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N-Laplacian problems with critical Trudinger-Moser nonlinearities

YANG YANG AND KANISHKA PERERA

Abstract. We prove existence and multiplicity results for an N -Laplacian prob-
lem with a critical exponential nonlinearity that is a natural analog of the Brezis-
Nirenberg problem for the borderline case of the Sobolev inequality. This extends
results in the literature for the semilinear case N = 2 to all N � 2. When N > 2
the nonlinear operator �1N has no linear eigenspaces and hence this extension
requires new abstract critical point theorems that are not based on linear sub-
spaces. We prove new abstract results based on the Z2-cohomological index and
a related pseudo-index that are applicable here.

Mathematics Subject Classification (2010): 35J92 (primary); 35B33, 58E05
(secondary).

1. Introduction and main results

Elliptic problems with critical nonlinearities have been widely studied in the liter-
ature. Let � be a bounded domain in RN , for N � 2. In a celebrated paper [6],
Brezis and Nirenberg considered the problem

8<
:

�1u = �u + |u|2⇤�2 u in �

u = 0 on @�
(1.1)

when N � 3, where 2⇤
= 2N/(N � 2) is the critical Sobolev exponent. Among

other things, they proved that this problem has a positive solution when N � 4 and
0 < � < �1, where �1 > 0 is the first Dirichlet eigenvalue of �1 in �. Capozzi
et al. [7] extended this result by proving the existence of a nontrivial solution when
N = 4 and � > �1 is not an eigenvalue, and when N � 5 and � � �1. Garcı́a
Azorero and Peral Alonso [15], Egnell [13], and Guedda and Véron [16] studied
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the corresponding problem for the p-Laplacian
8<
:

�1p u = � |u|p�2 u + |u|p⇤
�2 u in �

u = 0 on @�
(1.2)

when N > p > 1, where p⇤
= Np/(N � p). They proved that this problem has

a positive solution when N � p2 and 0 < � < �1(p), where �1(p) > 0 is the first
Dirichlet eigenvalue of �1p in �. Degiovanni and Lancelotti [12] extended their
result by proving the existence of a nontrivial solution when N � p2 and � > �1(p)
is not an eigenvalue, and when N2/(N + 1) > p2 and � � �1(p) (see also Arioli
and Gazzola [3]).

In the borderline case N = p � 2, the critical growth is of exponential type
and is governed by the Trudinger-Moser inequality

sup
u2W 1,N

0 (�), krukN1

Z
�
e ↵N |u|N 0

dx < 1, (1.3)

whereW 1,N
0 (�) is the usual Sobolev space with the norm krukN=

�R
� |ru|Ndx

�1/N,
we set ↵N = N!

1/(N�1)
N�1 , denote by !N�1 the area of the unit sphere in RN , and

N 0
= N/(N�1) (see Trudinger [23] and Moser [18]). A natural analog of problem

(1.2) for this case is
8<
:

�1N u = � |u|N�2 ue |u|N 0

in �

u = 0 on @�,

(1.4)

where 1N u = div
�
|ru|N�2

ru
�
is the N -Laplacian of u. A result by Adimurthi

[1] implies that this problem has a nonnegative and nontrivial solution when 0 <
� < �1(N ), where �1(N ) > 0 is the first Dirichlet eigenvalue of �1N in � (see
also do Ó [17]). Theorem 1.4 in de Figueiredo et al. [9, 10] implies that the semi-
linear problem 8<

:
�1u = �ue u2 in �

u = 0 on @�

(1.5)

has a nontrivial solution when N = 2 and � � �1. In the present paper we first
prove the existence of a nontrivial solution of problem (1.4) when N � 3 and
� > �1(N ) is not an eigenvalue. We have the following theorem:

