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Prime order birational diffeomorphisms of the sphere

MARIA FERNANDA ROBAYO

Abstract. The aim of this paper is to give the classification of conjugacy classes
of elements of prime order in the group of birational diffeomorphisms of the two-
dimensional real sphere. Parametrisations of conjugacy classes by moduli spaces
are presented.

Mathematics Subject Classification (2010): 14E07 (primary); 14P25, 14J26,
53A05 (secondary).

1. Introduction

Let PnR denote the projective n-space as a scheme over R. A real projective variety
X ⇢ PnR is a scheme over R which may be thought of as a pair (XC, � ), where XC
is its complexification, i.e. XC := X ⇥Spec R Spec C, and � is an anti-holomorphic
involution on XC. Let X (C) denote the set of complex points of X and X (R) :=

X (C)� (the invariant points under � ) the real part of X . Supposing that X is smooth
and X (R) is nonempty, we can endow X (R)with the Euclidian topology and obtain
a manifold of real dimension m = dimC XC over R.

There are then two kinds of regular morphisms between real algebraic varieties
X , Y studied in the literature (see for example the introductions of [14] and [7]):

(1) A regular morphism X ! Y is a rational map defined at all complex points.
The corresponding category is the one of schemes defined over R, together with
regular morphisms of schemes. The group of automorphisms is denoted by
Aut(X), which is in general quite small: the connected component of the identity
is an algebraic group of finite dimension.

(2) The second notion of regular morphisms consists of taking rational maps X99KY
that are defined only at all real points of X , such maps will be called morphisms
X (R) ! Y (R). This gives another category, with more morphisms where the
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objects are X (R). The corresponding group of automorphisms will be denoted
by Aut(X (R)) and is the same as the set of birational diffeomorphisms of the
algebraic variety considered.

In most real algebraic geometry texts, the second, much richer category is in fact
studied.

In [4], I. Biswas and J. Huisman showed that if X and Y are two rational real
compact surfaces, then X (R) and Y (R) are diffeomorphic if and only if X (R) and
Y (R) are isomorphic (which corresponds to saying that there is a birational diffeo-
morphism between X and Y ). The proof of this result was simplified by J. Huisman
and F.Mangolte in [11], by proving first that Aut(X (R)) acts n-transitively on X (R)
for each n. The same question for geometrically rational surfaces (i.e. rational over
C) was then studied in [7] by J. Blanc and F. Mangolte.

The group Aut(X (R)) is really larger than Aut(X) in general. In particular,
J. Kollár and F. Mangolte showed in [15] that Aut(X (R)) is dense in Diff(X (R)) if
X is a smooth real compact rational surface.

Some other information on the group Aut(X (R)) can be given by looking at
its elements of finite order. In particular, in this text we are interested in elements
of prime order of Aut(S(R)) up to conjugacy, where S(R) is the standard two-
dimensional sphere (see Section 2). The group Aut(S(R)) is contained in the group
Bir(S) of real birational transformations of the sphere, which is isomorphic to the
real Cremona group Bir(P2R). This latter group is, of course, contained in the com-
plex Cremona group Bir(P2C). The problem of classification of conjugacy classes
of elements of finite order in Bir(P2C) (which contains the groups Bir(X) described
before) have been of interest for a lot of mathematicians. The first classification
was the one by E. Bertini ([3]), who studied involutions. The decomposition into
three types of maps, namely Bertini involutions, Geiser involutions, and Jonquières
involutions, was correct but there is some redundancy because the curves of fixed
points were not considered. Amodern and complete proof was obtained by L. Bayle
and A. Beauville in [1], using the tools of the minimal model program developed
in dimension 2 by Y. I. Manin ([16]) and V. I. Iskovskikh ([12]). They obtain
parametrisations of the conjugacy classes by the associated fixed curves. T. de Fer-
nex generalised the classification in [10] for elements of prime order (except for one
case, done in [2] by A. Beauville and J. Blanc). See also [20] for another approach
to the same question. The precise classification of elements of finite order was then
obtained in [6] by J. Blanc, using the description of finite groups of I. Dolgachev
and V.I. Iskovskikh [9]1. Again, the parametrisations are given by fixed curves (of
powers of elements), but also by actions of the elements on the curves.

In this text, we obtain the results for the analogous problem of classification
for elements of prime order in the group Aut(S(R)). The classification is sum-
marised in Section 2 (Theorem A): there are eight different families of conjugacy
classes, some with only one element and others with infinitely many elements. The

1 Even after [9], there are still open questions on finite subgroups of Bir(P2C) left, some of which
are answered in the recent paper [19].
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second main result concerns the parametrisation of the conjugacy classes in each
family (Theorem B). Since Aut(S(R)) ⇢ Bir(P2C), it is possible to compare the
classification of the birational diffeomorphisms with the complex case i.e. bira-
tional transformations of the complex plane. For instance, there are three families
of involutions on Bir(P2C): Bertini, Geiser, and de Jonquières. Bertini involutions
do not occur in the group Aut(S(R)) because they would come from an automor-
phism of a Del Pezzo surface of degree 1 after blowing up at least one real point
of S, which would damage the geometry of the real points; see Proposition 3.4 in
Section 3. The Geiser involution of Aut(S(R)) corresponds to real quartics with
one oval. Moreover, the group Aut(S(R)) contains distinct families of conjugacy
classes of involutions of de Jonquières type, which are all conjugate in Bir(P2C),
in particular, one family, containing uncountable many elements non conjugate to
each other, corresponds to only one conjugacy class in Bir(P2C).

This text is organised as follows. Section 2 contains the compilation of the
results of this text presented in two main statements and examples of birational dif-
feomorphisms of the sphere. In Section 3, it is shown why the study of conjugacy
classes of elements of finite order of the group of birational diffeomorphisms corre-
sponds to the study of pairs (X, g) consisting of a smooth rational projective surface
X and an automorphism g of X . More precisely, there are two cases to focus on,
say, when X is a Del Pezzo surface whose real Picard group invariant under g is iso-
morphic toZ, and when X admits a conic bundle structure and the real Picard group
invariant under g has rank 2. This is a result given by V. I. Iskovskikh ([12]) and
in this section we specify what pairs are obtained for the sphere (Proposition 3.6).
In particular, since the sphere admits a structure of conic bundle given by the pro-
jection to one of the affine coordinates, Proposition 3.6 gives that the morphism of
the conic bundle structure for a pair (X, g), when X admits one, factors through
that projection of the sphere. Section 4 is devoted to the study of pairs (X, g)
when X is a Del Pezzo surface, including the case of the sphere itself. Special
automorphisms of Del Pezzo surfaces of degree 2 and 4 such as Geiser involution
and automorphisms ↵1, ↵2, which are studied in Subsections 4.4 and 4.3 bring on
two different families of conjugacy classes on the sphere. In Subsection 4.1, the
conjugacy classes of the group of automorphisms of the sphere are investigated
(Proposition 4.3).

Section 5 is dedicated to the study of the birational diffeomorphisms that are
compatible with the conic bundle structure of the sphere, which is a P1-fibration
not locally trivial. It is natural to understand the action of a birational map on the
basis of the fibration and that is done in the first subsection. When the action on
P1 is trivial, it is shown in Subsection 5.2 that the complex model of the sphere
is birational to A2C, which allows to give an explicit algebraic description of the
birational transformations of the sphere and in the following subsection for bira-
tional diffeomorphisms. In Subsection 5.4, it is proved that two birational maps
of the sphere, compatible with the fibration and acting trivially on the basis of it
are conjugate in the group of birational maps of the sphere if and only if there ex-
ists a birational map between the curves of fixed points of these two maps, which
is defined over R. This result is also proved for the group of birational diffeo-
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morphisms in the following subsection. In addition, a geometrical characterisation
of the birational diffeomorphisms of order 2 is given according to the orientation
when restricted to S(R). More precisely, it is proved that there is a one-to-one
correspondence between the conjugacy classes of orientation-preserving birational
diffeomorphisms of the sphere compatible with the fibration and acting trivially on
the basis and smooth real projective curves with no real point, which are 2-to-1
coverings of P1 up to isomorphism. For the orientation-reversing case, they are
in correspondence with smooth real projective curves with one oval, which are a
2-to-1 coverings of P1 up to isomorphism. In Subsections 5.6 and 5.7, for bira-
tional maps and for birational diffeomorphisms of the sphere of order larger than
two which are compatible with the fibration and acting trivially on the basis, it is
shown than they are conjugate to rotations of the sphere. The last subsection con-
cerns birational maps and birational diffeomorphisms of order two compatible with
the fibration and with non-trivial action on the basis. A bijection is constructed be-
tween conjugacy classes of birational involutions as before and classes on a second
cohomology group that is isomorphic to �b2R>0Z/2Z. Since the representatives
of these classes in the group of birational maps of the sphere are particularly bi-
rational diffeomorphisms, this implies that there are uncountable many conjugacy
classes of birational diffeomorphisms of order two with a non-trivial action on the
basis.

In Section 6, the problem that two pairs (X, g), (X 0, g0) may give rise to the
same conjugacy class in Aut(S(R)) is examined. In Subsection 6.1, Theorem A
and B are proved by putting together all results obtained in Sections 3, 4, 5, and 6.

ACKNOWLEDGEMENTS. I thank my advisor Jérémy Blanc for his help and support
during the whole time of my PhD. I am also grateful to Frédéric Mangolte who was
the referee of my thesis and made remarks on this text.

2. Results

In this section, we state the classification of conjugacy classes of elements of prime
order in the group of birational diffeomorphisms of the sphere and also the moduli
spaces associated to each conjugacy class (Theorem A and Theorem B below). It is
required first to present some definitions and give some examples that will appear
in the classification.

We denote by S the real projective algebraic surface in P3R defined by the equa-
tion w2 = x2 + y2 + z2. Let � denote the standard antiholomorphic involution in
P3C, � : (w : x : y : z) 7! (w̄ : x̄ : ȳ : z̄). Let S(R) denote the real part of S.
Note that S(R) is contained in the affine space where w = 1 and corresponds to the
standard two-dimensional sphere of equation x2 + y2 + z2 = 1. The following two
groups are of our interest, the first one is the group of birational transformations of
the sphere and is isomorphic to the real Cremona group, and the second one is the
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group of birational diffeomorphisms of the sphere.

Bir(S) := { f : S 99K S | f is birational},

Aut(S(R)) := { f : S 99K S | f is birational and f, f �1 are defined
at every real point of S}.

Remark 2.1. Bir(S) and Aut(S(R)) are groups and Aut(S(R)) ⇢ Bir(S).
Our goal is to classify the conjugacy classes of elements of Aut(S(R)) of prime

order.
Remark 2.2. (i) Forgetting the real structure given by � , the surface SC is isomor-
phic to P1C ⇥ P1C. Indeed,

SC = {(w : x : y : z) 2 P3C | (w + z)(w � z) = (y + ix)(y � ix)},

and the isomorphism is given by

' : SC �! P1C ⇥ P1C
(w : x : y : z) 7�! ((w + z : y + ix), (w + z : y � ix))

= ((y � ix : w � z), (y + ix : w � z)),
(2.1)

whose inverse is given by

'�1 : P1C ⇥ P1C �! SC
((r : s)(u : v)) 7�! (ru + sv : i(rv � su) : rv + su : ru � sv)

(ii) Pic(S) = Z, Pic(SC) = Z� Z.
We denote by ⇡ the projection ⇡ : S 99K P1 given by ⇡(w : x : y : z) = (w :

z). Notice that every fibre of ⇡ is rational except for ⇡�1(1 : 1) and ⇡�1(1 : �1),
which are the union of the lines w = z, x = ±iy, and w = �z, x = ±iy,
respectively.

Let us fix some notation for groups associated to the pair (S,⇡),

Bir(S,⇡) :={g 2 Bir(S) | 9↵ 2 Aut(P1) such that ↵⇡ = ⇡g},
Aut(S(R),⇡) :={g 2 Aut(S(R)) | 9↵ 2 Aut(P1) such that ↵⇡ = ⇡g}.

Note that Aut(S(R),⇡) ⇢ Bir(S,⇡), more precisely Aut(S(R),⇡) = Bir(S,⇡) \
Aut(S(R)). The group Aut(S(R),⇡) is the group of birational diffeomorphisms
that preserve the fibration.

There is a natural map 8 sending any g 2 Bir(S,⇡) to the associated action
on the basis 8(g) = ↵ 2 Aut(P1) so that the following diagram commutes:

S
⇡

✏✏

g //___ S
⇡

✏✏
P1

↵

'

// P1
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Hence we get the exact sequence:

1! Bir(S/⇡)! Bir(S,⇡)
8
�! Aut(P1), (2.2)

where we have denoted by Bir(S/⇡) the group:

Bir(S/⇡) := {g 2 Bir(S,⇡) | ⇡ = ⇡g}.

One can see the group of birational diffeomorphisms that act trivially on the basis
of the fibration as a subgroup of Bir(S/⇡), more precisely,

Aut(S(R)/⇡) = {g 2 Aut(S(R),⇡) | ⇡ = ⇡g}.

This latter subgroup has a special description given by the exact sequence

1! Aut+(S(R)/⇡)! Aut(S(R)/⇡)
o
�! Z/2Z! 1

where Aut+(S(R)/⇡) denotes the orientation preserving birational diffeomorph-
isms of S and the map Aut(S(R)/⇡)

o
�! Z/2Z admits a section s : Z/2Z !

Aut(S(R)/⇡) mapping �1 into ⌧ where ⌧ is a reflection, say, ⌧ : S ! S, (x, y, z)
7! (x,�y, z) in the chart w = 1. Then

Aut(S(R)/⇡) ⇠= Aut+(S(R)/⇡) o h⌧ i. (2.3)

Before stating the main results, let us describe some examples.
Example 2.3. Geiser involution of the sphere
The blow-up ⇣ : X ! S of three pairs of conjugate imaginary points in S(C) is a
real Del Pezzo surface X of degree 2, with X (R) isomorphic to S(R). The linear
system of the anticanonical class of X yields a double covering of P2 ramified over
a smooth real quartic with one oval. The Geiser involution ⌫ on X is the involution
which exchanges the two points of any fibre. The birational map ⇣⌫⇣�1 on S is a
birational diffeomorphism of S of order 2 that fixes pointwise a non-hyperelliptic
curve of genus 3 with one oval. The birational diffeomorphism obtained will be
called Geiser involution of the sphere.
Example 2.4. The blow-up " : X ! S of two pairs of conjugate imaginary points
in S(C) is a real Del Pezzo surface X of degree 4 (see Subsection 4.3), with X (R)
isomorphic to S(R). In this case, the anticanonical divisor of X is very ample and
then the linear system of |� KX | gives an embedding into P4 as an intersection of
two quadrics. In the coordinates (y1 : y2 : y3 : y4 : y5) of P4, X is given by the
intersection of

Q1 : (µ� µµ + µ)y21 � 2y1y2 + y22 + (1� µ + µµ� µ)y23 + y24 = 0,
Q2 : µµy21 � 2µµy1y2 + (µ� 1+ µ)y22 + µµy24 + (1� µ + µµ� µ)y25 = 0,

for some µ 2 C \ {0,±1} (see Proposition 4.9 in Subsection 4.3).
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The automorphisms ↵1, ↵2 on X defined by

↵1 : (y1 : y2 : y3 : y4 : y5) 7! (y1 : y2 : y3 : y4 : �y5),
↵2 : (y1 : y2 : y3 : y4 : y5) 7! (y1 : y2 : �y3 : y4 : y5)

yield the birational diffeomorphisms "↵1"�1, "↵2"�1 on S of order 2, which by
abuse of notation we denote again ↵1 and ↵2. Both of them fix pointwise an elliptic
curve.
Example 2.5. Let ✓ 2 [0, 2⇡). The rotation r✓ 2 Aut(S) is given by

r✓ : (w : x : y : z) 7! (w : x cos ✓ � y sin ✓ : x sin ✓ + y cos ✓ : z).

This is a rotation that fixes the z-axis and preserves the fibration ⇡ .
Example 2.6. The reflection � is given by the map

� : (w : x : y : z) 7! (w : �x : y : z).

This is a reflection that preserves the fibration ⇡ and fixes a conic.
Example 2.7. The antipodal involution of the sphere ã is given by

ã : (w : x : y : z) 7! (�w : x : y : z).

This involution has no real fixed points.
With these examples, we are ready to present the main two theorems of this

text. The first one tells us that there are eight families of conjugacy classes (some
with only one element, some with infinitely many) and the second one tells us the
moduli space associated to each family. These two results are proved in Section 6
using all results obtained in Sections 4-6.
Theorem A. Every element of prime order ofAut(S(R)) is conjugate to an element
of one of the following families:

(1) A Geiser involution.
(2) An involution ↵1 or ↵2 given in Example 2.4.
(3) A rotation r✓ of prime order given in Example 2.5.
(4) The reflection � given in Example 2.6.
(5) The antipodal involution ã given in Example 2.7.
(6) An involution in Aut+(S(R)/⇡) acting on the fibres of ⇡ by maps conjugate to

rotations of order 2, and whose set of fixed points on S(C) is a hyperelliptic
curve of genus � 1 with no real points, plus the two isolated points north and
south poles, PN and PS .

(7) An involution in Aut(S(R)/⇡) \ Aut+(S(R)/⇡), acting on the fibres of ⇡ by
maps conjugate to reflections, and whose set of fixed points on S(C) is a hyper-
elliptic curve of genus � 1 whose set of real points consists of one oval, passing
through PN and PS .
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(8) An involution in Aut(S(R),⇡) \ Aut(S(R)/⇡) acting by z 7! �z on the basis
which is not conjugate to (w : x : y : z) 7! (w : ±x : ±y : �z).

Theorem B. The eight families presented in Theorem A correspond to distinct sets
of conjugacy classes, parametrised respectively by:

(1) Isomorphism classes of smooth non-hyperelliptic real projective curves of genus
3 with one oval.

(2) Isomorphism classes of pairs (X, g), where X is a Del Pezzo surface of degree 4
with X (R) ' S(R) and g is an automorphism of order 2 that does not preserve
any real conic bundle.

(3) Angles of rotations, up to sign.
(4) One point (only one conjugacy class).
(5) One point (only one conjugacy class).
(6) Smooth real projective hyperelliptic curves 0 of genus � 1 with no real point,

together with a 2 : 1-covering 0! P1, up to isomorphisms compatible with the
fibration and the interval [�1, 1].

(7) Smooth real projective hyperelliptic curves 0 of genus � 1 with one oval, to-
gether with a morphism 0! P1, which is a 2 : 1-cover and satisfies ⇡(0(R))=
[�1, 1], up to isomorphisms compatible with the fibration and the interval.

(8) An uncountable set, which has a natural surjection to
L

b2R>0

Z/2Z.

Remark 2.8. In (7), we can have genus 0 but this corresponds to the reflection �.
In (6) we can also have genus 0, there is in fact a real one-dimensional family of
such maps, all conjugate to the family (8) (see Lemma 6.7).
Remark 2.9. All elements in (8) are conjugate in Bir(SC), this shows a big differ-
ence between the complex and real cases.

3. Surface automorphisms and pairs

In this section, it is shown that classifying conjugacy classes of birational diffeo-
morphisms of finite order of the sphere is equivalent to classifying birational pairs
(X, g) where g is an automorphisms of finite order of a smooth real projective
surface X obtained from the sphere after blowing up pairs of conjugate imaginary
points. Moreover, Proposition 3.6 gives what pairs (X, g) need to be studied.

We start with some definitions and a classical result due to Comessatti (Theo-
rem 3.3), which states in particular that the sphere S is a minimal real surface.
Definition 3.1. Let X be a smooth real projective surface. We say that X isminimal
if any birational morphism X ! Y with Y a smooth real projective surface is an
isomorphism.
Remark 3.2. Any birational morphism between smooth projective algebraic sur-
faces is a sequence of contractions of

(1) one real (�1)-curve, or
(2) two disjoint conjugate imaginary (�1)-curves.
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Therefore, a surface is minimal if and only if it does not contain a real (�1)-
curve or two disjoint conjugate imaginary (�1)-curves. Let us cite the following
classical result due to Comessatti [8]:
Theorem 3.3. If X is a minimal rational smooth real surface such that X (R) 6= ;,
then X is isomorphic to P2R, to S, or to a real Hirzebruch surface Fn with n 6= 1.
Moreover, X (R) is connected and homeomorphic to the real projective plane, the
sphere, the torus (n even), or the Klein bottle (n odd) respectively.
Proposition 3.4. Let X be a smooth real projective surface with X (R) diffeomor-
phic to the sphere. Then X does not contain any real (�1)-curve. In particular,
any birational morphism ⇣ : X ! Y , where Y is a smooth real projective surface,
restricts to a diffeomorphism ⇣ : X (R)! Y (R).
Proof. If X contains a real (�1)-curve, then there is a birational morphism which
corresponds to the blow-up of a real point of some smooth real projective sur-
face whose preimage by such a birational morphism is the real (�1)-curve. Then
the neighbourhood of the real locus of the (�1)-curve in X (R) is topologically a
Möbius strip which implies that X (R) is not orientable and therefore non isomor-
phic to the sphere.

