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Correlation estimates for sums of three cubes

JÖRG BRÜDERN AND TREVOR D. WOOLEY

Abstract. We establish estimates for linear correlation sums involving sums
of three positive integral cubes. Under appropriate conditions, the underlying
methods permit us to establish the solubility of systems of homogeneous linear
equations in sums of three positive cubes whenever these systems have more than
twice as many variables as equations.

Mathematics Subject Classification (2010): 11D72 (primary); 11P55, 11E76
(secondary).

1. Introduction

We shall be concerned in this memoir with the number ⇢(n) of ways the natural
number n can be written as the sum of three positive integral cubes. Our principal
goal is to provide upper bounds for linear correlation sums involving ⇢(n) and
certain of its relatives. As an application of the underlying methods, we consider
the solubility of systems of homogeneous linear equations in sums of three positive
integral cubes. Provided that the system is in general position, and it has a solution
in positive integers, we are able to show that it is soluble in sums of three positive
cubes whenever the number of variables exceeds twice the number of equations.

Some notation is required before we may introduce the family of higher corre-
lation sums that are central to our focus. Let s and r be natural numbers with s > r ,
and consider an r ⇥ s integral matrix A = (ai j ). We associate with A the collection
of linear forms

3 j (↵) =

rX
i=1

ai j↵i (1 6 j 6 s), (1.1)

and its positive cone

P = {↵ 2 Rr
: ↵i > 0 (1 6 i 6 r) and 3 j (↵) > 0 (1 6 j 6 s)}.
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790 JÖRG BRÜDERN AND TREVOR D. WOOLEY

Note that P is open, and hence its truncation P(N ) = P \ [1, N ]
r has measure

� Nr whenever P is non-empty. Given an s-tuple h of non-negative integers, we
may now define the sum 4s(N ) = 4s(N ; A;h) by putting

4s(N ; A;h) =

X
n2P(N )

⇢(31(n) + h1) · · · ⇢(3s(n) + hs). (1.2)

We refer to the coefficient matrix A as being highly non-singular if all collections
of at most r of its s columns are linearly independent.

Theorem 1.1. Let A 2 Zr⇥2r be highly non-singular, and let hi 2 N[{0} (1 6 i 6
2r). Then 42r (N ; A;h) ⌧ Nr+1/6+", where the constant implict in Vinogradov’s
notation depends at most on A and " > 0.

Classical approaches to the simplest correlation sum proceed via Cauchy’s in-
equality. Thus, by utilising Hua’s lemma (see [17, Lemma 2.5]), one obtains

X
n6N

⇢(n)⇢(n + h) ⌧

X
n6N+h

⇢(n)2 ⌧ N7/6+". (1.3)

This traditional argument is easily generalised to handle the sum 42r (N ). Writing
m j = 3 j (n) + h j for the sake of brevity, Cauchy’s inequality yields

42r (N ) 6
Y

j2{0,1}

✓ X
n2P(N )

⇢(m jr+1)
2
· · · ⇢(m jr+r )

2
◆1/2

.

Since 31,32, . . . ,3r are linearly independent, one may sum over the values
m1,m2, . . . ,mr as if these were independent variables. Thus, by symmetry, it
follows as a consequence of the second inequality of (1.3) that there is a number
C = C(A) > 1 such that

42r (N ) 6
✓ X
n6CN

⇢(n)2
◆r

⌧ N7r/6+". (1.4)

The bound (1.4) is certainly part of the folklore in the area, and constitutes the state
of the art hitherto. It is widely believed that the upper bound N7/6+" in (1.3) may be
replaced by N , and indeed the slightly weaker estimate N1+" has been established
by Hooley [11] and Heath-Brown [10] based on speculative hypotheses concerning
the distribution of the zeros of certain Hasse-Weil L-functions. Accepting one or
other of these estimates as a working hypothesis, one finds that 42r (N ) ⌧ Nr+",
or even 42r (N ) ⌧ Nr . For certain coefficient matrices A, readers will have lit-
tle difficulty in convincing themselves that the lower bound 42r (N ) � Nr is to
be expected. Although the bound on 42r (N ) presented in Theorem 1.1 does not
improve on the classical estimate (1.4) when r = 1, for all larger values of r it is
substantially sharper.
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For applications to problems of Waring’s type, mollified versions of ⇢(n) have
been utilised since the invention by Hardy and Littlewood [9] of diminishing ranges.
Most modern innovations within this circle of ideas involve the use of sets of smooth
numbers having positive density. Thus, given ⌘ > 0, let ⇢⌘(n) denote the number
of integral solutions of the equation n = x3 + y3 + z3, subject to the condition that
none of the prime divisors of yz exceed n⌘/3. Then it follows from [19,20] that for
each " > 0, there is a positive number ⌘ such that

X
16n6N

⇢⌘(n)2 ⌧ N1+⇠+", (1.5)

where ⇠ = (
p

2833� 43)/123 < 1/12. Define 4s,⌘(N ; A;h) as in (1.2), but with
⇢⌘ in place of ⇢ throughout.

Theorem 1.2. Let A 2 Zr⇥2r be highly non-singular, and let hi 2 N [ {0} (1 6
i 6 2r). Then for each " > 0, there is a number ⌘ > 0 such that

42r,⌘(N ; A;h) ⌧ Nr+⇠+".

The constant implict in Vinogradov’s notation depends at most on A, " and ⌘.

