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Bilinkage in codimension 3 and canonical surfaces of degree 18 in P5

GRZEGORZ KAPUSTKA AND MICHA L KAPUSTKA

Abstract. We study the behavior of the bilinkage process in codimension 3.
In particular, we construct a smooth canonically embedded and linearly normal
surface of general type of degree 18 in P5; this is probably the highest degree
such a surface may have. Next, we apply our construction to find a geometric
description of Tonoli Calabi-Yau threefolds in P6.

Mathematics Subject Classification (2010): 14J32 (primary).

1. Introduction

Let S be a minimal surface of general type defined over the field of complex num-
bers. Then, by the inequality of Noether and Bogomolov-Miyaoka-Yau, we have

2�(OS)� 6  K 2S  9�(OS).

On the other hand, if we assume that the canonical system of S gives a birational
map, then by the Castelnuovo inequality we deduce 3�(OS) � 10  K 2S . Note
that we know from [2] that 5KS always gives a birational morphism for surfaces of
general type. In this context, it is a natural problem (cf. [1, 4]) to construct surfaces
of general type with birational canonical map in the range 3�(OS) � 10  K 2S 
9�(OS). Many works are related to this problem [1, 9, 20]; however, the part with
�(OS)  7 seems out of reach with those methods. The general surface of general
type with �(OS) = 7 and h1(OS) = 0 should admit a birational canonical map to
P5. The image of such a map is a subcanonical surface of codimension 3 in P5.

On the other hand, it was proven in [23] that submanifolds X ⇢ PN of codi-
mension 3 in projective spaces with N � 3 not divisible by 4 that are subcanonical
are Pfaffian, i.e., their ideal sheaf admits a Pfaffian resolution of the form

0! OPN (�2s � t)! E⇤(�s � t) '
�! E(�s)

 
�! IX ! 0 (1.1)
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where E is a vector bundle of odd rank and s, t 2 Z. The study of codimension
3 manifolds is reduced in this way to the study of the Hartshorne-Rao modules of
submanifolds. However, complicated algebraic problems appear when we want to
classify such modules (see [14]). Catanese [4] applied the Pfaffian construction in
order to construct canonically embedded surfaces in P5 and found constructions
of surfaces with K 2S  17. Later, in his thesis [22], Tonoli constructed Calabi-
Yau threefolds in P6, but only found examples of degree  17. Since the Pfaffian
construction becomes more and more complicated when the degree increases, it is
natural to ask whether there are any canonical surfaces of degree � 18 in P5. Our
main result is the following:

Theorem 1.1. There exists a surface of general type with K 2 = 18, pg = 6, q = 0
whose canonical map is an isomorphism onto its image.

We describe the construction of such surfaces in Section 3 concluding with
Theorem 3.5. We expect, by [14], that this is the highest degree of such a canoni-
cally embedded surface in P5. In fact, in Theorem 3.5, we find an explicit descrip-
tion of a 20-dimensional subfamily of the at least 36-dimensional family of degree
18 canonical surfaces in P5. Having our existence result, it is a natural problem
(see [14]) to find a Pfaffian resolution for a general canonical surface of degree 18
in P5.

The idea of the proof of Theorem 1.1 is to construct a special bilinkage. Re-
call that the relation of linking (or equivalently liaison) was introduced in [18].
Two closed subschemes V , W of PN are algebraically linked by a subscheme
X if they are equidimensional without embedded components and X is a com-
plete intersection containing them such that IW |PN /IX |PN = Hom(OV ,OX ) and
IV |PN /IX |PN = Hom(OW ,OX ). When additionally W and V do not have com-
mon components (this is the situation we are interested in) then they are linked if
V [ W = X . We say that two irreducible varieties of the same dimension are
bilinked if they are linked in two steps, i.e., there exists a scheme T such that T is
linked with both W and V . We shall also need another point of view on bilinkage:
the notion of generalized divisors introduced by Hartshorne. With the notation as
above with V and W bilinked we see that V and W are of codimension one in X
and thus can be seen as “divisors” in X . Hartshorne [6, Section 2] generalizes the
usual notion of Cartier divisor and linear equivalence of divisors “'” (in our case
X is very singular so V , W are not Cartier divisors) in order to obtain a relation
V ' W + nH where n 2 Z and H is a hyperplane section of X ⇢ PN .

Let us now describe our construction of the surface in Theorem 1.1. We first
take a special central projection to P5 of the image V9 of the third Veronese em-
bedding of P2 in P9 and perform a bilinkage. More precisely, we find a special
P3 ⇢ P9 such that the image D9 ⇢ P5 of V9 ⇢ P9 by the projection centered in this
P3 is smooth and contained in the complete intersection of two cubics. Note here
that this image is contained in a single cubic for a generic projection (cf. [11, Re-
mark 5.5]). Then we perform a bilinkage of D9 through the intersection of these
two cubics, obtaining a special smooth canonically embedded general type surface
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of degree 18 (cf. [14]). In Proposition 3.8, we show that all the known examples of
canonical surfaces in P5 from [4] can be obtained via that bilinkage construction.
We believe that our construction can be applied in a more general classification
problems concerning submanifolds of codimension 3.

Since the method of bilinkage works better than the Pfaffian construction in
the case of surfaces, we apply it in Section 4 to study Tonoli Calabi-Yau threefolds
in P6. Those threefolds were constructed in [22] (cf. [14, 21]) by using the Pfaffian
resolution (1.1). Our first result, Proposition 4.2, says that starting from Del Pezzo
threefolds of degree d  7 in P6 we obtain families of Tonoli Calabi-Yau threefolds
of degree d + 9 by performing the bilinkage construction through the intersection
of two cubics (cf. [8]). In the remaining degree 17, there are three families of
Calabi-Yau threefolds that we call after Tonoli of type k = 8, k = 9, and k = 11.
The corresponding degree 8 Del Pezzo threefold is the double Veronese embedding
of P3 projected to P6. As before, we can find a special center of projection such
that the image of the Del Pezzo threefold of degree 8 is smooth and contained in a
three-dimensional space of cubics. Note that it is contained in no cubic for a general
projection. So we can perform a bilinkage and its result is a natural degeneration of
the degree 17 Tonoli family of type k = 9. Note that the examples of type k = 8 and
k = 11 cannot be constructed by bilinkage. This shows that the construction that
we propose in [14, Theorem 1.3], by operations on vector bundles from the Pfaffian
resolution, is, in this context, a strict generalization of the one using bilinkages.
We close Section 4 with the construction of a singular degree 18 threefold in P6
birational to a Calabi-Yau threefold.