Definition 3.5. Let (X, g) be a pair in which X is a smooth real projective surface
and g is a non-trivial automorphism of X of finite order. The pair (X, g) is said
to be minimal if any birational morphism ⇣ : X ! X 0 such that there exist an
automorphism g0 of X 0 of finite order with ⇣ � g = g0 � ⇣ is an isomorphism.
Proposition 3.6. Let g 2 Aut(S(R)) be an element of finite order and let ⇡ : S 99K
P1 be the map given by ⇡(w : x : y : z) = (w : z). Replacing g with a conjugate
in the group Aut(S(R)), one of the following holds:
(a) There exists a birational morphism " : X ! S which is the blow-up of 0, 1, 2, or

3 pairs of conjugate imaginary points in S, such that ĝ = "�1 � g � " 2 Aut(X),
Pic(X)ĝ ⇠= Z, and X is a Del Pezzo surface.

(b) There exists ↵ 2 Aut(P1) such that ↵⇡ = ⇡g. Moreover, there exists a bira-
tional morphism " : X ! S that restricts to a diffeomorphism X (R) ! S(R)
such that ĝ = "�1 � g � " 2 Aut(X), the map ⇡ � " : X ! P1 is a conic bundle
on X , and Pic(X)ĝ ⇠= Z2.

Proof. Let g 2 Aut(S(R)) be of finite order, and let g : S 99K S be a birational
map with a finite number of imaginary base points, say p1, p1, . . . , pn, pn , that
belong to S as proper or infinitely near points. After blowing up all of them and
their images under powers of g (meaning the orbit of the points by g), we obtain a
smooth projective surface X̃

X̃
⇣

✏✏

g̃=⇣�1g⇣// X̃
⇣

✏✏
S

g //___ S

where g̃ is an automorphism of X̃ .
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Since g is defined at every real point of S, the birational morphism ⇣ restricts to
a diffeomorphism X̃(R)! S(R). After contracting all sets of disjoint (�1)-curves
which are invariant by g̃ and defined over R, we get a minimal pair (X, ĝ), with
X (R) diffeomorphic to the sphere by Proposition 3.4, which can be one of the two
following possibilities (see [12, Theorem 1G]):

(i) Pic(X)ĝ has rank 1 and X is a Del Pezzo surface.
(ii) Pic(X)ĝ has rank 2, there is a morphism X ⇡X

�! P1, and X is a conic bundle.
Recall that Pic(X)ĝ is the part of Pic(X) which is invariant under ĝ 2 Aut(X).

In the first case, there exists " : X ! Z a birational morphism to a minimal
projective smooth real algebraic surface Z . By Proposition 3.4, Z(R) is diffeomor-
phic to the sphere and, by Theorem 3.3, we have Z ' S. Then (KX )2 > 0 and
KX = "⇤(KS) + E1 + E1 + · · · + Er + Er imply (KX )2 = K 2S � 2r and conse-
quently X is the blow-up of 0, 2, 4 or 6 points in S and X is a Del Pezzo surface
of degree 8, 6, 4 or 2 and this gives statement (a). We study this case in detail in
Section 4.

For the second case, we denote by (X,⇡X , ĝ) the minimal real conic bundle
with rank Pic(X)ĝ = 2. Recall that X (R) ' S(R) implies that there is no real
(�1)-curve on X . Forgetting the action of ĝ on X , there is a birational morphism
X ! Z which is the contraction of disjoint imaginary (�1)-curves in fibres. In
this way, we obtain ⇡Z : Z ! P1 a minimal conic bundle with exactly two singular
fibres because Z(R) is diffeomorphic to S(R) again by Proposition 3.4. Now, if we
dismiss ⇡ and keep contracting, we end up with Z̃ a minimal real surface such that
Z̃(R) ' Z(R) and by Theorem 3.3 we have Z̃ ' S implying that Z is the blow-up
of two imaginary points on S. In this case, the surface Z is unique and is the Del
Pezzo surface of degree 6 that will be described in Subsection 4.2. The explicit
conic bundle structure on Z corresponds to the lift of the projection ⇡ : S 99K P1
sending (w : x : y : z) to (w : z). More precisely, ⇡Z = ⇡ � " where " : Z ! S is
the blow-up of two imaginary conjugate points.

4. Del Pezzo surfaces with rk(Pic(X)ĝ) = 1

In this section, we study the pairs (X, g) where X is a Del Pezzo surface and g is
an automorphism of X . This corresponds to the first case in Proposition 3.6.

Recall that the complex surface SC is isomorphic to P1C ⇥ P1C via the isomor-
phism ' : SC! P1C ⇥ P1C (see Remark 2.2).

We denote by f and f the divisors of the fibres of the two projections i.e.
Pic(SC) = Z f � Z f̄ and by abuse of notation we denote again by f and f the
pullback "⇤( f ) and "⇤( f ) in X for " : X ! S a birational morphism.

4.1. Case: (KX )2 = 8

In this subsection, our interest is to present the group, Aut(S), of real automor-
phisms of S and describe the conjugacy classes of it. We call � the corresponding
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antiholomorphic involution in P1C ⇥ P1C via the isomorphism ', which is given by
� (x, y) = (y, x).

Proposition 4.1. The group Aut(S) corresponds, via ', to the subgroup of the
group of complex automorphisms Aut(P1C ⇥ P1C) generated by � : (x, y) 7! (y, x)
and by F = {(A, A) | A 2 PGL(2, C)}. Moreover, Aut(S) ⇠= F o h�i.

Proof. Using theC-isomorphism SC ' P1C⇥P1C, the group Aut(S) is the subgroup
of Aut(P1C ⇥ P1C) consisting of elements that commute with � , i.e. Aut(S) =

Aut(P1C ⇥ P1C, � ). Let (A, B) 2 PGL(2, C)⇥ PGL(2, C). Then (A, B) commutes
with � if and only if (A, B)� (x, y) = � (A, B)(x, y) = � (Ax, By) and hence
(Ay, Bx) =

�
By, Ax

�
and this is equivalent to A = B. Denoting � : (x, y) 7!

(y, x), which corresponds to (w : x : y : z) 7! (w : �x : y : z) on P3, we see that
�� = ��, then Aut(S) = Aut(P1C ⇥ P1C, � ) = F o h�i.

Automorphisms in F fix the divisors of fibres f and f while elements of Aut(S)\F
are thus of the form (x, y) 7! (Ay, Ax) for A 2 PGL(2, C), i.e. automorphisms
exchanging the divisors of the fibres f and f .
Example 4.2. The following automorphisms, already described in the introduction,
are now presented as automorphisms of P1C ⇥ P1C via the isomorphism ':

(1) The rotation r✓ given in Example 2.5 belongs to Aut(S) and corresponds to the
automorphism (x, y) 7! (xe�i✓ , yei✓ ) of P1C ⇥ P1C.

(2) The reflection � given in Example 2.6 belongs to Aut(S) and corresponds to the
automorphism � : (x, y) 7! (y, x) of P1C ⇥ P1C.

(3) The antipodal automorphism of the sphere given in Example 2.7 corresponds to
the automorphism ã : (x, y) 7!

⇣
�
1
y ,�

1
x

⌘
of P1C ⇥ P1C.

Proposition 4.3. Every element of Aut(S) of prime order is conjugate to a rota-
tion r✓ , or to the reflection �, or to the antipodal involution ã, which are given in
Example 4.2.

Proof. We work in Aut(P1C ⇥ P1C) according to Proposition 4.1. If g 2 F then
g : (x, y) 7! (Ax, Āy) for some A 2 PGL(2, C) of finite order. Hence, A is
conjugate to

h
1
e�i✓

i
for some angle ✓ and locally we write x 7! e�i✓ x . This

shows that g is conjugate in F to (x, y) 7! (xe�i✓ , yei✓ ).
If g /2 F, then g : (x, y) 7! (Ay, Āx) for some A 2 PGL(2, C). Since g has

prime order, g2 is the identity so AĀ = 1 in PGL(2, C). Notice that the action of �
on PGL(2, C) is given by the action of � on F in the first component, i.e. �(A) = Ā
and the condition AĀ = 1 is equivalent to A�(A) = 1.

Let A0 2 GL(2, C) be a representative of the element A; then A0A0 =

⇥
� 0
0 �

⇤
for some � 2 C⇤. Since A0 commutes with A0A0, it also commutes with A0. This
implies that � 2 R. Then we multiply A0 with µ 2 C and assume that � = 1
or � = �1. In the first case, there exists B such that B�1A0B =

⇥ 1 0
0 1

⇤
because
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H1(h�i,GL(2, C)) is trivial by [18, Chapter X, Proposition 3]. This implies that
g is conjugate to � by (x, y) 7! (Bx, By). In the second case, we want to find
B 2 GL(2, C) such that B�1AB =

⇥ 0 �1
1 0

⇤
. This will imply that g is conjugate to

the antipodal involution ã in Example 4.2 by the automorphism (x, y) 7! (Bx, By)
as before.

Let e1 =

⇥ 1
0
⇤
, e2 =

⇥ 0
1
⇤
be the two standard vectors, and choose a vector

v1 2 C2 such that (v1, A0v1) is a basis of C2. This is always possible, by taking
v1 2 {e1, e2}. Indeed, otherwise A0 would be diagonal, so A0 · A0 would have
positive coefficients. We choose then B 2 GL(2, C) such that Be1 = v1, Be2 =

A0v1, and observe that

�Be1 = �v1 = A0A0v1 = A0Be2,
Be2 = A0v1 = A0Be1.

Multiplying by B�1, we obtain B�1A0B(e1) = e2 and B�1A0B(e2) = �e1,which
corresponds to

B�1A0B =

⇥ 0 �1
1 0

⇤
.

Remark 4.4. The groupFcorresponds to the orientation-preserving automorphisms
of S denoted by Aut+(S).

In the sequel, we will also need the following result:

Lemma 4.5. Let p = (0 : i : 1 : 0) 2 S. The group of automorphisms of S
preserving the set {p, p̄} is denoted by Aut(S, {p, p̄}) and, via the isomorphism ',
has the following structure

Aut(S, {p, p̄}) ⇠= D o h�, �̃i

where D is the subgroup of F of diagonal elements, the isomorphism �̃ is defined
by (x, y) 7!

⇣
1
x ,

1
y

⌘
, and h�, �̃i ⇠= (Z/2Z)2. Moreover, every element of prime

order is one of the following:

(a) a rotation r✓ , given in Example 4.2; corresponding to one element of D;
(b) conjugate to �̃;
(c) conjugate to �;
(d) equal to ��̃;
(e) equal to the map ã : (x, y) 7!

⇣
�
1
y ,�

1
x

⌘
, which corresponds on the sphere to

the antipodal automorphism.

For the reader’s convenience, the automorphisms introduced above are given ex-
plicitly in Table 4.1.
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P1 ⇥ P1 SC

�

�̃

��̃

ã

(x, y) 7! (y, x)

(x, y) 7!
⇣
1
x ,

1
y

⌘

(x, y) 7!
⇣
1
y ,

1
x

⌘

(x, y) 7!
⇣
�
1
y ,�

1
x

⌘

(w : x : y : z) 7! (w : �x : y : z)

(w : x : y : z) 7! (w : �x : y : �z)

(w : x : y : z) 7! (w : x : y : �z)

(w : x : y : z) 7! (�w : x : y : z)

Table 4.1. List of automorphisms.

Proof. The points p and p̄ correspond, via ', to the points (1 : 0)(0 : 1) and
(0 : 1)(1 : 0), respectively. Diagonal elements in PGL(2, C) yield a subgroup of
F preserving the points p and p̄ which isD. The elements in F which interchange
the two points are elements (A, Ā) in F with A of the form

⇥ 0 1
a 0

⇤
2 PGL(2, C).

Then the subgroup of F which preserves the set {p, p̄} has the structure D o h�̃i
with �̃ the automorphism of F defined by the element

⇥ 0 1
1 0

⇤
and that locally is

described in Table 4.1. As �̃ commutes with � that permutes the points, we get
Aut(S, {p, p̄}) ⇠= D o h�, �̃i.

(a) An element of finite order inD is a rotation r✓ given in Example 4.2.
(b) If g 2 D o h�̃i ⇢ Aut(S, {p, p̄}) and is not a rotation, then g : (x, y) 7!

(Ax, Āy) with A =

⇥ 0 1
b 0

⇤
for some b 2 C. Since A is conjugate to

⇥ 0 1
1 0

⇤
by

the diagonal element
h
1 0
0 1/
p

b

i
, then g is conjugate to �̃ in Aut(S, {p, p̄}).

(c) If g 2 D o h�i ⇢ Aut(S, {p, p̄}) and is not a rotation, then g : (x, y) 7!
(Dy, D̄x) with D =

⇥ 1 0
0 b

⇤
for some b 2 C. Then AĀ = 1 because g is

of prime order and the action of � on D is exactly the conjugation and the
equality AĀ = 1 is the same as A�(A)=1. Then g is conjugate to � because
the group D = {D 2 PGL(2, C) | D is diagonal} is isomorphic to C⇤ and
H1(h�i,D) = {1} by Hilbert’s Theorem 90.

(d, e) If g 2 D o h��̃i and is not a rotation, then g = (d,��̃) for d 2 D of
finite order and in this case, d commutes with ��̃ implying that d has order
1 or 2 since the order of g is prime. Then g is either ��̃ and is given by
the map (x, y) 7! (1/y, 1/x) on P1 ⇥ P1, which is the map (w : x : y :

z) 7! (w : x : y : �z) on S or is given by the map (x, y) 7! (�1/y,�1/x)
on P1 ⇥ P1 and corresponds, on the sphere, to the antipodal automorphism
(w : x : y : z) 7! (�w : x : y : z).

4.2. Case: (KX )2 = 6

Proposition 4.6. Let ⇣ : X ! S be the blow-up of two imaginary conjugate points
p, p. Then ⇣Aut(X)⇣�1 ⇢ Aut(S), so the pair (X,Aut(X)) is not minimal.
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Proof. On X , there are six (�1)-curves: the two exceptional divisors Ep and Ep
and the four curves corresponding to the strict transforms of the fibres f and f
passing through one point denoted by f p, f p, f p, and f p.

Since f p \ f p = f p\ f p and f p \ f p = f p\ f p, these two intersection points
are real (see the circles � in Figure 4.1) and the other four vertices of the hexagon
are imaginary, so any action of Y can only exchange the two lines Ep and Ep and
this implies that (X,Aut(X)) is not minimal.

!!!
fp """

fp

EpE p

"""
f p !!!

f p

#
p, p

p
f p

f p

p

f p

f p

Figure 4.1. Blow-up of p, p̄.

4.3. Case: (KX )2 = 4

There is ⇣ : X ! S the blow-up of four imaginary points p, p, q, q. We have 16
(�1)-curves in X : the exceptional divisors Ep, Ep, Eq , and Eq ; the strict transform
of the fibres f and f passing through one point that we denote by f p, f p, fq , fq ,
f p, f p, fq , and fq as in the previous subsection; and the strict transform of the
curves equivalent to f + f (e.g., of bidegree (1, 1)) passing through three of the
four points that we denote by f p pq , f p pq , f pqq , and f pqq . These (�1)-curves form
the singular fibres of ten conic bundle structures on X with four singular complex
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fibres each and are the following:

(1) f + f � Ep � Eq (6) f + f � Ep � Eq
(2) f + f � Ep � Eq (7) f
(3) f + f � Ep � Ep (8) f
(4) f + f � Eq � Eq (9) 2 f + f � Ep � Ep � Eq � Eq
(5) f + f � Ep � Eq (10) f + 2 f � Ep � Ep � Eq � Eq .

The anticanonical divisor of X is �KX = 2 f + 2 f � Ep � Ep � Eq � Eq . We
collect these conic bundles in pairs such that the sum of every pair is �KX :

P1 :={ f + f � Ep � Ep, f + f � Eq � Eq},
P2 :={ f + f � Ep � Eq , f + f � Ep � Eq},
P3 :={ f + f � Ep � Eq , f + f � Ep � Eq},
P4 :={ f, f + 2 f � Ep � Ep � Eq � Eq},
P5 :={ f , 2 f + f � Ep � Ep � Eq � Eq}.

Since KX is invariant under any automorphism of X , then Aut(X) acts on the set of
pairs obtaining the following exact sequence.

0 // FR //

✓

Aut(X)
⇢ //

✓

Sym5

FC // Aut(XC)
⇢ // Sym5

(4.1)

where FR is naturally a subgroup of F52. An element (a1, . . . , a5) exchanges the
two conic bundles of the pair Pi if ai = 1 and preserves each one if ai = 0. We
represent in Figure 4.2 the picture of the five pairs of conic bundles and with the
next one, how the anti-holomorphic involution � acts on them.
Remark 4.7. The image of ⇢ in the exact sequence (4.1) is contained in the group
h(2 3), (4 5)i ⇢ Sym5 as a consequence of the action of the antiholomorphic invo-
lution � . (See Figure 4.2).

Lemma 4.8. Let p, q 2 P1C ⇥ P1C ' SC be two distinct imaginary non conjugate
points such that the blow-up of p, p̄, q, q̄ is a Del Pezzo surface. Then up to
automorphisms of the sphere, the points p and q can be chosen to be (1 : 0)(0 : 1)
and (1 : 1)(1 : µ) for some µ 2 C \ {0,±1}, respectively.

Proof. Let p = (r1 : s1)(u1 : v1) 2 P1C ⇥ P1C. Applying the automorphism
(A, A) 2 F where A =

h
v1 �u1
�s1 r1

i
maps p into (1 : 0)(0 : 1) and p̄ into (0 : 1)(1 :

0). Now, we may assume that p = (1 : 0)(0 : 1) and p̄ = (0 : 1)(1 : 0) and
q = (� : 1)(⇢ : 1) with �, ⇢ 2 C⇤ because by hypothesis the points are not on the
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f f Ep Ep

f f E Eq q

P1

f f Ep Eq

f f Ep Eq

P2

f f Ep Eq

f f Ep Eq

P3

f

KX f

P4

f

fKX

P5

P1

!!
!

!

σ

σ

σ σ

σ

σ

P2

"#
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+    

+    +    
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–
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–––

–
–
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–

–– –

––

Figure 4.2. Representation of the five pairs of conic bundles and the action of � on
them.

same fibres by any projection. The automorphism (x, y) 7! (�x, �̄y) fixes p and p̄
and sends q into (1 : 1)(1 : µ) and q̄ into (1 : µ̄)(1 : 1).

Notice that when µ = 1 the points q and q̄ are equal; when µ = 0 the points
p and q̄ are on the same fibre, as well as the points p̄ and q; and finally, when
µ = �1 there is a diagonal passing through the four points. Hence, the blow-up of
p, p̄, q, q̄ is not a Del Pezzo surface.

Proposition 4.9. (a) The kernel of the sequence (4.1) is

FR = {(a1, . . . , a5) 2 (F2)5 | a1 + a2 + a3 = 0 and a4 + a5 = 0} ⇠= (F2)3,

and is generated by the elements �1 = (0, 1, 1, 0, 0), �2 = (1, 0, 1, 0, 0), and
� = (0, 0, 0, 1, 1) which correspond to the automorphisms of X with coordi-
nates in P4 given by

�1 : (y1 : y2 : y3 : y4 : y5) 7! (y1 : y2 : �y3 : y4 : �y5),
�2 : (y1 : y2 : y3 : y4 : y5) 7! (y1 : y2 : y3 : �y4 : �y5),
� : (y1 : y2 : y3 : y4 : y5) 7! (y1 : y2 : �y3 : �y4 : �y5).

(b) The equation of the surface X is given by the intersection of the following two
quadrics,

Q1 : (µ� µµ + µ)y21 � 2y1y2 + y22 + (1� µ + µµ� µ)y23 + y24 = 0,
Q2 : µµy21 � 2µµy1y2 + (µ� 1+ µ)y22 + µµy24 + (1� µ + µµ� µ)y25 = 0.