We turn now to systems of linear equations in sums of three cubes. Let C 2

Zr⇥s be highly non-singular, and suppose that the system

sX
j=1

ci j n j = 0 (1 6 i 6 r) (1.6)

has a solution in positive integers n1, . . . , ns . Denote by 7(N ) the number of solu-
tions of the system (1.6) with n j 6 N in which n j is a sum of three positive integral
cubes. We emphasise that 7(N ) counts solutions without weighting them for the
number of representations as the sum of three cubes.

Theorem 1.3. Let C 2 Zr⇥s be highly non-singular, and suppose that (1.6) has a
solution n 2 (0,1)s . Then whenever s > 2r and " > 0, one has

7(N ) � Ns(1�2⇠)�r�".

Were sums of three positive integral cubes to have positive density in the natural
numbers, then one imagines that a suitable enhancement of the methods of Gowers
[8] ought to deliver the stronger conclusion7(N ) � Ns�r for s > r+2. However,
there seems to be no prospect of any such density result at present, and so one
is forced to contemplate the possibility that the number of positive integers n 6
N , representable as the sum of three positive integral cubes, may be as small as
N1�⇠ . In such circumstances, even the lower bound 7(N ) > 1 is highly non-
trivial. Indeed, in cases where s is close to 2r + 1, such a conclusion is established
for the first time within this paper. When sums of three cubes are replaced by
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sums of two squares, on the other hand, the value set comes very close to achieving
positive density, and the methods of Gowers are in play. In this setting, the work of
Matthiesen [13, 14] comes within a factor N " of achieving the natural analogue of
the above lower bound.

Subject to appropriate additional hypotheses, a conclusion similar to that of
Theorem 1.3 may be obtained for the analogue of 7(N ) in which (1.6) is re-
placed by an inhomogeneous system of linear equations. Note also that Balog and
Brüdern [1] consider systems of linear equations in sums of three cubes of special
type. In the case of a single equation, their work more efficiently removes the mul-
tiplicity inherent in ⇢⌘(n), and establishes a superior bound in this case for 7(N ).

The conclusions of this paper depend on a new mean value estimate that is of
independent interest. In Section 2 we examine systems of equations in which the
coefficient matrices are of linked block type, and establish an auxiliary bound for
their number of solutions. This prepares the way for the proof of the central esti-
mate, Theorem 3.4, in Section 3, accomplished by a novel complification argument
in which mean values are bounded by blowing up the number of equations so as to
apply the powerful estimates of the previous section. We then establish the corre-
lation estimates of Theorems 1.1 and 1.2 in Section 4, and finish in Section 5 by
applying the Hardy-Littlewood method to prove Theorem 1.3.

Our basic parameter is P , a sufficiently large positive number. In this paper,
implicit constants in Vinogradov’s notation⌧ and� may depend on s, r and ", as
well as ambient coefficients. Whenever " appears in a statement, either implicitly
or explicitly, we assert that the statement holds for each " > 0. We employ the
convention that whenever G : [0, 1)k ! C is integrable, then

I
G(↵) d↵ =

Z
[0,1)k

G(↵) d↵.

Here and elsewhere, we use vector notation in the natural way. Finally, we write
e(z) for e2⇡ i z .

The authors are very grateful to the referee for identifying obscurities in the
original version of this paper. In the current version, the treatment of the central
mean value estimate in Section 2, though somewhat longer, is both more explicit
and considerably simpler in detail.

2. Auxiliary equations

In this section we establish near-optimal mean value estimates for certain products
of cubicWeyl sums. The formal coefficient matrices associated with these exponen-
tial sums have repeated columns, with multiplicities 2 and 4, and so would appear to
be rather special. However, it transpires that this structure enables us to accommo-
date systems of cubic equations quite far from being in general position, and thus
our principal conclusions are more flexible than the corresponding estimates of our
earlier works [3, 6].
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We begin by describing the matrices which are important in our arguments. For
0 6 l 6 n, consider natural numbers rl , sl and rl ⇥ sl matrices Cl having non-zero
columns. Let diag(C0,C1, . . . ,Cn) be the conventional diagonal block matrix with
the upper left hand corner of Cl sited at (il , jl). For 0 6 l 6 n, append a row to the
bottom of the matrix Cl , giving an (rl +1)⇥ sl matrix C 0

l . Next, consider the matrix
C† obtained from diag(C0,C1, . . . ,Cn) by replacing Cl by C 0

l for 0 6 l 6 n,
with the upper left hand corner of C 0

l still sited at (il , jl). We refer to this new
matrix C† as being a linked block matrix. It has additional entries by comparison to
diag(C0,C1, . . . ,Cn), with the property that adjacent blocks are glued together by
a shared row sited at index il , for 1 6 l 6 n.

We next describe the special linked block matrices relevant to our discussion.
Let Ik denote the k ⇥ k identity matrix, and write 0 for the zero row vector with k
components. We introduce the block matrices

I ⇤k =

✓
Ik
0

◆
and I+k =

0
@ 0Ik
0

1
A .

When n > 0, r > t > 2 and ! 2 {0, 1}, we consider fixed positive integers �l , and
matrices Ml of format (

t ⇥ (t + !) when l = 0
r ⇥ r when 1 6 l 6 n

having the property that every one of their square minors is non-singular. For ease
of reference, we think of Ml as the block matrix (ml , B0

l ), where ml denotes the
first column of Ml . Associated with each of these matrices, we consider the block
matrices

A0

l =

(
(�l I ⇤t�1,m0) when l = 0
(�l I+r�2,ml) when 1 6 l 6 n.