Theorem 1.1. If � > 0 is not a Dirichlet eigenvalue of �1N in �, then problem
(1.4) has a nontrivial solution.
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This extension to the quasilinear case is nontrivial. Indeed, the linking argu-
ment based on eigenspaces of�1 in de Figueiredo et al. [9,10] does not work when
N � 3 since the nonlinear operator�1N does not have linear eigenspaces. We will
use a more general construction based on sublevel sets as in Perera and Szulkin [21]
(see also Perera et al. [20, Proposition 3.23]). Moreover, the standard sequence of
eigenvalues of �1N based on the genus does not give enough information about
the structure of the sublevel sets to carry out this linking construction. Therefore we
will use a different sequence of eigenvalues introduced in Perera [19] that is based
on a cohomological index, and show that problem (1.4) has a nontrivial solution if
� > 0 is not an eigenvalue from this particular sequence.

The Z2-cohomological index of Fadell and Rabinowitz [14] is defined as fol-
lows. Let W be a Banach space and let A denote the class of symmetric sub-
sets of W \ {0}. For A 2 A, let A = A/Z2 be the quotient space of A with
each u and �u identified, let f : A ! RP1 be the classifying map of A, and
let f ⇤

: H⇤(RP1) ! H⇤(A) be the induced homomorphism of the Alexander-
Spanier cohomology rings. The cohomological index of A is defined by

i(A) =

(
sup

�
m � 1 : f ⇤(!m�1) 6= 0

 
A 6= ;

0 A = ;,

where ! 2 H1(RP1) is the generator of the polynomial ring H⇤(RP1) = Z2[!].
For example, the classifying map of the unit sphere Sm�1 in Rm, for m � 1 is the
inclusion RPm�1

⇢ RP1, which induces isomorphisms on Hq for q  m � 1, so
i(Sm�1) = m.

The Dirichlet spectrum of �1N in � consists of those � 2 R for which the
problem 8<

:
�1N u = � |u|N�2 u in �

u = 0 on @�
(1.6)

has a nontrivial solution. Although a complete description of the spectrum is not
yet known when N � 3, we can define an increasing and unbounded sequence
of eigenvalues via a suitable minimax scheme. The standard scheme based on the
genus does not give the index information necessary to prove Theorem 1.1, so we
will use the following scheme based on the cohomological index as in Perera [19].
Let

9(u) =

1Z
�

|u|N dx
, for u 2M =

⇢
u 2 W 1,N

0 (�) :

Z
�

|ru|N dx = 1
�

. (1.7)

Then eigenvalues of problem (1.6) onM coincide with critical values of 9. We
use the standard notation

9a
= {u 2M : 9(u)  a} , and 9a = {u 2M : 9(u) � a} , for a 2 R
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for the sublevel sets and superlevel sets, respectively. Let F denote the class of
symmetric subsets ofM and set

�k(N ) := inf
M2F, i(M)�k

sup
u2M

9(u), for k 2 N.

Then 0 < �1(N ) < �2(N )  �3(N )  · · · ! +1 is a sequence of eigenvalues of
problem (1.6) and

�k(N ) < �k+1(N ) =) i(9�k(N )) = i(M \ 9�k+1(N )) = k (1.8)

(see Perera et al. [20, Propositions 3.52 and 3.53]). Proof of Theorem 1.1 will make
essential use of (1.8).

Now we turn to the question of the multiplicity of solutions to problem (1.4).
Let 0 < �1 < �2  �3  · · · ! +1 be the Dirichlet eigenvalues of �1 in �,
repeated according to multiplicity, let

S = inf
u2H10 (�)\{0}

kruk22
kuk22⇤

be the best constant for the Sobolev imbedding H10 (�) ,! L2⇤(�) when N � 3,
and let |·| denote the Lebesgue measure in RN . Cerami et al. [8] proved that if
�k  � < �k+1 and

� > �k+1 �

S
|�|

2/N ,

and m denotes the multiplicity of �k+1, then problem (1.1) has m distinct pairs
of nontrivial solutions ± u�

j , for j = 1, . . . ,m such that u�
j ! 0 as � % �k+1.