Proof. We first prove that FR is contained in the group {(a1, . . . , a5) 2 (F2)5 | a1+
a2+a3 = 0 and a4+a5 = 0}. To do so, we focus on the pairs P4 and P5 and observe
that the action of the antiholomorphic involution on those pairs (see Figure 4.2)
implies that for an automorphism g of X , which is in the kernel, is of the form
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either (⇤, ⇤, ⇤, 0, 0) or (⇤, ⇤, ⇤, 1, 1), which is the same as the condition a4+a5 = 0.
Hence, a1 + a2 + a3 = 0 because over C, the kernel of the map ⇢ : Aut(XC) !
Sym5 is the set {(a1, . . . , a5) 2 (F2)5 |

P
ai = 0} [5, Lemma 9.11]. We show

the existence of � , �1, and �2 and compute the equation of the surface X using the
fact that the anticanonical divisor �KX is very ample and then the linear system of
| � KX | gives an embedding into P4 as an intersection of two quadrics. We study
then the following diagram

X
p,p,q,q

✏✏

� � |�KX | // P4

S
⇠

;;
w

w
w

w

where the vertical map is the blow-up of four imaginary points p, p, q, q of S
viewed SC as P1C ⇥ P1C via the isomorphism ' given in Remark 2.2. As �KX =

2 f + 2 f � Ep � Ep � Eq � Eq , the linear system | � KX | corresponds to the
curves of S of bidegree (2, 2) viewed on P1C ⇥ P1C ' SC passing through the four
blow-up points. By Lemma 4.8, we may assume that p = (1 : 0)(0 : 1) and
q = (1 : 1)(1 : µ) for some µ 2 C⇤ \ {0,±1}, and then p̄ = (0 : 1)(1 : 0) and
q̄ = (1 : µ̄)(1 : 1). In coordinates (r : s)(u : v) on P1C ⇥ P1C, a basis of the linear
system |� KX | is given by:

01 = sv(r � s)(v � u) ( f � Ep) + ( f � Ep) + ( f � Eq)
+( f � Eq)

02 = (vs � µru)(r � s)(v � u) ( f + f � Ep � Ep � Eq) + Eq
+( f � Eq) + ( f � Eq)

03 = ur(v � µu)(s � µr) ( f � Ep) + ( f � Ep) + ( f � Eq)

+( f � Eq)

04 = (vs � µru)(µ(1� µ)ru ( f + f � Ep � Ep � Eq) + Eq
+(µ� µ)su + (µ� 1)sv) +( f + f � Ep � Eq � Eq) + Ep

05 = (µ(µ� 1)ru + (µ� µ)rv ( f + f � Ep � Eq � Eq) + Eq
+(1� µ)sv)u(s � µr) +( f � Ep) + ( f � Eq)

The computation of the actions of �1, �2, and � on Pic(X) with respect to the basis
{01,02,03,04,05} described above, gives the following elements:

M1 =

0
BB@
0 �µ�µ

µ 1 µ�µ 1�µ

0 1 0 0 0
1 0 0 µ�µ 1�µ

0 1
µ 0 �1 0

0 0 0 0 �1

1
CCA , M2 =

0
BBB@
1 2µ�µ

µ 0 0 1�µ

0 �1 0 0 0
0 1 1 0 µ�2µ+1
0 � 1µ 0 1 �1
0 0 0 0 �1

1
CCCA , and M =

0
BB@
0 �µ�µ

µ 1 µ�µ 0
0 1 0 0 0
1 0 0 µ�µ µ�µ

0 1
µ 0 �1 1

0 0 0 0 1

1
CCA .
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By a change of basis, the matrices M1, M2, and M can be diagonalised and the
map ⇠ : S! P4 is given by ((r : s), (u : v)) 7! N · yt where

N =

0
BB@
1 1 �1 �µ�µ µ

0 � 1
µ 0 2 �1

1 1 1 µ�µ 1�µ
0 0 0 0 �i
0 � 1

µ 0 0 0

1
CCA and y = (01, . . . ,05).

With this new basis, the surface X , which is the image of the anticanonical embed-
ding, is given by the intersection of the two quadrics Q1 and Q2 in the statement as
well as the automorphisms �1, �2, and � .

Proposition 4.10. The image of the sequence (4.1), ⇢(Aut(X)) ⇢ Sym5, is h(2 3)
(4 5)i if |µ| = 1 and trivial otherwise.

Proof. As already mentioned in Remark 4.7, ⇢(Aut(X)) ⇢ h(2 3), (4 5)i. We show
that the elements (2 3) and (4 5) do not belong to the image while (2 3)(4 5) does
it if and only if |µ| = 1.

We start explaining why there is no automorphism of type (2 3). If there were
an automorphism ↵ exchanging the pair P2 with P3 then ↵ would act on P2 and P3

either like
•

•

P2

-

-

�

�
•

•

P3

or like
•

•

P2

PPPPq⇣⇣
⇣⇣1⇣⇣⇣⇣) PP
PPi •

•

P3

. We may assume that the action on the

pairs P2 and P3 is the first since we can multiply the second one by the element of
FR that corresponds to �1 = (0, 1, 1, 0, 0). On the pairs P4 and P5, the action of

↵ is either
·

·

P4

·

·

P5

or
•

•

P4

6?
•

•

P5

6? . As before, we may assume that it is the first

one by multiplying the second one by � = (0, 0, 0, 1, 1). Summarising, we have to
study only two cases:

(a)
P1 P2

!
!

"
"

P3 P4 P5

(b)
P1

#$

P2

!
!

"
"

P3 P4 P5

.

.
.
. .

.

.

. .
. .

In both cases (a) and (b), f , f are fixed and hence f + f is fixed. In the case (a),
looking at the pair P1 we see that f + f � Ep � Ep, f + f � Eq � Eq are fixed,
then Ep + Ep and Eq + Eq are fixed while the action on pairs P2 and P3 gives
that ↵ interchanges Ep + Eq with Ep + Eq and Ep + Eq with Ep + Eq . This
implies that Ep, Ep are fixed and Eq , Eq are exchanged. So ↵ would come from
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an automorphism ↵0 of P1 ⇥ P1 which fixes p, p and interchanges q and q. Let us
see that such an ↵0 does not exist.

The automorphism ↵0 would be given by (x, y) 7! (Ax, Ay) where A 2
PGL(2, C) with ↵0(p) = p, ↵0(p) = p then ↵0 : (x, y) 7! (�x, �y) with � 2 C
under the choice of the points p = (1 : 0)(0 : 1) and q = (1 : 1)(1 : µ) for
µ /2 {0,±1} (Lemma 4.8). Since ↵0(q) = q, we have � = µ and �µ = 1 and hence
µ2 = 1, which gives a contradiction. In the case (b), ↵ is not even an automorphism
of the Picard group because the matrix corresponding to an action described in (b)
with basis { f, f , Ep, Ep, Eq , Eq} is0

B@
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1/2 �1/2 1/2 1/2
0 0 �1/2 1/2 1/2 1/2
0 0 1/2 1/2 �1/2 1/2
0 0 1/2 1/2 1/2 �1/2

1
CA .

Therefore, an automorphism that acts as (2 3) does not belong to the image.
Now, we prove that automorphisms of type (4, 5) are not in the image and we

proceed in the same way as we did for (2 3). The action of an automorphism of

type (4 5) on the pairs P4 and P5 is either like
•

•

P4

-�

-�
•

•

P5

or like
•

•

P4

H
HHj
�
��⇡�
��*
H
HHY

•

•

P5

.

Multiplying by (0, 0, 0, 1, 1) we may assume that it is the first one. With respect to
the action on the first three pairs P1, P2, and, P3 we assume that the action on P1
and P3 is the identity since we can multiply by (1, 1, 0, 0, 0) or by (0, 1, 1, 0, 0).
Then, we have two cases to focus on:

(a)
·

·

P1

·

·

P2

·

·

P3

•

•

P4

-�

-�
•

•

P5

(b)
·

·

P1

•

•

P2

6?
·

·

P3

•

•

P4

-�

-�
•

•

P5

.

The case (a) corresponds to an automorphism which interchanges f with f and
fixes Ep, Ep, Eq , and Eq . It would be the lift of an automorphism of S fixing 4
points which does not exist. On the other hand, the case (b) is not an automorphism
of the Picard group because the matrix corresponding to it is

0
B@
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1/2 1/2 �1/2 1/2
0 0 1/2 1/2 1/2 �1/2
0 0 �1/2 1/2 1/2 1/2
0 0 1/2 �1/2 1/2 1/2

1
CA .
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Finally, we check that there is an automorphism which acts as (2 3)(4 5) if
and only if |µ| = 1. As before, we can see that automorphisms corresponding to
(2 3)(4 5) are, up to composition with an element of FR, of the form

(a)
·

·

P1

•

•

P2

-

-

�

�
•

•

P3

•

•

P4

-�

-�
•

•

P5

(b)
•

•

P1

6?
•

•

P2

-

-

�

�
•

•

P3

•

•

P4

-�

-�
•

•

P5

.

For the case (a), looking at the pairs P4 and P5 we see that f and f are exchanged
and then f + f is fixed. The exchange of pairs P2 and P3 gives that f + f � Ep �

Eq and f + f � Ep � Eq are interchanged and so are f + f � Ep � Eq and
f + f � Ep � Eq . This implies that Ep + Eq with Ep + Eq are interchanged and
Ep + Eq with Ep + Eq are interchanged, respectively. So an automorphism of type
(2 3)(4 5) for case (a) comes from an automorphism � ofP1⇥P1 which interchanges
f with f , q with q and fixes p and p. We want to show that � exists if and only
if |µ| = 1. So � is given by � : (x, y) 7! (Ay, Ax) satisfying A

⇥ 0
1
⇤

=

⇥ 1
0
⇤

and A
⇥ 1
0
⇤

=

⇥ 0
1
⇤
. This implies that A =

⇥ 0 �
1 0

⇤
. Since � interchanges q with q,

then
h
0 �
1 0

i ⇥ 1
µ

⇤
=

⇥ 1
µ

⇤
=

h
�µ
1

i
and

⇥ 0 �
1 0

⇤ ⇥ 1
1
⇤

=

⇥ 1
1
⇤

=

⇥
�
1
⇤
. Hence, � = 1 and

µµ = 1. Therefore this automorphism exists if |µ| = 1.
The case (b) is not possible because the matrix of the action of it on the Picard

group with basis { f, f , Ep, Ep, Eq , Eq} is
0
B@
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1/2 �1/2 1/2 1/2
0 0 �1/2 1/2 1/2 1/2
0 0 1/2 1/2 �1/2 1/2
0 0 1/2 1/2 1/2 �1/2

1
CA

and this shows that it is not an automorphism of the Picard group.

Proposition 4.11. If g 2 Aut(X) and Pic(X)g has rank one, then g is either ↵1 =

(1, 1, 0, 1, 1) or ↵2 = (1, 0, 1, 1, 1) in FR which are given by

↵1 : (y1 : y2 : y3 : y4 : y5) 7! (y1 : y2 : y3 : y4 : �y5),
↵2 : (y1 : y2 : y3 : y4 : y5) 7! (y1 : y2 : �y3 : y4 : y5).

Proof. Let g 2 Aut(X) of prime order. If g 2 FR, g = (a1, . . . , a5) and the condi-
tion on the rank forces that the first component a1 = 1, g is thus either (1, 1, 0, ⇤, ⇤)
or (1, 0, 1, ⇤, ⇤). Moreover, we observe that g must interchange the two conic bun-
dles in the pairs P4 and P5 because otherwise, g( f + f̄ ) = f + f̄ 2 Pic(X)g im-
plying that the rank of Pic(X)g > 1 since f + f̄ is not multiple of �KX . Then the
two possibilities for g when g 2 FR are ↵1 = (1, 1, 0, 1, 1) and ↵2 = (1, 0, 1, 1, 1).
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Now if g /2 FR, Proposition 4.10 tells us that the action of Aut(X) on the five
pairs is h(2 3)(4 5)i. To ask that Pic(X)g ⇠= Z forces that the two conic bundle
structures in the first pair are interchanged for the same reason as before. On the
other hand, the action of (2 3)(4 5) on the pairs P2 and P3 cannot be of the form

•

•

P2

PPPPq⇣⇣
⇣⇣1

�

�
•

•

P3

(or the one reversing the arrows) because in this case the order of g is
4. In addition, we observe that if the action of (2 3)(4 5) on the pairs P4 and P5 is

as in this picture:
•

•

P4

-�

-�

•

•

P5

, the divisor f + f̄ is preserved under g and � , then

f + f̄ 2 Pic(X)g. This implies that rk(Pic(X)g) > 1.
We have then to check the remaining cases,

(1) •

•

P1

6?
•

•

P2

6?
•

•

P3

•

•

P4

6?
•

•

P5

6?

(2) •

•

P1

6?
•

•

P2

•

•

P3

6?
•

•

P4

6?
•

•

P5

6?

(3) •

•

P1

6?
•

•

P2

-

-

�

�
•

•

P3

•

•

P4

H
HHj
�
��⇡�
��*
H
HHY

•

•

P5

(4) •

•

P1

6?
•

•

P2

PPPPq⇣⇣
⇣⇣1⇣⇣⇣⇣) PP
PPi

•

•

P3

•

•

P4

H
HHj
�
��⇡�
��*
H
HHY

•

•

P5
The case (2) can be seen from case (1) conjugating it by the automorphism of the
Picard group interchanging the divisors Eq with Eq̄ and fixing f , f̄ , Ep, and E p̄.
Now, the action of the automorphisms of the case (1) on the Picard group Pic(X)
with respect to the basis { f, f , Ep, Ep, Eq , Eq} is

0
B@

1 2 1 1 1 1
2 1 1 1 1 1
�1 �1 �1 �1 �1 0
�1 �1 �1 �1 0 �1
�1 �1 �1 0 �1 �1
�1 �1 0 �1 �1 �1

1
CA .

In this case that corresponds to ↵1, the eigenspace for the eigenvalue 1 is generated
by the two conic bundles of the pair P3 which are not in Pic(X)g because of the
action of � interchanges them but whose sum is �KX . Hence, Pic(X)g ⇠= Z and
therefore in case (2) as well when g = ↵2. By Proposition 4.9, ↵1 = �1�2� and
↵2 = �2� which are exactly the maps in the statement.
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Finally, for cases (3) and (4), the element g is not even an automorphism of the
Picard group because matrices corresponding to an action described in these cases
with basis { f, f , Ep, Ep, Eq , Eq} are

0
BBB@

2 1 1 1 1 1
1 2 1 1 1 1
�1 �1 � 12 �

3
2 �

1
2 �

1
2

�1 �1 � 32 �
1
2 �

1
2 �

1
2

�1 �1 � 12 �
1
2 �

3
2 �

1
2

�1 �1 � 12 �
1
2 �

1
2 �

3
2

1
CCCA and

0
BBB@

2 1 1 1 1 1
1 2 1 1 1 1
�1 �1 � 32 �

1
2 �

1
2 �

1
2

�1 �1 � 12 �
3
2 �

1
2 �

1
2

�1 �1 � 12 �
1
2 �

1
2 �

3
2

�1 �1 � 12 �
1
2 �

3
2 �

1
2

1
CCCA , respectively.

There are automorphisms of Del Pezzo surfaces of degree 4 which are minimal but
preserve a conic bundle structure. These will be needed in the sequel. We give here
a special family of examples.

Lemma 4.12. If |µ| = 1, then X admits two automorphisms g1, g2 2 Aut(X) of
order 2, acting on the conic bundles like

g1 :

·

·

P1

•

•

P2

-

-

�

�
•

•

P3

•

•

P4

H
HHj
�
��⇡�
��*
H
HHY

•

•

P5

g2 :

·

·

P1

•

•

P2

PPPPq⇣⇣
⇣⇣1⇣⇣⇣⇣) PP
PPi

•

•

P3

•

•

P4

H
HHj
�
��⇡�
��*
H
HHY

•

•

P5

and having the following properties:

(a) The two automorphisms g1, g2 are conjugate by �2 2 Aut(X) and satisfy
rk(Pic(X)gi ) = 2 for i = 1, 2.

(b) Both g1 and g2 preserve the two real conic bundles of the pair P1. The action
on one is trivial on the basis, but non-trivial on the other one.

(c) The fixed points of gi on X (C) consist of two isolated real points, and one
smooth rational curve having no real point.

(d) The action of g1, g2 on P1C ⇥ P1C, via the blow-up X ! S and the isomorphism
' : SC! P1C ⇥ P1C, are respectively given by

(s, v) 99K
✓
s(µsv � (1+ µ)v + µ)

µ(�sv + (1+ µ)s � 1)
,
µv(�sv + (1+ µ)s � 1)

µsv � (1+ µ)v + µ

◆

(s, v) 99K
✓
�sv + (1+ µ)s � 1

s(µsv � (1+ µ)v + µ)
,

µsv � (1+ µ)v + µ

v(�sv + (1+ µ)s � 1)

◆

on the chart {(1 : s), (1 : v) | (s, v) 2 A2C}.



PRIME ORDER BIRATIONAL DIFFEOMORPHISMS OF THE SPHERE 931

Proof. The existence can be checked by using Proposition 4.10 and the description
of FR. Using the action on the conic bundles to compute the matrices of g1, g2 with
respect to the basis { f, f̄ , Ep, E p̄, Eq , Eq̄}, we respectively get

0
B@

2 1 1 1 1 1
1 2 1 1 1 1
�1 �1 0 �1 �1 �1
�1 �1 �1 0 �1 �1
�1 �1 �1 �1 �1 0
�1 �1 �1 �1 0 �1

1
CA and

0
B@

2 1 1 1 1 1
1 2 1 1 1 1
�1 �1 �1 0 �1 �1
�1 �1 0 �1 �1 �1
�1 �1 �1 �1 0 �1
�1 �1 �1 �1 �1 0

1
CA .

Using the fact that the points p, p̄, q, q̄ on P1C ⇥ P1C are respectively (1 : 0)(0 : 1),
(0 : 1)(1 : 0), (1 : 1)(1 : µ), (1 : µ̄)(1 : 1) and the above matrices, we obtain
the explicit description of the birational maps of P1C ⇥ P1C, given in (d). Assertion
(a) follows from the description of g1, g2; it remains to show (b), (c). The singular
fibres of the two conic bundles of the pair P1 are given in Figure 4.3, together with
the action of g1, which follows from the description of the matrix above. This shows

(1) f + f � Ep � Ep

A
A
A
A
A

f p

�
�
�
�
�

f p

A
A
A
A
A

f p

�
�
�
�
�

f p

A
A
A
A
A

Eq

�
�
�
�
�

f p pq

A
A
A
A
A

Eq

�
�
�
�
�

f p pq
6

?

6

?

(2) f + f � Eq � Eq

A
A
A
A
A

fq

�
�
�
�
�

fq

A
A
A
A
A

fq

�
�
�
�
�

fq

A
A
A
A
A

Ep

�
�
�
�
�

f pqq

A
A
A
A
A

Ep

�
�
�
�
�

f pqq

�
�
�✓@
@
@R@
@
@I �
�
� -�

� -

Figure 4.3. Singular fibres of the two conic bundles, together with the action of g1.

that the action on the basis is trivial in the first case and non-trivial in the second.
The fixed points are then contained in the two fibres of the second fibration that are
fixed, and which are then two smooth rational curves. Looking at the first fibration,
we obtain two fixed points in each smooth fibre, three points in the first two singular
fibres and one in the last two. The only real points in these fibres are f p \ f p and
f p̄ \ f p̄, so we obtain on X (C) exactly two isolated real points and one smooth
rational curve with no real point.

Lemma 4.13. Let g 2 Aut(X) of prime order that preserves a real conic bundle
structure and such that rk(Pic(X)g) = 2; in particular, g preserves the pair P1.
Then, one of the following occurs:

(1) there is h 2 C(g) ⇢ Aut(X), the centraliser of g, whose action on P1 is the
exchange of the two conic bundle structures. In other words, the following dia-
gram commutes where ⇣1, ⇣2 are the blow-up of four points on SC and ⇡1, ⇡2 are
the morphisms corresponding to the conic bundle structures for f + f̄ �Ep�E p̄
and f + f̄ � Eq � Eq̄ , respectively.

(2) The map g is equal to g1 or g2 given in Lemma 4.12.

Proof. Non trivial automorphisms in FR preserving the first pair P1 are �1, � , and
�1� . In this case, we are in (1) and can choose h = �2.



932 MARIA FERNANDA ROBAYO

When g /2 FR, then g exchanges P2 and P3. This plus the fact that g has prime
order implies that g has order 2. On the other hand, the action of g on the pairs

P4 and P5 cannot be like
•

•

P4

-�

-�
•

•

P5

, since this would imply that rk(Pic(X)g) > 2

since in this case, g also fixes f + f̄ . Then, the action of g on the conic bundles is
one of the two given in Lemma 4.12.

4.4. Case: (KX )2 = 2

The birational morphism ⇣ : X ! S is the blow-up of 3 pairs of conjugate points,
say p, p̄, q, q̄, r, r̄ 2 S. Since X is a Del Pezzo surface of degree two, the linear
system of the anticanonical divisor defines a double covering | � KX | : X ! P2
ramified over a quartic 0. From the fact that X (R) ' S(R), we see that 0 is a real
smooth quartic with one oval. We see X as w2 = F(x, y, z) in P(2, 1, 1, 1) and 0
the zero set of F .

Proposition 4.14. There exists an exact sequence

1 //
h⌫i // Aut(X) // Aut(0) // 1

where ⌫ represents the Geiser involution which exchanges the two points of any
fibre i.e. the involution given by (w, x, y, z) 7! (�w, x, y, z).

Proof. We have the following exact sequence

1 //
h⌫i // Aut(X) // Aut(P2,0) // 1 (4.2)

where Aut(P2,0) denotes the automorphisms of P2 which preserves the quartic
and is isomorphic to Aut(0) because the restrictions gives a map from Aut(P2,0)
to Aut(0) which is injective since the only automorphism that preserves the quartic
pointwise is the identity (an automorphism of P2 can only fixed 3 points or a point
and a line but not a quartic). To see that the restriction map is surjective, we compute
the canonical divisor of the quartic by adjunction formula getting that K0 = (KP2+
0)|0 = (�3L+4L)|0 = L|0 . Hence, every automorphism of 0 extends to P2.