Viewing the matrices A0

l and B
0

l as examples of the matrices C
0

l introduced in the
previous paragraph, we form the linked block matrices A† and B†. We refer to
the block matrix D = (A†, B†) as an auxiliary matrix of type (n, r, t)!, and write
D = (di j ). Put

R = n(r � 1) + t and S = 2R � 1+ !. (2.1)

Then we see that A† and B† have respective formats R ⇥ R and R ⇥ (R � 1+ !),
whilst D has format R ⇥ S.

To illustrate this definition, we note that all the square minors of the matrix
0
B@
7 5 6 3
7 1 4 8
9 4 5 7
6 3 3 8

1
CA
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are non-singular, as the reader may care to verify, and hence1

0
BBBBBBBBBBBBBBBBBB@

8 7 5 6 3
8 7 1 4 8
8 9 4 5 7
6 7 3 3 8 5 6 3
8 7 1 4 8
8 9 4 5 7
6 7 3 3 8 5 6 3
8 7 1 4 8
8 9 4 5 7
6 7 3 3 8 5 6 3
8 7 1 4 8
8 9 4 5 7
6 3 3 8

1
CCCCCCCCCCCCCCCCCCA

is an auxiliary matrix of type (3, 4, 4)0. Were one to delete the first row and column
of this matrix, the result would be an auxiliary matrix of type (3, 4, 3)1.

Next, consider an integral auxiliary matrix D = (di j ) of type (n, r, t)!, define
R and S as in (2.1), and define the linear forms

� j =

RX
i=1

di j↵i (1 6 j 6 S).

Introducing the Weyl sum

f (↵) =

X
16x6P

e(↵x3),

we define the mean value

I!(P; D) =

I
| f (�1) · · · f (�R)|2| f (�R+1) · · · f (�S)|4 d↵. (2.2)

Here, we use the suffix ! merely as an aide-memoire in keeping track of the type of
the matrix D. We note in this context that by considering the underlying Diophan-
tine system, one finds that I!(P; D) is unchanged by elementary row operations on
D, and so in the discussion to come we may always pass to a convenient matrix row
equivalent to D.

Before announcing our pivotal mean value estimate, we recall that Hua’s lemma
(see [17, Lemma 2.5]) shows that, for each natural number c, one has

Z 1

0
| f (c✓)|2⌫ d✓ ⌧ P⌫+" (⌫ = 1, 2). (2.3)

1 We adopt the convention that zero entries in a matrix are left blank.
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Lemma 2.1. Let D be an integral auxiliary matrix of type (n, r, t)! with r > 3.
Then I!(P; D) ⌧ P3R�2+3!+".

Proof. Throughout, we assume the nomenclature for the infrastructure of the matrix
D introduced in the preamble to this lemma. We proceed by induction on R > 2.
Since it is supposed that t > 2, it follows from (2.1) that when R = 2, then n = 0
and t = 2. In such circumstances, one has

I0(P; D) =

Z 1

0

Z 1

0

��� f (�1)2 f (�2)2 f (�3)4
��� d↵1 d↵2.

Observe that �1 = �↵1 and, since all minors of M0 are non-singular, it follows
that �3 is linearly independent of both �1 and �2. Hence, by applying Schwarz’s
inequality in combination with (2.3) and a change of variables, one obtains

I0(P; D) ⌧

✓Z 1

0

�� f (✓)
��4 d✓

◆2
⌧ P4+"

= P3R�2+".

Meanwhile,

I1(P; D) =

Z 1

0

Z 1

0

��� f (�1)2 f (�2)2 f (�3)4 f (�4)4
��� d↵1 d↵2.

Since �1 = �↵1 and all minors of M0 are non-singular, we may employ the trivial
estimate | f (�2)| = O(P) in combination with a change of variables to deduce that
there are fixed positive integers a, b, c and d for which

I1(P; D) ⌧ P2
Z 1

0

Z 1

0

��� f (a✓1)4 f (b✓2)4 f (c✓1 + d✓2)
2
��� d✓1 d✓2.

Consequently, by a pedestrian generalisation of [4, Theorem 1] (see especially equa-
tions (6) and (7) therein), one finds that

I1(P; D) ⌧ P2(P5+") = P3R+1+".

We have thus confirmed the conclusion of the lemma when R = 2.
Suppose next that R > 3, and that the conclusion of the lemma holds for all

auxiliary matrices D having fewer than R rows. We divide our discussion into cases
according to the value of !.
Case I: ! = 0
We first consider the situation in which the integral auxiliary matrix D has R rows
and ! = 0. By orthogonality, one sees that I0(P; D) counts the number of integral
solutions of the system

RX
j=1

di j
⇣
x3j1 � x3j2

⌘
+

SX
j=R+1

di j
⇣
x3j1 + x3j2 � x3j3 � x3j4

⌘
=0 (16 i6 R), (2.4)
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with 1 6 x jl 6 P for each j and l. Let T0 denote the number of these solutions in
which x j1 = x j2 for 1 6 j 6 t � 1, and let Tj denote the corresponding number
where instead x j1 6= x j2. Then

I0(P; D) 6 T0 + T1 + . . . + Tt�1. (2.5)

An inspection of (2.4) reveals that

T0 ⌧ Pt�1 J0, (2.6)

where J0 counts the number of integral solutions of the system

RX
j=t

di j
⇣
x3j1 � x3j2

⌘
+

SX
j=R+1

di j
⇣
x3j1 + x3j2 � x3j3 � x3j4

⌘
=0 (16 i6 R), (2.7)

with 1 6 x jl 6 P for each j and l. We observe that the equations in (2.7) with
1 6 i 6 t � 1 involve only the variables x jl with j = t and R + 1 6 j 6
R + t � 1. The coefficient matrix associated with these equations and variables is
the matrix M⇤

