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Tamed symplectic structures on compact solvmanifolds
of completely solvable type

ANNA FINO AND HISASHI KASUYA

Abstract. A compact solvmanifold of completely solvable type, i.e. a compact
quotient of a completely solvable Lie group by a lattice, has a Kähler structure
if and only if it is a complex torus. We show that a compact solvmanifold M of
completely solvable type endowed with an invariant complex structure J admits
a symplectic form taming J if and only if M is a complex torus. This result
generalizes the one obtained in [7] for nilmanifolds.

Mathematics Subject Classification (2010): 32J27 (primary); 53C55, 53C30,
53D05 (secondary).

1. Introduction

We will say that a symplectic form � on a complex manifold (M, J ) tames the
complex structure J if �(X, J X) > 0 for every non-zero vector field X on M or,
equivalently, if the (1, 1)-part of the 2-form � is positive. By [14, 18] a compact
complex surface admitting a symplectic structure taming a complex structure is nec-
essarily Kähler. Moreover, by [13] non-Kähler Moishezon complex structures on
compact manifolds cannot be tamed by a symplectic form (see also [19]). However,
it is still an open problem to find out an example of a compact manifold having a
symplectic structure taming a complex structure but not admitting any Kähler struc-
ture. Some negative results have been obtained for compact nilmanifolds in [7] and
for special classes of compact solvmanifolds in [8], where by a compact nilmani-
fold (respectively solvmanifold) we mean a compact quotient of a nilpotent (resp.
solvable) Lie group G by a discrete subgroup 0.

We recall that a compact nilmanifold is Kähler if and only if it is diffeomor-
phic to a torus ([3, 11]). Benson and Gordon in [3] conjectured that if a compact
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solvmanifold 0\G of completely solvable type admits a Kähler metric then M is
diffeomorphic to a standard 2n-torus. The conjecture was proved by Hasegawa [12]
and more generally it was showed that a compact solvmanifold is Kähler if and only
if it is a finite quotient of a complex torus which has the structure of a complex torus
bundle over a complex torus. A similar result was proved by Baues and Cortes in [1]
for Kähler infra-solvmanifolds, showing the relation of the Benson-Gordon con-
jecture to the more general problem of aspherical Kähler manifolds with solvable
fundamental group. In [7] it has been shown that a compact nilmanifold 0\G en-
dowed with an invariant complex structure J , i.e. a complex structure which comes
from a left invariant complex structure on G, admits a symplectic form taming J
if and only if 0\G is a torus. The result was obtained by using a characteriza-
tion of compact nilmanifolds admitting pluriclosed metrics, i.e. Hermitian metrics
such that its fundamental form ! satisfies the condition @@! = 0. For compact
solvmanifolds by [8] if J is invariant under the action of a nilpotent complement
of the nilradical of G and J is abelian or G is almost abelian (not of type (I)),
then the compact solvmanifold 0\G cannot admit any symplectic form taming the
complex structure J , unless 0\G is Kähler. For a compact solvmanifold 0\G of
completely solvable type, no general result about the existence of symplectic forms
taming complex structures is known. In the present paper we will show that if such
symplectic structures exist then the compact solvmanifold has to be a torus and
therefore a Kähler manifold. We note that at the level of Lie algebras, a unimodular
completely solvable Kähler Lie algebra is necessarily abelian. As remarked in [1]
this follows from Hano’s result [10] that a unimodular Kähler Lie group has to be
flat and from the classification of flat Lie groups obtained in [16]. Kähler Lie al-
gebras have been also studied in [4], where the so-called Kähler double extension
has been introduced. The Kähler double extension realizes a Kähler Lie algebra
as the Kähler reduction of another one. In [2] it is shown that every symplectic
Lie group admits a sequence of symplectic reductions to a unique irreducible sym-
plectic Lie group. In particular, every symplectic completely solvable Lie group is
always symplectically reduced. By using this symplectic reduction we show that
if g is unimodular completely solvable Lie algebra admitting a symplectic form �
taming a complex structure J , then g has to be abelian. As a consequence we prove
the following:
Theorem. A compact solvmanifold M of completely solvable type endowed with
an invariant complex structure J admits a symplectic form taming J if and only if
M is a complex torus.

