On Runge-curved domains in Stein spaces

MIHNEA COLTOIU AND CEZAR JOITA

Abstract. We prove the following result: if *X* is a Stein complex space and $D \subset X$ is an open subset, then *D* is Runge-curved in *X* if and only if the canonical map $H_c^1(D, \mathcal{F}) \to H_c^1(X, \mathcal{F})$ is injective for every $\mathcal{F} \in \text{Coh}(X)$. We also show that a Runge-curved open subset of a Stein manifold is necessarily Stein.

Mathematics Subject Classification (2010): 32E15 (primary); 32E10, 32C35 (secondary).

1. Introduction

Let *X* be a (not necessarily reduced) Stein space and $D \subset X$ be an open subset. Such a *D* is called a Runge domain if *D* is Stein and the restriction map $\Gamma(X, \mathcal{O}_X) \to \Gamma(D, \mathcal{O}_X)$ has dense image in the topology of uniform convergence of compact subsets of *D*. The domain *D* (not necessarily Stein) is called Rungecurved if for any complex curve $\Gamma \subset X$ (closed complex space of dimension 1) the pair $(\Gamma, \Gamma \cap D)$ is a Runge pair.

For Stein spaces of dimension 1, a complete characterization has been given by N. Mihalache [10]. If $n = \dim X > 1$ the notions of Runge domain and Rungecurved domain do not coincide. G. Stolzenberg [14] has given an example of a domain $D \subset \mathbb{C}^2$ that is Runge-curved and is not Runge.

The main purpose of this paper is to continue the study of Runge-curved domains. As a first step we prove in Theorem 2.4 that a Runge-curved domain in a Stein manifold is Stein. It is an open question if the same result holds in the singular case. The main result of the paper is Theorem 3.7 which gives a characterization of Runge-curved domains in Stein spaces using cohomology with compact support. More precisely we prove that the following two conditions are equivalent:

1) *D* is Runge-curved;

2) The natural map between cohomology groups with compact support $H_c^1(D, \mathcal{F})$ $\rightarrow H_c^1(X, \mathcal{F})$ is injective for every $\mathcal{F} \in \text{Coh}(X)$.

Both authors were supported by CNCS grant PN-II-ID-PCE-2011-3-0269. Received April 10, 2015; accepted in revised form July 8, 2015. Published online December 2016.

The proof is done by induction on $dim(X)$, and because of this one needs to use complex spaces with nilpotent elements and properties of the torsion of a coherent sheaf defined on them. If one uses only torsion free sheaves, condition 2) is replaced by the weaker condition that $X \setminus D$ has no holes, see [6]. Therefore the use of torsion sheaves on complex spaces with nilpotents is essential for our proof.

2. Steiness of Runge curved domains in Stein manifolds

For the following statement see [1].

Lemma 2.1. *Let X be a Stein manifold of dimension n. Then there exists a finite number* of *holomorphic maps* Φ_i : $X \to \mathbb{C}^n$ *with discrete fibers* $j = 1, 2, \ldots, m$ *such that if* A_j *is the branch locus of* Φ_j *then* $\bigcap_{j=1}^m A_j = \emptyset$.

The following statement is part of [10, Theorem 6.8]:

Lemma 2.2. Let *X* be a pure 1-dimensional Stein space and $D \subset X$ an open *subset. Then the following are equivalent:*

- 1) *(X, D) is a Runge pair;*
- 2) For any open neighborhood U of $X \setminus D$ and any irreducible component C of $Red(U)$ *,* $C \setminus D$ *is not compact;*
- 3) $H_c^1(D, \mathcal{O}) \to H_c^1(X, \mathcal{O})$ *is injective.*

The proof of the following lemma is similar to the proof of [12, Proposition 5.5].