In Subsection 2.1 we study the relation between the Pfaffian resolutions 1.1
of two bilinked subvarieties of codimension 3. Finally, in Section 5, we discuss
relations between constructions by bilinkage and by unprojection, finding that the
former are more general in our situation. This confirms the general Reid philosophy
about the relation between these constructions. As a result, we analyze an example
of non-Gorenstein unprojection that should be of independent interest.

ACKNOWLEDGEMENTS. We would like to thank Ch. Okonek for all his advice and
support, and J. Buczyński, S. Cynk, L. Gruson, A. Kresch, A. Langer, P. Pragacz
for comments and discussions. The use of Macaulay 2 was essential to guess the
geometry.

2. Preliminaries

We shall apply the following construction to relate a given Del Pezzo surface F ⇢
P5 (respectively Del Pezzo threefold) to a surface X ⇢ P5 of general type (respec-
tively Calabi-Yau threefold).

Construction 2.1. We write

Pn � F ◆ X 0  X ⇢ Pn,
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where F ◆ X 0 means that F and X 0 are bilinked and X 0  X means that X 0 is
a degeneration of X , i.e. there is a proper flat family over a disc such that X 0 is its
special element and X a general one. Then we say that X is constructed from F by
the bilinkage construction.

Before we study the possible applications of this construction, let us consider
bilinkages of Pfaffian varieties in general.

2.1. Bilinkages of Pfaffians

Let us make some useful remarks on the construction of bilinkages between Pfaffian
varieties by the relating vector bundles defining them. More precisely, we aim at
proving that, under some assumptions, if two bundles E and F of odd rank differ
by a sum of line bundles then the Pfaffian varieties associated to general sections of
their twisted wedge squares are in the same complete intersection biliaison class.

Let X ⇢ PN be a Pfaffian variety defined by a section ' 2 H0
�V2 E ⌦

OPN (t)
�
for some vector bundle E of rank 2r + 1 for some r 2 N and t 2 Z.

Denote s = c1(E) + rt .
The map ' in the Pfaffian resolution (1.1) is identified with the section

' 2 H0
⇣
PN ,

V2E ⌦OPN (t)
⌘

,

and  is the map

E(�s)! IX = Im( ) ⇢
V2r+1E ⌦OPN (rt � s) = OPN

defined as the wedge product with the r-th divided power of ':

1
r !

(' ^ ' ^ · · · ^ ') 2 H0(PN ,
V2r E ⌦OPN (rt)).

Assumption 2.2. H1(E⇤(l)) = 0 for l 2 Z.
Observe that Assumption 2.2 is satisfied when E is obtained as the kernel of a
surjective map between decomposable bundles.

Under Assumption 2.2 on E we claim that every hypersurface of degree d
containing X is defined as a Pfaffian hypersurface given by a section of the bundleV2(E �OPN (d � s � t))⌦OPN (t) of even rank 2r + 2. Indeed, we can split the
Pfaffian sequence into two short exact sequences:

0! OPN (�2s � t)! E⇤(�s � t)! F ! 0,

0! F ! E(�s)
 
�! IX ! 0,

for some sheaf F . Taking the cohomology of the second, we obtain an exact se-
quence

H0(E(d � s))! H0(IX (d))! H1(F(d)).
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On the other hand, by the first exact sequence we have

H1(E⇤(d � s � t))! H1(F(d))! H2(OPN (d � 2s � t)),

and it follows from the assumption on E and the fact that N � 3 that H1(F(d)) =

0. We hence have a surjection

H0(E(d � s))! H0(IX (d))

induced by  . Thus every hypersurface of degree d in the ideal of X is identified
with a section

s ^ '(r)
2 H0(PN ,

V2r+1E ⌦OPN (d � s + rt)),

for some section s 2 H0(E(d � s)). It is now enough to observe that

OPN (d) =

V2r+1E⌦OPN (d�s+rt) =

V2r+2(E�OPN (d�s�t))⌦OPN ((r+1)t)

and the section s ^ '(r) corresponds to the Pfaffian of the section

(', s) 2 H0(
V2(E �OPN (d � s � t))⌦OPN (t))

= H0(
V2E ⌦OPN (t))� H0(E ⌦OPN (d � s))

under the above identification.

Lemma 2.3. Let X , E , r , s, ' be as above and let E satisfy Assumption 2.2. As-
sume that X is contained in two hypersurfaces Hd1 and Hd2 of degree d1 and d2 re-
spectively. Let si be the section of H0(E(di�s)) corresponding to Hdi for i = 1, 2.
Then Hd1 \ Hd2 is a codimension 2 complete intersection if and only if the section
(', s1, s2, l) in the decomposition

H0(
V2(E �OP6(d1 � s � t)�OP6(d2 � s � t))(t))

=H0(
V2E(t))�H0(E(d1 � s))�H0(E(d2 � s))�H0

�
OP6(d1 + d2 � 2s � t)

�
defines a codimension 3 Pfaffian variety for general l 2 H0

�
OP6(d1 + d2 � 2s �

t)
�
. Moreover, if Y is a Pfaffian variety defined by a section (', s1, s2, l) then Y is

bilinked to X via the intersection of the two hypersurfaces Hd1 and Hd2 .

Proof. Assume that T = Hd1\Hd2 is a codimension 2 complete intersection. Let us
choose l 2 H0

�
OP6(d1+d2�2s�t)

�
such that T \{l = 0} is of codimension 3. We

can now easily check that at � = 0 the degeneracy loci of the sections (', s1, �s2, l)
degenerate to a subvariety of X [ (Y \ {l = 0}), hence the general element of the
family has codimension 3 as expected. By simple base change we find that the map
associated to

�
', s1, s2, 1� l

�
degenerates along a codimension 3 Pfaffian variety for

general �.
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Conversely, assume that a section (', s1, s2, l) defines a codimension 3 variety.
Consider two sections

g1 = s1 ^ s2 ^ ' ^ · · · ^ '| {z }
r�1

2 H0
⇣V2r+3(E �OP6(d1 � s � t)�OP6(d2 � s � t))((r + 1)t)

⌘

and

g2 = l⌦ (t ^ ' ^ · · · ^ '| {z }
r

)

2 H0
⇣V2r+3(E �OP6(d1 � s � t)�OP6(d2 � s � t))((r + 1)t)

⌘
.