A result of Adimurthi and Yadava [2] implies that there exists a constant µk 2

[�k, �k+1) such that if µk < � < �k+1, then the same conclusion holds for problem
(1.5) when N = 2. We prove a similar bifurcation result for problem (1.4) when
N � 3. We have the following theorem:

Theorem 1.2. If N � 3, and �k(N ) < � < �k+1(N ) = · · · = �k+m(N ) for some
k,m 2 N, and

� > �k+1(N ) �

 
N↵N�1

N
|�|

!1/N
�k(N )1/N

0

, (1.9)

then problem (1.4) hasm distinct pairs of nontrivial solutions± u�
j , for j=1, . . . ,m

such that u�
j ! 0 as � % �k+1(N ).

The abstract result of Bartolo et al. [4] used in Cerami et al. [8] and Adimurthi
and Yadava [2] is based on linear subspaces and therefore cannot be used to prove
Theorem 1.2. We will prove a more general critical point theorem based on a
pseudo-index related to the cohomological index that is applicable here (see also
Perera et al. [20, Proposition 3.44]).
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In closing the introduction we remark that we have confined ourselves to the
model problem (1.4) only for the sake of simplicity. The methods developed in this
paper can be easily adapted to treat nonlinearities more general than |u|N�2 ue |u|N 0

as in Adimurthi [1], Adimurthi and Yadava [2], de Figueiredo et al. [9, 10], and do
Ó [17].

ACKNOWLEDGEMENTS. This work was completed while the first-named author
was visiting the Department of Mathematical Sciences at the Florida Institute of
Technology, and she is grateful for the kind hospitality of the department.

2. Abstract critical point theorems

In this section we prove two abstract critical point theorems based on the coho-
mological index that we will use to prove Theorems 1.1 and 1.2. The following
proposition summarizes the basic properties of the cohomological index:

Proposition 2.1 (Fadell-Rabinowitz [14]). The index i : A! N[ {0,1} has the
following properties:

(i1) Definiteness: i(A) = 0 if and only if A = ;;
(i2) Monotonicity: If there is an odd continuous map from A to B (in particular,

if A ⇢ B), then i(A)  i(B). Thus, equality holds when the map is an odd
homeomorphism;

(i3) Dimension: i(A)  dimW ;
(i4) Continuity: If A is closed, then there is a closed neighborhood N 2 A of

A such that i(N ) = i(A). When A is compact, N may be chosen to be a
�-neighborhood N�(A) = {u 2 W : dist (u, A)  �};

(i5) Subadditivity: If A and B are closed, then i(A [ B)  i(A) + i(B);
(i6) Stability: If SA is the suspension of A 6= ;, obtained as the quotient space

of A ⇥ [�1, 1] with A ⇥ {1} and A ⇥ {�1} collapsed to different points, then
i(SA) = i(A) + 1;

(i7) Piercing property: If A, A0 and A1 are closed, and ' : A⇥ [0, 1] ! A0 [ A1
is a continuous map such that '(�u, t) = �'(u, t) for all (u, t) 2 A⇥ [0, 1],
the image '(A ⇥ [0, 1]) is closed, '(A ⇥ {0}) ⇢ A0 and '(A ⇥ {1}) ⇢ A1,
then i('(A ⇥ [0, 1]) \ A0 \ A1) � i(A);

(i8) Neighborhood of zero: If U is a bounded closed symmetric neighborhood of
0, then i(@U) = dimW .

Let
S = {u 2 W : kuk = 1}

be the unit sphere in W and let

⇡ : W \ {0} ! S

u 7!

u
kuk
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be the radial projection onto S. The following abstract result generalizes the linking
theorem of Rabinowitz [22].