Lemma 2.3. Let D be an open subset of \mathbb{C}^n . If for every closed complex curve $\Gamma \subset \mathbb{C}^n$ *biholomorphic* to $\hat{\mathbb{C}}$ *we have that* $(\Gamma, \Gamma \cap D)$ *is a Runge pair, then D is Stein.*

Proof. We may assume, of course, that $D \neq \mathbb{C}^n$ and we denote by $\delta : D \to (0, \infty)$ the distance to the boundary of *D* which is a continuous function. For every $u \in \mathbb{C}^n$ with $u \neq 0$ we define $\delta_u : D \to (0, \infty]$ by

$$
\delta_u(z) := \sup \{ \tau : z + \eta u \in D \text{ for every } \eta \in \mathbb{C}, \ |\eta| \leq \tau \}.
$$

We have that $\delta = \inf{\delta_u : u \in \mathbb{C}^n$, $||u|| = 1}$. By Oka's theorem we must prove that $-\log \delta = \sup\{-\log \delta_u : u \in \mathbb{C}^n, ||u|| = 1\}$ is plurisubharmonic. Therefore it suffices to prove that $-\log \delta_u$ is plurisubharmonic for every *u*. Let $u \in \mathbb{C}^n$ and $||u|| = 1$. To prove that $-\log \delta_u$ is plurisubharmonic we have to show that if $z \in D$ and $w \in \mathbb{C}^n \setminus \{0\}$, and $g: \mathbb{C} \to \mathbb{C}$ is a polynomial function of one complex variable such that

 $-\log \delta_u(z + \lambda w) \leq \text{Re } g(\lambda)$ $\forall \lambda \text{ such that } |\lambda| = r$,

where $r > 0$, then we have

$$
-\log \delta_u(z + \lambda w) \le \text{Re } g(\lambda) \quad \forall \lambda \text{ such that } |\lambda| \le r.
$$

This is equivalent to proving that if

$$
z + \lambda w + \mu e^{-g(\lambda)} u \in D \quad \forall \lambda, \mu \in \mathbb{C} \text{ such that } |\lambda| = r \text{ and } |\mu| < 1
$$

then we have

$$
z + \lambda w + \mu e^{-g(\lambda)} u \in D \quad \forall \lambda, \mu \in \mathbb{C} \text{ such that } |\lambda| \le r \text{ and } |\mu| < 1.
$$

Note that if *u* and *w* are linearly dependent over $\mathbb C$ then this is just a standard 1-dimensional statement. Let us assume that *u* and *w* are linearly independent and let's fix $\mu \in \mathbb{C}$ with $|\mu| < 1$. We consider $h : \mathbb{C} \to \mathbb{C}^n$ given by $h(\lambda) =$ $z + \lambda w + \mu e^{-g(\lambda)}u$. Then *h* is an embedding and therefore $\Gamma := h(\mathbb{C})$ is a closed complex curve in \mathbb{C}^n , biholomorphic to \mathbb{C} . Therefore $(\Gamma, \Gamma \cap D)$ is a Runge pair. At the same time we have that $\{\lambda \in \mathbb{C} : |\lambda| = r\} \subset h^{-1}(D)$. We deduce that $\{\lambda \in \mathbb{C} : |\lambda| \le r\} \subset h^{-1}(D)$ and hence $z + \lambda w + \mu e^{-g(\lambda)} u \in D$, $\forall \lambda$ with $|\lambda| < r$.

Theorem 2.4. *Let X be a n-dimensional Stein manifold and D an open subset of* X. If $(C, C \cap D)$ is a Runge pair for every closed complex curve $C \subset X$, then D is *Stein.*

Proof. Since *X* is a Stein manifold, it suffices to show that *D* is locally Stein in *X*. Let $x_0 \in \partial D$. By Lemma 2.1 there exists a holomorphic map with discrete fibers, $\Phi : X \to \mathbb{C}^n$, such that Φ is locally a biholomorphism around x_0 . Let *U* be a Stein open neighborhood of x_0 and *V* be an open neighborhood of $y_0 := \Phi(x_0)$ such that $\Phi: U \to V$ is a biholomorphism. Moreover, we choose U to be Runge in *X*. Replacing *V* by a small ball $B(y_0, \epsilon)$ centered at y_0 and *U* by the connected component of $\Phi^{-1}(B(y_0, \epsilon)) \cap U$ that contains x_0 , we may assume that *U* is Runge in *X* and *V* is Runge in \mathbb{C}^n .