It is a simple exercise in linear algebra to check on the fibers of this bundle that
these two sections are proportional on Hd1 \ Hd2 , i.e., si ^ ' ^ · · · ^ '| {z }

r

vanishes

for i = 1, 2. The ratio between these two sections defines a rational function g on
Hd1 \ Hd2 . Observe that the function g+ 1 vanishes only along the Pfaffian variety
defined by (', s1, s2, l), which is of codimension 3 by assumption. It follows that
Hd1 \ Hd2 is of codimension 2.

To prove the last statement of the lemma, let Y be the Pfaffian variety defined
by the section (', s1, s2, l). In particular, Y is of codimension 3 and T = Hd1 \
Hd2 is a complete intersection of two hypersurfaces. Now, Y defines a generalized
divisor in the sense of [6]. We claim that Y is linearly equivalent as a generalized
divisor to X +H , where H is the restriction of the hyperplane section to T . Indeed,
g � 1 is a rational function on Hd1 \ Hd2 which defines Y � X � H . By the
definition of biliaison, it follows that Y is related to X by a biliaison of height 1.
Finally, by [6, Prop. 4.4], this means that Y is bilinked to X .

3. Degree 9 Del Pezzo surface and degree 18 canonically embedded
surfaces

The analogy discussed in [14] suggests that one might try to construct a canonically
embedded surface of general type of degree 18 in P5 if one finds an appropriate
description of a Del Pezzo surface of degree 9 in P5. In this section we collect in-
formation on such Del Pezzo surfaces and next present a construction of canonically
embedded surfaces of general type of degree 18.

3.1. Del Pezzo surface of degree 9

Recall that a Del Pezzo surface of degree 9 is just P2 and its anticanonical em-
bedding is the image V9 of the triple Veronese embedding. We shall denote by
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D39 ⇢ P5 =: P(W ) the surface obtained as the image of the projection of the im-
age of this embedding from a general 3-dimensional linear subspace 3 ⇢ P9. Let
D = D39 for some general 3-dimensional linear subspace 3 ⇢ P9. Our aim is to
understand the module M :=

L
1

k=0 H1(ID(k + 2)), the shifted Hartshorne-Rao
module of D. From [14, Lemma 4.1], we know that the Hilbert function of the
Hartshorne-Rao module of D has values (0, 4, 7, 0, . . . ) starting from grade 0. We
can thus write M = M�1 � M0 = H1(ID(1))� H1(ID(2)).

By working out a random example in Macaulay2, we can prove that M is
generated in degree �1. Moreover, the minimal resolution of M is

0 M 4R(1) 17R 18R(�1) 4R(�2)
-

�  � �
-

29R(�2) 80R(�3) 81R(�4) 38R(�5) 7R(�6) 0

Trying to extend [14, Theorem 1.3] to the case of Del Pezzo surfaces of degree 9, we
should look for Pfaffian varieties associated to bundles in Ext1

�
2OP5, Syz1(M)

�
.

However, for modules corresponding to general Del Pezzo surfaces D39 it is hard to
find any such bundle for which a Pfaffian variety would exist. In particular, even the
bundle Syz1(M)� 2OP5 has no twisted skew self-map defining a Pfaffian variety.
For this reason, instead of trying to find a special element in Ext1

�
2OP5, Syz1(M)

�
for M being the shifted Hartshorne-Rao module of a general Del Pezzo surface
of degree 9 in P5, we look for a special smooth projected Del Pezzo surface of
degree 9 for which the Betti table of the resolution of its Hartshorne-Rao module
has different shape from the generic one.
Proposition 3.1. There exists a 3-dimensional linear subspace 3 ⇢ P9 such that
the projected Del Pezzo surface D39 ⇢ P5 is smooth and is contained in a complete
intersection Y of two smooth cubic hypersurfaces and such that the singular locus
of Y consists of 60 isolated singularities.

Proof. Let V9 be the Del Pezzo surface of degree 9 obtained as the image of the
following Veronese embedding:

P2 3 (x : y : z) 7! (x3 : y3 : z3 :3x2y :3xy2 :3x2z :3xz2 :3y2z :3yz2 :6xyz) 2 P9.

Let us denote the corresponding coordinates in P9 by (a0, . . . , a9).
Recall that the ideal of the Del Pezzo surface of degree 9 in P9 is defined by

the 2⇥ 2 minors of the Catalecticant matrix

A =

2
4 3a0 a4 a6 2a3 2a5 a9
a3 3a1 a8 2a4 a9 2a7
a5 a7 3a2 a9 2a6 2a8

3
5 .

It is also known that the 3⇥ 3 minors of A define the secant locus (i.e., the closure
of the union of all secant lines) of the Del Pezzo surface. Moreover, the secant locus
is of codimension 4 in P9.
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By the probabilistic method, one can easily construct in positive characteris-
tic an example of a three-dimensional projective space 30 disjoint from the se-
cant locus such that the projection is contained in a pencil of cubics. An exam-
ple of a matrix defining a projection from such a 30 in characteristic 17 is the
following:

N0 =

2
66666666666664

0 0 �1 �2 0 0
1 0 �2 0 0 0
0 0 �1 0 0 �1
1 0 0 �1 0 0
1 1 2 0 0 0
0 0 0 0 2 0
�1 0 1 1 1 1
1 0 0 0 0 0
1 0 0 0 1 0
�1 0 0 1 0 0

3
77777777777775

.

We check using Macaulay2 that the projection of V9 from 30 is contained in a
complete intersection Y of two smooth cubics C1 and C2 such that Y has 60 distinct
singular points.