Lemma 4.15. (a) Let C be a (�1)-curve in X , then the (�1)-curve ⌫(C) is equal
to ⌫(C) = �KX � C .

(b) rk(Pic(X)⌫) = 1. In particular, the pair (X, h⌫i) is minimal.
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Proof. (a) We call " the map defined by | � KX |. Then, "(C) is a curve of degree
d for some d. If we call D = "⇤("(C)), we have that D = d(�KX ) 6= C .
This implies that D = C + C 0 = d(�KX ) for C 0 a (�1)-curve, C 0 = ⌫(C).
Intersecting D with �KX we have 2 = 2d and hence d = 1. Then ⌫(C) =

C 0 = �KX � C .
(b) Let C be a (�1)-curve in X , then by item (a) we have C · ⌫(C) = C(�KX �

C) = 2. Moreover, the fact that Pic(XC) is generated by the divisors in the
set A := {�KX , Ep, E p̄, Eq , Eq̄ , Er , Er̄ } then, for any divisor D 2 Pic(XC),
D =

P
aiCi with ai 2 Z and Ci 2 A. We have D+⌫(D) = D+ai

P
⌫(Ci ) =

ai (
P
�KX � Ci ) = m(�KX ) for some m 2 Z.

Lemma 4.16. Let g 2 Aut(X) be of prime order and suppose g 6= ⌫. Then
rk(Pic(X)g) 6= 1.

Proof. Let g 2 Aut(X). Since a basis of Pic(XC) ⇠= Z8 is { f, f̄ , Ep, E p̄, Eq , Eq̄ ,
Er , Er̄ }, we get that the action of g on Pic(X) = Pic(XC)� is an element in
GL(4, Z) ⇢ GL(4, C) and is diagonalisable in GL(4, C) for g 2 Aut(X). If g
is an involution in Aut(X) with rk(Pic(X)g) = 1, the only possibility for the action

of g on Pic(X)g in GL(4, C) is given by

 
1
�1
�1
�1

!
assuming that the first entry

1 corresponds to the anticanonical divisor for some basis containing it. On the other
hand, since every element g in Aut(X) commutes with ⌫, then in the same basis,
g and ⌫ are conjugate to a diagonal action as the element presented above. This
implies that g and ⌫ are the same. Let g 2 Aut(X) be of prime order p � 3. We
obtain then an element of GL(4, Z) of order p which fixes KX . Then, the char-
acteristic polynomial Q 2 Z[x] vanishes at 1 and all other roots in C are roots
of the polynomial x p�1 + · · · + 1, irreducible over Q. Hence, Q is a multiple of
(x � 1)(x p�1 + · · · + 1) = x p � 1. This implies that p  4, so p = 3 and then
Q = (x � 1)2(x2 + x + 1). Therefore Pic(X)g ⇠= Z2.

5. Conic bundle case

In this section, we describe the elements in Aut(S(R)) of prime order corresponding
to the second case of Proposition 3.6, i.e. that belong to the group Aut(S(R),⇡).
Let us recall the following notation:

Bir(S,⇡) ={g 2 Bir(S) | 9↵ 2 Aut(P1) such that ↵⇡ = ⇡g},
Aut(S(R),⇡) ={g 2 Aut(S(R)) | 9↵ 2 Aut(P1) such that ↵⇡ = ⇡g},

and that 8 : Bir(S,⇡)! Aut(P1) is the corresponding group homomorphism (see
the exact sequence (2.2)) whose kernel is denoted by Bir(S/⇡) and by Aut(S(R)/⇡)
for the corresponding group homomorphism Aut(S(R),⇡)! Aut(P1).
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5.1. Image of the action on the basis

Recall that ⇡ : S 99K P1 is the map given by ⇡(w : x : y : z) = (w : z). Hence,
the natural coordinates on P1 are (w : z) or simply (1 : z) for affine coordinates.
With the choice of these coordinates, the group Aut(P1) is naturally isomorphic to
PGL(2, R): an element

⇥ a b
c d

⇤
2 PGL(2, R) acts as

z 7!
az + b
cz + d

or (w : z) 7! (cz + dw : az + bw).

In the following two lemmas, the image of the map 8 : Bir(S,⇡)! Aut(P1)
in the sequence (2.2) is presented and the image of elements of finite order is char-
acterised.

Lemma 5.1. The image of 8 : Bir(S,⇡)! Aut(P1) is the same as the image of its
restriction toAut(S(R),⇡). The corresponding subgroup ofAut(P1) is given by the
following semidirect product, where the generator of Z/2Z is the automorphism
⌘ : z 7! �z.

8(Bir(S,⇡)) = 8(Aut(S(R),⇡)) =

�⇥ 1 b
b 1

⇤
; b 2 (�1, 1) ⇢ R

 
o Z/2Z (5.1)

Proof. Since the sphere S(R) is preserved by elements in Bir(S,⇡) (respectively
in Aut(S(R),⇡)) and is mapped subjectively to the interval [�1, 1] ⇢ R on the
basis of the fibration. This interval is then invariant on the basis and the group
8(Bir(S,⇡)) is contained in the group generated by z 7! z+b

bz+1 , for b 2 (�1, 1) ⇢
R, and by z 7! �z because those are exactly the automorphisms of P1 which fix or
interchange the points �1 and 1. On the other hand, for each b 2 (�1, 1) ⇢ R the

map gb : (x, y, z) 7!
✓
x
p

1�b2
bz+1 , y

p

1�b2
bz+1 , z+b

bz+1

◆
belongs to Aut(S(R),⇡) and is

sent to
⇥ 1 b
b 1

⇤
and the map ⌘̃ : (x, y, z) 7! (x, y,�z) is sent to

⇥
�1 0
0 1

⇤
, correspond-

ing to z 7! �z, which proves Equality (5.1).

Lemma 5.2. Let g 2 Aut(S(R),⇡) be of finite order. After conjugation in
Aut(S(R),⇡), the map 8(g) is either the identity or

⇥ 1 0
0 �1

⇤
.

Proof. Elements of the form
⇥ 1 b
b 1

⇤
with b 2 (�1, 1) \ {0} are not of finite order;

indeed the eigenvalues of
⇥ 1 b
b 1

⇤
are 1 ± b, so the element

⇥ 1 b
b 1

⇤
is conjugate toh 1+b

1�b 0
0 1

i
in PGL(2, R) and 1+b

1�b 2 R⇤ has infinite order because 1+b1�b 6= �1. More-

over,
⇥ 1 �b
b �1

⇤
is conjugate to

⇥ 1 0
0 �1

⇤
by the matrix

⇥ 1 c
c 1

⇤
with c =

1±
p

1�b2
b .

5.2. Algebraic description of Bir(S/⇡)

Extending the scalars from R to C, the general fibre of ⇡ : SC ! C, given by
(x, y, z) 7! z, is rational. The group of birational maps of SC preserving any
general fibre of ⇡ is then equal to PGL(2, C(z)). The group Bir(S/⇡) can thus be
viewed as a subgroup of PGL(2, C(z)).
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Definition 5.3.
(i) For each A 2 GL(2, C(z)), we define Ā 2 GL(2, C(z)), as the matrix ob-
tained by replacing every coefficient of every entry of A by its conjugate.

(ii) In the same way, we define Ā for any element in PGL(2, C(z)) and we observe
that Ā does not depend on the representative because if A1, A22PGL(2, C(z))
are in the class of the element A then A1 = �A2 for some �2C(z)⇤ and then
Ā1 = �̄ Ā2 implying that Ā1 and Ā2 are both in the class of Ā.

Lemma 5.4.
(a) The complex surface SC is birational to A2C via  : (x, y, z) 99K (x � iy, z).
(b) The group PGL(2, C(z)) acts on A2C via

PGL(2, C(z))⇥A2C 99K A2C
✓

↵(z) �(z)
� (z)�(z)

�
, (t, z)

◆
99K

✓
↵(z)t + �(z)
� (z)t + �(z)

, z
◆ (5.2)

and thus also acts on SC via the conjugation by  �1.
(c) For any A 2 PGL(2, C(z)), the corresponding actions of A and ⌧ Ā⌧ on

SC via  , denoted by A and ⌧ ¯A⌧ respectively, are conjugate by the anti-
holomorphic involution � (i.e. � : (x,y,z) 7!(x̄,ȳ,z̄) ), where ⌧ :=

h
0 1�z2
1 0

i
2

PGL(2, C(z)), which means that the following diagram commutes

SC

�

✏✏

A //___ SC

�

✏✏
SC

⌧ ¯A⌧ //___ SC.

In particular, the groupBir(S/⇡) corresponds, via the action of PGL(2, C(z))
on SC, to the group

G := {A 2 PGL(2, C(z)) | ⌧ A⌧ = Ā}.

Proof. (a) The map  is a rational map and its inverse is given by

 �1 : (t, z) 99K

 
t2 � z2 + 1

2t
, i ·

t2 + z2 � 1
2t

, z

!
.

(b) Clearly, the identity in PGL(2, C(z)) gives the identity map of A2C. Let A =h
↵(z) �(z)
� (z) �(z)

i
and A0 =

h
↵0(z) � 0(z)
� 0(z) �0(z)

i
be elements in PGL(2, C(z)). We compute

(A, A0(t, z)) 7!

0
@↵

⇣
↵0t+� 0
� 0t+�0

⌘
+ �

�
⇣
↵0t+� 0
� 0t+�0

⌘
+ �

, z

1
A =

✓
(↵↵0 + �� 0)t + ↵� 0 + ��0

(�↵0 + �� 0)t + �� 0 + ��0
, z

◆
,
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which is the same as

(AA0, (t, z)) 7!
✓

(↵↵0 + �� 0)t + ↵� 0 + ��0

(�↵0 + �� 0)t + �� 0 + ��0
, z

◆
.

The action of PGL(2, C(z)) on A2C gives an action on SC in the following
way: for any element A =

h
↵(z) �(z)
� (z) �(z)

i
2 PGL(2, C(z)) we denote by A A2C

the action of A on A2C given by the map (t, z) 99K
⇣
↵(z)t+�(z)
� (z)t+�(z) , z

⌘
, thus the

following diagram gives the action on SC that we denote by  �1A or simply
A if no confusion arises:

SC

A
✏✏�
�

�

 //___ A2C
A A2C

✏✏�
�

�

SC A2C
 �1oo_ _ _

(c) We name �1 : (t, z) 7! (t̄, z̄) the anti-holomorphic involution on A2C, then via
the birational map  we have

 � �1 = �1⌧ = ⌧�1 : (t, z) 99K

 
1� z̄2

t̄
, z̄

!
.

Let A2PGL(2, C(z)). We want to show that ⌧ ¯A⌧ (� (x, y, z))=� (A(x, y, z))
for any (x, y, z)2 SC which is the same as showing �1(⌧ Ā⌧ )( � (x, y, z))=
� ( �1A( (x, y, z))) for any (x, y, z) 2 SC, where the action of A and ⌧ Ā⌧
are now on A2C. Notice that according to Definition 5.3(i i), the action of Ā on
A2C is the same as the action of �1A�1 and in this way, for any (x, y, z) 2 SC,
we have

 �1(⌧ Ā⌧ )( � (x, y, z)) =  �1(⌧�1A�1⌧ )( � (x, y, z))
=  �1(( � �1)A( � �1))( � (x, y, z))
= � �1A( � (� (x, y, z)))
= � ( �1A( (x, y, z))).

The elements in Bir(S/⇡) correspond to the elements in PGL(2, C(z)) which
commute with  � �1, in other words, for A 2 PGL(2, C(z)) we have that A
belongs to  �1Bir(S/⇡) if ⌧�1A�1⌧ = A which is equivalent to ⌧ Ā⌧ = A
and hence we get the description of the group G =  �1Bir(S/⇡) .

Remark 5.5. The element ⌧ =

h
0 1�z2
1 0

i
2 PGL(2, C(z)) belongs to G and cor-

responds to the element of Bir(S/⇡) given by (x, y, z) 7! (x,�y, z), which is a
reflection that belongs then to Aut(S) ⇢ Aut(S(R)).
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The group G ⇢ PGL(2, C(z)) defined in Lemma 5.4 is the algebraic version
of Bir(S/⇡), which we will study in the sequel. In the following lemma, we give a
more precise description of the elements of this group.

Lemma 5.6. Each A 2 G ⇢ PGL(2, C(z)) is equal to
h
a(z) b(z)h
b̄(z) ā(z)

i
for some poly-

nomials a, b 2 C[z] with no common real roots and h = 1 � z2. Moreover, the
corresponding matrix

h
a(z) b(z)h
b̄(z) ā(z)

i
2 GL(2, C(z)) has a determinant a(z)ā(z) �

b(z)b̄(z)h 2 R[z] which is positive when z2 > 1.

Remark 5.7. Conversely, if A =

h
a(z) b(z)h
b̄(z) ā(z)

i
2 PGL(2, C(z)) for some a, b 2

C(z) (and in particular when a, b 2 C[z]), then A belongs to G, since ⌧ A⌧ = A.

Proof. Let A =

h
a(z) b(z)
c(z) d(z)

i
2 G. The equality ⌧ A⌧ = Ā gives


ā(z) b̄(z)
c̄(z) d̄(z)

�
=


0 1� z2
1 0

� 
a(z) b(z)
c(z) d(z)

� 
0 1� z2
1 0

�
.

Hence

b(z) = �c̄(z)
d(z)(1� z2) = �ā(z)
c(z)(1� z2)2 = �b̄(z)
a(z)(1� z2) = �d̄(z)

for some � 2 C(z)⇤. From the first and third equation we get that c((1�z2)2���̄) =

0 and from the second and fourth equation we get that ā((1 � z2)2 � ��̄) = 0. In
both cases ��̄ = (1 � z2)2, which is equivalent to �

(1�z2)

⇣
�

(1�z2)

⌘
= 1, then by

Hilbert’s Theorem 90 there is µ 2 C(z)⇤ such that � =
µ
µ̄(1 � z2) and A =h

a(z)µ̄ µc̄(z)(1�z2)
c(z)µ̄ ā(z)µ

i
. Calling again a(z) : = a(z)µ̄(z) and b(z) : = µ(z)c̄(z) we get

A =

h
a(z) b(z)h
b̄(z) ā(z)

i
. When a =

p
q and b =

r
s with p, q, r, s 2 C[z], we can multiply

A by qq̄ss̄ and we obtain an element in the same class with entries in C[z]. Now,
if z0 is a common real root of a and b thus z0 is also a real root of ā and b̄ which
means that we may divide by z � z0 all entries of A and remain in the same class.
Then A is of the desired form. The determinant of the corresponding element of
GL(2, C(z)) is then aā � bb̄(1 � z2) = aā + bb̄(z2 � 1) 2 R[z]. Notice that
for z2 > 1, one has aā + bb̄(z2 � 1) > 0 because aā � 0 and bb̄ � 0 imply
aā + bb̄(z2 � 1) � 0 and the fact a and b have non common real roots implies that
the inequality is strict.

Remark 5.8. In the sequel, we will always denote by h the polynomial 1 � z2 2
R[z].
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Now, we would like to characterise elements in Aut(S(R)/⇡) and Aut+(S(R)/⇡)
inside the group G =  �1Bir(S/⇡) . In order to do this, we need to understand
the birational map  : SC 99K A2C given by (x, y, z) 99K (x� iy, z). The following
result describes the extension of the map, which we again denote by  .

Lemma 5.9.  satisfies:

(a) The birational map

 : SC 99K P1C ⇥ P1C
(1 : x : y : z) 99K ((1 : x � iy), (1 : z))
(w : x : y : z) 99K ((w : x � iy), (w : z))

has three base-points, namely q = (0 : i : 1 : 0), q̄ = (0 : �i : 1 : 0), and one
point !, infinitely near q.

(b) Its inverse is

 �1 : P1C ⇥ P1C 99K SC

((1 : t), (1 : z)) 99K

 
1 :

t2 � z2 + 1
2t

: i ·
t2 + z2 � 1

2t
: z

!

((u : t), (v : z)) 99K

⇣
2tuv2 : t2v2 � z2u2 + u2v2 :

i(t2v2 + z2u2 � u2v2) : 2t zuv
⌘

and has exactly three base-points, namely

(0 : 1)(0 : 1), (1 : 0)(1 : 1), and (1 : 0)(1 : �1).

(c) The map  can be decomposed as the blow-up of q, q̄, !, followed by the con-
traction of the strict transforms of the curves L , M , D ⇢ SC given respectively
by

L : x = iy, w = �z
M : x = iy, w = z
D : w = 0

This can be described by the diagram in Figure 5.1, where PN = (1 : 0 : 0 : 1),
PS = (1 : 0 : 0 : �1) 2 S(R) are the north and south poles, where L , M are the
image of L , M by the anti-holomorphic involution and where the strict transforms
of the curves are again denoted by the same names.

Proof. Parts (a) and (b) follow from a direct calculation. Hence, denoting by
⇣ : X ! SC the blow-up of q, q̄,!, the map  ⇣ is a birational morphism X !
P1C ⇥ P1C, which is the blow-up of three points since both SC and P1C ⇥ P1C have
a complex Picard group of rank 2. Looking at coordinates, one checks that the
three curves are L ,M, N , and the remaining part of the picture can be checked by
computing the intersection between the curves.
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Figure 5.1. The decomposition of  into blow-ups and blow-downs.

Since M[M is the fibre of (1 : 1)2P1 by ⇡ and is singular with only one real point,
every element of Bir(S/⇡) preserves the north pole PN=M\M and either preserves
each of the two curves or interchanges them. This result is proved in the following
lemma, which moreover describes the distinct possible cases algebraically.

Lemma 5.10. Let A =

h
a(z) b(z)h
b̄(z) ā(z)

i
2 G ⇢ PGL(2, C(z)), for some polynomials

a, b 2 C[z] with no common real roots (see Lemma 5.6), and let A 2 Bir(S/⇡) be
the corresponding element (see Lemma 5.4). The mapA is defined at the north and
south poles PN = M \ M and PS = L \ L . Moreover, the following hold:

(1) If a(1) = 0, thenA exchanges M with M .
(2) If a(1) 6= 0, thenA preserves both M and M .
(3) If a(�1) = 0, thenA exchanges L with L .
(4) If a(�1) 6= 0, thenA preserves both L and L .

Remark 5.11. Note that a(1) 6= 0 (respectively a(�1) 6= 0) is equivalent to the
fact that the determinant a(z)a(z) + b(z)b(z)h is positive when z = 1 (respectively
z = �1).
Proof. Recall that A acts on A2C via

(t, z) 99K

 
a(z)t + b(z)(1� z2)

b(z)t + a(z)
, z

!

(see Lemma 5.4).
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Suppose first that a(1) 6= 0. This implies that the determinant a(z)a(z)+(z2�
1)b(z)b(z) is not zero (and in fact positive) when z = 1. Hence, the above birational
map is a local isomorphism near the fixed point (t, z) = (0, 1), and restricts to
an isomorphism of the curve z = 1. After blowing up (0, 1), we obtain thus a
local isomorphism in the neighbourhood of the exceptional divisor and of the strict
transform of the curve z = 1. By Lemma 5.9, these maps correspond to respectively
M and M via  . This shows thatA is defined at PN = M \ M and preserves each
of the two curves M and M .

If a(�1) 6= 0, we find similarly thatA is defined at PS = L \ L and preserves
each of the two curves L and L .

If a(1) = 0, we write a(z) = a0(z)(1� z) for some polynomial a0 2 C[z] and
have b(1) 6= 0, since a, b have no common real root. We consider ⌧ =

h
0 1�z2
1 0

i
2

G, that corresponds to the reflection (x, y, z) 7! (x,�y, z) of the sphere S (see
Remark 5.5). Note that this map is defined at the north and south poles, interchanges
L with L and interchanges M with M . It remains to study the map

A⌧ =


b(1� z2) a(1� z2)

a b(1� z2)

�
=


b(1+ z) a0(1� z2)

a0 b(1+ z)

�
2 G ⇢ PGL(2, C(z))

and to see that it is equal to
h
a0 b0(1�z2)
b0 a0

i
, where a0 = b · (1 + z), b0 = a0 2 C[z]

have no common real root, and such that a0(1) = 2b(1) 6= 0. This reduces to the
previous case.

The case where a(�1) = 0 is similar.

Lemma 5.12. Let A =

h
a(z) b(z)h
b̄(z) ā(z)

i
2 G ⇢ PGL(2, C(z)), for some polynomials

a, b 2 C[z] with no common real roots (see Lemma 5.6), and let A 2 Bir(S/⇡)
be the corresponding element (see Lemma 5.4). We denote by D(z) = a(z)ā(z) �
b(z)b̄(z)(1� z2) 2 R[z] the corresponding determinant.