In this setting, we would like to show that $U \cap D$ is Stein, which is equivalent to $\Phi(D \cap U)$ being Stein. If Γ is a closed complex curve in \mathbb{C}^n then we let $C :=$ $\Phi^{-1}(\Gamma)$, which is a closed complex curve in *X*. Therefore $C \cap D$ is Runge in C. It follows that $C \cap D \cap U$ is Runge in $C \cap U$ and therefore $\Gamma \cap \Phi(D \cap U)$ is Runge in $\Gamma \cap V$. Since $\Gamma \cap V$ is Runge in Γ we deduce that $\Gamma \cap \Phi(D \cap U)$ is Runge in Γ .
In order to finish the proof, we apply Lemma 2.3. In order to finish the proof, we apply Lemma 2.3.

Remark 2.5. We do not know if the above theorem is true when *X* is a Stein complex space.

Remark 2.6. If *D* is a Runge open subset of Stein manifold *X*, it was proved by A. Cassa in [4] that for every closed irreducible complex curve *C* in *D* one can find a sequence of closed irreducible curves $\{C_k\}_{k>1}$ in *X* such that $C = \lim_{k \to \infty} (C_k \cap D)$. The convergence is the one induced by the currents. See also [5].

It was proved in [7] that if *X* is an $(n - 1)$ -convex irreducible complex space of dim $X > 1$, the map $\rho : X \to \mathbb{R}$ is a smooth exhaustion function which is $(n-1)$ -convex on $X_c = \{x \in X : \rho(x) > c\}$, with *c* a real number, *D* is a bordered Riemann surface, and $f : \overline{D} \to X$ is a \mathcal{C}^2 function which is holomorphic in *D* and

satisfies $f(D) \not\subset X_{sing}$ and $f(bD) \subset X_c$, then there is a sequence of proper holomorphic maps g_y : $D \to X$ converging to f uniformly on compact subsets of D.

Example 2.7. Suppose that B_1 and B_2 are two balls in \mathbb{C}^n such that $B_1 \not\subset B_2$ and $B_2 \not\subset B_1$ and $B_1 \cap B_2 \neq \emptyset$. Then $D := B_1 \cup B_2$ is not Stein. At the same time for every complex affine line, *L* in \mathbb{C}^n , the intersection $L \cap D$ is simply connected because $L \cap B_1, L \cap B_2, L \cap B_1 \cap B_2$ are connected and simply connected. Therefore $L \cap D$ is Runge in *L*. According to our theorem there must exist a curve *C* in \mathbb{C}^n such that $C \cap D$ is not Runge in C. We are going to exhibit such a curve. For simplicity we work with $n = 2$, assume B_1 is the open ball of radius 3 centered at $(-2, 0) \in \mathbb{C}^2$ and B_2 is the open ball of radius 3 centered at (2,0). Let $C =$ ${(z, w) \in \mathbb{C}^2 : w = z^2 + \sqrt{5}}$. We choose $r > 0$ small enough such that

$$
r^3 + \left[2\sqrt{5}(2\lambda^2 - 1) + 1\right]r - 4\lambda < 0 \quad \text{for all } \lambda \text{ such that } \lambda \in [0, 1].\tag{2.1}
$$

Note that this is equivalent to

$$
r^3 + \left[2\sqrt{5}(2\lambda^2 - 1) + 1\right]r + 4\lambda < 0 \quad \text{for all } \lambda \text{ such that } \lambda \in [-1, 0].
$$

Then clearly $(0, \sqrt{5}) \in \partial D$ (hence $\notin D$) where $D := B_1 \cup B_2$. At the same time, we have $\{(z, w) \in C : z = re^{i\theta} \text{ for } \theta \in [\frac{\pi}{2}, \frac{3\pi}{2}]\} \subset B_1$. Indeed, we have to check that, for $z = re^{i\theta}$ with $\theta \in [\frac{\pi}{2}, \frac{3\pi}{2}]$, we have that $|z + 2|^2 + |z^2 + \sqrt{5}|^2 < 9$.