We shall show that 30 lifts to characteristic 0 to some 3 such that the projec-
tion of V9 from 3 is contained in two cubics that specialize to C1 and C2. First
observe that a projection from 3 corresponds to a linear map C10 ! C6, hence a
10⇥6 matrix N with complex entries. This projection composed with the Veronese
embedding is a map

' : P2! P6

defined by a base point free linear system of cubics, described by N . If we further
compose ' with the triple Veronese embedding  : P6 ! P55, then the dimension
of the space of cubics containing 53(V9) is equal to the codimension of the span
of the image  � '(P2) in P55. On the other hand, it is clear that  � ' factors
through a 9-tuple Veronese embedding P2 ! P54 and a linear map LN : P54 !
P55. It follows that the image of the projection 53(V9) is always contained in a
cubic hypersurface. Moreover, the projection is contained in a two-dimensional
space if and only if LN has non-maximal rank. Observe that, following the above
description, LN can be written explicitly as a 55 ⇥ 56 matrix depending on the
entries of N . If we now consider a 60-dimensional vector space V parametrizing
matrices N , then we obtain a 55⇥56 matrix L with entries being cubic polynomials
on V . Denote by0 the degeneracy locus of L . It is a subvariety of V of codimension
 2. We can now proceed to describe an explicit lifting to characteristic 0 of the
constructed case over F17.

Consider any lift N 00 of N0 to Z and a random line l in V passing through
N0. More precisely, we choose l by choosing a parametrization N : C 3 � 7!
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N 00 + �N1 2 l with random N1, for example

N :=

2
66666666666664

0 � �2�� 1 �2 0 0
1 2� �2 �� 0 0
0 0 �1 0 2� �1

�+ 1 2� 0 �1 0 0
1 1 2 �� 0 0
0 �� 0 �2� 2 2�

�2�� 1 2� 1 1 1 1
2�+ 1 �� 0 0 0 0
�+ 1 �2� �� �2� 1 0
�1 0 0 1 0 0

3
77777777777775

.

We can now easily compute in Macaulay2 the Smith normal form LSNF of the
matrix LN restricted to the line l (i.e., over Q[�]). It is a matrix with polynomial
entries in �. More precisely, in our specific case, one entry is a polynomial p of
degree 150 with integer coefficients, whereas the remaining diagonal entries are
1. By definition, LN has non-maximal rank if and only if LSNF has non-maximal
rank. The degeneracy locus of LSNF is clearly defined by the vanishing of p. We
also check that the reduction mod 17 of this polynomial is also of degree 150. It
follows by the Valuative Criterion for Properness that there exists a number field
K and a prime p in its ring of integers OK with OK /p ⇠= F17 such that N0 is
the specialization of an OK ,p valued point of 0. In our case, this can be shown
explicitly. Indeed, the polynomial of degree 150 decomposes into two irreducible
(over Q[�]) polynomials P1 and P2 with integer coefficients and of degrees 60 and
90 respectively. We check that P1 reduced mod 17 has a root � = 0. We can hence
consider the number field K = Z[�]/(P1) and the prime ideal generated by (17, �)
in OK . It is clear that the projection 5 defined by the matrix LN with � being any
root of P1 maps V9 to a variety contained in two cubics.

Observe now that the two cubics containing 5(V9) are computed universally
(with parameter �) when computing the Smith normal form. More precisely, from
the algorithm, we obtain matrices S1, S2 invertible overQ[�] such that S1LNS2 =

LSNF. In particular, the columns of S2 corresponding to the vanishing columns of
LSNF define cubics containing the image 5(V9). We check easily that the ideal
generated by these two cubics specializes via our specialization map to the ideal
generated by the two cubics, computed over F17. Moreover, since the kernel of
the projection over F17 is disjoint from the secant locus, this is also the case for
the lifted projection. It follows that there exists a lift of the projection found over
F17 such that the image of V9 is smooth and contained in a complete intersection Y
of two smooth cubics and such that Y has singularities not worse than 60 isolated
singular points.

Remark 3.2. Note that the computation of c2(ID9/I2D9(3)) = 60 gives us the ex-
pected number of singular points. We indeed check using Macaulay 2 that the two
cubics containing the projection of V9 constructed above are smooth and intersect
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in a variety having 60 isolated singularities. However, the singularities of Y are not
nodes but isolated triple points with tangent cone being the cone over the projection
of the cubic scroll to P3.

Remark 3.3. One can describe the set of matrices defining those projections of V9
that are contained in two cubics in terms of maximal minors of L in V , hence, a
variety of expected codimension 2. On the other hand, from the proof of Proposi-
tion 3.1, for a random choice of line l, the degeneracy locus restricted to this line
has two components over Q[�]. One component of degree 60 passes through our
lift, and the other of degree 90 corresponds to the locus of 3’s which intersect the
secant locus of V9 (it is a simple exercise to prove that for any such3 the projection
is indeed contained in two cubics). This suggests that the locus of projections satis-
fying the assertion of Proposition 3.1 is an open subset of a hypersurface of degree
60 in P(V ). Additional evidence follows from the Jacobi formula for the derivative
of the determinant. Indeed, using this formula we can compute the tangent space to
the variety 0 at any constructed point, even if writing down the equations of 0 is
out of reach for our computer. In our case, we get a codimension 1 tangent space. It
is an interesting problem to find a geometric interpretation as in [8] for the centers
of projection contained in 0.

Another interesting problem is the geometric description of the cubics con-
taining the projected variety. For instance, for a generic choice of the center of
projection 3, the surface D9 ⇢ P5 is contained in a unique cubic singular along a
non-degenerate curve of degree 6. From [16] such a cubic has to be determinantal.

Remark 3.4. If the center of projection3 intersects the secant locus of the surface
V9 in one point, then D39 is also contained in a pencil of cubics. However, in this
case, we have h1

�
ID39

�
= 3. Moreover, if3meets the secant locus in three (respec-

tively four) points then D39 is contained in a four- (respectively five-) dimensional
space of cubics. And if the intersection is a line, then there is a seven-dimensional
space of cubics in the ideal.

3.2. Surfaces of general type of degree 18 in P5

Let us consider a special3 such that D39 ⇢ P5 (see Proposition 3.1) is contained in
a complete intersection threefold of degree 9 with 60 isolated singularities as above.

Theorem 3.5. The surface D39 can be bilinked through the complete intersection
of two cubics to a smooth surface of general type S0 of degree 18.