0 obtained from M0 by deleting its final row. By taking appropriate
linear combinations of the first t�1 equations of (2.7), corresponding to elementary
row operations on M⇤

0 , we may therefore replace the equations in (2.7) with 1 6
i 6 t � 1 by the new equations

ui
⇣
x3t,1� x3t,2

⌘
+vi

⇣
x3R+i,1+ x3R+i,2� x3R+i,3� x3R+i,4

⌘
= 0 (16 i6 t�1), (2.8)

in which ui and vi 6= 0 (1 6 i 6 t � 1) are suitable integers. Put ⌧ = t + r � 1.
Then adding appropriate multiples of the equations (2.8) to the equation in (2.7)
with i = t , one finds that the latter equation may be replaced by

ut
⇣
x3t1 � x3t2

⌘
+dt⌧

⇣
x3⌧1 � x3⌧2

⌘
+

SX
j=R+t

dt j
⇣
x3j1 + x3j2 � x3j3 � x3j4

⌘
= 0, (2.9)

for a suitable rational number ut . The coefficient matrix M+

0 associated with these t
new equations (2.8) and (2.9), and variables xtl and x jl (R+1 6 j 6 R+t�1) has
been obtained from M0 by a succession of elementary row operations, and hence is
non-singular. Since det(M+

0 ) = (�1)t�1utv1 · · · vt�1, we therefore see that ut 6= 0.
We now investigate the number N0 of integral solutions of the system of equa-

tions defined by (2.9) and the equations of (2.7) for which t + 1 6 i 6 R, with
1 6 x jl 6 P for each j and l. When n = 0, the whole system reduces to the single
equation

ut (x3t1 � x3t2) = 0,

so that N0 ⌧ P . Otherwise, when n > 1, we observe that, by taking appropriate
non-zero integral multiples of the equations, there is no loss of generality in assum-
ing that ut = dii (t+1 6 i 6 t+r�2). In this way, one finds that N0 = I0(P; D1),
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where D1 is an auxiliary matrix of type (n � 1, r, r)0 having (n � 1)(r � 1) + r
rows. Consequently, our inductive hypothesis shows that

I0(P; D1) ⌧ P3((n�1)(r�1)+r)�2+"
= P3(R�t)+1+".

Then in both cases, we have N0 ⌧ P3(R�t)+1+".
Now consider any fixed solution counted by N0, and consider the number N1

of solutions x jl (R + 1 6 j 6 R + t � 1 and 1 6 l 6 4) satisfying the equations
(2.8). Since the variables xt1 and xt2 are fixed, it follows from orthogonality via the
triangle inequality that

N1 ⌧

t�1Y
i=1

✓Z 1

0

�� f (vi✓i )��4 d✓i
◆

.

Then we conclude from (2.3) that N1 ⌧ (P2+")t�1, and hence

J0 ⌧ (P2+")t�1N0 ⌧ P3(R�t)+2(t�1)+1+t".

Substituting this estimate into (2.6), we obtain the bound

T0 ⌧ P3(R�t)+3(t�1)+1+"
= P3R�2+". (2.10)

We next turn to the problem of bounding Tj for 1 6 j 6 t � 1. We restrict
attention in the first instance to the case j = 1, since, as will become transparent as
our argument unfolds, the same method applies also for the remaining values of j .
Write

T (h) =

I �� f (�2) · · · f (�R)
��2�� f (�R+1) · · · f (�S)

��4e(�1h) d↵. (2.11)

Then we find by orthogonality that

T1 =

X
h2Z\{0}

chT (h),

where ch denotes the number of integral solutions of d11(x3 � y3) = h, with 1 6
x, y 6 P . An elementary divisor function estimate shows that ch = O(|h|") when
h 6= 0. Since ch = 0 for |h| > P4, one deduces from (2.11) and a consideration of
the underlying Diophantine system that

T1 ⌧ P"
X

h2Z\{0}
T (h). (2.12)

The sum over h on the right hand side here is bounded above by the number N2 of
solutions of the system (2.4) with 2 6 i 6 R and x11 = x12 = 0. When t > 3, one
sees that N2 = I1(P; D2), where D2 is the auxiliary matrix of type (n, r, t � 1)1
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obtained from D by deleting its first row and column. Since D2 has R � 1 rows, it
follows from the inductive hypothesis that

T1 ⌧ P" I1(P; D2) ⌧ P3(R�1)+1+2".

We therefore conclude from (2.5) via (2.10) that when t > 3, one has

I0(P; D) ⌧ P3R�2+",

thereby confirming the inductive hypothesis for D.
It remains to handle the situation in which t = 2. Note that since we have

assumed R > 3, it follows that n > 1. For the sake of concision, we abbreviate
(↵2, . . . ,↵R) to ↵0, and then define � 0

j (↵
0) = � j (0,↵2, . . . ,↵R). We put

F(↵2) =

I �� f (� 0

3) · · · f (� 0

R)
��2�� f (� 0

R+2) · · · f (� 0

S)
��4 d(↵3, . . . ,↵R),

and observe that, by orthogonality, one has

N2 =

Z 1

0

�� f (d2,2↵2)2 f (dR+1,2↵2)
4��F(↵2) d↵2.

