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On Runge-curved domains in Stein spaces

MIHNEA COLŢOIU AND CEZAR JOIŢA

Abstract. We prove the following result: if X is a Stein complex space and
D ⇢ X is an open subset, then D is Runge-curved in X if and only if the canonical
map H1c (D,F) ! H1c (X,F) is injective for every F 2 Coh(X). We also show
that a Runge-curved open subset of a Stein manifold is necessarily Stein.

Mathematics Subject Classification (2010): 32E15 (primary); 32E10, 32C35
(secondary).

1. Introduction

Let X be a (not necessarily reduced) Stein space and D ⇢ X be an open sub-
set. Such a D is called a Runge domain if D is Stein and the restriction map
0(X,OX ) ! 0(D,OX ) has dense image in the topology of uniform convergence
of compact subsets of D. The domain D (not necessarily Stein) is called Runge-
curved if for any complex curve 0 ⇢ X (closed complex space of dimension 1) the
pair (0,0 \ D) is a Runge pair.

For Stein spaces of dimension 1, a complete characterization has been given
by N. Mihalache [10]. If n = dim X > 1 the notions of Runge domain and Runge-
curved domain do not coincide. G. Stolzenberg [14] has given an example of a
domain D ⇢ C2 that is Runge-curved and is not Runge.

The main purpose of this paper is to continue the study of Runge-curved do-
mains. As a first step we prove in Theorem 2.4 that a Runge-curved domain in a
Stein manifold is Stein. It is an open question if the same result holds in the singular
case. The main result of the paper is Theorem 3.7 which gives a characterization
of Runge-curved domains in Stein spaces using cohomology with compact support.
More precisely we prove that the following two conditions are equivalent:

1) D is Runge-curved;
2) The natural map between cohomology groups with compact support H1c (D,F)

! H1c (X,F) is injective for every F 2 Coh(X).
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The proof is done by induction on dim(X), and because of this one needs to use
complex spaces with nilpotent elements and properties of the torsion of a coherent
sheaf defined on them. If one uses only torsion free sheaves, condition 2) is replaced
by the weaker condition that X\D has no holes, see [6]. Therefore the use of torsion
sheaves on complex spaces with nilpotents is essential for our proof.

2. Steiness of Runge curved domains in Stein manifolds

For the following statement see [1].

Lemma 2.1. Let X be a Stein manifold of dimension n. Then there exists a finite
number of holomorphic maps 8 j : X ! Cn with discrete fibers j = 1, 2 . . . ,m
such that if A j is the branch locus of 8 j then

Tm
j=1 A j = ;.

The following statement is part of [10, Theorem 6.8]:

Lemma 2.2. Let X be a pure 1-dimensional Stein space and D ⇢ X an open
subset. Then the following are equivalent:

1) (X, D) is a Runge pair;
2) For any open neighborhood U of X \ D and any irreducible component C of

Red(U), C \ D is not compact;
3) H1c (D,O) ! H1c (X,O) is injective.

The proof of the following lemma is similar to the proof of [12, Proposition 5.5].

Lemma 2.3. Let D be an open subset of Cn . If for every closed complex curve
0 ⇢ Cn biholomorphic to C we have that (0,0 \ D) is a Runge pair, then D is
Stein.

Proof. We may assume, of course, that D 6= Cn and we denote by � : D ! (0,1)
the distance to the boundary of D which is a continuous function. For every u 2 Cn

with u 6= 0 we define �u : D ! (0,1] by

�u(z) := sup{⌧ : z + ⌘u 2 D for every ⌘ 2 C, |⌘|  ⌧ }.

We have that � = inf{�u : u 2 Cn, kuk = 1}. By Oka’s theorem we must prove
that � log � = sup{� log �u : u 2 Cn, kuk = 1} is plurisubharmonic. Therefore
it suffices to prove that � log �u is plurisubharmonic for every u. Let u 2 Cn and
kuk = 1. To prove that � log �u is plurisubharmonic we have to show that if z 2 D
andw 2 Cn

\{0}, and g : C ! C is a polynomial function of one complex variable
such that

� log �u(z + �w)  Re g(�) 8� such that |�| = r,

where r > 0, then we have

� log �u(z + �w)  Re g(�) 8� such that |�|  r.
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This is equivalent to proving that if

z + �w + µe�g(�)u 2 D 8�, µ 2 C such that |�| = r and |µ| < 1

then we have

z + �w + µe�g(�)u 2 D 8�, µ 2 C such that |�|  r and |µ| < 1.