Proof. Let us denote by H the class of the hyperplane on P5. Denote by Fk the
surface residual to D9 through a complete intersection of type (3, 3, k) defined as
the intersection of the cubics containing D39 with a general hypersurface of degree
k for some k � 4. From the exact sequence

0! ID9[Fk ! IFk ! !D9(�k)! 0,
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using the fact that D9[Fk is ACM and!D9 =OD9(�1), we infer that h0
�
ID9[Fk (k+

1)
�
+ 1 = h0

�
IFk (k + 1)

�
. The surface Fk is thus linked through two cubics and a

surface of degree k + 1 to a surface S0. Let Y be the complete intersection of our
cubics. Using Macaulay 2 in characteristic 17, we proved that the singular locus of
Y is a smooth zero-dimensional scheme of degree 60. Moreover, in characteristic
17 this scheme is also the intersection scheme of D9 and S0. It follows that also
in characteristic 0 the surfaces D9 and S0 intersect in isolated points in a transver-
sal way, i.e., their tangent spaces intersect transversely at each intersection point.
Since S0 and D9 are contained in a smooth cubic, it follows that S0 is smooth at
each intersection point. To prove that S0 is smooth everywhere, we use the Bertini
theorem outside the singular locus of Y . Indeed, observe first that by [6, Proposi-
tion 4.4] the variety S0 is an almost Cartier generalized divisor linearly equivalent
to the almost Cartier generalized divisor D9 + H . It follows that on Y \ Sing(Y )
the surface S0 is a general element of the system |D9 + H | which is base point free
on Y \ Sing(Y ) because it is so outside D0 and because S0 does not meet D9 in
Y \ Sing(Y ). Furthermore, by the adjunction formula, since S0 is a smooth divi-
sor, Cartier in codimension 2, we have KS0 = (KY + D + H)|S0 = HS0 . This
means that S0 is a surface of general type, canonically embedded in P5. It is clearly
linearly normal, since by the basic properties of liaison its Hartshorne-Rao module
is the Hartshorne-Rao module of the Del Pezzo surface with gradation lifted by 1.
Finally, the degree of S0 is 18 by construction.

Remark 3.6. Observe that if E is the bundle defining the Del Pezzo surface D9
through the Pfaffian construction, then S0 is defined by the bundle E � 2OP5 . In-
deed, let us first point out that since we are dealing with almost Cartier divisors, we
can perform all computations on Y \ Sing(Y ) and then extend the result to Y . In
particular, by Lemma 2.3 we have a 6-dimensional subsystem of the linear system
|D9 + H |, consisting of varieties obtained as sections of E � 2OP5 . To prove that
this gives the complete linear system |D9+ H |, we make a simple dimension count
basing on the exact sequence

0! OY (H)! OY (D + H)! OD(D + H)! 0,

the fact that the singularities of Y are normal of codimension 3, and the equalities
OD(D + H) = OD and h1(Y,OY (H)) = 0. We obtain h0(Y,OY (D + H)) =

h0(Y,OY (H)) + h0(D,OD) = 7, hence the system |D9 + H | is of dimension 6.

Remark 3.7. Observe that the dimension of the family of surfaces obtained in The-
orem 3.5 is at most 20. Indeed, since we know that the general choice of a center
of projection does not lead to a variety contained in the complete intersection of
two cubics, it follows that the dimension of the space of 3’s up to linear auto-
morphisms is at most dimG(4, 10) � 1 � 8 = 15. We also find that for a given
D9 ⇢ P5 contained in the intersection of the cubics there is a 5-dimensional family
(= h0(D+H)�1) of bilinked surfaces. Altogether this gives a space of dimension
at most 20. Moreover, by Remark 3.3 and the Betti table of the constructed surface,
we expect this dimension to be exactly 20.
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We know that the dimension of the Kuranishi space K of a surface of gen-
eral type S is not smaller than h1(TS) � h2(TS). On the other hand, by Noether’s
formula we find c2(S) = 66. So, by the Riemann-Roch theorem applied to TS , we
infer that h1(TS)�h2(TS) = 36+h0(TS) � 36. Since h1(TP5 |S) = 0, we also have
H0(NS|P5) ⇣ H1(TS). Thus there should be an at least 36-dimensional family of
canonically embedded surfaces of general type of degree 18 in P5 with special ele-
ment S0. The general element of this family should have a simpler Hartshorne-Rao
module. It is a natural problem to construct such a general Hartshorne-Rao module.

3.3. Bilinkages of surfaces of general type

Let us now study how Construction 2.1 works in the case of canonical surfaces in
P5 constructed in [4].
Proposition 3.8. Any smooth linearly normal canonical surface S ⇢ P5 of degree
dS  17 satisfying the maximal rank assumption is obtained by Construction 2.1
from a Del Pezzo surface D of degree dD = dS � 9 with bilinkage performed in a
complete intersection of two cubics.

Proof. We compare the description, by [4], of a canonical surface Sd of degree
12  d + 9  17 in P5 satisfying the maximal rank assumption, with the de-
scription of a projected Del Pezzo surface Dd of degree d contained in [14]. Since
all surfaces Sd satisfying the assumptions above are deformation equivalent, it is
enough to obtain one such surface in each degree using Construction 2.1 as in the
assertion. We observe that for d  6 the bundle Fd constructed by Catanese is
related to the corresponding bundle Ed from [14] by Ed � 2OP6 = Fd . Since for
d  7 the Del Pezzo surface Dd is contained in a complete intersection of two cubic
hypersurfaces, by Lemma 2.3 the Del Pezzo surface Dd is bilinked to a Gorenstein
surface of general type defined by the bundle Ed � 2OP6 through the Pfaffian con-
struction. Let us denote such general surface by S̃d . Since, for d  6, we have
Ed � 2OP6 = Fd , it follows that S̃d is a smooth canonical surface in P5 of degree
d + 9.

For d = 7, both E7 � 2OP5 and F7 appear as kernels of some surjective maps
13OP5 ! 2OP5 .Moreover F7 is the kernel of a generic such map. It is now enough
to take a one-parameter family parametrized by � 2 C of maps as above such that
for � 6= 0 the kernel is isomorphic to F7, whereas for � = 0 the kernel is E7�2OP5 .
It follows that there is a bundle E on P6 ⇥ C whose restriction to P6 ⇥ {0} is the
bundle F � 2OP6 and the restriction to a fiber P6 ⇥ {�} for � 6= 0 is isomorphic to
E . Moreover, since h0

�V2 �
(E7�2O5P)(1)

��
= h0

�V2 F7(1)
�
, we infer that each

section of
V2 �

E7 � 2OP6
�
(1) is extendable to a section of

V2 E(1). It follows
from [14, Lemma 3.4] that S̃7 is a degeneration of a family of canonical surfaces
of degree 16 satisfying the maximal rank assumption; since all such surfaces are
deformation equivalent, the assertion follows in the case d = 7.