ACKNOWLEDGEMENTS. The authors are grateful to Vicente Cortes and the referee
for useful comments that have helped us to improve the final version of the paper.

2. Preliminaries

A Lie algebra g is called completely solvable if adX : g ! g has only real eigen-
values for every X 2 g. Equivalently, g is isomorphic to a subalgebra of the (real)
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upper triangular matrices in gl(m, R) for somem. In particular, nilpotent Lie groups
are completely solvable.

Lattices in completely solvable Lie groups satisfy strong rigidity properties,
which are similar to the Malcev rigidity [15] of lattices in nilpotent Lie groups.
These properties were first shown by Saito in [17].

A unimodular Kähler Lie group has to be flat, as proved by Hano in [10].
Therefore a completely solvable unimodular Kähler Lie group is abelian by virtue
of Hano’s result and the classification of flat Lie groups obtained in [16]. For non-
unimodular Kähler Lie algebras general results have been obtained by Gindikin,
Vinberg, Pyatetskii-Shapiro in [9] (see also [5]).

In [2] it is shown that every symplectic Lie group admits a sequence of subse-
quent symplectic reductions to a unique irreducible symplectic Lie group.

Let (g,�) be a symplectic Lie algebra. An ideal h of g is called an isotropic
ideal of (g,�) if h is an isotropic subspace for �, i.e. �|h⇥h = 0. Note that h is
isotropic if and only if h ✓ h?� , where h?� is the orthogonal complement of h in
g with respect to �.

By [2, Lemma 2.1] one has the following properties:

(1) If h is an isotropic ideal of a symplectic Lie algebra (g,�) then h is abelian.
(2) If h is an ideal of a symplectic Lie algebra (g,�), then h?� is a Lie subalgebra

of g.
(3) If h is an ideal of a symplectic Lie algebra (g,�), then h?� is an ideal in g if

and only if [h?�, h] = 0.

We will now briefly review the symplectic reduction. If (g,�) is a symplectic
Lie algebra and h ✓ g is an isotropic ideal, then h?� with respect to � is a Lie
subalgebra of g containing h and therefore � descends to a symplectic form �̃ on
the quotient Lie algebra h?�/h. The symplectic Lie algebra (h?�/h, �̃) is called
the symplectic reduction of (g,�) with respect to the isotropic ideal h.

If g is completely solvable then by [2, Example 2.4], g contains a nontrivial
ideal h which is isotropic. In the case of symplectic forms taming complex struc-
tures we now show the following:

Lemma 2.1. Let g be a completely solvable Lie algebra endowed with a symplectic
form � taming a complex structure J . Then one has the following decomposition
(in terms of vector spaces):

g = Jh � h?�,

with h an abelian isotropic ideal of g and h?� a Lie subalgebra of g.

Proof. Since dim Jh = dim h = dim g � dim h?� , it is sufficient to show that
Jh\h?�

= {0}. Let Y be a non zero element belonging to the intersection Jh\h?� .
Then one has that Y = J X , with X 2 h and X 6= 0. But then since Y 2 h?� , one
should have in particular

�(J X, X) = 0,

which is not possible since � tames J .
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The ideal h is at least 1-dimensional, so we can suppose that dim h = 1.

Lemma 2.2. Let g be a completely solvable Lie algebra endowed with a symplec-
tic form � taming a complex structure J and let h be a 1-dimensional isotropic
ideal. Then the Lie algebra h?�/h admits a symplectic form �̃ taming a complex
structure J̃ .

If g is unimodular and h?� is an abelian ideal of g, then g is abelian.