We set $\lambda = \cos \theta$ and hence $\lambda \in [-1, 0]$ and $\cos 2\theta = 2\lambda^2 - 1$. We get that $|z + 2|^2 = r^2 + 4r\lambda + 4$ and $|z^2 + \sqrt{5}|^2 = r^4 + 2\sqrt{5}(2\lambda^2 - 1)r^2 + 5$. We need to check that $r^2 + 4r\lambda + 4 + r^4 + 2\sqrt{5}(2\lambda^2 - 1)r^2 + 5 < 9$. Which is the same as $r(r^3 + [2\sqrt{5}(2\lambda^2 - 1) + 1]r + 4\lambda) < 0$ and this exactly the above inequality.

The exact same argument shows that $\{(z, w) \in C : z = re^{i\theta} \text{ for } \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]\} \subset$ *B*₂. It follows then that $\{(z, w) \in C : z = re^{i\theta}\} \subset D$ and we deduce that $\overline{C} \cap D$ is not Runge in *C*.

It remains to show that if $r > 0$ is small enough, then (2.1) is satisfied. Indeed, let $\delta > 0$ be such that $2\sqrt{5}(2\delta^2 - 1) + 1 < 0$ (e.g $\delta = \frac{1}{2}$). If $\lambda \in [0, \delta]$ then $r^3 + [2\sqrt{5}(2\lambda^2 - 1) + 1]r - 4\lambda < 0$ for every $r > 0$. On the other hand, for *r* small enough $r^3 + [2\sqrt{5}(2\lambda^2 - 1) + 1]r \le 2\delta$ for every $\lambda \in [\delta, 1]$ and therefore $r^3 + [2\sqrt{5}(2\lambda^2 - 1) + 1]r - 4\lambda < 0$ for every $\lambda \in [\delta, 1].$

3. A characterization of Runge-curved domains in Stein spaces

Definition 3.1. Let *X* be a complex space, red (X) its reduction and $\nu : \tilde{X} \rightarrow$ red (X) be the normalization of red (X) . If $A \subset X$ is a closed set we say that A has no irreducible compact component if $\tilde{A} := v^{-1}(A)$ has no compact connected component.

Lemma 3.2. Let *X* be a Stein space and $D \subset X$ an open subset. If $(\Gamma, \Gamma \cap D)$ *is a Runge pair for every closed complex curve* $\Gamma \subset X$ *, then* $A := X \setminus D$ *has no compact irreducible component.*

Proof. Let $\nu : \tilde{X} \to \text{red}(X)$ be the normalization of red (X) and let $\tilde{A} := \nu^{-1}(A)$ and $\tilde{D} := v^{-1}(D)$. We assume, by reductio ad absurdum, that \tilde{A} has a compact connected component K_1 . Let $K := \nu(K_1)$.

Let $\Gamma \subset X$ be a closed complex curve such that $\Gamma \cap K \neq \emptyset$ and let $\tilde{\Gamma} :=$ $\nu^{-1}(\Gamma)$. Let $U_2 \subseteq \tilde{X}$ be an open, relatively compact neighborhood of K_1 such that $\partial U_2 \cap \tilde{A} = \emptyset$. For the existence of U_2 see, for example, [11, Proposition 2]. Let U_1 be an open neighborhood of K_1 such that $U_1 \n\in U_2$ and $(U_2 \setminus U_1) \cap \tilde{A} = \emptyset$.

If we put $U := \tilde{\Gamma} \cap U_1$ and $U' = \tilde{\Gamma} \cap (\tilde{X} \setminus \overline{U}_2)$ we have that $U \cup U'$ is an open neighborhood of $\tilde{\Gamma} \setminus \tilde{D}$ in $\tilde{\Gamma}$, the intersection $U \cap U' = \emptyset$ and $U \setminus (\tilde{\Gamma} \cap \tilde{D})$ is compact. Therefore, for any irreducible component C of U , we have that C is an irreducible component of $U \mid U'$ and $C \setminus (\tilde{\Gamma} \cap \tilde{D})$ is compact. By Lemma 2.2 we deduce that the $(\tilde{\Gamma}, \tilde{\Gamma} \cap \tilde{D})$ is not a Runge pair and therefore $(\Gamma, \Gamma \cap D)$ is not a Runge pair, which contradicts our assumption. Runge pair, which contradicts our assumption.