For d = 8 the situation is similar. More precisely, let D8 be a Del Pezzo
surface of degree 8 (either of type D18 or D

2
8) defined by some bundle E8. Then D is
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contained in a variety that is the complete intersection of two cubics, and E8�2OP5
is the kernel of some special surjective map 16OP5 ! 3OP5 . The bundle F8 which
is the kernel of a generic such map defines by [4] a canonical surface of general
type satisfying the maximal rank assumption. We then construct E in the same
way as above and conclude the proof by applying [14, Lemma 3.4] and the equality
h0

�V2 �
(E8 � 2O5P)(1)

��
= h0

�V2 F8(1)
�
.

4. Del Pezzo threefolds and Tonoli Calabi-Yau threefolds

In order to obtain a Calabi-Yau threefold by Construction 2.1, we consider Del
Pezzo threefolds T , i.e. KT = �2H , where H is ample embedded in P6 by a
subsystem of the half-anticanonical class. The first examples of such threefolds
we consider are the Del Pezzo threefolds of degree 3  d  5 embedded by the
complete linear system of the half-anticanonical class into a linear subspace of P6.
Note that all the Del Pezzo threefolds are enumerated in [19, Theorem 3.3.1].

Recall that, for a threefold in Y ⇢ Pn with n � 7 which is not contained
in a hyperplane, there exists a smooth projection of Y into P6 if and only if Y is
defective, i.e., the dimension of the secant locus of Y ⇢ Pn is  6. It follows
that if we want to consider only smooth threefolds F ⇢ P6 in the case d � 6, we
are restricted to the consideration of Del Pezzo threefolds defective in their half-
anticanonical embedding. There are only a few examples of such. Let Vt ⇢ Pt+1
with t = 7, 8 be the image of P3 by the map defined by all quadrics passing through
8� t point in P3.

Lemma 4.1. A smooth Del Pezzo threefold of degree d � 6 embedded in P6 by
a subsystem of the half-anticanonical embedding is defective if and only if it is
isomorphic to one of the following:

1. T6 ⇢ P6 is the generic central projection of the hyperplane section of the Segre
embedding of P2 ⇥ P2 ⇢ P8;

2. T7 ⇢ P6 is the projection of V7 ⇢ P8 from a linear space disjoint from the
secant locus Sec(V7) ⇢ P8;

3. T8 ⇢ P6 is the projection of the image V8 of the double Veronese embedding of
P3 into P9 from a linear space disjoint from the secant locus Sec(V8) ⇢ P9.

Proof. This follows by comparing the classical classification of defective threefolds
due to Scorza (see [5] for a modern approach) and the classification of Del Pezzo
threefolds due to Iskovskikh (see [10]).

We aim at proving the following.

Proposition 4.2. For 6  d  7 every smooth Del Pezzo threefold Td of degree
d in P6 is related by Construction 2.1 to a smooth Calabi-Yau threefold of degree
d + 9 in P6.
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Proof. Recall that Del Pezzo threefolds are defined through the Pfaffian construc-
tion by the bundles E 0d from [14, Remark 4.6]. Since for d  7 the Del Pezzo
threefold Td is contained in a complete intersection of two cubic hypersurfaces,
by Lemma 2.3, the Del Pezzo threefold of degree d is bilinked to a Gorenstein
Calabi-Yau threefold (a Gorenstein threefold with !X = 0 and h1(X,OX ) =

h2(X,OX ) = 0) X̃d defined by the bundle E 0d � 2OP6 through the Pfaffian con-
struction. Now for d  6 we have E 0d � 2OP6 = Fd and hence X̃d is a smooth
Tonoli Calabi-Yau threefold of degree d + 9. For d = 7 it is enough to observe
that there is a bundle E on P6 ⇥ C whose restriction to P6 ⇥ {0} is E 07 � 2OP6
and the restriction to any fiber P6 ⇥ {�} for � 6= 0 is isomorphic to F7. We
also compute using Macaulay 2 that the dimension of the space of sections ofV2 �

E 07� 2OP6
�
(1) is equal to the dimension of the space of sections of

V2 F7(1).
We infer that

V2 �
E 0d � 2OP6

�
(1) is extendable to a section of

V2 E(1). It follows
from [14, Lemma 3.4] that X̃d is a degeneration of a family of Tonoli Calabi-Yau
threefolds.

Remark 4.3. Note that the above proof works for each Del Pezzo threefold of
degree 3  d  5 such that the half-anticanonical divisor gives an embedding
into a linear subspace of P6. In this way we obtain all smooth ACM Calabi-Yau
threefolds.

Let now study the most interesting case: let T8 ⇢ P6 be a Del Pezzo threefold
of degree 8 in P6 which is the projection of V8 ⇢ P9 as above. Using the methods
from [7] we deduce that the ideal of T8 ⇢ P6 is generated by 45 quartics and is not
contained in any cubic.

However, in order to perform a bilinkage we can find a special center of pro-
jection L ⇢ P9 also disjoint from the secant locus Sec(V8) ⇢ P9, such that
the image of the projection T L

8 ⇢ P6 is contained in a 3-dimensional system
of cubics.

Proposition 4.4. There exists a center of projection L⇢P9 such that T L
8 ⇢P6 can

be bilinked to a Gorenstein Calabi-Yau threefold (not necessarily normal) X 0 ⇢P6
of degree 17. Moreover, one can choose the bilinkage in such a way that X 0 ⇢P6
admits a smoothing by the family of Tonoli Calabi-Yau threefolds of degree 17 with
k=9.

Proof. Recall that the 2⇥ 2 minors of the matrix

A =

2
64
a x y z
x b t u
y t c v
z u v w

3
75
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define the second Veronese embedding of P3 in P9(a, b, c, x, y, z, t, u, v,w). Let
us consider a special 3 = P2, the center of projection defined by the following
equations:

8>>>>>>>>><
>>>>>>>>>:

�2a + b + c � 2y � z + 2t + 2u + 2v �w = 0
2a + 2b + c + x + y � z � t + 2u � 2v �w = 0
�a � 2b � 2c � 2x + y + t + v + w = 0
2a + b � 2c + 2y � 2z + 2u � v + w = 0

a + b � 2z + 2t + u + 2v �w = 0
�2c � 2x + y � z � t + 2u + w = 0
�c + 2x � y � 2u � v + 2w = 0 .