Let z0 2 (�1, 1) ⇢ R, and let 0z0 ⇢ S be the conic given by z = z0. Then, the
following hold:

(a) The mapA is a local isomorphism at each point of 0z0 if and only if D(z0) 6= 0.
(b) The map A contracts the curve 0z0 onto a real point of 0z0 if and only if

D(z0) = 0. In this case, it has exactly one proper base-point on 0z0 , which
is real.

Proof. Observe that  is a local isomorphism at a general point of 0z0 by Lem-
ma 5.9. Hence, A contracts 0z0 or is a local isomorphism at each point of it if and
only if this holds for A on the curve of A2C given by z = z0. Recall that A acts as

(t, z) 99K

 
a(z)t + b(z)(1� z2)

b(z)t + a(z)
, z

!
.
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If D(z0) 6= 0, we obtain thus a local isomorphism along 0z0 . If D(z0) = 0, then
a(z0)t+b(z0)(1�(z0)2)

b(z0)t+a(z0)
does not depend on t . The fact that a and b cannot both vanish

at z0 implies that the curve 0z0 is then contracted onto one point, which is thus real.
It has moreover exactly one proper base-point on this curve, which corresponds to
the vanishing of the denominator and numerator of the above fraction.

5.3. Algebraic description of Aut(S(R)/⇡)

The fact that an element in the group Aut(S(R)/⇡) exchanges or not the lines L
and L can be checked geometrically, as the following result shows. This will help
to describe algebraically the groups Aut(S(R)/⇡) and Aut+(S(R)/⇡) as subgroups
of G (Proposition 5.15 below).

Lemma 5.13. LetA 2 Aut(S(R)/⇡), and let L , L,M,M ⇢ SC be the four curves
given in Lemma 5.9. Then, one of the following holds:

(a) A 2 Aut+(S(R)/⇡) andA preserves each of the four curves L , L,M,M .
(b) A 2 Aut(S(R)/⇡) \Aut+(S(R)/⇡) andA exchanges L with L and M with M .

Proof. Since M[M is the fibre of (1 : 1) 2 P1 by ⇡ , every element of Aut(S(R)/⇡)
either preserves each of the two curves or interchanges them. We study the action of
A on the lines M and M near the point PN = M \M = (1 : 0 : 0 : 1), the situation
near PS = L \ L is similar. The equation of the sphere being (w � z)(w + z) =

x2 + y2, the complex tangent plane TPN SC is given by w = z = 0, and contains
the two lines M and M , which correspond to x = ±iy. The real tangent plane is
contained in the complex tangent plane i.e. TPN S(R) ⇢ TPN SC and the action of
A on the lines M and M is the same as the action of its differential at PN denoted
by DPNA 2 GL(2, C) which also preserves TPN S(R) and is linear. Then DPNA
can be presented as a matrix in GL(2, R). Matrices in GL(2, C) which preserve
the two lines x = ±iy are of the form

⇥ a b
�b a

⇤
for some a, b 2 C. Imposing the

condition of preserving the real plane is equivalent to ask for a, b 2 R. This tells
us that if DPNA is the differential at PN of a diffeomorphism A which fixes PN
and preserves the lines M and M , then DPNA restricted to TPN (S(R)) is of the
form

⇥ a b
�b a

⇤
for some a, b 2 R and is positive definite because its determinant is

a2 + b2 > 0 and therefore such a diffeomorphism A is an orientation-preserving
one. On the other hand, matrices in GL(2, C) which interchange the lines M and
M and preserve the real tangent plane are of the form

⇥ a b
b �a

⇤
for some a, b 2 R.

Then if DPNA is the differential at PN of a diffeomorphismA which fixes PN and
interchanges the lines M and M , we obtain that DPNA restricted to TPN (S(R)) is
of the form

⇥ a b
b �a

⇤
for some a, b 2 R and its determinant is �(a2 + b2) < 0 which

implies thatA is an orientation-reversing diffeomorphism.

Definition 5.14. We denote byR[z]+ the multiplicative submonoid ofR[z] defined
as R[z]+ := { f 2 R[z] | f (z0) > 0 for each z0 2 R}.
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Proposition 5.15. Let H and H0 be the subgroups of G given respectively by
 Aut(S(R)/⇡) �1 and  Aut+(S(R)/⇡) �1.

Then H = H0 o h⌧ i, where ⌧ =

h
0 1�z2
1 0

i
=

⇥ 0 h
1 0

⇤
as before, and

H0 =

⇢
a(z) b(z)h
b̄(z) ā(z)

�
; a, b 2 C[z], aā � bb̄h 2 R[z]+

�
.

Proof. The fact that H = H0 o h⌧ i follows from the fact that ⌧ corresponds to a
reflection in Aut(S(R)/⇡) \ Aut+(S(R)/⇡); it remains to describeH0.

Let A 2 G be some element, that we write as
h
a(z) b(z)h
b̄(z) ā(z)

i
for some polynomials

a, b 2 C[z]with no common real roots (Lemma 5.6), and let D = aā�bb̄h 2 R[z]
be the corresponding determinant. We have D(z) > 0 if z2 > 1 (see Lemma 5.6).
We denote by A 2 Bir(S/⇡) the corresponding element, given by  �1A . Sup-
pose that A 2 H0. By Lemmas 5.10 and 5.13, this implies that a(1)a(�1) 6= 0,
hence D(1) and D(�1) are both positive. Moreover, D(z) 6= 0 for each z0 2
(�1, 1) by Lemma 5.12. This implies that D 2 R[z]+. Conversely, suppose
that D 2 R[z]+. By Lemmas 5.10 and 5.12, this implies that A is defined at
each real point of the sphere, hence A 2 H. The fact that A 2 H0 is given by
Lemma 5.13.

5.4. Involutions in Bir(S/⇡)

Recall that the group of elements of Bir(S,⇡) acting trivially on the basis of the
fibration is denoted by Bir(S/⇡). This group is conjugate to

G =

⇢
A =


a(z) b(z)h
b̄(z) ā(z)

�
; a, b 2 C[z] with no common real roots,

and a(z)ā(z)� b(z)b̄(z)h > 0 for z2 > 1
o
⇢ PGL(2, C(z))

by the birational map  (see Lemma 5.4). In this subsection, we study involutions
in Bir(S/⇡) or equivalently in G up to conjugacy.

We also recall that the action of PGL(2, C(z)) on A2C was given in Equa-
tion (5.2) by (t, z) 99K

⇣
a(z)t+b(z)
c(z)t+d(z) , z

⌘
for

h
a(z) b(z)
c(z) d(z)

i
= A 2 PGL(2, C(z)). Notice

that when A has order 2, the restriction of A to the P1C corresponding to z = z0, for
a general z0 2 C, is an automorphism of order 2 with two fixed points. We denote
by 0A the closure of the set of those fixed points as z varies inC and call it the curve
of fixed points of A or just the curve fixed by A. The corresponding definition for
the sphere is presented below, see Definition 5.20.

The following results will be useful for the proof of the main result of this
subsection in Theorem 5.21, which states that two involutions are conjugate in G if
and only if their respective fixed curves are birational over R.
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Lemma 5.16.
(a) If A 2 PGL(2, C(z)) is an element of order 2, then A is conjugate to

h
0 p
1 0

i
for

some p 2 C(z)⇤,
(b) the elements

h
0 p
1 0

i
,
h
0 p0
1 0

i
2 PGL(2, C(z)) with p, p0 2 C(z)⇤ are conjugate

in PGL(2, C(z)) if and only if p/p0 is a square in C(z).
(c) Let A,B2PGL(2,C(z)) of order 2. Then A and B are conjugate in PGL(2,C(z))

(A ⇠ B) if and only if there exists a birational map ⇢ defined over C
0A

⇡

✏✏

⇢ //___ 0B

⇡

✏✏
C = C

where 0A, 0B ⇢ C2 are the curves fixed by A and B, respectively.
Proof.
(a) Let A =

⇥ a b
c d

⇤
be an element of order 2 in PGL(2, C(z)). From A2 =

⇥ 1 0
0 1

⇤
, we

get that a = �d or b = 0 = c, but in the second case, a2 = d2 thus a = ±d.
If a = d and b = c = 0 then A = I and therefore A does not have order 2.
This implies that a = �d in any case so we can write A =

⇥ a b
c �a

⇤
. Now A is

conjugate to
h
0 a2+bc
1 0

i
by

⇥
�a �b
1 0

⇤
when b 6= 0 or by

⇥
�c a
0 1

⇤
when c 6= 0. In

the case where b = c = 0, we have that A equals
⇥ 1 0
0 �1

⇤
and is conjugate to⇥ 0 1

1 0
⇤
by

⇥ 1 1
1 �1

⇤
. We have proved that A is always conjugate to

h
0 p
1 0

i
.

(b) If
h
0 p
1 0

i
and

h
0 p0
1 0

i
are conjugate in PGL(2, C(z)) then the determinants are

equal up to a square and then p/p0 is a square. Reciprocally, if p/p0 = a2 for
some a 2 C(z)⇤ then

h
0 p
1 0

i
is conjugate to

h
0 p0
1 0

i
by

h
1 0
0 a

i
.

(c) If A and B are conjugate elements of order 2 in PGL(2, C(z)), there is an ele-
ment ⇣ 2 PGL(2, C(z)) such that the following diagram commutes:

C2 B //____

✏✏

C2

⇡

✏✏
C2

⇣

==
{

{

⇡

✏✏

A //____ C2
⇣

==
{

{

⇡

✏✏
C

=

// C

C
= <<

y
y

y
= // C

=

<<
y

y
y

Then the existence of the birational map ⇢ is given by the restriction of ⇣ to
0A. Conversely, we assume the existence of ⇢ : 0A 99K 0B . By part (a), the
fact that A and B are of order 2 implies that they are conjugate to an element
of the form

h
0 f
1 0

i
and

h
0 g
1 0

i
respectively, for some f, g 2 C(z)⇤. In this way,

the equations for the curves 0A and 0B are t2 = f (z) and t2 = g(z). Since
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0A and 0B are birational, this implies that the corresponding fields of rational
functions are isomorphic i.e. C(z)[

p

f ] ⇠= C(z)[pg]. The isomorphism will
send z 7! z and

p

f 7! apg + b for some a, b 2 C(z) with a 6= 0. Since
f = g(= t2), we have f = (

p

f )2 7! (apg + b)2 = a2g + 2abpg + b2 = f
then a2g + b2 � f = �2abpg in C(z)[pg] which implies that 2abpg = 0
and therefore b = 0. Hence f = a2g and then

h
0 f
1 0

i
and

h
0 g
1 0

i
are conjugate

by part (b).

Lemma 5.17. Let A, B 2 G ⇢ PGL(2, C(z)) be of order two. If A and B are
conjugate in PGL(2, C(z)) then there are elements ↵, � 2 PGL(2, C(z)) such that
A = ↵P↵�1 and B = �P��1 for some P =

h
0 p
1 0

i
, where p 2 R(z)⇤

Proof. By Lemma 5.16 we can present A and B as in the statement for the same
P for some p 2 C(z)⇤, what remains to show is that we can pick p 2 R(z)⇤
(equivalently p = p̄). Let A0, ⌧0 2 GL(2, C(z)) be elements corresponding to
A, ⌧ 2 PGL(2, C(z)). We can choose A0 so that det(A0) = p and want to find an
element µ 2 C(z)⇤ such that pµ2 = pµ2 because

h
0 p
1 0

i
is conjugate to

h
0 pµ2
1 0

i
by

h
µ 0
0 �1

i
. The equality ⌧ A⌧ = Ā in PGL(2, C(z)) implies that (⌧0)�1A0⌧0 =

� Ā0 for some element � 2 C(z)⇤. Taking the determinant, we obtain det(A0) =

�2det(A0), which means that p = �2 p. It suffices to find µ with � =
µ
µ . Since

�2 = p/p, we obtain �2 · �
2

= 1, and thus �� = ±1. If �� = 1 then by Hilbert’s
Theorem 90 there is µ 2 C(z)⇤ such that � =

µ
µ . The case �� = �1 is not possible

in C(z) otherwise � would be the quotient of two polynomials in C(z), say � =
f
g

with f, g 2 C[z]⇤ and then f f̄
gḡ = �1 which is equivalent to f f̄ = �gḡ. But the

leading coefficient of any element of the set { f f̄ : f 2 C[z]} ⇢ R[z]⇤ is always
positive implying that f f̄ cannot be equal to �gḡ for any g 2 C(z)⇤.

Proposition 5.18. Let F =

h
0 f
1 0

i
with f 2 C(z)⇤,

(a) the centralizer of F in PGL(2, C(z)), which we denote by C(F), is the semi-
direct product J f o Z/2Z where J f is the image in PGL(2, C(z)) of T f where

T f :=

⇢
a f b
b a

�
2 GL(2, C(z)); a, b 2 C(z), a2 � f b2 6= 0

�

and Z/2Z is generated by the element ⌫ =

⇥ 1 0
0 �1

⇤
in PGL(2, C(z)).

(b) The group T f is isomorphic to the multiplicative groupC(0)⇤ whereC(0) is the
field of rational functions on 0, the hyperelliptic curve 0 of equation t2 = f (z)
in A2C (the fixed curve of the birational map corresponding to the element F).

(c) H1(h⌫i, J f ) = {1}.
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Proof.

(a) Let A =

⇥ a b
c d

⇤
2 PGL(2, C(z)), from AF = FA we get

h
b f a
d f c

i
=

⇥ f c f d
a b

⇤
implying that d = �a, b = � f c, a = �d, and f c = �b for some � 2 C(z)⇤.
If a 6= 0 we have a = �2a hence � = ±1 and A =

⇥ a f b
b a

⇤
or

h
a � f b
b �a

i
. When

a = 0, we get d = 0, and f c = �2 f c implying � = ±1 and A =

h
0 f b
b 0

i
orh

0 � f b
b 0

i
. Then C(F) = J f o

⌦⇥ 1 0
0 �1

⇤↵
.

(b) An element of the field C(0) can be written as a+ bt with a, b 2 C(z) and then
we see that C(z)[

p

f ] is isomorphic to C(0) by sending a + bt to a + b
p

f .
Hence we define the map from C(z)[

p

f ]⇤ to T f given by a + b
p

f 7!
⇥ a f b
b a

⇤
which is clearly bijective and is a group homomorphism since

(a + b
p
f )(c + d

p
f ) = (ac + f bd) + (ad + bc)

p
f

corresponds to the product

a f b
b a

� 
c f d
d c

�
=


ac + f bd f (ad + bc)
ad + bc ac + f bd

�
.

(c) From the exact sequence

1! C(z)⇤ i
�! T f

p
�! J f ! 1 (5.3)

we obtain the cohomology exact sequence

H1(h⌫i, T f )! H1(h⌫i, J f )! H2(h⌫i, C(z)⇤).

The first cohomology group H1(h⌫i, T f ) is trivial by Hilbert’s Theorem 90 and
the second cohomology group H2(h⌫i, C(z)⇤) is trivial by Tsen’s Theorem [18,
Chapter X, Section 7]. Then we get that H1(h⌫i, J f ) = {1}.

Lemma 5.19. Let A 2 G of order 2 and let ↵ 2 PGL(2, C(z)) such that A =

↵P↵�1 for some P =

h
0 p
1 0

i
, p 2 R(z)⇤. Then the element µA : = ↵�1⌧ ↵̄ belongs

to Jp where ⌧ =

⇥ 0 h
1 0

⇤
for h = 1� z2 and Jp is defined in Proposition 5.18.

Proof. The fact that A 2 G implies that µA 2 C(P), because

µAPµ�1A = (↵�1⌧↵)P(↵�1⌧↵) = ↵�1⌧ (↵P↵�1)⌧↵
= ↵�1(⌧ A⌧ )↵ = ↵�1A↵ = P.

In order to check that indeed µA belongs to Jp, we compute P and ↵ explicitly.
First, we observe that if A is an involution in G then A is of the form

h
i·a(z) b(z)h
b̄(z) �i·a(z)

i
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with a(z) 2 R(z), b(z) 2 C(z). In PGL(2, C(z)), this involution is conjugate to the
element P =

h
0 �(a2�bb̄h)
1 0

i
by ↵ =

h
0 b(z)h
�1 �i·a(z)

i
. In this case, p = �(a2 � bb̄h)

and then µA is explicitly
h
i·a(z) �p
�1 i·a(z)

i
which belongs to Jp. If ↵0 is another element

in PGL(2, C(z)) such that ↵0�1A↵0 =
h
0 p
1 0

i
then ↵0�1↵ 2 C(P), say ✓ = ↵0�1↵.

Then µ0A = ↵0�1⌧ ↵̄0 = (✓↵�1)⌧ (↵✓�1) = ✓(↵�1⌧↵)✓�1 and this lies in Jp as
well.

Definition 5.20. Let A 2 Bir(S/⇡) \ {1} be of finite order. For a general z0 2 R
the birational map given byA fixes the conic 0z0 corresponding to the preimage of
z0 by ⇡ . Note that A restricted to 0z0 (A0z0 : 0z0 ! 0z0) is an isomorphism with
exactly two fixed points, which can be two real points or two imaginary conjugate
points. The (closure of) the set of these fixed points, for every z 2 P1, gives the
curve of fixed points that we denote by Fix(A) and that is a double covering of P1.
Note that some isolated points can also be fixed and not belong to Fix(A).

Theorem 5.21. Let A, B 2 Bir(S/⇡) of order 2. The elements A and B are con-
jugate in Bir(S/⇡) (A ⇠Bir(S/⇡) B) if and only if there exists a birational map ⇢
defined over R

Fix(A)

⇡

✏✏

⇢ //___ Fix(B)

⇡

✏✏
R = R

with Fix(·) as in the precedent paragraph.

Proof. IfA andB are conjugate in Bir(S/⇡), then there is an element ⇣ 2 Bir(S/⇡)
such that ⇣A⇣�1 = B and then the map ⇢ is given by the restriction of ⇣ to Fix(A)
which is defined over R. In order to prove the sufficiency, we assume that there is
⇢ : Fix(A) 99K Fix(B) with �⇢ = ⇢� . Then by Lemma 5.16(c), we obtain that
A :=  A �1 2 G and B :=  B �1 2 G are conjugate in PGL(2, C(z)) and by
Lemma 5.17 there are ↵, � 2 PGL(2, C(z)) such that A = ↵F↵�1, B = �F��1

and F =

⇣
0 f
1 0

⌘
, for some f 2 R(z)⇤. Observe that the action of ↵ and � on SC

restrict to birational maps Fix(F) 99K Fix(A) and Fix(F) 99K Fix(B), respectively.
To sum up, we have the following diagram (which is not necessarily commutative,
since ⇢ : Fix(A) 99K Fix(B) may be not the restriction of �↵�1):

Fix(A)

⇢ defined over R

%%q

k
e _ Y

S
M

↵�1
11_

⇡

✏✏

Fix(F)

�
--_

↵qq _

⇡

✏✏

Fix(B)

⇡

✏✏

��1
mm _

C = C = C

.



PRIME ORDER BIRATIONAL DIFFEOMORPHISMS OF THE SPHERE 947

Since we want to show that A ⇠G B (or equivalently A ⇠Bir(S/⇡) B), we
need to find � 2 G such that � A��1 = B i.e. �↵F↵�1��1 = �F��1 ()
��1�↵F(��1�↵)�1 = F , hence ��1�↵ 2 C(F). In other words, finding � 2 G
so that � A��1 = B is equivalent to finding ⇠ 2 C(F) such that �⇠↵�1 2 G. The
condition �⇠↵�1 2 G is the same as ⌧ (�⇠↵�1)⌧ = �⇠↵�1 which is equivalent to
⇠ = (��1⌧�)⇠(↵�1⌧↵). We define µB := ��1⌧� and µ�1A := ↵�1⌧↵ and like
this, we need to find ⇠ 2 C(F) such that ⇠ = µB ⇠̄µ

�1
A . By Lemma 5.19 µA,

µB 2 J f and then also µ�1A 2 J f . On the other hand, µ
�1
A µ�1A = 1 and µBµB = 1

and as J f is abelian, we get µBµ�1A · µBµ�1A = 1 and then by Proposition 5.18(c)
there is ⇠ 2 J f such that ⇠/⇠̄ = µBµ�1A =) ⇠ = µA⇠̄µ

�1
A .

5.5. Involutions in Aut(S(R)/⇡)

In Proposition 5.15, we have described algebraically the orientation preserving bi-
rational diffeomorphisms as the group

H0 =

⇢
a(z) b(z)h
b̄(z) ā(z)

�
; a, b 2 C[z], aā � bb̄h 2 R[z]+

�
.

We want to describe involutions inH 'H0 o h⌧ i where ⌧ =

⇥ 0 h
1 0

⇤
.

Lemma 5.22. Every involution ◆ 2H0 is equal to

◆ =


i · p(z) q(z)h
q̄(z) �i · p(z)

�

for some p 2 R[z] and q 2 C[z] with no common real roots and p2�qq̄h 2 R[z]+.

Proof. All such elements are indeed involutions, as one easily calculates. From the
proof of the first statement of Lemma 5.16, we see that the trace of any involution
in PGL(2, C(z)) vanishes. Since inH0 the diagonal entries are conjugate, they are
strictly imaginary, from which the claim follows.