For basic facts regarding the torsion of sheaves on complex spaces we refer to [13].

Suppose that *X* is a complex space and $\mathcal F$ is a coherent analytic sheaf on *X*. We denote by $t \mathcal{F}$ the torsion sheaf of \mathcal{F} . More precisely, for $x \in X$, $t \mathcal{F}_x$ is the set of all germs $s_x \in \mathcal{F}_x$ for which there exists $g_x \in \mathcal{O}_{X,x}$ such that red (g_x) is a non zero divisor (g_x is called an active germ) and $g_x s_x = 0$. We have that $t \mathcal{F}$ is also a coherent sheaf and supp (tF) is a thin analytic subset of *X*. If $tF = 0$ the sheaf F is called torsion free.

For the proof of the following see for example [9, page 67].

Theorem 3.3 (Rückert Nullstellensatz). Suppose that *X* is a complex space and S is a coherent analytic sheaf on X. Let $f \in \Gamma(X, \mathcal{O}_X)$ vanish on supp(S). Then *for* each point $x \in X$ *there exists* an *open neighborhood* U *of x and a positive integer k such that* $f^k S_U = 0$ *.*

Lemma 3.4. Suppose that X is a complex space, F is a coherent sheaf on X and $s \in \Gamma(X, \mathcal{F})$ is a section. If supp(s) is a thin analytic subset of X then $s \in \Gamma(X, t\mathcal{F})$.

Proof. Let $S = \text{supp}(s)$ and $x \in S$. We choose $V \subset X$ an open Stein neighborhood of *x* and $f \in \mathcal{O}_X(U)$ such that red $(f|_{S \cap V}) = 0$ and red (f_x) is not a zero divisor. Such an *f* exists because *S* is thin. Applying Theorem 3.3 to the subsheaf of *F* generated by *s* we deduce that there exists a positive integer *k* and an open neighborhood $U \subset V$ of *x* such that $f^k s|_{U} = 0$. It follows that $s_x \in t\mathcal{F}_x$. neighborhood $U \subset V$ of *x* such that $f^k s|_U = 0$. It follows that $s_x \in t\mathcal{F}_x$.

Corollary 3.5. If F is a torsion free coherent sheaf on X and $s \in \Gamma(X, \mathcal{F})$ is a *section then* $\text{supp}(s)$ *is a union of irreducible components of* $\text{red}(X)$ *.*

This means that the identity principle holds for torsion free coherent sheaves: if $U \subset X$ is an open subset and $s \in \Gamma(X, \mathcal{F})$ is a section such that $s \equiv 0$ on *U* then $s \equiv 0$ on every irreducible component of red (X) that intersects *U*.

Proposition 3.6. *Suppose that X is a complex space and* $A \subset X$ *is a closed subset without compact irreducible components. Then, for every torsion free coherent analytic sheaf* \mathcal{F} *on* X *, we have* $H_c^0(A, \mathcal{F}) = 0$ *.*

Proof. We assume that there exists $s \in H_c^0(A, \mathcal{F})$ with $s \neq 0$. We choose a representative $\tilde{s} \in \Gamma(U, \mathcal{F})$ of *s*, where *U* is an open neighborhood of *A* and supp $(\tilde{s}) \cap A$ is compact and non empty. Since $\mathcal F$ is torsion free it follows that supp $(\tilde s)$ is an union of irreducible components of red*(U)*.

Let $\nu : \tilde{X} \to \text{red}(X)$ be the normalization map and let $\tilde{U} := \nu^{-1}(U)$ and $\tilde{A} := v^{-1}(A)$. We consider *B* to be the union of the connected components of \tilde{U} whose images are the irreducible components of supp (\tilde{s}) . The intersection $B \cap \tilde{A}$ is compact.