Although it is hard to check that by hand, it is straightforward to verify using
Macaulay 2 that the image of the projection T L

8 ⇢ P6 is contained in three in-
dependent cubics. Then the residual to T L

8 of the intersection of these cubics is
a threefold G of degree 19 that is contained in a quartic that does not contain T L

8
(cf. [11, Lemma 3.1]). The residual to G in the intersection of the cubics with the
quartic containing G is a threefold X 0 of degree 17 (we say that X 0 is bilinked with
T L
8 through two cubics with height 1).
As in Propositions 3.8 and 4.2, by Lemma 2.3, we infer that there is a Pfaffian

variety X associated to the vector bundle E � 2OP6 which is a Gorenstein Calabi-
Yau threefold of degree 17.

For the second part, note that, by the general properties of bilinkage, the three-
fold X has the same Hartshorne-Rao module as T L

8 but shifted by one. It follows
by [14, proof of Theorem 1.3] that this Hartshorne-Rao module is determined by
some special P13 ⇢ hP2 ⇥ P6i containing a linear space P spanned by the graph
of some double Veronese embedding (composed with a linear embedding) of P2
to P6. Observe moreover that, by [14, Theorem 1.1], the Hartshorne-Rao mod-
ule of a Tonoli Calabi-Yau threefold of degree 17 with k = 9 corresponds to a
P15 ⇢ hP2 ⇥ P6i containing such a linear space P . We now claim that the bundle
E � 2OP6 appears as a flat deformation of a family of bundles associated to such
Calabi-Yau threefolds. Indeed, the bundle E � 2OP6 is obtained as the kernel of a
map 16OP6 ! 3OP6(1) defined by a matrix whose columns span the P13, whereas
the chosen Tonoli Calabi-Yau threefolds appear as a Pfaffian variety associated to
a bundle obtained as the kernel of a similar map, but with columns spanning a P15
containing our P13. It is easy to see that by degenerating two columns of the map to
zero (for example by multiplying them by the parameter �) one obtains the desired
flat deformation.

Observe now that there exists a subspace V of dimension 9 of the space of
sections of

V2(E � 2O)(1), consisting of all sections which admit extensions to
our deformation family. By [14, Lemma 3.4] the varieties given by these sections
admit smoothings to Tonoli Calabi-Yau threefolds of degree 17 with k = 9.
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Remark 4.5. Observe that, in the proof of Proposition 4.4, not every section
of

V2 �
E � 2OP6

�
(1) extends to the deformation family. It follows that taking

a general section of
V2 �

E � 2OP6
�
(1) in the proof of Proposition 4.4 one ob-

tains a Gorenstein Calabi-Yau threefold representing a different component of the
Hilbert scheme of Calabi-Yau threefolds consisting possibly of only singular
threefolds.

5. Unprojections

Recall that unprojection is the inverse process to projection (see [17] for a general
discussion). In this section we discuss the relations between the constructions by
unprojection and by bilinkage in the context of submanifolds of codimension 3.

For the construction of Calabi-Yau threefolds using bilinkages with Del Pezzo
threefolds we are not restricted to starting from smooth Fano threefolds. A nat-
ural choice for singular Del Pezzo threefolds are cones over Del Pezzo surfaces.
These are always contained in many cubics and a bilinkage can be performed.
This construction enables one to directly relate the Del Pezzo surface to the Calabi-
Yau threefolds constructed. When the cone is Gorenstein, it is related to so-called
Kustin-Miller unprojections. This construction was studied in [11, 12, 15]. In par-
ticular, a straightforward generalization of [12, Proposition 4.1] (cf. [3]) shows that
the unprojection of a codimension 3 variety defined by Pfaffians of a decomposable
bundle E on Pn in a codimension 2 complete intersection can be seen as some spe-
cial Pfaffian variety associated to the bundle E 0 �OPn+1(a1)�OPn+1(a2) where E 0
denotes the trivial extension of the decomposable bundle E to Pn+1, and a1 and a2
are appropriate numbers depending on the degrees of the generators of the complete
intersection and the degrees in the decomposition of E .

In the case of a complete intersection of two cubics containing a projectively
Gorenstein Del Pezzo surface in P5, the result of the unprojection is a special Pfaf-
fian variety associated to F = E 0 � 2OP6 . More precisely, it is given as the degen-
eracy locus of a skew-symmetric map ⇢ : F⇤ ! F ⌦ OP6(1) corresponding to a
section of the form

(', c1, c2, x6) 2 H0
⇣V2F ⌦OP6(1)

⌘

= H0
⇣V2E 0 ⌦OP6(1)

⌘
� 2H0(E 0(1))� H0(OP6(1)),

where ' defines the cone over the Del Pezzo surface, c1, c2 are sections which cor-
respond via the Pfaffian resolution to two cubics containing the Del Pezzo surface,
and x6 is the new variable of P6. It follows:

Corollary 5.1. Every Tonoli Calabi-Yau threefold of degree  14 is a smoothing
of a Gorenstein Calabi-Yau threefold obtained as the unprojection of a Del Pezzo
surface of degree d  5 in a complete intersection of two cubics.
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In the case d � 6 a standard Kustin-Miller unprojection cannot be performed
because the Del Pezzo surface is not projectively Gorenstein. This is the first case
in which the cone over the Del Pezzo surface is not Gorenstein at its vertex and, as
such, it cannot be written in terms of the Pfaffian construction applied to a vector
bundle. We can, however, somehow ignore this fact and propose a non-Gorenstein
unprojection instead of the standard construction due to Kustin and Miller. More
precisely, by a non-Gorenstein unprojection we mean that having a variety D ⇢
Y ⇢ PN with D not projectively Gorenstein we construct a variety X ⇢ PN+1 sin-
gular at some point p such that the projection of X from p is Y and the exceptional
locus is D.

Proposition 5.2. A Tonoli Calabi-Yau threefold of degree 15 can be obtained as
a smoothing of a singular variety obtained as a non-Gorenstein unprojection of a
Del Pezzo surface of degree d = 6 in a complete intersection of two cubics.