Note that if u and w are linearly dependent over C then this is just a standard
1-dimensional statement. Let us assume that u and w are linearly independent
and let’s fix µ 2 C with |µ| < 1. We consider h : C ! Cn given by h(�) =

z + �w + µe�g(�)u. Then h is an embedding and therefore 0 := h(C) is a closed
complex curve in Cn , biholomorphic to C. Therefore (0,0 \ D) is a Runge pair.
At the same time we have that {� 2 C : |�| = r} ⇢ h�1(D). We deduce that
{� 2 C : |�|  r} ⇢ h�1(D) and hence z + �w + µe�g(�)u 2 D, 8� with
|�|  r .

Theorem 2.4. Let X be a n-dimensional Stein manifold and D an open subset of
X . If (C,C \ D) is a Runge pair for every closed complex curve C ⇢ X , then D is
Stein.

Proof. Since X is a Stein manifold, it suffices to show that D is locally Stein in X .
Let x0 2 @D. By Lemma 2.1 there exists a holomorphic map with discrete fibers,
8 : X ! Cn , such that 8 is locally a biholomorphism around x0. Let U be a
Stein open neighborhood of x0 and V be an open neighborhood of y0 := 8(x0)
such that 8 : U ! V is a biholomorphism. Moreover, we choose U to be Runge
in X . Replacing V by a small ball B(y0, ✏) centered at y0 and U by the connected
component of8�1(B(y0, ✏))\U that contains x0, we may assume thatU is Runge
in X and V is Runge in Cn .

In this setting, we would like to show that U \ D is Stein, which is equivalent
to 8(D \ U) being Stein. If 0 is a closed complex curve in Cn then we let C :=

8�1(0), which is a closed complex curve in X . Therefore C \ D is Runge in C . It
follows that C \ D \U is Runge in C \U and therefore 0 \ 8(D \U) is Runge
in 0 \ V . Since 0 \ V is Runge in 0 we deduce that 0 \ 8(D \U) is Runge in 0.
In order to finish the proof, we apply Lemma 2.3.

Remark 2.5. We do not know if the above theorem is true when X is a Stein com-
plex space.
Remark 2.6. If D is a Runge open subset of Stein manifold X , it was proved by A.
Cassa in [4] that for every closed irreducible complex curve C in D one can find a
sequence of closed irreducible curves {Ck}k�1 in X such thatC = limk!1(Ck\D).
The convergence is the one induced by the currents. See also [5].

It was proved in [7] that if X is an (n � 1)-convex irreducible complex space
of dim X > 1, the map ⇢ : X ! R is a smooth exhaustion function which is
(n� 1)-convex on Xc = {x 2 X : ⇢(x) > c}, with c a real number, D is a bordered
Riemann surface, and f : D ! X is a C2 function which is holomorphic in D and
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satisfies f (D) 6⇢ Xsing and f (bD) ⇢ Xc, then there is a sequence of proper holo-
morphic maps g⌫ : D ! X converging to f uniformly on compact subsets of D.
Example 2.7. Suppose that B1 and B2 are two balls in Cn such that B1 6⇢ B2 and
B2 6⇢ B1 and B1 \ B2 6= ;. Then D := B1 [ B2 is not Stein. At the same time
for every complex affine line, L in Cn , the intersection L \ D is simply connected
because L\B1, L\B2, L\B1\B2 are connected and simply connected. Therefore
L \ D is Runge in L . According to our theorem there must exist a curve C in Cn

such that C \ D is not Runge in C . We are going to exhibit such a curve. For
simplicity we work with n = 2, assume B1 is the open ball of radius 3 centered
at (�2, 0) 2 C2 and B2 is the open ball of radius 3 centered at (2, 0). Let C =

{(z, w) 2 C2 : w = z2 +

p

5}. We choose r > 0 small enough such that

r3 +

h
2
p

5(2�2 � 1) + 1
i
r � 4� < 0 for all � such that � 2 [0, 1]. (2.1)

Note that this is equivalent to

r3 +

h
2
p

5(2�2 � 1) + 1
i
r + 4� < 0 for all � such that � 2 [�1, 0].

Then clearly
�
0,

p

5
�

2 @D (hence 62 D) where D := B1 [ B2. At the same time,
we have {(z, w) 2 C : z = rei✓ for ✓ 2 [

⇡
2 , 3⇡2 ]} ⇢ B1. Indeed, we have to check

that, for z = rei✓ with ✓ 2 [
⇡
2 , 3⇡2 ], we have that

��z + 2|2 + |z2 +

p

5
��2 < 9.