Theorem 2.2. Let8 be a C1-functional onW and let A0, B0 be disjoint nonempty
closed symmetric subsets of S such that

i(A0) = i(S \ B0) < 1. (2.1)

Assume that there exist R > r > 0 and v 2 S \ A0 such that

sup8(A)  inf8(B), sup8(X) < 1,

where

A = {tu : u 2 A0, 0  t  R} [ {R ⇡((1� t) u + tv) : u 2 A0, 0  t  1} ,

B = {ru : u 2 B0} ,

X = {tu : u 2 A, kuk = R, 0  t  1} .

Let 0 =

�
� 2 C(X,W ) : � (X) is closed and � |A = idA

 
and set

c := inf
�20

sup
u2� (X)

8(u).

Then
inf8(B)  c  sup8(X), (2.2)

in particular, c is finite. If, in addition, 8 satisfies the (PS)c condition, then c is a
critical value of 8.

Proof. First we show that A (homotopically) links B with respect to X in the sense
that

� (X) \ B 6= ; 8� 2 0. (2.3)

If (2.3) does not hold, then there is a map � 2 C(X,W \ B) such that � (X) is
closed and � |A = idA. Let

eA = {R ⇡((1� |t |) u + tv) : u 2 A0, and � 1  t  1}

and note that eA is closed since A0 is closed (here (1� |t |) u+ tv 6= 0 since v is not
in the symmetric set A0). Since

SA0 !
eA,

(u, t) 7! R ⇡((1� |t |) u + tv)

is an odd continuous map,

i(eA) � i(SA0) = i(A0) + 1 (2.4)
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by (i2) and (i6) of Proposition 2.1. Consider the map ' :
eA ⇥ [0, 1] ! W \ B,

given by

'(u, t) =

(
� (tu) u 2

eA \ A

�� (�tu) u 2
eA \ A,

which is continuous since � is the identity on the symmetric set {tu : u 2 A0,
and 0  t  R}. We have '(�u, t) = �'(u, t) for all (u, t) 2

eA ⇥ [0, 1], and
'(eA ⇥ [0, 1]) = � (X) [ �� (X) is closed, and '(eA ⇥ {0}) = {0} and '(eA ⇥

{1}) =
eA since � |A = idA. Applying (i7) with eA0 = {u 2 W : kuk  r} andeA1 = {u 2 W : kuk � r} gives

i(eA)  i('(eA⇥[0, 1])\eA0\eA1)  i((W \B)\Sr ) = i(Sr \B) = i(S\B0), (2.5)

where Sr = {u 2 W : kuk = r}. By (2.4) and (2.5), i(A0) < i(S \ B0), contradict-
ing (2.1). Hence (2.3) holds.

It follows from (2.3) that c � inf8(B), and c  sup8(X) since idX 2 0.
If 8 satisfies the (PS)c condition, then c is a critical value of 8 by the classical
minimax principle (see, e.g., Perera et al. [20]).

Remark 2.3. The linking construction in the proof of Theorem 2.2 was used in
Perera and Szulkin [21] to obtain nontrivial solutions of p-Laplacian problems with
nonlinearities that interact with the spectrum. A similar construction based on the
notion of cohomological linking was given in Degiovanni and Lancelotti [11]. See
also Perera et al. [20, Proposition 3.23].

Now let 8 be an even C1-functional on W and let A⇤ denote the class of
symmetric subsets of W . Let r > 0, let Sr = {u 2 W : kuk = r}, let 0 < b  +1,
and let 0 denote the group of odd homeomorphisms of W that are the identity
outside 8�1(0, b). The pseudo-index of M 2 A⇤ related to i , Sr , and 0 is defined
by

i⇤(M) = min
�20

i(� (M) \ Sr )

(see Benci [5]). The following critical point theorem generalizes Bartolo et al. [4,
Theorem 2.4].

Theorem 2.4. Let A0, B0 be symmetric subsets of S such that A0 is compact, B0
is closed, and

i(A0) � k + m, i(S \ B0)  k

for some k,m 2 N. Assume that there exists R > r such that

sup8(A)  0 < inf8(B), sup8(X) < b,

where A = {Ru : u 2 A0}, B = {ru : u 2 B0}, and X = {tu : u 2 A, 0  t  1}.
For j = k + 1, . . . , k + m, let

A⇤

j =

�
M 2 A⇤

: M is compact and i⇤(M) � j
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and set
c⇤j := inf

M2A⇤

j
max
u2M

8(u).