It follows that \tilde{A} has compact connected components and therefore A has compact irreducible components, which contradicts our assumption. \Box

The following theorem gives a characterization of Runge-curved domains using cohomology with compact supports. For basic definitions and results for cohomology with compact supports with values in a sheaf on a paracompact topological space, see [8] or [3].

Theorem 3.7. Let *X* be a Stein complex space and $D \subset X$ an open subset. Then *the following are equivalent:*

1) *for every closed complex curve* $\Gamma \subset X$ *, we have that* $(\Gamma, \Gamma \cap D)$ *is a Runge pair*; 2) the canonical map $H_c^1(D, \mathcal{F}) \to H_c^1(X, \mathcal{F})$ is injective for every $\mathcal{F} \in \text{Coh}(X)$.

Proof. 2 $) \implies 1$ is straightforward: By choosing *F* to be $\mathcal{O}_X/\mathcal{I}_\Gamma$, where \mathcal{I}_Γ is the ideal sheaf determined by Γ , we obtain that $H_c^1(\Gamma \cap D, \mathcal{O}_\Gamma) \to H_c^1(\Gamma, \mathcal{O}_\Gamma)$ is injective. It follows then from Lemma 2.2 that $(\Gamma, \Gamma \cap D)$ is a Runge pair.

1) \implies 2) We will prove this implication by induction on dim *X*. If dim *X* = 1, the statement follows from Lemma 2.2. We assume that the statement is true for all Stein complex spaces of dimension $\leq n-1$ and we let *X* be a Stein complex space with dim $X = n$.

Let *F* be a coherent sheaf on *X* and let $A := X \setminus D$. It follows from Lemma 3.2 that *A* has no compact irreducible component. We consider the exact sequence

$$
0 \to t\mathcal{F} \to \mathcal{F} \to \mathcal{F}/t\mathcal{F} \to 0
$$

which gives us the following commutative diagram with exact rows and columns, the rows being long exact sequences for the inclusion of an open set:

$$
0 \to H_c^0(D, t\mathcal{F}) \longrightarrow H_c^0(X, t\mathcal{F}) \longrightarrow H_c^0(A, t\mathcal{F}) \longrightarrow H_c^1(D, t\mathcal{F}) \xrightarrow{\beta} H_c^1(X, t\mathcal{F})
$$
\n
$$
0 \to H_c^0(D, \mathcal{F}) \longrightarrow H_c^0(X, \mathcal{F}) \longrightarrow H_c^0(A, \mathcal{F}) \longrightarrow H_c^1(D, \mathcal{F}) \xrightarrow{\alpha} H_c^1(X, \mathcal{F})
$$
\n
$$
0 \to H_c^0(D, \mathcal{F}) \longrightarrow H_c^0(X, \mathcal{F}) \longrightarrow H_c^0(A, \mathcal{F}) \longrightarrow H_c^1(D, \mathcal{F}) \xrightarrow{\alpha} H_c^1(X, \mathcal{F})
$$
\n
$$
0 \to H_c^0(D, \mathcal{F}/t\mathcal{F}) \xrightarrow{\beta} H_c^0(X, \mathcal{F}/t\mathcal{F}) \xrightarrow{\beta} H_c^1(D, \mathcal{F}/t\mathcal{F}) \xrightarrow{\gamma} H_c^1(X, \mathcal{F}/t\mathcal{F}).
$$

Notice now that:

- supp $(t \mathcal{F})$ is a closed analytic subspace of X of dimension \lt dim X and $t \mathcal{F}_{\text{supp}(t \mathcal{F})}$ is a coherent sheaf. On the other hand, we have that $H_c^1(D, t\mathcal{F}) = H_c^1(D \cap$ supp $(t\mathcal{F}), t\mathcal{F}$ and $H_c^1(X, t\mathcal{F}) = H_c^1(\text{supp}(t\mathcal{F}), t\mathcal{F})$. Hence, according to our induction hypothesis, the map $\beta : H_c^1(D, t\mathcal{F}) \to H_c^1(X, t\mathcal{F})$ is injective;
- since *A* has no compact irreducible components and $\mathcal{F}/t\mathcal{F}$ has no torsion it follows that $H_c^0(A, \mathcal{F}/t\mathcal{F}) = 0$ and therefore $\gamma : H_c^1(D, \mathcal{F}/t\mathcal{F}) \to H_c^1(X, \mathcal{F}/t\mathcal{F})$ is injective;
- since $\mathcal{F}/t\mathcal{F}$ has no torsion it follows that $H_c^0(X, \mathcal{F}/t\mathcal{F})$ vanishes and therefore the map $\delta: H_c^1(X, t\mathcal{F}) \to H_c^1(X, \mathcal{F})$ is injective.