Proof. Suppose that h = spanhXi. So Jh = spanhJ Xi and we know that, since h
is an ideal then [X, g] 2 spanhXi. We have that

J
✓
Y �

�(JY, X)

�(J X, X)
X

◆
2 h?�,

for every Y 2 h?� . Moreover, since h is an ideal, the complex structure J induces
a complex structure J̃ on h?�/h, defined by

J̃ (Y + h) = JY + h.

Indeed, if JY does not belong to h?� , one changes Y + h to

Y �

�(JY, X)

�(J X, X)
X + h.

Moreover, h?�/h has a symplectic structure �̃ induced by �. Moreover, the com-
plex structure on h?�/h is tamed by �̃. Suppose that h?� is an abelian ideal of g.
Then g = Jhnh?� and it is almost abelian. Since g is not of type (I), by [8, Propo-
sition 7.1] we have that g has to be abelian.

3. Main result

By [6] a 4-dimensional completely solvable Lie algebra endowed with a symplectic
form � taming a complex structure J is necessarily Kähler and, if it is unimodular,
then it is abelian. We now show that in every dimension a unimodular completely
solvable Lie algebra endowed with a symplectic form� taming a complex structure
J is abelian.

Theorem 3.1. Let g be a 2n-dimensional unimodular completely solvable Lie al-
gebra endowed with a symplectic form � taming a complex structure J , then g is
abelian.

Proof. For n = 2 we know by [6] that the theorem holds. We will prove the theorem
by induction.

Let h=spanhXi be a 1-dimensional isotropic ideal h of g. Since dim g=2n, by
the previous lemma we can choose a basis {X, J X,Y1, JY1, . . . ,Yn�1, JYn�1} of g
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with Yl , JYl 2 h?� , l = 1, . . . , n�1. By Lemma 2.2 the (2n�2)-dimensional Lie
algebra h?�/h, which can be identified with v = spanhY1, JY1, . . . ,Yn�1, JYn�1i,
has a tamed complex structure. For every Y 2v we have�(Y, X) = 0 = �(JY, X)
and

[X,Y ] = a1X, [X, JY ] = a2X, [J X,Y ] = b1X + b2 J X + Z1,

[J X, JY ] = c1X + c2 J X + Z2,

with �(Zi , X) = �(J Zi , X) = 0, for i = 1, 2. By the integrability of J

[J X, JY ] = [X,Y ] + J [J X,Y ] + J [X, JY ]

we obtain

(c1 + b2 � a1)X + (c2 � b1 � a2)J X + Z2 � J Z1 = 0

and therefore
(c2 � b1 � a2)�(J X, X) = 0.

Since �(J X, X) 6= 0, we get

c2 = b1 + a2, Z2 = J Z1 + (a1 � b2 � c1)X.

As a consequence

[J X, JY ] = (a1 � b2)X + (b1 + a2)J X + J Z1.

Since d� = 0, we have

�([J X,Y ], X) = ��([Y, X], J X) � �([X, J X],Y )

and thus
b2�(J X, X) = �a1�(J X, X)

which implies that b2 = �a1. By the condition

�([J X, JY ], X) = ��([JY, X], J X) � �([X, J X], JY )

we get
�(b1 + a2)�(X, J X) = a2�(X, J X)

and therefore b1 = �2a2. Then, for every Y 2 v, we have

[X,Y ] = aX, [X, JY ] = bX, [J X,Y ] = �2bX � aJ X + Z1,

[J X, JY ] = 2aX � bJ X + J Z1,
(3.1)

with
a =

�([X,Y ], J X)

�(X, J X)
, b =

�([X, JY ], J X)

�(X, J X)
.
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Moreover by using that �(Z1, X) = 0 = �(J Z1, X) we obtain that

Z1 2 spanhY1, JY1, . . . ,Yn�1, JYn�1i = v.