Then
inf8(B)  c⇤k+1  · · ·  c⇤k+m  sup8(X),

in particular, 0 < c⇤j < b. If, in addition, 8 satisfies the (PS)c condition for all
c 2 (0, b), then each c⇤j is a critical value of 8 and there are m distinct pairs of
associated critical points.

Proof. If M 2 A⇤

k+1,

i(Sr \ B) = i(S \ B0)  k < k + 1  i⇤(M)  i(M \ Sr )

since idW 2 0. Hence M intersects B by (i2) of Proposition 2.1. It follows that
c⇤k+1 � inf8(B). If � 2 0, consider the continuous map ' : A ⇥ [0, 1] ! W ,
given by

'(u, t) = � (tu).

We have '(A ⇥ [0, 1]) = � (X), which is compact. Since � is odd, '(�u, t) =

�'(u, t) for all (u, t) 2 A ⇥ [0, 1] and '(A ⇥ {0}) = {� (0)} = {0}. Since 8  0
on A, we have � |A = idA and hence '(A ⇥ {1}) = A. Applying (i7) with eA0 =

{u 2 W : kuk  r} and eA1 = {u 2 W : kuk � r} gives

i(� (X) \ Sr ) = i('(A ⇥ [0, 1]) \
eA0 \

eA1) � i(A) = i(A0) � k + m.

It follows that i⇤(X) � k + m. So X 2 A⇤

k+m and hence c
⇤

k+m  sup8(X). The
rest now follows from standard results in critical point theory (see, e.g., Perera et
al. [20]).

Remark 2.5. A similar construction was used in Perera and Szulkin [21]. See also
Perera et al. [20, Proposition 3.44].

3. Variational setting

Solutions of problem (1.4) coincide with critical points of the C1-functional

8(u) =

Z
�


1
N

|ru|N � � F(u)
�
dx for u 2 W 1,N

0 (�),

where

F(t) =

Z t

0
|s|N�2 se |s|N 0

ds =

Z
|t |

0
sN�1e s

N 0

ds.

The following lemma is a special case of a result of Adimurthi [1]:
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Lemma 3.1. 8 satisfies the (PS)c condition for all c < ↵N�1
N /N .

LetM and 9 be as in (1.7). The following lemma implies that for any subset
A ofM on which 9 is bounded, there exists R > 0 such that 8(tu)  0 for all
u 2 A and t � R.

Lemma 3.2. For all u 2M and t � 0,

8(tu) 

t N

N

"
1�

�

N 0
|�|

1/(N�1)

✓
t

9(u)

◆N 0
#

.

Proof. Since et � t for all t � 0,

F(t) �

|t |N+N 0

N + N 0

8t 2 R,

so

8(tu)  t N
 
1
N

�

�t N 0

N + N 0

Z
�

|u|N+N 0

dx

!
.

By the Hölder inequality,

|�|
1/(N�1)

Z
�

|u|N+N 0

dx �

✓Z
�

|u|N dx
◆N 0

=

1
9(u)N 0

.

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Our strategy is to apply Theorem 2.2 with
suitable sets defined in terms of the eigenvalues of �1N , for which the minimax
level c is below the threshold for compactness given by Lemma 3.1.