We set � = cos ✓ and hence � 2 [�1, 0] and cos 2✓ = 2�2 � 1. We get that
|z + 2|2 = r2 + 4r� + 4 and |z2 +

p

5|2 = r4 + 2
p

5(2�2 � 1)r2 + 5. We need to
check that r2 + 4r� + 4 + r4 + 2

p

5(2�2 � 1)r2 + 5 < 9. Which is the same as
r(r3 + [2

p

5(2�2 � 1) + 1]r + 4�) < 0 and this exactly the above inequality.
The exact same argument shows that {(z, w) 2 C : z = rei✓ for ✓ 2 [�

⇡
2 , ⇡

2 ]}⇢

B2. It follows then that {(z, w) 2 C : z = rei✓ } ⇢ D and we deduce that C \ D is
not Runge in C .

It remains to show that if r > 0 is small enough, then (2.1) is satisfied. Indeed,
let � > 0 be such that 2

p

5(2�2 � 1) + 1 < 0 (e.g � =
1
2 ). If � 2 [0, �] then

r3 + [2
p

5(2�2 � 1) + 1]r � 4� < 0 for every r > 0. On the other hand, for r
small enough r3 + [2

p

5(2�2 � 1) + 1]r  2� for every � 2 [�, 1] and therefore
r3 + [2

p

5(2�2 � 1) + 1]r � 4� < 0 for every � 2 [�, 1].

3. A characterization of Runge-curved domains in Stein spaces

Definition 3.1. Let X be a complex space, red(X) its reduction and ⌫ : X̃ !

red(X) be the normalization of red(X). If A ⇢ X is a closed set we say that A
has no irreducible compact component if Ã := ⌫�1(A) has no compact connected
component.
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Lemma 3.2. Let X be a Stein space and D ⇢ X an open subset. If (0,0 \ D)
is a Runge pair for every closed complex curve 0 ⇢ X , then A := X \ D has no
compact irreducible component.

Proof. Let ⌫ : X̃ ! red(X) be the normalization of red(X) and let Ã := ⌫�1(A)
and D̃ := ⌫�1(D). We assume, by reductio ad absurdum, that Ã has a compact
connected component K1. Let K := ⌫(K1).

Let 0 ⇢ X be a closed complex curve such that 0 \ K 6= ; and let 0̃ :=

⌫�1(0). Let U2 b X̃ be an open, relatively compact neighborhood of K1 such that
@U2 \ Ã = ;. For the existence of U2 see, for example, [11, Proposition 2]. Let U1
be an open neighborhood of K1 such that U1 b U2 and (U2 \U1) \ Ã = ;.

If we put U := 0̃ \ U1 and U 0
= 0̃ \ (X̃ \ U2) we have that U

S
U 0 is an

open neighborhood of 0̃ \ D̃ in 0̃, the intersection U \ U 0
= ; and U \ (0̃ \ D̃)

is compact. Therefore, for any irreducible component C of U , we have that C is an
irreducible component of U

S
U 0 and C \ (0̃ \ D̃) is compact. By Lemma 2.2 we

deduce that the (0̃, 0̃ \ D̃) is not a Runge pair and therefore (0,0 \ D) is not a
Runge pair, which contradicts our assumption.

For basic facts regarding the torsion of sheaves on complex spaces we refer
to [13].

Suppose that X is a complex space and F is a coherent analytic sheaf on X .
We denote by tF the torsion sheaf of F . More precisely, for x 2 X , tFx is the set
of all germs sx 2 Fx for which there exists gx 2 OX,x such that red(gx ) is a non
zero divisor (gx is called an active germ) and gxsx = 0. We have that tF is also a
coherent sheaf and supp(tF) is a thin analytic subset of X . If tF = 0 the sheaf F
is called torsion free.

For the proof of the following see for example [9, page 67].

Theorem 3.3 (Rückert Nullstellensatz). Suppose that X is a complex space and
S is a coherent analytic sheaf on X . Let f 2 0(X,OX ) vanish on supp(S). Then
for each point x 2 X there exists an open neighborhood U of x and a positive
integer k such that f kSU = 0.

Lemma 3.4. Suppose that X is a complex space, F is a coherent sheaf on X
and s 2 0(X,F) is a section. If supp(s) is a thin analytic subset of X then
s 2 0(X, tF).

Proof. Let S = supp(s) and x 2 S. We choose V ⇢ X an open Stein neighbor-
hood of x and f 2 OX (U) such that red( f |S\V ) = 0 and red( fx ) is not a zero
divisor. Such an f exists because S is thin. Applying Theorem 3.3 to the subsheaf
of F generated by s we deduce that there exists a positive integer k and an open
neighborhood U ⇢ V of x such that f ks|U = 0. It follows that sx 2 tFx .