Proof. Observe that, although the cone over the Del Pezzo surface D6 is not Goren-
stein, we have its description in terms of some similar Pfaffian construction applied
to the sheaf E 0, trivially extending E to P6. In this case the special Pfaffian vari-
ety associated to the sheaf F = E 0 � 2OP6 obtained by copying the unprojection
procedure above in the context of sheaves is a non-Gorenstein variety X . We shall
prove that it admits a smoothing to a Calabi-Yau threefold of degree 15. More pre-
cisely, we proceed in the following way. We start with a Del Pezzo surface D6. It is
obtained as a Pfaffian variety associated to the bundle E = �1P5(1)�2OP5 , i.e., de-
fined as the degeneracy locus of a general skew-symmetric map � : E⇤(�1)! E .
We consider two cubics in the ideal of the Del Pezzo surface. From the Pfaffian se-
quence they correspond to two sections of E(1) giving a map  : 2OP5(�1)! E .
We can now extend the bundle E to a sheaf E 0 on P6 defined as the kernel of the
map 8OP6 ! OP6(1) given by the matrix [x0, . . . , x5, 0, 0]. Then we consider
the skew-symmetric map ⇢ : (E 0 � 2OP6)

_(�1) ! E 0 � 2OP6 defined by �, 
and multiplication by the new variable x6. The degeneracy locus of ⇢ is a codi-
mension 3 variety X 0 which is singular at the point (x0, . . . , x6) = (0, . . . , 0, 1),
the tangent cone being the cone over the projected Del Pezzo surface D6. The
latter singularity is not Gorenstein. Hence our variety cannot be described as a
Pfaffian variety associated to a vector bundle (we have its description as a kind of
Pfaffian variety associated to the sheaf E 0). It is however straightforward to check
that the projection from the point (0, . . . , 0, 1) 2 P6 maps X 0 to the complete in-
tersection of the two cubics containing the del Pezzo surface, and the exceptional
locus is D6.

Having the description of X 0 in terms of Pfaffians (associated to a sheaf), we
perform a similar reasoning as in [13, Proposition 7.2] and prove that X 0, though
not Gorenstein and not normal, can nonetheless be smoothed to a Tonoli Calabi-
Yau threefold of degree 15. More precisely, following [4] we can consider ⇢ as a
10⇥ 10 skew-symmetric matrix A of linear forms satisfying the the following

[x0, . . . , x5, 0, 0, 0, 0] · A = 0.
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The degeneracy locus of ⇢ is given by 8 ⇥ 8 Pfaffians of A. Observe that by the
shape of unprojection and the assumption on A we can write A in the form

where the variable x6 appears only in the matrix K (more precisely, in a 2 ⇥ 2
skew-symmetric submatrix of K ). Since [a0, . . . , a5] satisfies a Koszul relation,
there exists a skew-symmetric 5⇥ 5 matrix B0 with complex entries such that2

64
a0
...
a5

3
75 = B0 ·

2
64
x0
...
x5

3
75 .

Moreover since ai do not depend on x6, there is clearly a unique 3 ⇥ 6 matrix D0
with complex entries such that2

4a7a8
a9

3
5 = D0 ·

2
64
x0
...
x5

3
75 .

Consider now the family of skew-symmetric matrices

parametrized by � 2 C. Observe that in this case [x0, . . . , x5, �x6, 0, 0, 0] · A� =

0. Hence the matrices A� induce sections of
V2 E�(1), with E� isomorphic to

�1P6(1) � 3OP6 , and the ideals generated by their 8 ⇥ 8 Pfaffians correspond to
Pfaffian varieties associated to E�. To finish the proof, it is enough to observe that
the above family is flat around � = 0.
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Remark 5.3. Observe that we have used the special form of the section defining
the unprojected variety. In particular the construction could not be performed if
we were unable to find a matrix A with all the ai for i 2 {7, 8, 9} independent
of x6. This suggests that the Hilbert scheme of Calabi-Yau threefolds of degree
15 has at least two components: one giving the Tonoli family of degree 15; the
other parametrizing a family of non-Gorenstein threefolds probably birational to
the degree 15 threefolds in P(1, 1, 1, 1, 1, 1, 1, 2) constructed in [11]. If that is
indeed the case, the unprojected threefolds X 0 above would correspond to some
points in the intersection of these two components.

One can try to extend the construction from the case of d = 6 to higher degree
Del Pezzo surfaces. For instance, as in the proof of Proposition 4.4, the Hartshorne-
Rao modules of the cones over D18 and D

2
8 are degenerations of Hartshorne-Rao

modules associated to Tonoli Calabi-Yau threefolds of degree 17 and k = 9, 11
respectively. The sheafified first syzygy modules of their Hartshorne-Rao modules
are not vector bundles, but more general sheaves. However, one can still hope that,
as in the case of degree d = 6, these non-Gorenstein threefolds admit smoothing to
Calabi-Yau threefolds. Proceeding further, we compute the dimension of the space
of sections of the twisted second wedge power corresponding to the unprojection
and in each case we obtain a bigger space than the space of sections of the second
wedge power of the bundle defining the appropriate families of Tonoli Calabi-Yau
threefolds. Thus again (cf. Remarks 4.5, 5.3) we obtain distinct components of
the Hilbert scheme of Calabi-Yau threefolds of degree 17 in P6. The smoothing
might possibly be performed only for very special unprojections. It is also not clear
whether the varieties representing the general points of any of these components are
smooth Calabi-Yau threefolds.

5.1. Calabi-Yau threefolds of degree 18 via unprojection

Using the method of unprojection, we can also construct a non-Gorenstein pro-
jective threefold with one singular point with singularity locally isomorphic to the
cone over a projected Del Pezzo surface of degree 9. More precisely, let us start
with a Del Pezzo surface D39 from Proposition 3.1. It is contained in a complete
intersection Y of two cubic hypersurfaces. Let E be the vector bundle on P5 defin-
ing D39 . Consider the non-Gorenstein unprojection of D

3
9 in Y , i.e., a threefold

X defined as the degeneracy locus of a special skew-symmetric map between the
sheaf E 0 �2OP6 and its twisted dual, as in the case of degree d = 6. Here, E 0 is the
sheaf on P6 obtained as the trivial extension of E . In this case X is a threefold with
one singular point such that the projection from this point is Y and the exceptional
locus is D39 . Moreover, X has degree 18 and is birational to a Calabi-Yau threefold.
Unfortunately, X has no smoothing.
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