We apply the Hardy-Littlewood method to estimate N2. Denote byM the union of
the intervals

M(q, a) =

n
↵ 2 [0, 1) : |q↵ � a| 6 P�9/4

o
, (2.13)

with 0 6 a 6 q 6 P3/4 and (a, q) = 1, and put m = [0, 1) \ M. Let c be a fixed
non-zero integer. Then, as a special case of [2, Lemma 3.4], or as a consequence of
the methods of [17, Chapter 4]), one hasZ

M
| f (c✓)|4 d✓ ⌧ P1+". (2.14)

In addition, an enhanced version of Weyl’s inequality (see [15, Lemma 1]) shows
that

sup
✓2m

| f (c✓)| ⌧ P3/4+". (2.15)

On the one hand, it follows from (2.15) that
Z

m

�� f (d2,2↵2)2 f (dR+1,2↵2)
4��F(↵2) d↵2 ⌧ P3+"

Z 1

0

�� f (d2,2↵2)2��F(↵2) d↵2.

Put ⌧ = r + 1. Then, by orthogonality, the integral on the right hand side counts
the number of integral solutions of the system of equations given by

d22
⇣
x321 � x322

⌘
+ d2⌧

⇣
x3⌧1 � x3⌧2

⌘
+

SX
j=R+2

d2 j
⇣
x3j1 + x3j2 � x3j3 � x3j4

⌘
= 0
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and

RX
j=3

di j (x3j1� x3j2)+

SX
j=R+2

di j (x3j1+ x3j2� x3j3� x3j4) = 0 (3 6 i 6 R), (2.16)

with 1 6 x jl 6 P for each j and l. By taking appropriate non-zero integral
multiples of these equations, there is no loss of generality in assuming that d22 =

dii (3 6 i 6 r). The coefficient matrix D3 associated with these equations and
variables arises from D by deleting its first row, and the first and (R+1)-st column,
and can be seen to be an auxiliary matrix of type (n � 1, r, r)0 having R � 1 rows.
It therefore follows from the inductive hypothesis that

Z
m

| f (d2,2↵)2 f (dR+1,2↵)4|F(↵) d↵ ⌧ P3+" I0(P; D3)

⌧ P3+"
⇣
P3(R�1)�2+"

⌘
. (2.17)

We next consider the corresponding major arc contribution. By orthogonality,
the mean value F(↵) is bounded above by the number of solutions of an associated
Diophantine system, in which each solution is counted with a unimodular weight
depending on ↵. Thus we have F(↵) 6 F(0). Consequently, it follows from (2.14)
via the trivial estimate | f (d2,2↵)| = O(P) that

Z
M

�� f (d2,2↵)2 f (dR+1,2↵)4
��F(↵) d↵ ⌧ F(0)P2

Z
M

�� f (dR+1,2↵)
��4 d↵

⌧ F(0)P3+".

By orthogonality, the mean value F(0) counts the number of integral solutions of
the system (2.16). The coefficient matrix D4 associated with these equations and
variables arises from D by deleting its first two rows, and columns 1, 2 and R + 1,
and can be seen to be an auxiliary matrix of type (n � 1, r, r � 1)1 having R � 2
rows. It therefore follows from the inductive hypothesis that

Z
M

�� f (d2,2↵)2 f (dR+1,2↵)4
��F(↵) d↵ ⌧ P3+" I1(P; D4)

⌧ P3+"
⇣
P3(R�2)+1+"

⌘
. (2.18)

On combining (2.12), (2.17) and (2.18), we conclude that when t = 2 one has
T1 ⌧ P"N2 ⌧ P3R�2+2". We therefore deduce from (2.5) and (2.10) that
I0(P; D) ⌧ P3R�2+", confirming the inductive hypothesis for D when t = 2.
Case II: ! = 1
We now turn to the situation in which the integral auxiliary matrix D has R rows
and ! = 1. Observe that �R+ j (↵) depends only on ↵⇤

= (↵1, . . . ,↵t ) for 1 6
j 6 t . When 1 6 j 6 t , we define B⇤

j to be the set of t-tuples ↵⇤
2 [0, 1)t for
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which �R+ j (↵
⇤, 0) 2 m + Z, and we define B⇤

0 to be the complementary set of
t-tuples ↵⇤

2 [0, 1)t for which �R+ j (↵
⇤, 0) 62 m + Z (1 6 j 6 t). We then put

B j = B⇤

j ⇥ [0, 1)R�t (0 6 j 6 t). Thus [0, 1)R ✓ B0 [ B1 [ . . . [ Bt . When
B ✓ [0, 1)R , we write

I (B) =

Z
B

�� f (�1) · · · f (�R)
��2�� f (�R+1) · · · f (�S)

��4 d↵.

Then it follows from (2.2) that

I1(P; D) 6 I (B0) + I (B1) + . . . + I (Bt ). (2.19)

We begin by estimating I (B1). It follows from (2.15) that

sup
↵2B1

| f (�R+1)| 6 sup
�2m

| f (� )| ⌧ P3/4+",

and hence

I (B1) ⌧ P3+"

I �� f (�1) · · · f (�R)
��2�� f (�R+2) · · · f (�S)

��4 d↵.