Since problem (1.4) has a nontrivial solution when 0<�<�1(N ) by Adimurthi
[1], we may assume that � > �1(N ). Then

�k(N ) < � < �k+1(N ) (4.1)

for some k. By Degiovanni and Lancelotti [12, Theorem 2.3], the sublevel set
9�k(N ) has a compact symmetric subset C of index k that is bounded in C1(�).
Without loss of generality we may assume that 0 2 �. For all m 2 N so large that
B1/m(0) ⇢ �, let

⌘m(x) =

8>>>>>>><
>>>>>>>:

0 |x |  1/2mm+1

2mm
✓

|x | �

1
2mm+1

◆
1/2mm+1 < |x |  1/mm+1

(m |x |)1/m 1/mm+1 < |x |  1/m

1 |x | > 1/m
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(see Zhang et al. [24]). Let

⇡(u) =

u
kuk

, for u 2 W 1,N
0 (�) \ {0}

be the radial projection ontoM.

Lemma 4.1. As m ! 1,Z
�

|⌘mu|N dx =

Z
�

|u|N dx + O
✓
1
mN

◆
; (4.2)

Z
�

|r(⌘mu)|N dx = 1+ O
✓

1
mN�1

◆
; (4.3)

9(⇡(⌘mu)) = 9(u) + O
✓

1
mN�1

◆
(4.4)

uniformly in u 2 C .

Proof. We have����
Z

�
|⌘mu|N dx �

Z
�

|u|N dx
���� 

Z
B1/m(0)

⇣
|⌘mu|N + |u|N

⌘
dx = O

✓
1
mN

◆

since u is bounded on C and |⌘m |  1, so (4.2) holds. Next����
Z

�
|r(⌘mu)|N dx �

Z
�

|ru|N dx
���� 

Z
B1/m(0)

⇣
|r(⌘mu)|N + |ru|N

⌘
dx

and
Z
B1/m(0)

|r(⌘mu)|N dx 

NX
j=0

✓
N
j

◆Z
B1/m(0)

|ru|N� j
|u| j |r⌘m |

j dx .

SinceC is bounded inC1(�), u andru are bounded, and a direct calculation shows
that Z

B1/m(0)
|r⌘m |

j dx = O
✓

1
mN�1

◆
, for j = 0, . . . , N ,

so (4.3) follows. Since

9(⇡(⌘mu)) =

Z
�

|r(⌘mu)|N dxZ
�

|⌘mu|N dx
,

(4.4) is immediate from (4.2) and (4.3).
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Set Cm = {⇡(⌘mu) : u 2 C}. Since C ⇢ 9�k(N ),

9(⇡(⌘mu))  �k(N ) + O
✓

1
mN�1

◆
8u 2 C

by (4.4). Using �k(N ) < �, we fix m so large that

9(u)  � 8u 2 Cm . (4.5)

Then Cm ⇢M \ 9�k+1(N ) since � < �k+1(N ), so

i(Cm)  i(M \ 9�k+1(N )) = k

by (i2) of Proposition 2.1 and (1.8). On the other hand, C ! Cm, and u 7! ⇡(⌘mu)
is an odd continuous map, hence

i(Cm) � i(C) = k

by (i2) again. Thus,
i(Cm) = k. (4.6)

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We apply Theorem 2.2 to our functional 8 with

A0 = Cm, B0 = 9�k+1(N ),

noting that (2.1) follows from (4.6), (4.1), and (1.8). Let R > r > 0, let v 2

M\Cm , and let A, B and X be as in Theorem 2.2. First we show that inf8(B) > 0
if r is sufficiently small. Since et  1+ tet for all t � 0,

F(t) 

|t |N

N
+ |t |N+N 0

e |t |N 0

8t 2 R,

so for u 2 9�k+1(N ),

8(ru) �

Z
�


r N

N
|ru|N �

�r N

N
|u|N � �r N+N 0

|u|N+N 0

e r
N 0

|u|N 0

�
dx

�

r N

N

✓
1�

�

�k+1(N )

◆
� �r N+N 0

✓Z
�
e 2r

N 0

|u|N 0

dx
◆1/2

kukN+N 0

2 (N+N 0) .