By (3.1) and using the basis {X, J X,Y1, JY1, . . . ,Yn�1, JYn�1} of g we have that
for every Y 2 v

trace(adY ) = (�a) + (a) + trace(adY |v) = 0,

since g is unimodular, where adY |v denotes the (2n � 2) ⇥ (2n � 2) block matrix
of adY |v with respect to the basis Y1, JY1, . . . ,Yn�1, JYn�1. This implies that
trace(adY |v) = 0, for every Y 2 v. Note that by using the identification v ⇠

= h?�/h
as vector spaces we have that

[Y, Z ] + h = [Y, Z ]v + h, 8Y, Z 2 v

where by [Y, Z ]vwe denote the component of [Y, Z ] on v. This implies that h?�/h
has to be unimodular.

Therefore by induction we can suppose that the symplectic reduction h?�/h
has a Kähler structure. Since h?�/h is completely solvable and unimodular, it has
to be abelian. So as a vector space:

g = spanhX, J Xi � v,

with spanhXi � v a Lie subalgebra of g and

spanhY1, JY1, . . . ,Yn�1, JYn�1i = v

J -invariant and such that [v, v] ✓ spanhXi. Suppose that h?� is not an ideal of g,
then there exists a non-zero Y 2 v, such that [J X,Y ] /2 h?� . Thus

[X,Y ] = aX, [X, JY ] = bX,

[J X,Y ] = �2bX � aJ X + Z1, [J X, JY ] = 2aX � bJ X + J Z1
(3.2)

with a 6= 0 and Z1 2 v. By the Jacobi identity we obtain

[[J X,Y ], JY ] + [[Y, JY ], J X] + [[JY, J X],Y ] = 0

and therefore in particular that the component in v has to vanish

�aJ Z1 + bZ1 = 0

and so Z1 = 0. If we put [X, J X] = hX , by the Jacobi identity

[[X, J X],Y ] + [[Y, X], J X] + [[J X,Y ], X] = ahX = 0
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we get h = 0 and so [X, J X] = 0. By using again the Jacobi identity

[[J X,Y ], JY ] + [[JY, J X],Y ] + [[Y, JY ], J X] = (�4b2 � 4a2)X = 0

we get a contradiction. So h?� has to be an ideal of g. Moreover, with the same
argument as before we can show that [X,Y ] = 0, for every Y 2 v. Indeed, if there
exists a non-zero Y such that [X,Y ] 6= 0, then [J X,Y ] has a non zero component
along J X . Therefore, for every Y 2 v, we have [J X,Y ] 2 v. Thus, we have the
relations (3.2) with a = b = 0, i.e.

[X,Y ] = 0, [X, JY ] = 0, [J X,Y ] = Z1, [J X, JY ] = J Z1,

for every Y 2 v and so in particular [J X, JY ] = J [J X,Y ]. Therefore

adJ X �J (Y ) = J � adJ X (Y ), 8Y 2 v. (3.3)

Since h?�
= spanhXi � v is nilpotent, h?� coincides with the nilradical n of g.

Indeed [h?�, h?�
] ✓ h and [h, h?�

] = {0}. Note that if [X, J X] = 0, then we
have that spanhJ Xi is a nilpotent complement of n such that J adJ X = adJ X J and
we can apply [8, Theorem 1.2] to conclude that g has to be abelian.

Now in order to complete the proof we claim that if h 6= 0 then we get a
contradiction. Suppose that [J X, X] = hX , with h 6= 0. If h?� is abelian, then
g = RJ X n R2n�1 and by [8] an almost abelian completely solvable Lie algebra
admitting a symplectic form taming a complex structure has to be abelian.

Since adJ X is unimodular on h?�, adJ X has an eigenvalue k such that sign(h) 6=
sign(k). Take the generalized eigenspace (i.e. the eigenspace of the semi-simple
part (adJ X )s of adJ X ) V ⇢ h?� for the eigenvalue k. Since adJ X (v) ⇢ v,
adJ X (X) = hX and h 6= k, we have V ⇢ v. Then we get [J X, V ] ⇢ V and
by (3.3) adJ X J (Y ) = J adJ X (Y ), for every Y 2 V . For Y1,Y2 2 V , we have
[Y1,Y2] = cX for some c. Since the semi-simple part (adJ X )s of adJ X is a deriva-
tion on h?� , we get

2kcX = hcX.