Fibrewise, the maps inH0 look like rotations, the maps inH \ H0 like reflec-
tions:

Lemma 5.23. The restriction of an involution ◆ 2H0 to a fibre is conjugate, inside
the group of automorphisms of the circle, to a rotation by ⇡ . For an element in
H \ H0, the restriction is conjugate to a reflection.

Proof. A fibre is a subvariety of the real points of S and isomorphic to a circle
S1, which in turn is isomorphic to P1(R). Therefore ◆ restricts on each fibre to an
automorphism of P1(R), that is, an element of PGL(2, R). The first statement of
Lemma 5.16 applies equally when the fieldR instead ofC(z) is used, which tells us
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that the automorphism is conjugate to an element of the form
h
0 ±p
1 0

i
, with p > 0 in

R. The sign is negative forH0 and positive forH\H0, and depends on whether the
element is orientation-preserving or -reversing. With q =

pp, the element is equal
to

h
0 ±q
q�1 0

i
, which is conjugate to

⇥ 0 ±1
1 0

⇤
via

h
1 0
0 p

i
. These elements describe a

rotation and a reflection, as claimed.

Recall that R[z]+ := { f 2 R[z] | f (z0) > 0 for each z0 2 R}. We will need
the following description:

Lemma 5.24. R[z]+ = {p p̄ | p 2 C[z], p has no real root}

Proof. Since f (z) > 0 for every z 2 R, f has complex roots which can be sorted as
pairs of complex conjugate roots. Then f can be factorised inC(z) as factors of the
form (z � ↵)(z � ↵̄) which already have the form p↵ p̄↵ with p↵ = z � ↵ for every
complex root ↵ of f . We then construct p0 as the product p0 = p↵1 · p↵2 · · · p↵k
where k is the number of pairs of complex conjugate roots and in this way, f =

� · p0 · p0 for some real positive constant �. Thus we define p =

p

�p0 and the result
follows.

Proposition 5.25. Let A 2 H be an element of order 2. Then the curve Fix(A),
which is a double covering of P1, has the following properties:
(a) If A 2H0, then Fix(A) has no real point (0 oval);
(b) if A 2H \ H0, then Fix(A) has one oval and ⇡(Fix(A)(R)) = [�1, 1].

Proof. Let A 2 H be an element of order two. By Lemma 5.22, A is of the formh
i·p(z) q(z)h
q̄(z) �i·p(z)

i
where p 2 R[z], q 2 C[z] and p, q have no common real roots. The

curve of fixed points is given by q̄(z)t2 � 2ip(z)t + q(z)h = 0 whose discriminant
(with respect to t) is �4(p2 + qq̄h) and corresponds to minus the determinant
of the matrix. If A 2 H0, then the determinant is positive, so Fix(A) does not
have any real point. If A 2 H \ H0, then the determinant is negative (because it
is (1 � z2) times the positive determinant). Hence, we get 2 real points for each
z0 2 (�1, 1).

According to Proposition 5.25, for an involution which is also a diffeomor-
phism its curve of fixed points is birational to a smooth real hyperelliptic curve with
no oval or just one. In the first case, there is no real point on the fixed curve and
1 and �1 are not ramification points. This involution is an orientation preserving
diffeomorphism with two isolated fixed points. In the second case, the only two
ramification points are 1 and �1, the oval is sent by ⇡ : S ! A1 onto the real in-
terval [�1, 1] and this involution is an orientation reversing diffeomorphism. Both
possible cases for the curve of fixed points are illustrated in Figure 5.2. Now, we
would like to prove the converse, i.e. for any hyperelliptic curve with one or no oval
(equation of the form t2 = (1� z2)p or t2 = �p for some p 2 R[z]+ with no real
roots) we want to associate an element � of H which realises the curve as Fix(� ).
We need first to prove the following lemmas.
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• • • •
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⇡ ⇡

�1 �11 1

H0 H \ H0

Figure 5.2. Possible appearances of the fixed curve of elements in Aut(S(R)/⇡).

Lemma 5.26. Let f 2 R[z] be a polynomial of degree two such that f 2 R[z]+
then there exist a 2 R[z] and a positive real number c such that f (z) = a(z)2 +

c(z2 � 1).

Proof. Since f 2 R[z]+, then f is factorised as f (z) = (z � ↵)(z � ↵̄) = z2 �
(↵ + ↵̄)z + ↵↵̄ for ↵ a complex number and making ↵ = b + id, we rewrite f
as f (z) = z2 � 2bz + (b2 + d2). Then if we write a(z)2 = f (z) � c(z2 � 1) =

(1 � c)z2 � 2bz + b2 + d2 + c, we want to show that there exists some value of
c > 0 such that the right side is indeed a square with respect to z. So we want
the discriminant of such an expression to be zero. This is 4b2 � 4(1 � c)(b2 +

d2 + c) = 4(c2 + (b2 + d2 � 1)c � d2) = 0 which implies that c is a positive
solution of p(c) := c2 + (b2 + d2 � 1)c � d2 so we compute the discriminant of
this quadratic expression with respect to c and want it to be larger than zero i.e.
1c := (b2+ d2� 1)2+ 4d2 > 0 but this is always the case. Now, since the leading
coefficient of a(z)2 has to be larger than zero, this implies that c < 1 so we just
check that the discriminant which depends on c has a root between 0 and 1 which
is true because p(0) = �d2 < 0 and p(1) = b2 > 0. What remains to check is the
case b = 0 i.e. ↵ = id. In this case, f (z) = z2 + d2 so we just take c = 1 and
a =

p

d2 + 1.

Lemma 5.27. Let V be the set

V = {a2 + P · (z2 � 1) | a 2 R[z], P 2 R[z]+}.

(a) If f, g 2 V \R[z]+, then f · g 2 V \R[z]+,
(b) R[z]+ ⇢ V .

Proof.

(a) Let f, g 2 V \R[z]+ then f = a2 + P · (z2� 1) and g = b2 + Q · (z2� 1) for
a, b 2 R[z] and P, Q 2 R[z]+. We have then

f · g =(a2 + P · (z2 � 1))(b2 + Q · (z2 � 1))
=(ab)2 + (z2 � 1)[a2Q + P(b2 + Q · (z2 � 1))]
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and a2Q+ P(b2+Q ·(z2�1)) 2 R[z]+ because a2, Q, P , and b2+Q ·(z2�1)
are all in R[z]+. Therefore, f · g 2 V \R[z]+.

(b) Let f 2 R[z]+ then f can be presented as a product of quadratic polynomials.
Since every quadratic factor is also in R[z]+, it suffices to prove the Lemma in
the case where f is quadratic and this was already proved in Lemma 5.26.

Lemma 5.28. Each curve of the type considered after Proposition 5.25 actually
occurs as the fixed curve of an involution in Aut(S(R)/⇡). More precisely,

(a) for a real smooth hyperelliptic curve with one oval of the form t2 = (1� z2)��̄
for some � 2 C(z) with no real roots there is an orientation reversing birational
diffeomorphism whose fixed curve is this curve,

(b) for a real smooth hyperelliptic curve with no oval of the form t2 = ���̄ for
some � 2 C(z) with no real roots there is an orientation preserving birational
diffeomorphism whose fixed curve is this one.

Proof. Given the hyperelliptic curve t2 = (1 � z2)��̄ for some � 2 C(z) with no
real roots, the element ↵ =

h
0 �(z)h
�̄(z) 0

i
is an involution in H \ H0 whose fixed

curve is t2 = (1 � z2)��̄. In the other case, when t2 = ���̄ where � has no real
roots, we have ��̄ 2 R[z]+ ⇢ V by Lemma 5.27 and then there are a 2 R[z] and
P 2 R[z]+ such that ��̄ = a2 + P(z2 � 1). Lemma 5.24 implies that P = bb̄ for
some b 2 C[z] then the element ↵ =

h
ia(z) b(z)h
b̄(z) �ia(z)

i
is an involution in H0 whose

fixed curve is t2 = ���̄.

Lemma 5.29. Let a, b, c, d 2 C[z] and let A(z) =

h
a(z) b(z)
c(z) d(z)

i
2 GL(2, C(z)). Let

z0 2 C be a simple root of ad � bc 2 C[z], such that A(z0) has rank 1.
Then, the birational map of P1 ⇥A1 given by

([t : u], z) 99K ([a(z)t + b(z)u : c(z)t + d(z)u], z)

has exactly one base-point on the line z = z0, and no infinitely near base-point to
this one.

Proof. Making the change of variable z 7! z � z0, we can assume that z0 = 0.
Replacing A(z) with ↵A(z)�, where ↵,� 2 GL(2, C), we can moreover assume
that A(0) =

⇥ 0 0
1 0

⇤
, so we can write A(z) =

h
za(z) zb(z)
1+zc(z) zd(z)

i
, for some a, b, c, d 2

C[z] (which are not the same as before but we keep the same letters to simplify the
notation). Since z0 is a simple root of the determinant, we have b(0) 6= 0. The
corresponding birational map of P1 ⇥A1 is then

([t : u], z) 99K ([z(a(z)t + b(z)u) : t + z(c(z)t + d(z)u)], z)

and has a unique proper base-point on the line z = 0, which is the point ([0 : 1], 0).
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The blow-up of this point is locally given by

⇡ : A2 ! P1 ⇥A1
(t, v) 7! ([t : 1], tv) .

And the lift of our birational is then locally given by

(t, v) 99K
✓

v(a(vt)t + b(vt))
c(vt)tv + d(vt)v + 1

,
t (c(vt)tv + d(vt)v + 1)

a(vt)t + b(vt)

◆
.

The curves E, E 0 corresponding respectively to the exceptional divisor and the fibre
z = z0 are now given by t = 0 and v = 0 respectively, and exchanged by the lift:

(0, v) 99K
✓

vb(0)
1+ d(0)v

, 0
◆

(t, 0) 99K
✓
0,

t
a(0)t + b(0)

◆
.

This implies that both our map and its inverse, have a simple base-point at
(0,0).

Theorem 5.30. Let g, g0 2 Aut(S(R)/⇡) of order 2. Then g and g0 are conjugate
in Bir(S/⇡) if and only if they are conjugate in Aut(S(R)/⇡).

Proof. Let g and g0 be conjugate in Bir(S/⇡), then there is ↵ 2 Bir(S/⇡) such
that ↵g↵�1 = g0. We want to show that g and g0 are conjugate in Aut(S(R)/⇡).
By Proposition 5.25, the curve of fixed points of an element in Aut(S(R)/⇡) either
contains no real point or only one oval. If ↵ 2 Bir(S/⇡) \ Aut(S(R)/⇡), there
is a real point r 2 S(R) where ↵ is not defined, and this point is neither PS nor
PN (Lemma 5.10). The element ↵ blows up this point and contracts the conic 0zr
passing through r which is a fibre of the conic bundle structure of S. Then ↵(0zr ) =

q for some q 2 S(R). Note that q is fixed by g. Indeed, otherwise g(q) = q 0 6= q
and as g preserves the fibration, g(0zr ) = 0zr , then ↵(g(0zr )) 6= g0(↵(0zr )). Since
q is a real point fixed by g and distinct from PS and PN , the curve Fix(g) contains
real points. We may then assume that g is equal to

h
0 b(z)h
b̄(z) 0

i
(Lemma 5.28). The

centraliser of g contains the following subgroup

C(g) =

⇢
a(z) �b(z)h
�b̄(z) a(z)

�
; a, � 2 R[z] and a2 � �2bb̄h 6= 0

�
⇢ G.

We want to prove now that C(g) contains, in particular, an element � =

h
a(z) b(z)h
b̄(z) a(z)

i
such that D(z) = a(z)2�b(z)b̄(z)(1�z2) has only one zero exactly at z = zr on the
interval (�1, 1). The reason of the existence of such a � is that it is possible to find
a polynomial a(z) with values a(�1) = 0 and a(zr ) =

q
b(zr )b̄(zr )(1� z2r ) and
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satisfying D(z) > 0 on (�1,�1)[(zr ,1) and D(z) < 0 on the interval (�1, zr ).
Notice that b(z)b̄(z)(1 � z2) > 0 for z 2 (�1, 1) and the condition D(z) > 0 for
z2 > 1 is already fulfilled (see Lemma 5.6). We use the function f (z) = zm
with m sufficiently large and apply a suitable linear change of coordinates, namely
a(z) =

q
b(zr )b̄(zr )(1� z2r )· f

⇣
z+1
zr+1

⌘
to get the polynomial a(z)with the required

conditions. See Figure 5.3.

-

6

�1 1zr

a(z)

p
b(z)b̄(z)(1� z2)

Figure 5.3. Conditions for the polynomial a(z).

With � 2 C(g) as before, i.e. the element with the only root of its determinant at
z = zr , Lemma 5.29 implies that the birational map that � defines has exactly one
real base-point and no base-point infinitely near to this one. Then replacing ↵ by
��1↵, one gets one base-point less. Then the claim follows by induction.

Proposition 5.31. There are bijective correspondences

⇢
conjugacy classes of involutions

in Aut+(S(R)/⇡)

�
1:1
 !

8><
>:

smooth real projective
curves 0 with no real point

with ⇡ : 0! P1 a 2 : 1-covering,
up to ⇡-isomorphism

9>=
>;

⇢
conjugacy classes of involutions
in Aut(S(R)/⇡) \ Aut+(S(R)/⇡)

�
1:1
 !

8><
>:

smooth real projective
curves 0 with one oval

with ⇡ : 0! P1 a 2 : 1-covering,
up to ⇡-isomorphism

9>=
>;

Remark 5.32. By a ⇡-isomorphism we mean an isomorphism � : 0 ! 00 such
that ⇡� = ⇡ .

Proof. Let g, g0 2 Aut(S(R)/⇡) be of order 2. If g and g0 are conjugate in
Aut(S(R)/⇡) then by Theorem 5.21, Fix(g) and Fix(g0) are birational over R by
some ⇡-isomorphism. Proposition 5.25 tells us that Fix(g) and Fix(g0) are double
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coverings of P1 with no real point (when g, g0 are orientation-preserving birational
diffeomorphisms) or with one oval (when g, g0 are orientation-reversing birational
diffeomorphisms), and Lemma 5.28 shows that all such curves are obtained. Given
a ⇡-isomorphism between two smooth real hyperelliptic curves with no oval (re-
spectively one), Theorem 5.21 implies that g and g0 are conjugate in Bir(S/⇡) and
Theorem 5.30 that g and g0 are indeed conjugate in Aut(S(R)/⇡).

5.6. Elements in Bir(S/⇡) of finite order larger than two

The goal of this subsection is to show that any element in Bir(S/⇡) of finite order
larger than two which preserves the fibration is conjugate to a rotation. We start by
observing that any rotation ⇢✓ 2 Bir(S/⇡) is given by the map

⇢✓ : S �! S
(x, y, z) 7�! (x cos ✓ � y sin ✓, x sin ✓ + y cos ✓, z)

which via  (Lemma 5.4) corresponds in A2 to the map (t, z) 7! (te�i✓ , z) and
is equivalent to the action of the element

h
e�i✓ 0
0 1

i
=

h
e�i(✓/2) 0
0 ei(✓/2)

i
=

h
1 0
0 ei✓

i
=

R✓ 2 G. With this observation and the following remark, the result is presented in
Lemma 5.34.
Remark 5.33.
(i) Let A 2 PGL(2, C(z)) be an element of finite order larger than 2. Then A is
diagonalisable.

(ii) Two diagonal elements
⇥ 1 0
0 a

⇤
and

⇥ 1 0
0 b

⇤
are conjugate in PGL(2, C(z)) if and

only if a = b±1.
Lemma 5.34. Let A 2 G be of order n 6= 2. Then A is conjugate to a rotation

R✓ =


1 0
0 ei✓

�

in G for some angle ✓ .
Proof. Since A is an element of finite order n 6= 2 then, by Remark 5.33, A is
diagonalisable in PGL(2, C(z)) so there is an element ↵ 2 PGL(2, C(z)) such that
A = ↵

h
1 0
0 µ

i
↵�1 for some µ 2 C(z)⇤ an element of order n, i.e. µ is a root of

unity that we can write as µ = ei✓ for some angle ✓ . We define J :=

⇥ 1 0
0 s

⇤
↵�1 and

we want to find s 2 C(z) such that J 2 G and J AJ�1 = R✓ . This latter condition
is fulfilled by the form of J . Requiring that J 2 G is the same as imposing that J
satisfies the relation ⌧ J⌧ = J̄ which is equivalent to ⌧

⇥ 1 0
0 s

⇤
↵�1⌧ =

⇥ 1 0
0 s̄

⇤
↵�1.

Multiplying from the right by ↵̄ we get ⌧
⇥ 1 0
0 s

⇤
↵�1⌧↵�1 =

⇥ 1 0
0 s̄

⇤
. We call ⇢ :=

↵�1⌧↵ and we rewrite the last equation in terms of ⇢ obtaining:

⌧


1 0
0 s

�
⇢̄ =


1 0
0 s̄

�
(5.4)

where ⇢̄ = ⇢�1 because ⇢⇢̄ = (↵̄�1⌧↵)(↵�1⌧ ↵̄) = 1.
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On the other hand, the fact that A 2 G i.e. ⌧ A⌧ = Ā which is the same as
⌧↵

h
1 0
0 µ

i
↵�1⌧ = ↵̄

h
1 0
0 µ̄

i
↵̄�1 is equivalent to ⇢

h
1 0
0 µ

i
=

h
µ 0
0 1

i
⇢ and constrains

⇢ to be of the form ⇢ =

⇥ 0 �
1 0

⇤
for some � 2 C(z)⇤. Moreover, ⇢⇢̄ = 1 implies that

� 2 R(z)⇤ because
⇥ 0 �
1 0

⇤ h
0 �̄
1 0

i
=

h
� 0
0 �̄

i
=

⇥ 1 0
0 1

⇤
. With this information about ⇢,

finding s 2 C(z)⇤ satisfying the equation (5.4) is equivalent to finding s satisfying
the equation

� = (1� z2)ss̄ (5.5)

Note that we already know that �
1�z2 2 R(z)⇤, but not every element of R(z)⇤ can

be written as ss̄. In what follows we describe ⇢ in terms of entries of ↵ and ⌧ in
order to find candidates for the value of s satisfying the previous equation. Let us
present ↵ =

⇥ a b
c d

⇤
, then the relation ⇢ = ↵̄�1⌧↵ explicitly will be

0 �

1 0

�
=


d̄ �b̄
�c̄ ā

� 
0 1� z2
1 0

� 
a b
c d

�

and this gives two equations

�ab̄ + (1� z2)cd̄ = 0 and (aā � (1� z2)cc̄)� = �bb̄ + (1� z2)dd̄ . (5.6)

When a 6= 0, b̄ = (1� z2) cd̄a and plugging it in the second equation in (5.6) we get

�[aā � (1� z2)cc̄] = (1� z2)[aā � (1� z2)cc̄](dd̄/aā)

hence � = (1� z2)dd̄aā . In the case a = 0, equations (5.6) imply that d = 0 and that

� =

1
1� z2

bb̄
cc̄

.

Then, we may choose s =
d
a when a 6= 0 or s =

1
1�z2

b
c otherwise and in this way

there exist J 2 G such that J AJ�1 = R✓ .

5.7. Elements in Aut(S(R)/⇡) of finite order larger than two

We can check that Lemma 5.34 also holds in the subgroup Aut(S(R)/⇡), via  :

Lemma 5.35. Let A 2H of order n 6= 2. Then A is conjugate to a rotation

R✓ =


1 0
0 ei✓

�

in H for some angle ✓ .
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Proof. Let A 2H be of finite order different from 2, then by Lemma 5.34, there is
↵ 2 G such that ↵A↵�1 = R✓ . LetA =  �1A . By abuse of notation, the element
 �1↵ 2 Bir(S/⇡)will be called ↵ as well. If ↵ 2 Bir(S/⇡)\Aut(S(R)/⇡), there
is a real point r 2 S(R) where ↵ is not defined. The element ↵ blows up this point
and contracts the conic 0zr passing through r which is a fibre of the conic bundle
structure of S. Then ↵(0zr ) = q for some q 2 S(R), which is sent by R✓ to a
different real point (R✓ only fixes PN and PS). Since A preserves the fibration,
A(0zr ) = 0zr , then ↵(A(0zr )) 6= R✓ (↵(0zr )).

5.8. Involutions in Bir(S,⇡) \ Bir(S/⇡)

Since we now want to study conjugacy classes of elements in Bir(S,⇡) \Bir(S/⇡)
whose square is the identity, we observe that thanks to Lemma 5.2, we can think
about elements of finite order in Bir(S,⇡) as of the semi-direct product between el-
ements of finite order in Bir(S/⇡) and Z/2Zwhere Z/2Z is generated by ⌘ : SC!
SC sending z to �z. The action of ⌘ on Bir(S/⇡) is given by the map:

⌘ : PGL(2, C(z)) �! PGL(2, C(z))

a(z) b(z)
c(z) d(z)

�
7�!


a(�z) b(�z)
c(�z) d(�z)

�
.