If 2 r N 0

 ↵N , then Z
�
e 2r

N 0

|u|N 0

dx 

Z
�
e ↵N |u|N 0

dx,
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which is bounded by (1.3). Since W 1,N
0 (�) ,! L2 (N+N 0)(�) and � < �k+1(N ), it

follows that inf8(B) > 0 if r is sufficiently small. Next we show that sup8(A) 

0 if R is sufficiently large. Since et � 1 for all t � 0,

F(t) �

|t |N

N
8t 2 R,

so for u 2 Cm and any t � 0,

8(tu) 

Z
�


t N

N
|ru|N �

�t N

N
|u|N

�
dx



t N

N

✓
1�

�

9(u)

◆

 0

by (4.5). Since C is compact and the map C ! Cm, given by u 7! ⇡(⌘mu)
is continuous, Cm is compact, and hence so is the set {⇡((1 � t) u + tv) : u 2

Cm, 0  t  1}. So 9 is bounded on this set, and there exists R > r such that
8  0 on {R ⇡((1� t) u + tv) : u 2 Cm, 0  t  1} by Lemma 3.2.

Now we show that sup8(X) < ↵N�1
N /N for a suitably chosen v. Let

v j (x) =

1
!
1/N
N�1

8>>>>><
>>>>>:

(log j)(N�1)/N
|x |  1/j

log |x |�1

(log j)1/N
1/j < |x |  1

0 |x | > 1.

Then v j 2 W 1,N (RN ), it satisfies
��
rv j

��
N = 1, and

��v j��NN = O(1/ log j) as j !

1. We take v(x) = ev j (x) := v j (x/rm) with rm = 1/2mm+1 and j sufficiently
large. Since Brm (0) ⇢ �,ev j 2 W 1,N

0 (�) and
��
rev j��N =1. For sufficiently large j ,

9(ev j ) =

1
r Nm

��v j��NN
> �

and henceev j /2 Cm by (4.5). For u 2 Cm and s, t � 0,

8(su + tev j ) = 8(su) + 8(tev j )
since u = 0 on Brm (0) andev j = 0 on � \ Brm (0). Since 8(su)  0, it suffices to
show that supt�0 8(tev j ) < ↵N�1

N /N for arbitrarily large j . Since 8(tev j ) ! �1

as t ! +1 by Lemma 3.2, there exists t j � 0 such that

8(t jev j ) =

t Nj
N

� �

Z
Brm (0)

F(t jev j ) dx = sup
t�0

8(tev j ) (4.7)
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and

80(t jev j )ev j = t N�1
j

 
1� �

Z
Brm (0)

evNj e t N
0

j evN 0

j dx

!
= 0. (4.8)

Suppose 8(t jev j ) � ↵N�1
N /N for all sufficiently large j . Since F(t) � 0 for all

t 2 R, then (4.7) gives t N 0

j � ↵N , and then (4.8) gives

1
�

=

Z
Brm (0)

evNj e t N
0

j evN 0

j dx �

Z
Brm (0)

evNj e ↵N evN 0

j dx

= r Nm
Z
B1(0)

vNj e
↵N vN

0

j dx � r Nm
Z
B1/j (0)

vNj e
↵N vN

0

j dx =

r Nm
N

(log j)N�1,

which is impossible for large j .
Now

c  sup8(X) <
↵N�1
N
N

by (2.2), so 8 satisfies the (PS)c condition by Lemma 3.1. Thus, 8 has a critical
point u at the level c by Theorem 2.2. Since

c � inf8(B) > 0

by (2.2) again, u is nontrivial.

5. Proof of Theorem 1.2

Lemma 5.1. For all t 2 R,

F(t) 

|t |N

N
e |t |N 0

�

|t |N+N 0

N2
; (5.1)

F(t) 

|t |N�N 0

N 0

e |t |N 0

. (5.2)

Proof. Integrating by parts gives

F(t) =

|t |N

N
e |t |N 0

�

N 0

N

Z
|t |

0
sN+N 0

�1e s
N 0

ds



|t |N

N
e |t |N 0

�

N 0

N

Z
|t |

0
sN+N 0

�1 ds =

|t |N

N
e |t |N 0

�

|t |N+N 0

N2

and

F(t) =

|t |N�N 0

N 0

e |t |N 0

�

N � N 0

N 0

Z
|t |

0
sN�N 0

�1e s
N 0

ds 

|t |N�N 0

N 0

e |t |N 0

.
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Proof of Theorem 1.2. In view of Lemma 3.1, we apply Theorem 2.4 with b =

↵N�1
N /N. By Degiovanni and Lancelotti [12, Theorem 2.3], the sublevel set9�k+m(N )

has a compact symmetric subset A0 with

i(A0) = k + m.