The integral on the right hand side counts the number N3 of integral solutions of the
system (2.4) with 1 6 x jl 6 P for each j 6= R+1 and l, but with xR+1,l = 0. Thus
N3 = I (P; D5), where D5 is the matrix obtained from D by deleting its (R+ 1)-st
column. Note that deleting a column from a matrix, all of whose square minors are
non-singular, does not change the latter property. Hence D5 is an auxiliary matrix
of type (n, r, t)0 having R rows. It therefore follows from the inductive hypothesis
that

I (B1) ⌧ P3+" I0(P; D5) ⌧ P3+"(P3R�2+"). (2.20)

As indicated earlier, a symmetrical argument shows that I (B j ) is bounded in the
same manner for 2 6 j 6 t .

We finish by estimating I (B0). Note that whenever ↵ 2 B0, then �R+ j 2

M + Z for 1 6 j 6 t . We put

G(↵⇤) =

I �� f (�t+1) · · · f (�R)
��2�� f (�R+t+1) · · · f (�S)

��4 d(↵t+1, . . . ,↵R),

and apply the trivial estimate | f (� j )| 6 P (1 6 j 6 t). Then one finds that

I (B0) ⌧ P2t
Z

B⇤

0

| f (�R+1) · · · f (�R+t )|
4G(↵⇤) d↵⇤. (2.21)

Observe that by orthogonality, and an argument paralleling that in the discussion
following (2.17), one has G(↵⇤) 6 G(0). Also, one sees that G(0) counts the
number of integral solutions of the system (2.4) for t + 1 6 i 6 R, with 1 6 x jl 6
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P for t + 1 6 j 6 R and R + t + 1 6 j 6 S, and with the remaining variables
0. Thus G(0) = I1(P; D6), where D6 is the matrix obtained from D by deleting
its first t rows and columns j with 1 6 j 6 t and R + 1 6 j 6 R + t . Hence
D6 is an auxiliary matrix of type (n � 1, r, r � 1)1 having R � t rows. It therefore
follows from the inductive hypothesis that G(0) ⌧ P3(R�t)+1+". By substituting
this estimate into (2.21) and making an appropriate change of variables justified by
the non-singularity of the matrix B0

0, it follows that

I (B0) ⌧ P2tG(0)
Z

Mt

�� f (✓1) · · · f (✓t )
��4 d✓ .

An application of (2.14) therefore yields

I (B0) ⌧ P3R�t+1+"(P1+")t ⌧ P3R+1+(t+1)".

In combination with (2.20), and its generalisations estimating I (B j ) for 2 6 j 6 t ,
we conclude from (2.19) that I1(P; D) ⌧ P3R+1+". This confirms the inductive
hypothesis for D when ! = 1, completing the proof of the lemma.

By a modification of the argument of the proof of Lemma 2.1, one may handle
also the case r = 2. However, we are able to establish all of the conclusions
recorded in the introduction without appealing to this special case.

3. Complification

We now employ a recursive complification argument, in which, at each step, mean
values associated with R equations are estimated in terms of a mean value associ-
ated with 2R�1 equations. In this way, we are able to apply the estimates supplied
by Lemma 2.1 to obtain powerful estimates for suitable mixed moments of order
2R of generating functions associated with sums of three cubes. We begin with a
lemma concerning highly non-singular matrices.

Lemma 3.1. Let A = (A1, A2) be a block matrix in which A1 and A2 are each
of format r ⇥ r . Then A is highly non-singular if and only if A1 and A2 are non-
singular, and all square minors of A�1

1 A2 are non-singular.

Proof. The non-singularity condition on A1 and A2 is immediate from the definition
of what it means to be highly non-singular. Thus, by applying elementary row
operations, it suffices to consider the situation with A = (Ir , A�1

1 A2). The matrix
A is highly non-singular if and only if all collections of r of its columns are linearly
independent. Given any l⇥l minor M of A�1

1 A2, inhabiting the columns v1, . . . , vl ,
say, one can select a complementary set of columns e1, . . . , er�l from Ir in such a
manner that

det(M) = ± det(v1, . . . , vl , e1, . . . , er�l).
Then all collections of r of the columns of A are linearly independent if and only if
det(M) 6= 0 for all square minors M of A�1

1 A2, as claimed.
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We next prepare the cast of generating functions needed to describe the compli-
fication process. With the needs of Section 5 in mind, we proceed in slightly greater
generality than demanded by the proofs of Theorems 1.1 and 1.2. Let � 2 [0, 1).
When 2 6 Z 6 P , we put

A(P, Z) =

�
n 2 [1, P] \ Z : p prime and p|n ) p 6 Z

 
,

and introduce the exponential sums

f0(↵) =

X
� P<x6P

e(↵x3) and g(↵) =

X
� P<x6P
x2A(P,P⌘)

e(↵x3). (3.1)

We then take �1(↵) = f0(↵)2 and �2(↵) = g(↵)2, and write

Fl(↵) = f0(↵)�l(↵) and 8l(↵) = f0(↵)2�l(↵) (l = 1, 2). (3.2)

Finally, for the sake of convenience, we put

⌫1 =
1
2 and ⌫2 = 3⇠ = (

p

2833� 43)/41. (3.3)

Lemma 3.2. When ⌘ > 0 is sufficiently small, one has
Z 1

0
|Fl(↵)|2 d↵ ⌧ P3+⌫l+" (l = 1, 2).

Proof. When l = 1, this is an immediate consequence of Hua’s lemma (see [17,
Lemma 2.5]) in combination with Schwarz’s inequality. When l = 2, meanwhile,
this follows from [20, Theorem 1.2] by considering the underlying Diophantine
equations.