Corollary 3.5. If F is a torsion free coherent sheaf on X and s 2 0(X,F) is a
section then supp(s) is a union of irreducible components of red(X).
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This means that the identity principle holds for torsion free coherent sheaves:
if U ⇢ X is an open subset and s 2 0(X,F) is a section such that s ⌘ 0 on U then
s ⌘ 0 on every irreducible component of red(X) that intersects U .

Proposition 3.6. Suppose that X is a complex space and A ⇢ X is a closed subset
without compact irreducible components. Then, for every torsion free coherent
analytic sheaf F on X , we have H0c (A,F) = 0.

Proof. We assume that there exists s 2 H0c (A,F) with s 6= 0. We choose a repre-
sentative s̃ 2 0(U,F) of s, whereU is an open neighborhood of A and supp(s̃)\ A
is compact and non empty. SinceF is torsion free it follows that supp(s̃) is an union
of irreducible components of red(U).

Let ⌫ : X̃ ! red(X) be the normalization map and let Ũ := ⌫�1(U) and
Ã := ⌫�1(A). We consider B to be the union of the connected components of Ũ
whose images are the irreducible components of supp(s̃). The intersection B \ Ã is
compact.

It follows that Ã has compact connected components and therefore A has com-
pact irreducible components, which contradicts our assumption.

The following theorem gives a characterization of Runge-curved domains us-
ing cohomology with compact supports. For basic definitions and results for coho-
mology with compact supports with values in a sheaf on a paracompact topological
space, see [8] or [3].

Theorem 3.7. Let X be a Stein complex space and D ⇢ X an open subset. Then
the following are equivalent:

1) for every closed complex curve 0 ⇢ X , we have that (0,0\D) is a Runge pair;
2) the canonical map H1c (D,F) ! H1c (X,F) is injective for every F 2 Coh(X).

Proof. 2) =) 1) is straightforward: By choosing F to be OX/I0 , where I0 is
the ideal sheaf determined by 0, we obtain that H1c (0 \ D,O0) ! H1c (0,O0) is
injective. It follows then from Lemma 2.2 that (0,0 \ D) is a Runge pair.

1) =) 2)Wewill prove this implication by induction on dim X . If dim X = 1,
the statement follows from Lemma 2.2. We assume that the statement is true for all
Stein complex spaces of dimension  n� 1 and we let X be a Stein complex space
with dim X = n.

LetF be a coherent sheaf on X and let A := X \D. It follows from Lemma 3.2
that A has no compact irreducible component. We consider the exact sequence

0 ! tF ! F ! F/tF ! 0
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which gives us the following commutative diagram with exact rows and columns,
the rows being long exact sequences for the inclusion of an open set:

H0c (X,F/tF)

✏✏
0 // H0c (D, tF) //

✏✏

H0c (X, tF) //

✏✏

H0c (A, tF) //

✏✏

H1c (D, tF)
� //

✏✏

H1c (X, tF)

�

✏✏
0 // H0c (D,F) //

✏✏

H0c (X,F) //

✏✏

H0c (A,F) //

✏✏

H1c (D,F)
↵ //

✏✏

H1c (X,F)

✏✏
0 // H0c (D,F/tF) // H0c (X,F/tF) // H0c (A,F/tF) // H1c (D,F/tF)

� // H1c (X,F/tF).

Notice now that:

• supp(tF) is a closed analytic subspace ofXof dimension<dim X and tF| supp(tF)

is a coherent sheaf. On the other hand, we have that H1c (D, tF) = H1c (D \

supp(tF), tF) and H1c (X, tF) = H1c (supp(tF), tF). Hence, according to our
induction hypothesis, the map � : H1c (D, tF) ! H1c (X, tF) is injective;

• since A has no compact irreducible components and F/tF has no torsion it fol-
lows that H0c (A,F/tF)=0 and therefore � : H1c (D,F/tF)!H1c (X,F/tF)
is injective;

• since F/tF has no torsion it follows that H0c (X,F/tF) vanishes and therefore
the map � : H1c (X, tF) ! H1c (X,F) is injective.

From the injectivity of �, � and �, it follows that ↵ is injective as well.

Remark 3.8. It is proved in [2] that if X is a Stein space and D ⇢ X is an open
Runge subset then the map Hi

c (D,F) ! Hi
c (X,F) is injective for every i � 0 and

every coherent sheaf F .
Remark 3.9. Note that the ideal sheaf that defines supp(tF) is Ann(tF) and
supp(tF) might have nilpotent elements even if X is reduced. Hence, even if we
wanted to prove Theorem 3.7 only for reduced complex spaces, in order to use
an induction argument we would have to consider non-reduced complex spaces as
well.
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