By sign(h) 6= sign(k), we obtain c = 0 and hence [V, V ] = 0. Take a subspace
W ⇢ h?� such that

h?�
= V � W � spanhXi

and
[J X,W � spanhXi] ⇢ W � spanhXi

by using the generalized eigenspace decomposition. We have [V,W ] ⇢ spanhXi

and [W,W ] ⇢ spanhXi. Consider^
g⇤

=

^
(spanhJ xi � V ⇤

� W ⇤

� spanhxi).

Then we have dV ⇤
⇢ J x ^ V ⇤, dW ⇤

⇢ J x ^ W ⇤ and

dx 2 V ⇤

^ W ⇤

� J x ^ W ⇤

� W ⇤

^ W ⇤

� spanhJ x ^ xi
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by [J X, V ] ⇢ V and [V, V ] = 0. We obtain

d(J x ^ V ⇤) = 0,

d(J x ^ W ⇤) = 0,
d(J x ^ x) ⇢ j x ^ V ⇤

^ W ⇤

� J x ^ W ⇤

^ W ⇤,

d(V ⇤

^ V ⇤) ⇢ J x ^ V ⇤

^ V ⇤,

d(V ⇤

^ W ⇤) ⇢ J x ^ V ⇤

^ W ⇤,

d(V ⇤

^ x) ⇢ J x ^ V ⇤

^ x � V ⇤

^ V ⇤

^W ⇤

� J x ^ V ⇤

^W ⇤

� V ⇤

^ V ⇤

^W ⇤,

d(W ⇤

^ W ⇤) ⇢ J x ^ W ⇤

^ W ⇤

and
d(W ⇤

^ x) ⇢ J x ^ W ⇤

^ x � V ⇤

^ W ⇤

^ W ⇤

� W ⇤

^ W ⇤

^ W ⇤

� x ^ W ⇤

^ W ⇤

� J x ^ W ⇤

^ W ⇤.

Consider a generic 2-form ! 2

V2 g⇤. We can write ! as

! = !1 + !2

with !1 2 V ⇤
^V ⇤ and !2 belonging to the complement of V ⇤

^V ⇤. If we impose
d! = 0, then d!1 = 0. Since adJ X (V ) ⇢ V and adJ X �J = J � adJ X , considering
the triangulation of adJ X on V , we can take a basis (Y1,Y2, . . . ,Y2s�1,Y2s) of V
such that

[J X,Yi ] = kYi mod spanhY1, . . . ,Yi�1i
and JY2i = Y2i�1. Consider the dual basis (y1, y2, . . . , y2s�1, y2s) of (Y1,Y2, . . . ,
Y2s�1,Y2s). Then

d(y2i ^ y2i�1) = �2k J x ^ y2i ^ y2i�1 mod J x ^ span j1+ j2<4i�1hy j1 ^ y j2i.

If !1 has a non-trivial y2s ^ J y2s-component, then we have d!1 6= 0. Hence we get

!(Y2s, JY2s) = !1(Y2s,Y2s�1) = 0

for every closed 2-form ! 2

V2 g⇤. This implies that any closed 2-form ! 2

V2 g⇤

cannot be a symplectic form taming J . Thus h 6= 0 is impossible.

As a consequence of previous theorem we can prove the following:
Theorem 3.2. A compact solvmanifold M = 0\G of completely solvable type en-
dowed with an invariant complex structure J admits a symplectic form taming J if
and only if M is a complex torus.
Proof. Since G admits a compact quotient by a lattice, by Milnor’s result [16] the
Lie group G has to be unimodular. Suppose that M admits a symplectic structure�
taming an invariant complex structure J on M , by using a symmetrization process
we can suppose that � is invariant (see [7]). So the Lie algebra of G has to be a
unimodular completely solvable Lie algebra admitting a symplectic form taming a
complex structure. Therefore, by previous theorem g has to be abelian.
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