Next, let n and r be non-negative integers with r > 2, and write R = n(r � 1).
Let 3 = (�i, j ) be an integral (R + 1) ⇥ (2R + 2) matrix, write � j for the column
vector (�i, j )16i6R+1, and define �

[
j to be the column vector (�R+2�i, j )16i6R+1 in

which the entries of � j are flipped upside-down. Also, let

� j (↵) =

R+1X
i=1

�i, j↵i (0 6 j 6 2R + 1). (3.4)

We say that the matrix 3 is adjuvant of type (n, r) when the column vectors
�0,�1, . . . ,�R and �R+2,�R+3, . . . ,�2R+1, respectively, may be permuted to form
matrices A† and B† having the property that the block matrix (A†, B†) is auxiliary
of type (n � 1, r, r)0, and also the same property holds for the respective column
vectors �[

R+1,�
[
R, . . . ,�

[
1 and �

[
2R+1,�

[
2R, . . . ,�

[
R+2. We also adopt the convention

that

�
(l)
a,b(�) =

bY
j=a

�l(� j ) and 8
(l)
a,b(�) =

bY
j=a

8l(� j ).
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We then introduce the mean value

Jl(P;3) =

I
|Fl(�0)�(l)

1,R(�)Fl(�R+1)8
(l)
R+2,2R+1(�)| d↵. (3.5)

Finally, we fix ⌘ > 0 to be sufficiently small in the context of Lemma 3.2.

Lemma 3.3. Suppose that 3 is an integral adjuvant matrix of type (n, r). Then
there exists an integral adjuvant matrix 3⇤ of type (2n, r) for which

Jl(P;3) ⌧ (P3+⌫l+")1/2 Jl(P;3⇤)1/2 (l = 1, 2).

Proof. We fix l 2 {1, 2}, and for the sake of concision suppress mention of l in our
notation. Define the linear forms � j as in (3.4). Since the matrix3 is adjuvant, one
may suppose that �R+1 = �R+1,R+1↵R+1 with �R+1,R+1 6= 0. Define

T (P;3) =

Z 1

0

✓I ��F(�0)�1,R(�)8R+2,2R+1(�)
�� db↵R

◆2
d↵R+1,

whereb↵R denotes (↵1, . . . ,↵R). Then Schwarz’s inequality conveys us from (3.5)
to the bound

J (P;3) 6
✓Z 1

0
|F(�R+1)|

2 d↵R+1

◆1/2
T (P;3)1/2. (3.6)

Define �⇤

j = �⇤

j (b↵2R+1) by

�⇤

j =

8>>><
>>>:

� j (↵1, . . . ,↵R+1) when 0 6 j 6 R
�2R+1� j (↵2R+1, . . . ,↵R+1) when R + 1 6 j 6 2R + 1
� j�R(↵1, . . . ,↵R+1) when 2R + 2 6 j 6 3R + 1
�5R+3� j (↵2R+1, . . . ,↵R+1) when 3R + 2 6 j 6 4R + 1.

Then, by expanding the square inside the outermost integration, we see that

T (P;3) =

I ��F(�⇤

0 )�1,2R(�⇤)F(�⇤

2R+1)82R+2,4R+1(�
⇤)
�� db↵2R+1.

The integral (2R + 1) ⇥ (4R + 2) matrix 3⇤
= (�⇤

i j ) defining the linear forms
�⇤

0 , . . . ,�
⇤

4R+1 is adjuvant of type (2n, r).
Write 3⇤ in block form (A⇤, B⇤) with A⇤ and B⇤ having 2R + 2 and 2R

columns, respectively. It may be illuminating to note that one may permute the
columns of the matrix B⇤ to form a linked block matrix (B⇤)† built from two blocks,
with upper left hand block B and lower right hand block B[, in which B[ denotes
the matrix B rotated through 180�. Likewise, one sees that the columns of the
matrix A⇤ may be permuted to form a linked block matrix (A⇤)† built in similar
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manner, but with upper left hand block A1, where A1 denotes the matrix A with
final column deleted, and with lower right hand block A[

1, in the sense described.
Thus we conclude that T (P;3) = J (P;3⇤). The conclusion of the lemma

therefore follows from (3.6), since Lemma 3.2 supplies the estimate
Z 1

0
|F(�R+1)|

2 d↵R+1 ⌧ P3+⌫+".

Consider an r ⇥ 2r integral matrix C = (ci j ), write c j for the column vector
(ci j )16i6r , and put

� j =

rX
i=1

ci j↵i (0 6 j 6 2r � 1).

Also, write

Kl(P;C) =

I
|Fl(�0) · · · Fl(�2r�1)| d↵ (l = 1, 2). (3.7)

We divide the proof of the next theorem according to whether r > 3 or r = 2.

Theorem 3.4. Suppose that r > 2, and that the r ⇥ 2r integral matrix C is highly
non-singular. Then Kl(P;C) ⌧ P3r+⌫l+" (l = 1, 2).

Proof when r>3. We again suppress mention of l in our notation within this proof.
We begin by applying Schwarz’s inequality to K (P;C), showing that

K (P;C) 6 K (1)(P;C)1/2K (2)(P;C)1/2, (3.8)

where

K (1)(P;C) =

I
|F(�0)�1,r�2(� )F(�r�1)�(�r )8r+1,2r�1(� )| d↵

and

K (2)(P;C) =

I
|F(�0)�r+1,2r�2(� )F(�r�1)�(�2r�1)8(�r )81,r�2(� )| d↵.