(5.7)

Let ↵ = (↵0, ⌘) 2 Bir(S,⇡) then ↵2 = (↵0⌘(↵0), 1) 2 Bir(S/⇡) and ⌘(↵0) =

↵0(�z) which means that all entries of ↵0 in C(z) are changed by the C-field auto-
morphism of C(z) sending z to �z. We are then interested in the case ↵0⌘(↵0) is
the identity. Recall that in Lemma 5.4(c), we identified Bir(S/⇡) with the group

G = {A 2 PGL(2, C(z)) | ⌧ A⌧ = Ā}

where ⌧ =

h
0 1�z2
1 0

i
. We denote by T the following group,

T := {A 2 GL(2, C(z)) | A = ⌧ Ā⌧�1} ⇢ GL(2, C(z))

whose image under the canonical projection corresponds to G. We have the follow-
ing exact sequence where p denotes the canonical projection:

1! R(z)⇤ ! T p
�! G! 1 .

Hence we obtain the cohomology exact sequence

H1(h⌘i, T )
p
�! H1(h⌘i,G)

�
�! H2(h⌘i, R(z)⇤) (5.8)

where h⌘i ' Z/2Z and the action of ⌘ is described in (5.7).
The next lemma tells us that H1(h⌘i, T ) is trivial. Then, the study of the map

� will show that conjugacy classes of ↵ 2 Bir(S,⇡) \ Bir(S/⇡) with ↵2 = id are
parametrised by particular elements in R(z2).
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Lemma 5.36. Let T :=

�
A 2 GL(2, C(z)) ; A = ⌧ A⌧�1

 
with ⌧ as before. Then

the group T can be presented more precisely as

T =

⇢
a hb
b a

�
; a, b 2 C(z), aā � hbb̄ 6= 0

�

and H1(h⌘i, T ) = {1}.

Proof. The group T is isomorphic to the multiplicative group of the non-commuta-
tive field K := C(z) + C(z)⇠ where ⇠2 = h and a(z)⇠ = ⇠a(z) for any a 2 C(z).
The isomorphism is defined by sending an element A =

h
a(z) hb(z)
b(z) a(z)

i
2 T to the

element a(z) + b(z)⇠ 2 C(z) + C(z)⇠ . Indeed, we have that the product in K ,

(a + b⇠)(c + d⇠) = ac + b⇠d⇠ + ad⇠ + b⇠c = ac + bd̄h + (ad + bc̄)⇠

corresponds in T to the product
h
a hb
b a

i h
c hd
d c

i
=

h
ac+bd̄h h(ad+bc̄)
ād̄+b̄c āc̄+b̄dh

i
.

The corresponding action of h⌘i ' Z/2Z on C(z) + C(z)⇠ is given by the
extension of the field automorphism z 7! �z of C(z)⇤ to K ⇤, to be more precise,
a(z)+b(z)⇠ 7! a(�z)+b(�z)⇠. Let g : h⌘i ! K ⇤ be a cocycle such that g(1) = 1
and g(⌘) = A for some A 2 K ⇤ such that A⌘(A) = 1. Let C 2 K such that B =

C + A⌘(C) 6= 0, such a C exists because we may choose C = A when A 6= �1,
otherwise there are many choices of C satisfying C � ⌘(C) 6= 0, e.g. C = z.
We have thus ⌘(B) = ⌘(C) + ⌘(A)C and hence A⌘(B) = A⌘(C) + A⌘(A)C =

A⌘(C) + C = B i.e. A = B⌘(B)�1 and this means that A is a coboundary.

The following lemma will be useful to compute H2(h⌘i, R(z)⇤).

Lemma 5.37. Let G be a group with two elements acting on an abelian group M
and let ⇠ be the non trivial element of G.

(a) Any class [c] 2 H2(G,M) admits a normalised 2-cocycle c0 i.e. it is the class
of c : G2! M such that c(g, 1) = c(1, g) = 1 for every g 2 G.

(b) Let c : G2 ! M be a normalised 2-cocycle and define ⇢(c) = c(⇠, ⇠) 2 M .
Then ⇢ induces an isomorphism of groups

H2(G,M)
⇠
=

�! MG/{m⇠(m) | m 2 M}.

Lemma 5.38. For the exact cohomology sequence (5.8),

H2(h⌘i, R(z)⇤) ' R(z2)⇤/{ f ⌘( f ) | f 2 R(z)⇤}

= h[�1], {[z2 + b] : b > 0}i ' {±1}�

 M
b2R>0

Z/2Z
!

.
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Proof. Let (R(z)⇤)⌘ denote the elements of R(z)⇤ which are invariant with respect
to the action of ⌘ described above. We call N the map N : R(z)⇤!(R(z)⇤)⌘ given
byN(p(z))= p(z)⌘(p(z))= p(z)p(�z). Then, by Lemma 5.37, H2(Z/2Z, R(z)⇤)
is isomorphic to coker(N) which we need to compute. First, we prove that
(R(z)⇤)⌘ = R(z2)⇤. The inclusion R(z2)⇤ ⇢ (R(z)⇤)⌘ is clear. Reciprocally,
if g(z) 2 (R(z)⇤)⌘, g(z) =

p(z)
q(z) with p, q 2 R[z] that we can assume hav-

ing non common factors. Thus from p(z)
q(z) =

p(�z)
q(�z) it follows that p(z)q(�z) =

p(�z)q(z) and then the roots of both sides need to coincide. This implies that
if a is a real root of p(z), it has to be a root of p(�z) and therefore z2 � a2 di-
vides p(z). For a complex root ↵ of p(z), using the same argument we obtain
that (z � ↵)(z � ↵̄)(z + ↵)(z + ↵̄) divides p(z). By induction on the number
of roots of p and q, we obtain R(z)⌘ = R(z2). In order to compute coker(N)
we look at the image by N of generators of R(z)⇤ and compare with genera-
tors of R(z2)⇤. Generators of R(z)⇤ are a 2 R⇤, (z � b) with b 2 R, and
(z � ↵)(z � ↵̄) with ↵ 2 C \ R and they are mapped by N to a2, b2 � z2, and
(z2 � ↵2)(z2 � ↵̄2) while generators of R(z2)⇤ are c 2 R, (z2 � d) with d 2 R,
and (z2 � �)(z2 � �̄) with � 2 C \ R (notice that � is always a square). Hence,
coker(N) ' R(z2)⇤/Im(N) = h[�1], {[z2 + b] : b > 0}i ⇢ R(z2)⇤/Im(N).

To inspect the structure of H2(h⌘i, R(z)⇤), we note that [�1] · [�1] = 1 and
[z2+b][z2+b] = 1, for any b > 0, because (z2+b)(z2+b) = (z2+b)⌘(z2+b) = 1
in R(z2)⇤/{ f ⌘( f ) | f 2 R(z)⇤}. However, [z2 + b][z2 + c] 6= 1 for b, c > 0 and
b 6= c and [�1][z2 + b] = �(z2 + b) 6= 1 for b > 0.

Proposition 5.39. The connecting map H1(h⌘i,G)
�
�! H2(h⌘i, R(z)⇤) for the ex-

act cohomology sequence (5.8) corresponds to the map

� : H1(h⌘i,G) �!

⌦
[�1],

�
[z2 + b] : b > 0

 ↵
' H2 (h⌘i, R(z)⇤)

⇢
class of Ã 2 G;

Ã⌘( Ã) = 1

�
7�!

8<
:

class of µ 2 R(z2);

A⌘(A) =


µ 0
0 µ

�
and p(A) = Ã

9=
;

and it is bijective.

Proof. In order to study how the connecting map � is defined, we use the Snake
Lemma (see, e.g. [17, Lemma 1.3.1]) which in our case works as follows. Consider
the following diagram, in which Z2 stands for h⌘i:

C1(Z2,R(z)⇤)/B1(Z2,R(z)⇤)

@R ✏✏

i1 // C1(Z2,T )/B1(Z2,T )

@T ✏✏

p1 // C1(Z2,G)/B1(Z2,G)

@G ✏✏

// 1

1 // Z2(Z2,R(z)⇤)
i2 // Z2(Z2,T )

p2 // Z2(Z2,G)

Notice that � is the same as the map ker(@G)
�
�! coker(@R). Let [p] 2 H1(h⌘i,G),

then p is a map p : h⌘i ! G defined by sending 1 to 1 and ⌘ to Ã for some Ã 2 G
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satisfying Ã⌘( Ã) = 1. Since p1 is surjective, there is [r] 2 C1(h⌘i, T )/B1(h⌘i, T );
it is given by r : h⌘i ! T so that 1 7! 1 and ⌘ 7! A where A 2 T is a represen-
tative of the element Ã. There is q 2 Z2(h⌘i, R(z)⇤) such that i2(q) = @T ([r]) be-
cause p2(@T ([r])) = @G(p1([r])) and p2(@T ([r])) = @G([p]) = 1 since [p] 2 ker @G
then @T ([r]) 2 ker p2 = Im i2. Then � is defined by sending [p] to [q] satisfying
i2([q]) = @T ([r]). More explicitly, @T ([r]) is the normalised cocycle

@T ([r]) : h⌘i ⇥ h⌘i �! T
(g1, g2) 7�! r(g1)g1(r(g2))(r(g1g2))�1
(1, 1) 7�! 1
(1, ⌘) 7�! 1
(⌘, 1) 7�! 1
(⌘, ⌘) 7�! A⌘(A)

Thus, A⌘(A) =

h
µ 0
0 µ

i
with i2([q])(⌘, ⌘) = µ 2 R(z2)⇤. Summing up, � corre-

sponds to the map

� : H1(h⌘i,G) �! H2(h⌘i, R(z)⇤)
(

Ã 2 G;

Ã⌘( Ã) = 1

)
7�!

8><
>:

µ 2 R(z2);

A⌘(A) =


µ 0
0 µ

� and p(A) = Ã

9>=
>; .

Let us see that the map � is surjective: the element
⇥ i 0
0 �i

⇤
is mapped by � to the

class [�1]. When c 2 R>0, the element
h
i(z�i
p

c) 0
0 �i(z+i

p

c)

i
is sent by � to the

class [z2 + c]. Given any finite product of classes � = (z2 + c1) · · · (z2 + ck)
in H2(h⌘i, R(z)⇤) with ci > 0 for 1  i  k, the diagonal element of the formh
a(z) 0
0 ā(z)

i
where

a(z) =

(
i(z � ipc1)(z � i

pc2) · · · (z � ipck) if k is odd
(z � ipc1)(z � i

pc2) · · · (z � ipck) if k is even

is mapped to � . This proves the surjectivity of the application �. In order to prove
injectivity, we will show that any class Ã =

h
a(z) hb(z)
b̄(z) ā(z)

i
in H1(Z/2Z,G) is equiv-

alent to a diagonal element D of the form
h
x(z) 0
0 x̄(z)

i
. In other words, we want to

show that we can find an element ↵ =

h
c(z) hd(z)
d̄(z) c̄(z)

i
in G such that ⌘(↵)A↵�1 = D

where A is the representative of Ã in T . This leads to the following equation

c̄(z)(d̄(�z)a(z) + c̄(�z)b̄(z))� d̄(z)(hd̄(�z)b(z) + c̄(�z)ā(z)) = 0
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which is equivalent to
c̄(z)
d̄(z)

=

ā(z) c̄(�z)d̄(�z) + hb(z)

b̄(z) c̄(�z)d̄(�z) + a(z)
. (5.9)

We call 9 the following automorphism of P1C(z) defined by

9 : P1C(z) �! P1C(z)
(r(z) : s(z)) 7�! (ā(z)r(z) + hb(z)s(z) : b̄(z)r(z) + a(z)s(z))

.

Equation (5.9) can be seen as f (z) = 9( f (�z)) for f (z) =
c̄(z)
d̄(z) . In this way, find-

ing c(z) and d(z) satisfying the equation (5.9) is equivalent to finding fixed points
of e9 where e9( f (z)) := 9( f (�z)). First we notice that the automorphism 9 is
a linear automorphism given by the element

h
ā(z) hb(z)
b̄(z) a(z)

i
in PGL(2, C(z)), which

we denote by Â since it comes from A by interchanging the elements of the mean
diagonal; this implies that e9 has order two because e9 � e9 = id is equivalent to
Â⌘( Â) = 1 which is satisfied because A is a class in H1(h⌘i,G). On the other hand,
the element Â is equivalent to ˆÂ =

h
0 � det Â

b̄(z)2 0

i
since B�1 Â⌘(B) =

ˆÂ for B =h
1 ā(z)/b̄(z)
0 1

i
. Hence, the existence of fixed points for the automorphism associated

to ˆÂ gives the existence of fixed points for the automorphism e9. Then we look
explicitly for elements u, v 2 C(z) such that (u(z) : v(z)) =

ˆÂ(u(�z) : v(�z)) =

(� det Âv(�z) : b̄(z)2u(�z)) in P1C(z) i.e. u(z)u(�z)b̄(z)
2

= �v(z)v(�z) det Â

and then u(z)
v(z)

u(�z)
v(�z) = �

det Â
b̄(z)2 . The right side of this last equation belongs to C(z2)

because det Â = det A which belongs to R(z2) and b̄(z)2 2 C(z2) condition im-
posed by the fact that A is a class in H1(h⌘i,G). Existence of u and v comes from
the next lemma.

Lemma 5.40. Any element f 2 C(z2) can be written as the product g(z)g(�z) for
some element g 2 C(z). In other words,

C(z2) = {g(z)g(�z) : g(z) 2 C(z)} .

Proof. Clearly, for g 2 C(z) it follows that g(z)g(�z) 2 C(z2). Reciprocally, let
f 2 C(z2). Thus f =

p(z)
q(z) with p, q 2 C[z2]. We can write p in terms of roots as

p(z) = ↵(z2 � ↵1) · · · (z2 � ↵s) where ↵,↵i 2 C, for 1  i  s. Any factor of p
can be decomposed as a product of the form �(z �p↵i )(�z �

p

↵i ) for any root
↵i . We can then write p as the product g1(z)g1(�z) where

g1(z) =

(
p

↵(z �pa1) · · · (z �par )(z �
p

↵1) · · · (z �p↵s) if s is even
i
p

↵(z �pa1) · · · (z �par )(z �
p

↵1) · · · (z �p↵s) if s is odd.
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In the same way, q(z) = g2(z)g2(�z) and therefore f can be presented as the
product g1(z)g2(z) ·

g1(�z)
g2(�z) .

Corollary 5.41 (of Proposition 5.39). The conjugacy classes of elements ↵ =

(↵0, ⌘) 2 Bir(S,⇡) \ Bir(S/⇡) such that ↵0⌘(↵0) is the identity are parametrised
by the classes of polynomials h[�1], {[z2 + b] : b > 0}i ' H2(h⌘i, R(z)⇤).

Proof. The cohomology group H1(h⌘i,G) corresponds precisely to the set of con-
jugacy classes of involutions in Bir(S,⇡) \ Bir(S/⇡), that is, classes of elements
(↵0, ⌘) as in the statement. Therefore Proposition 5.39 directly implies the corol-
lary.

Corollary 5.42. The set of conjugacy classes of involutions in Aut(S(R),⇡) \

Aut(S(R)/⇡) surjects naturally to the set of conjugacy classes of involutions in
Bir(S,⇡) \ Bir(S/⇡).

Proof. Let (A, ⌘) be an involution in Bir(S,⇡) \ Bir(S/⇡). The proof of Propo-
sition 5.39 shows that (A, ⌘) is conjugate to an element ( Ã, ⌘) where Ã is, via  ,
an element of the form

h
a(z) 0
0 ā(z)

i
, and a 2 C[z] has no real roots. Since in that

case aā 2 R[z]+, Proposition 5.15 tells us that such an element corresponds to one
of Aut(S(R)/⇡). Hence the birational diffeomorphism ( Ã, ⌘) 2 Aut(S(R),⇡) \

Aut(S(R)/⇡) is conjugate in Bir(S,⇡) to (A, ⌘), and therefore every conjuga-
tion class of Bir(S,⇡) \ Bir(S/⇡) contains a conjugation class of Aut(S(R),⇡) \

Aut(S(R)/⇡).

6. Connection between families

In this section, we collect all our results, and use the fixed points and the classifica-
tion of the possible Sarkisov links given by Iskovskikh in [13] to give the proofs of
Theorem A and Theorem B (Section 2).

We start with some definitions, which come from the equivariant Sarkisov pro-
gram.
Definition 6.1. Let X be a smooth projective real rational surface with X (R) '
S(R), let g 2 Aut(X) be an automorphism of finite order and let µ : X ! Y be
a morphism. The triple (X, g, µ) is said to be a Mori fibration when one of the
following holds

(i) rk(Pic(X)g) = 1, Y is a point and X is a Del Pezzo surface;
(ii) rk(Pic(X)g) = 2, Y = P1 and the map µ is a conic bundle.

Remark 6.2. In the second case, we can do as in Proposition 3.6 and find a bi-
rational morphism " : X ! S that restricts to a diffeomorphism X (R) ! S(R),
such that ⇡" = ↵µ, for some ↵ 2 Aut(P1R). This conjugates g to an element
"g"�1 2 Aut(S(R),⇡). The possible choices for " just replace "g"�1 with a con-
jugate in the group Aut(S(R),⇡).
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Definition 6.3. Let µ : X ! Y and µ0 : X 0 ! Y 0, g 2 Aut(X), g0 2 Aut(X 0) be
twoMori fibrations. An isomorphism of Mori fibrations is an isomorphism ⇢ : X !
X 0, such that g0⇢ = ⇢g and µ0⇢ = ↵µ for some isomorphism ↵ : Y ! Y 0.
Definition 6.4. A Sarkisov link between two Mori fibrations µ : X ! Y and
µ0 : X 0 ! Y 0, g 2 Aut(X), g0 2 Aut(X 0) is a birational map ⇣ : X 99K X 0 such that
g0⇣ = ⇣g and is of one of the following four types,

(i) Links of type I. These are commutative diagrams of the form

X
µ

✏✏

⇣ //_____ X 0
µ0✏✏

Y = {p} Y 0 = P1
⇢oo

where ⇣�1 : X 0 ! X is a birational morphism, which is the blow-up of either
a g-orbit of real points or imaginary conjugate points of X , and where ⇢ is the
contraction of Y 0 = P1 to the point p.

(ii) Links of type II. These are commutative diagrams of the form

X

⇣

''n
i d _ Z U

P

µ
✏✏

Z
� 0

//
�

oo X 0
µ0✏✏

Y '

⇢
// Y 0

where � : Z ! X (respectively � 0 : Z ! X 0) is a birational morphism, which
is the blow-up of either a g-orbit (respectively g0-orbit) of real points or imagi-
nary conjugate points of X (respectively of X 0), and where ⇢ is an isomorphism
between Y and Y 0.

(iii) Links of type III. (These are the inverse of the links of type I). These are
commutative diagrams of the form

X
µ

✏✏

⇣ // X 0
µ0✏✏

Y = P1
⇢ // Y 0 = {p}

where ⇣ : X ! X 0 is a birational morphism, which is the blow-up of either a
g0-orbit of real points or imaginary conjugate points of X 0, and where ⇢ is the
contraction of Y = P1 to the point p.

(iv) Links of type IV. These are commutative diagrams of the form

X
µ

✏✏

⇣

'

// X 0
µ0✏✏

Y = P1 Y 0 = P1
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where ⇣ : X ! X 0 is an isomorphism and µ, µ0 � ⇣ are conic bundles on X 0
with distinct fibres.

The following result is given in [13, Theorem 2.5]:

Theorem 6.5. Let (X, g, µ) and (X 0, g0, µ0) be two Mori fibrations. Every bira-
tional map ⇢ : X 99K X 0 such that g0⇢ = ⇢g decomposes into elementary links and
isomorphisms of conic bundles.

Looking at the classification of links of [13], we obtain the following lemma
with the links that could be possible to have in our classification problem.

Lemma 6.6. Let (X,g,µ) and (X 0,g0,µ0) be two Mori fibrations, and let ⇢ : X 99K
Y be a birational map which restricts to a diffeomorphism X (R)! Y (R). Then, ⇢
decomposes into elementary links that blow up only imaginary points and contract
only imaginary curves, and are of the following type:

(a) Links of type II between conic bundles, which correspond therefore to a conju-
gation in Aut(S(R),⇡).

(b) Links of type II of the form X 99K X , where X is either the sphere S or a Del
Pezzo surface of degree 4. Moreover, the two elements of Aut(X) corresponding
to this link are conjugate in Aut(X).

(c) Links of type I and III between the sphere S and the Del Pezzo surface of degree
6 obtained by blowing up two conjugate points on S. These are possible only
for a few elements, given in Lemma 4.5.

(d) Links of type IV on Del Pezzo surfaces of degree 2 or 4, obtained by blowing up
pairs of conjugate points in S.
If the two elements of Aut(S(R),⇡) corresponding to the link are not conju-
gate, then X is a Del Pezzo surface of degree 4 and the two automorphisms are
g1, g2 2 Aut(X) described in Lemma 4.12.