We take B0 = 9�k+1(N ), so that

i(S \ B0) = k

by (1.8). Let R > r > 0 and let A, B and X be as in Theorem 2.4. As in the proof
of Theorem 1.1, inf8(B) > 0 if r is sufficiently small. Since A0 ⇢ 9�k+1(N ), there
exists R > r such that 8  0 on A by Lemma 3.2. Since et � 1+ t for all t � 0,

F(t) �

|t |N

N
+

|t |N+N 0

N + N 0

8t 2 R,

so for u 2 X ,

8(u) 

Z
�


1
N

|ru|N �

�

N
|u|N �

�

N + N 0

|u|N+N 0

�
dx



�k+1(N ) � �

N

Z
�

|u|N dx �

�k(N )

(N + N 0) |�|
1/(N�1)

✓Z
�

|u|N dx
◆N 0

 sup
⇢�0

"
(�k+1(N ) � �) ⇢

N
�

�k(N ) ⇢N
0

(N + N 0) |�|
1/(N�1)

#

=

(�k+1(N ) � �)N |�|

N2 �k(N )N�1 .

So

sup8(X) 

(�k+1(N ) � �)N |�|

N2 �k(N )N�1 <
↵N�1
N
N

by (1.9). Thus, problem (1.4) has m distinct pairs of nontrivial solutions ± u�
j , for

j = 1, . . . ,m such that

0 < 8(u�
j ) 

(�k+1(N ) � �)N |�|

N2 �k(N )N�1 . (5.3)

To prove that u�
j ! 0 as � % �k+1(N ), it suffices to show that for every

sequence ⌫n % �k+1(N ), a subsequence of vn := u⌫n
j converges to zero. We have

8(vn) =

Z
�


1
N

|rvn|
N

� ⌫n F(vn)

�
dx ! 0 (5.4)
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by (5.3) and

80(vn) vn =

Z
�

h
|rvn|

N
� ⌫n |vn|

Ne |vn |N
0
i
dx = 0. (5.5)

By (5.1), (5.4), and (5.5),

1
N2

Z
�

|vn|
N+N 0

dx 

Z
�


1
N

|vn|
Ne |vn |N

0

� F(vn)

�
dx=

8(vn)

⌫n


8(vn)

�k(N )
! 0,

so vn ! 0 a.e. in � for a renamed subsequence. By (5.2),

N 0

Z
�
F(vn) dx 

Z
�

|vn|
N�N 0

e |vn |N
0

dx =: I1 + I2, (5.6)

where
I1 =

Z
n
|vn |>(2N/N 0)1/N 0

o |vn|
N�N 0

e |vn |N
0

dx



N 0

2N

Z
�

|vn|
Ne |vn |N

0

dx =

N 0

2N⌫n
kvnk

N
(5.7)

by (5.5) and

I2 =

Z
�

�n
|vn |(2N/N 0)1/N 0

o(x) |vn|
N�N 0

e |vn |N
0

dx ! 0 (5.8)

by the Lebesgue dominated convergence theorem. Combining (5.4), (5.6), and (5.7)
gives

1
2N

kvnk
N

 8(vn) +

�k+1(N )

N 0

I2 ! 0

by (5.4) and (5.8).
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(1985), 463–470.

[8] G. CERAMI, D. FORTUNATO and M. STRUWE, Bifurcation and multiplicity results for
nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré
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