exponential decay, so it is harder to verify that all

the integrals are well defined and finite and that the boundary terms vanish. In
order to do so, in dimension 1  N  3 we use condition (6.7), while in higher
dimension, by Corollary 6.4 and 6.5, the decay at infinity is enough to guarantee
(6.4) and (6.6), hence all the integrals are well defined and finite and the boundary
terms vanish.

Now we prove Theorem 1.13.

Proof. As first, we point out that, in dimension N � 5, by Lemma 6.6, condition
(1.11) is enough to guarantee suitable decay to define H(u). For any sequence
xkN ! 1, it is possible to find a subsequence such that uk(x) = u(x 0, xN + xkN )

converges to a profile! u1 in the C2,↵loc sense. By hypothesis (1.12),

u1(x 0

0, 0) = lim
k!1

uk
�
x 0

0, 0
�

= lim
k!1

u
�
x 0

0, x
k
N
�

= 0,

hence u1
⌘ 0. Since the sequence is arbitrary, by Lemma 4.4, u(x 0, xN ) ! 0 as

xN ! 1, uniformly in x 0, so we can apply Proposition 2.1 to begin the moving
plane procedure (see Remark 4). Now, since we do not know the behaviour of u
for xN ! �1, we have to be careful to exclude the case � = �1. Assume, by
contradiction, that � = �1. Then we get uN  0 and therefore, since uN satisfies
�1uN = f 0(u)uN , by the strong maximum principle we have uN < 0, hence it is
possible to define, for any x 0

2 RN�1,

u(x 0) = lim
xN!�1

u(x 0, xN ).
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By the Arzelà-Ascoli theorem, it is possible to check that the convergence holds in
C2loc, hence the profile u satisfies8><

>:
�1u = f (u) in RN�1

u > 0
u(x 0) ! 0 as |x 0

| ! 1.

Therefore, applying Lemma 6.7 to u, we get that J (u) > 0.
However, by relation (6), J (u) is well defined and finite and

J (u) =

Z
RN�1

1
2
|ru|2 � F(u)dx 0

= lim
xN
H(u, xN ) = H(u) = lim

xN!1

H(u, xN ) = 0,

a contradiction.
As a consequence, we get that � 2 R and u � u� � 0 in 6�. By the strong

maximum principle, we have that u > u� or u ⌘ u� in 6�. To conclude the proof
of the theorem we have to exclude the first possibility.

Assume, by contradiction, that u > u� in 6�. By Proposition 3.1, applied to
the case M = 0, we can find a sequence of real numbers � � 1/k  �k < � and a
bounded sequence of points xk 2 6�k , such that

u
�
xk
�

< u�k

�
xk
�
.

Up to a subsequence, xk ! x1, therefore u(x1)  u�(x
1). Since we are assum-

ing that u > u� in 6�, we get that x1

N = �, but this is a contradiction to the Hopf
lemma, as above. To conclude, we observe that the symmetry in the xN variable
yields that

u(x 0, xN ) ! 0 as xN ! �1, uniformly in x 0,

hence, by the result by Gidas, Ni and Nirenberg in [5], we get the radial symme-
try.
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