Proof. It follows from Proposition 3.4 that X and X 0 do not contain any real (�1)-
curve. Moreover, the map ⇢ has no real base-points implying that the first Sarkisov
link obtained in the decomposition does not have real base-points (the base-points of
the link are taken among the base-points of the map, see the proof of [13, Theorem
2.5]). Proceeding by induction on the number of links provided by Theorem 6.5,
we obtain that ⇢ decomposes into Sarkisov links that do not blow up any real point
or contract any real curve. In particular, the surfaces obtained are all diffeomorphic
to the sphere and with K 2X 2 2Z. It remains to study links X 99K X 0, between two
Mori fibrations µ : X ! Y and µ0 : X 0 ! Y 0, g 2 Aut(X), g0 2 Aut(X 0), such that
X (R) ' X 0(R) ' S(R), with (KX )2, (KX 0)

2
2 2Z, and which do not blow up any

point. In the case where Y is a point, we can moreover assume that (KX )2 6= 6,
by Proposition 4.6 (and similarly (KX 0)

2
6= 6 if Y 0 is a point). Looking at the list

of [13, Theorem 2.6], we get the following possibilities:

(1) Links of type I and III (Y is a point and Y 0 = P1 or vice versa). Looking at [13,
Theorem 2.6, case (i)], one gets only one possibility, which is the blow-up of
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two imaginary conjugate points on the sphere S. Up to automorphism, these
points can be taken to be the two base-points of ⇡ : S 99K P1, and the automor-
phisms that preserve the union of these two points are described in Lemma 4.5.

(2) Links of type II (Y = Y 0 = P1 or Y = Y 0 is a point). In the first case, when
Y = Y 0 = P1, the link corresponds to conjugation in the group Aut(S(R),⇡)
(see Remark 6.2). In the second case, the list of [13, Theorem 2.6, case (i i)]
yields the following three possibilities:

(i) (Case (KX )2 = 8, (b)) A birational map S(R) 99K S(R) that blows up 3
pairs of conjugate points and contracts 3 pairs of conjugate curves. It corre-
sponds to the Geiser involution on the blow-up of the 6 points.

(ii) (Case (KX )2 = 8, (d)) A birational map S(R) 99K S(R) that blows up 2
pairs of conjugate points and contract 2 pairs of conjugate curves.

(iii) (Case (KX )2 = 4, (b)) A birational map X (R) 99K X (R) that blows up 2
pairs of conjugate points on a Del Pezzo surface X of degree 4 and contracts
2 pairs of conjugate curves. It corresponds to the Geiser involution on the
blow-up of the 4 points.

In each case we get a link X 99K X , where X is either the sphere S or a Del
Pezzo surface of degree 4. It remains to see that the two automorphisms of prime
order of Aut(X) produced by this link are conjugate by an element of Aut(X). If
the link corresponds to a Geiser involution, this is because the Geiser involution
commutes with all automorphisms of the surface (see Proposition 4.14). In the
other case, the blown up orbit consists of two pairs of conjugate points on S(C),
so the automorphism is an element of order 2 in Aut(S), so conjugate to a rota-
tion, a reflection or the antipodal involution (Proposition 4.3). By looking at the
fixed points, we observe that two elements of order 2 in Aut(S) are conjugate in
Aut(S) if and only if they are conjugate in Aut(S(R)).

(3) Links of type IV. (X ' X 0 is a surface which admits two different conic bundle
structures, and the link consists of changing the structure). It follows from [13,
Theorem 2.6, case (iv)] that (KX )2 2 {2, 4, 8}. The case 8 is not possible
since Pic(S) ⇠= Z. If (KX )2 = 2, the link is given by the Geiser involution
(by [13, Theorem 2.6]), which commutes with all automorphisms. Hence, the
two automorphisms of Aut(S(R),⇡) provided by the links are conjugate. This
is the same if (KX )2 = 4 and if there is an element of Aut(S) which commutes
with the automorphism. By Lemma 4.13, the only remaining case is when the
two automorphisms are g1, g2 given in Lemma 4.12.

Lemma 6.6 shows that the automorphisms g1, g2 given in Lemma 4.12 are quite
special. The following result describes the situation:
Lemma 6.7.
(1) Let X be a Del Pezzo surface of degree 4 with µ 2 C \ {±1}, |µ| = 1 (see

Lemma 4.8), and g1, g2 2 Aut(X) be the automorphisms given in Lemma 4.12.
The action on the two conic bundles invariant yields two involutions

g01(µ) 2 Aut(S(R)/⇡) and g02(µ) 2 Aut(S(R),⇡) \ Aut(S(R)/⇡)
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given by

g01(µ) : (t, z) 99K

 
�2iµt + (1+ µ)(1� z2)

µ(2i+ (1+ µ)t)
, z

!

g02(µ) : (t, z) 99K

 
(1� z2)(it (1+ µ)� 2)
�2µt � i(1+ µ)(1� z2)

,�z

!

(using the map  : SC 99K A2C of Lemma 5.4)
(2) Taking another surface given by µ0 2 C \ {±1}, with |µ0| = 1, the following are

equivalent:
(a) g01(µ) and g01(µ

0) are conjugate in Aut(S(R),⇡);
(b) g02(µ) and g02(µ

0) are conjugate in Aut(S(R),⇡);
(c) µ0 = µ±1.

(3) Let g 2 Aut(S(R)/⇡) be an element of order 2, such that Fix(g) is a rational
curve with no real point. Then, g is conjugate in Aut(S(R),⇡) to g01(µ) for
some µ 2 C \ {±1}, |µ| = 1.

Proof. Let g 2 Aut(S(R)/⇡) be an element of order 2, such that Fix(g) is a rational
curve with no real point. The element g belongs to Aut+(S(R)/⇡), and the map
⇡ restricts to a double covering ⇡g : Fix(g) ! P1 (Proposition 5.25). Since the
curve is rational, by the Riemann-Hurwitz formula the double covering is ramified
over two points q, q̄ 2 P1(C). These two points determine the curve Fix(g), up to
isomorphisms above P1(C), i.e. isomorphisms ⇢ : Fix(g) ! Fix(g0) with ⇡g0⇢ =

⇡g. Hence, by Theorems 5.21 and 5.30, the conjugacy class of g in Aut(S(R)/⇡)
is given by the set {q, q̄}. We will use this observation to show that g is conjugate
to one of the automorphisms g1, g2 2 Aut(X), where X is a Del Pezzo surface of
degree 4, given in Lemma 4.12. We use the map  : SC 99K A2C, (x, y, z) 99K
(x � iy, z) given in Lemma 5.4 to compute the action of g1, g2 on A2C. Note that
 '�1 : P1C ⇥ P1C 99K A2C is locally given by

((1 : s), (1 : v)) 99K
✓
�2is
sv + 1

,
1� sv
1+ sv

◆
,

and its inverse is (t, z) 99K ((z+1 : it), (t : i(z�1))). Using the explicit description
of Lemma 4.12, the actions of g1, g2 are then respectively given by

g01(µ) : (t, z) 99K

 
�2iµt + (1+ µ)(1� z2)

µ(2i+ (1+ µ)t)
, z

!

g02(µ) : (t, z) 99K

 
(1� z2)(it (1+ µ)� 2)
�2µt � i(1+ µ)(1� z2)

,�z

!
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These correspond to involutions g01(µ)2Aut(S(R)/⇡) and g02(µ) 2 Aut(S(R),⇡)\
Aut(S(R)/⇡), which are conjugate by an element which is in the group Aut(S(R))\
Aut(S(R),⇡) (see Lemma 4.12).

In order to show that there exists µ such that g is conjugate to g01(µ) in
Aut(S(R),⇡), we need to compute the ramification points of Fix(g01(µ)). The curve
of fixed points of g01(µ) is given by

µ(1+ µ)t2 + 4iµt � (1� z2)(1+ µ) = 0

so its discriminant with respect to t is equal to

�4µ(µ + 1)2 ·

 
z2 �

✓
µ� 1
µ + 1

◆2!
,

and the two points correspond then to z = ±
µ�1
µ+1 . We conjugate g with an auto-

morphism of the form

gb :(x, y, z) 7!

 
x
p

1� b2

bz + 1
, y
p

1� b2

bz + 1
,
z + b
bz + 1

!

for some b 2 (�1, 1) (see Lemma 5.1), and claim that we can send the points
q, q̄ onto ±

µ�1
µ+1 for some µ 2 C \ {±1}, with |µ| = 1. To see this, we make the

change of coordinates z =
1�z0
1+z0 , z

0
=

1�z
1+z , so that the map gb acts as z

0
7! z0 1�b1+b

and the points z = ±
µ�1
µ+1 correspond to z

0
= µ±1. The claim follows then from

the fact that the map b 7! 1�b
1+b yields a bijection (�1, 1) ! R>0. Hence g is

conjugate to g01(µ) for some µ. Let us show that g01(µ) is conjugate to g01(µ
0) in

Aut(S(R),⇡) if and only if µ0 = µ±1. First, observe that 1/µ�11/µ+1 =
1�µ
1+µ , so the

pair of points are the same for µ and µ�1. Hence, g01(µ) is conjugate to g01(µ
0) in

Aut(S(R),⇡). Second, if g01(µ
0) is conjugate to g01(µ), there exists an element of

Aut(S(R),⇡) whose action on P1 sends
n
±

µ�1
µ+1

o
onto

n
±

µ0�1
µ0+1

o
. But the action

is generated by the maps z 7! z+b
bz+1 , b 2 (�1, 1) and by z ! �z (Lemma 5.1).

Making the same change of coordinates as before, we obtain that µ0 = µ±1. To
finish the proof, it remains to see that two elements g02(µ) and g02(µ

0) are conjugate
in Aut(S(R),⇡) if and only if µ0 = µ±1. The element g02(µ) corresponds to an
element of H2(h⌘i, R(z)⇤) that we can compute using Proposition 5.39. To do this,
we need to write the corresponding element of H1(h⌘i,G). Composing g02(µ) with
(t, z)! (t,�z), we obtain the element of Ã = G given by


�i(1+ µ)(1� z2) 2(1� z2)

2µ i(1+ µ)(1� z2)

�
.
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In order to get an element of T ⇢ GL(2, C(z)) (see Lemma 5.36), we divide each
element of the matrix with ⌫, with ⌫ 2 C, |⌫| = 1, ⌫2 = µ, and get


a hb
b a

�
2 T ⇢ GL(2, C(z)),

with a = �
i(1+µ)(1�z2)

⌫ , b =
2
⌫ (indeed, a =

i(1+1/µ)(1�z2)
1/⌫ =

i(1+µ)(1�z2)
⌫ ). Obser-

ving that a = �a and that a, b are invariant by z 7! �z, the corresponding element
of H2(h⌘i, R(z)⇤) can be computed (using Proposition 5.39) by


a hb
b a

�2
=


a2 + bbh 0

0 a2 + bbh

�

and corresponds therefore to

a2 + bbh = (1� z2)

 
z2 �

✓
1� µ

1+ µ

◆2! (1+ µ)2

µ
.

Writing µ = cos(✓) + i sin(✓) we obtain (1+µ)2

µ = 2(cos(✓) + 1),
⇣
1�µ
1+µ

⌘2
=

cos(✓)�1
cos(✓)+1 =

cos2(✓)�1
(cos(✓)+1)2 2 R<0, so the corresponding element of H2(h⌘i, R(z)⇤)

is the class of z2 +
1�cos(✓)
cos(✓)+1 . Denoting by s : (0,⇡) [ (⇡, 2⇡) ! R>0 the map

s(✓) =
1�cos(✓)
cos(✓)+1 , we observe that s(✓) = s(✓ 0) if and only if ✓ 0 2 {✓, 2⇡ � ✓}. This

gives the result.

6.1. Proof of Theorems A and B

We can now finish by giving the proof of the main theorems.

Proof of Theorem A. Let g 2 Aut(S(R)) be of prime order. By Proposition 3.6,
one of the two following possibilities holds

(a) There exists a birational morphism " : X ! S which is the blow-up of 0, 1, 2,
or 3 pairs of conjugate imaginary points in S, such that ĝ = "�1g" 2 Aut(X),
Pic(X)ĝ ⇠= Z, and X is a Del Pezzo surface.

(b) There exists ↵ 2 Aut(P1) such that ↵⇡ = ⇡g. Moreover, there exists a bira-
tional morphism " : X ! S that restricts to a diffeomorphism X (R) ! S(R)
such that ĝ = "�1g" 2 Aut(X), ⇡" : X ! P1 is a conic bundle on X , and
Pic(X)ĝ ⇠= Z2.

In particular, we have a Mori fibration in the sense of Definition 6.1.
In the case (a), X is a Del Pezzo surface with possible degree 8, 6, 4, or 2.

If (KX )2 = 8, X ' S and g 2 Aut(S). By Proposition 4.3, g is conjugate to
one of the cases (3), (4), or (5) of the statement. If X is a Del Pezzo surface of
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degree 6, X comes from S by blowing up a pair of conjugate imaginary points and
Proposition 4.6 tells us that ĝ comes from an automorphism of S, having the same
cases as before. If X is a Del Pezzo surface of degree 4, X comes from S by blowing
up two pairs of conjugate imaginary points and by Proposition 4.11 g is conjugate
to ↵1 or ↵2 given in case (2). If X is a Del Pezzo surface of degree 2, X comes from
S by blowing up three pairs of conjugate imaginary points and Lemma 4.15 asserts
that the Geiser involution ⌫ is such that Pic(X)⌫ has rank 1 and Lemma 4.16 that
there is no other such automorphism of X . We get then case (1).

We look now at case (b), where rk(Pic(X)ĝ) = 2. In this case, g is conjugate to
an element of Aut(S(R),⇡) by some birational morphism " : X ! S that restricts
to a diffeomorphism X (R) ! S(R) (see Remark 6.2) that we call g again for
simplicity. Since the order of g is finite, by Lemma 5.2 the image of g under the map
8 : Bir(S,⇡)! Aut(P1) is either the identity or ⌘ : z 7! �z, after conjugation by
an element of Aut(S(R),⇡).

• If 8(g) is the identity, then g 2 Aut(S(R)/⇡). When g has order larger than 2,
by Lemma 5.35 g is conjugate to a rotation, case (3). If g has order 2, then g is
an element in Aut+(S(R)/⇡) when g is an orientation-preserving birational dif-
feomorphism or an element that belongs to Aut(S(R)/⇡)\Aut+(S(R)/⇡) other-
wise. Proposition 5.25 implies, in the first case, that Fix(g) is a double covering
of P1 with no real points and in the second case, that Fix(g) is a double cover-
ing of P1 with real points on one oval and with ramification points PN and PS .
Lemma 5.10 implies that PN and PS are fixed in both cases. By Lemma 5.23,
the action of g on the fibres of ⇡ is either by rotations of order 2 when g is in
Aut+(S(R)/⇡) or by reflections when g is in Aut(S(R)/⇡) \ Aut+(S(R)/⇡).
We get thus cases (6) and (7) in the statement, except if the curve Fix(g) is ra-
tional. It remains to see that if Fix(g) is rational, g is conjugate to another case.
If g 2 Aut(S(R)/⇡) \ Aut+(S(R)/⇡), then the curve Fix(g) is isomorphic to
P1R and g is conjugate to the reflection � : (w : x : y : z) 7! (w : �x : y : z)
by Theorems 5.21 and 5.30. If g 2 Aut(S(R)/⇡), then g is conjugate to an
automorphism of the last family by Lemma 6.7.

• If8(g) = ⌘, then g = g0⌘̃ with8(⌘̃) = ⌘ (Lemma 5.2) and g0 2 Aut(S(R)/⇡).
Since the order of g is prime, g is of order 2 in Aut(S(R),⇡) \ Aut(S(R)/⇡)
giving the case (8) in the statement, or one of the automorphisms (w : x : y :

z) 7! (w : ±x : ±y : �z).

Proof of Theorem B. All the cases are disjoint because of the fixed curves and or-
der, except maybe in case (2) where the curve of fixed points of ↵i has genus 1
because elements in cases (6) and (7) may have a curve of fixed points of the same
genus. However, ↵i is not conjugate to an automorphism of a conic bundle since
there is no sequence of links coming from it to a Mori fibration preserving a conic
bundle (Lemma 6.6). On the other hand, ↵i is conjugate to another element if and
only if the conjugation is by an isomorphism of the surface X ; this is again a con-
sequence of Lemma 6.6. We proved that conjugacy classes in (2) are disjoint and
parametrised by isomorphism classes of pairs (X, g), where X is a Del Pezzo sur-
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face of degree 4 with X (R) ' S(R) and g is an automorphism of order 2 that does
not preserve any real conic bundle (Proposition 4.11).

It remains to show the parametrisation of the families (1) and (3)-(8).
For (1), the curves of fixed points in S(C) are not rational and invariant under

conjugation in Bir(S) and then in Aut(S(R)). We obtain a map from the set of
conjugacy classes associated to each family to the set of isomorphism classes of the
set of fixed curves. The surjectivity is given by the correspondence

⇢
Smooth real quartics
with one oval

�
$

⇢
Del Pezzo surfaces of degree 2
diffeomorphic to the sphere

�

Concerning injectivity, if two quartics are isomorphic, then the surfaces are isomor-
phic. This is because the canonical divisor of the quartic is the class of a line (see
proof Proposition 4.14). Then every isomorphism extends to P2 and then it yields
an isomorphism of Del Pezzo surfaces of degree 2.

For (6) and (7), the elements are conjugate in Aut(S(R)) if and only if they are
conjugate in Aut(S(R)), because it is not possible to use links of type other than
type II (see the description of links given in Lemma 6.6). We can thus consider the
fixed locus, which is not only a non-rational curve, but also a curve endowed with
a 2 : 1-covering. Moreover, the elements of Aut(S(R),⇡) preserve the interval.
Conversely, let 0 ! P1, 00 ! P1 be 2 : 1-coverings of P1 and assume that there
exists an isomorphism ↵ : P1! P1 such that the following diagram commutes:

0

⇡

✏✏

⇢

⇠

// 00

⇡

✏✏
P1

↵

'

// P1

and that ↵ preserves [�1, 1] then ↵ is in the group given in Lemma 5.1, and there
exist ⇠ 2 Aut(S(R),⇡) such that we can replace ⇢ with ⇠⇢⇠�1 and may assume
that ↵ = id. Then the corresponding elements are conjugate by Proposition 5.31.

For (4) and (5), the parametrisation is trivial since there is only one element in
each family.

For (3), if two rotations are equal up to sign, they are conjugate by � or the
identity. It remains to see that if r✓ is conjugate to r✓ 0 by ⇢ 2 Aut(S(R)) then
✓ = ±✓ 0 (mod 2⇡). We may assume that the order is � 5, (since otherwise we
always have ✓ = ±✓ (mod 2⇡)). We decompose ⇢ into elementary links and use
Lemma 6.6 to see that ⇢ is a product of maps of the following type:

dP6

✏✏

II //___ dP6

✏✏
S ' // S
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where the vertical arrows are blow-ups of two imaginary fixed points, fixed by g
and the image. Hence, we may assume that the points are (0 : ±i : 1 : 0) and then
we stay in Aut(S(R),⇡) (Lemma 4.5). In Aut(S(R)/⇡) o h⌧ i ⇢ PGL(2, C) o h⌧ i
the elements are

⇣h
1 0
0 ei✓

i
, 1

⌘
(see Subsection 5.6), and two are conjugate only if

✓ = ±✓ 0.

For (8), by Corollary 5.42, conjugacy classes of elements in Aut(S(R),⇡) \

Aut(S(R)/⇡) surject naturally to the set of conjugacy classes of elements in
Bir(S,⇡) \ Bir(s/⇡) which is uncountable. These correspond to the conjugacy
classes of Bir(S,⇡); we may then have a priori more conjugacy classes in
Aut(S(R),⇡). It remains to prove that two such elements are conjugate in
Aut(S(R),⇡) if and only if they are conjugate in Aut(S(R)). For this, we write
⇢ 2 Aut(S(R)) an element that conjugates one involution to another, and decom-
pose it into elementary links. If all links are of type II, then ⇢ 2 Aut(S(R),⇡).
If some links of type I or III are used, then by Lemma 6.6 these pass through the
sphere and the Del Pezzo of degree 6, which is impossible here, since elements of
the last family are not conjugate to (w : x : y : z) 7! (w : ±x : ±y : �z)
by hypothesis. The last part is when ⇢ decomposes into links of type II and IV.
The links of type IV provide two fibrations of the same surface, which lead to two
different elements of Aut(S(R),⇡). If the two elements are conjugate in this latter
group, the result is clear. The only case where this is not true is by Lemma 6.6
the case given by the automorphisms g1, g2 on special Del Pezzo surfaces of de-
gree 4 with |µ| = 1 (Lemma 4.12). But in this case, we conjugate an element of
Aut(S(R),⇡) \ Aut(S(R)/⇡) to an element of Aut(S(R)/⇡), and when we come
back we did not change the conjugacy class in Aut(S(R),⇡) (Lemma 6.7). This
ends the proof of the Theorem B.
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