From the injectivity of β , γ and δ , it follows that α is injective as well.

 \Box

Remark 3.8. It is proved in [2] that if *X* is a Stein space and $D \subset X$ is an open Runge subset then the map $H_c^i(D, \mathcal{F}) \to H_c^i(X, \mathcal{F})$ is injective for every $i \ge 0$ and every coherent sheaf *F*.

Remark 3.9. Note that the ideal sheaf that defines supp (tF) is Ann (tF) and supp (tF) might have nilpotent elements even if X is reduced. Hence, even if we wanted to prove Theorem 3.7 only for reduced complex spaces, in order to use an induction argument we would have to consider non-reduced complex spaces as well.

References

- [1] A. ANDREOTTI and R. NARASIMHAN, *Oka's Heftungslemma and the Levi problem for complex spaces*, Trans. Amer. Math. Soc. **111** (1964), 345–366.
- [2] C. BANICA and O. STANAŞILA, "Méthodes algébriques dans la théorie globale des espaces complexes", Troisième édition, Collection Varia Mathematica, Vol. 2, Gauthier-Villars, Paris, 1977
- [3] G. E. BREDON, "Sheaf Theory", Second edition, Graduate Texts in Mathematics, Vol. 170, Springer-Verlag, New York, 1997.
- [4] A. CASSA, *A theorem on complete intersection curves and a consequence for the Runge problem for analytic sets*, Compositio Math. **36** (1978), 189–202.
- [5] A. CASSA, *The topology of the space of positive analytic cycles*, Ann. Mat. Pura Appl. (4) **112** (1977), 1–12.
- [6] M. COLTOIU and A. SILVA, *Behnke-Stein theorem on complex spaces with singularities*, Nagoya Math. J. **137** (1995), 183–194.
- [7] B. DRINOVEC DRNOVŠEK and F. FORSTNERIČ, *Holomorphic curves in complex spaces*, Duke Math. J. **139** (2007), 203–253.
- [8] R. GODEMENT, "Topologie algébrique et théorie des faisceaux", Actualités Scientifiques et Industrelles, No. 1252, Hermann, Paris, 1958.
- [9] H. GRAUERT and R. REMMERT, "Coherent Analytic Sheaves", Grundlehren der Mathematischen Wissenschaften, Band 265, Springer-Verlag, Berlin, 1984.
- [10] N. MIHALACHE, *The Runge theorem on 1-dimensional Stein spaces*, Rev. Roumaine Math. Pures Appl. **33** (1988), 601–611.
- [11] R. NARASIMHAN, "Complex analysis in one variable", Birkhäuser Boston, Inc., Boston, MA, 1985.
- [12] M. R. RANGE, "Holomorphic Functions and Integral Representations in Several Complex Variables", Graduate Texts in Mathematics, Vol. 108, Springer-Verlag, New York, 1986.
- [13] R. REMMERT, *Local theory of complex spaces*, In: "Several Complex Variables, VII", H. Grauert, T. Peternell and R. Remmert (eds.), Encyclopaedia Math. Sci., Vol. 74, Springer, Berlin, 1994, 7–96.
- [14] G. STOLZENBERG, *The analytic part of the Runge hull*, Math. Ann. **164** (1966), 286–290.

Institute of Mathematics of the Romanian Academy Research Unit 3 P.O. Box 1-764, Bucharest 014700, Romania Mihnea.Coltoiu@imar.ro Cezar.Joita@imar.ro