The coefficient matrix associated with the linear forms

�0, �r+1, . . . , �2r�2, �r�1, �2r�1, �r , �1, . . . , �r�2

is obtained by permuting the columns of C , and hence is highly non-singular. We
may therefore confine our attention to K (1)(P;C).

Write C in block form (A, B), where both A and B are r ⇥ r integral matrices,
noting that the highly non-singular property of C ensures that both A and B are
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non-singular. Note also that Lemma 3.1 shows that every square minor of A�1B is
non-singular. It is convenient to put

� (1)
= (�0, . . . , �r�1)

T and � (2)
= (�r , . . . , �2r�1)

T .

We then have
� (1)

= AT↵ and � (2)
= BT↵.

Let 1 = |det A|. We substitute ✓ = 1�1AT↵, so that

� (1)
= 1✓ and � (2)

= 1(A�1B)T ✓,

and then define the linear forms � j (✓1, . . . , ✓r ) 2 Z[✓] by means of the relation
� = 1(A�1B)T ✓ , in which � = (�r+1, . . . ,�2r )T . Since the underlying exponen-
tial sums are periodic with period 1, we may apply the transformation formula to
conclude that

K (1)(P;C) =

I
|F(1✓1)�2,r�1(1✓)F(1✓r )�(�r+1)8r+2,2r (�)| d✓ .

The matrix of coefficients of the linear forms defining this mean value, namely

1✓1, . . . ,1✓r ,�r+1(✓), . . . ,�2r (✓),

is given by (1Ir ,1(A�1B)T ), which, in view of Lemma 3.1, is highly non-singular.
In particular, all the square minors of 1(A�1B)T are non-singular.

Define

T (P;C) =

Z 1

0

✓I
|F(1✓1)�2,r�1(1✓)�(�r+1)8r+2,2r (�)| db✓r�1

◆2
d✓r .

Then by Schwarz’s inequality, one finds that

K (1)(P;C) 6
✓Z 1

0
|F(1✓r )|

2 d✓r
◆1/2

T (P;C)1/2. (3.9)

By expanding the square in the definition of T (P;C), we see that

T (P;C) =

I
|F(�⇤

0 )�1,2r�2(�
⇤)F(�⇤

2r�1)82r,4r�3(�
⇤)| db✓2r�1,

where �⇤

j = �⇤

j (✓) is defined by

�⇤

j =

8>>>>>>><
>>>>>>>:

1✓ j+1 when 0 6 j 6 2r � 3 and j 6= r � 1
�r+1(✓1, . . . , ✓r ) when j = r � 1
�r+1(✓2r�1, . . . , ✓r ) when j = 2r � 2
1✓2r�1 when j = 2r � 1
� j�r+2(✓1, . . . , ✓r ) when 2r 6 j 6 3r � 2
�5r�1� j (✓2r�1, . . . , ✓r ) when 3r � 1 6 j 6 4r � 3.
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It is apparent that the matrix of coefficients C 0 of the linear forms

�⇤

0 (✓), . . . ,�⇤

4r�3(✓)

is an integral adjuvant matrix of type (2, r). Thus, in the notation introduced in
(3.5), we see that T (P;C) = J (P;C 0). By virtue of the conclusion of Lemma 3.2,
we therefore infer from (3.8) and (3.9) that there exist integral adjuvant matrices
C(1) and C(2) of type (2, r) for which

K (P;C) ⌧

⇣
P3+⌫+"

⌘1/2
J
⇣
P;C(1)

⌘1/4
J
⇣
P;C(2)

⌘1/4

⌧

⇣
P3+⌫+"

⌘1/2
max
◆=1,2

J
⇣
P;C(◆)

⌘1/2
. (3.10)

By symmetry, there is no loss of generality in supposing that the maximum on the
right hand side occurs with ◆ = 1.

We put B1 = C(1), and show by induction that for each natural number m,
there exists an integral adjuvant matrix Bm of type (2m, r) for which

K (P;C) ⌧

⇣
P3+⌫+"

⌘1�2�m
J (P; Bm)2

�m
. (3.11)

This bound holds when m = 1 as a trivial consequence of (3.10). Suppose then that
the estimate (3.11) holds for 1 6 m 6 M . By applying Lemma 3.3, we see that
there exists an integral adjuvant matrix BM+1 of type (2M+1, r) with

J (P; BM) ⌧

⇣
P3+⌫+"

⌘1/2
J (P; BM+1)

1/2 .

Substituting this estimate into the case m = M of (3.11), one confirms that the
bound (3.11) holds with m = M + 1. The bound (3.11) consequently follows for
all m by induction.

We now apply the bound just established. Let � be any small positive number,
and choose m large enough that 21�m(2� ⌫) < �. We have shown that an integral
adjuvant matrix Bm = (bi j ) of type (2m, r) exists for which (3.11) holds. The
matrix Bm is of format (R+1)⇥ (2R+2), where R = 2m(r �1). In view of (3.5),
together with the trivial estimates | f (↵)| 6 P and |g(↵)| 6 P , we find that

J (P; Bm) ⌧ P4
I

|�0,R(�)8R+2,2R+1(�)| d↵.

The matrix of coefficients associated with a suitable permutation of the linear forms

�0(↵),�1(↵), . . . ,�R(↵),�R+2(↵), . . . ,�2R+1(↵),

is auxiliary of type (2m � 1, r, r)0. By orthogonality, a consideration of the under-
lying Diophantine equations shows that J (P; Bm) ⌧ P4 I0(P; Bm), and hence we
deduce from Lemma 2.1 that

J (P; Bm) ⌧ P4
⇣
P3(R+1)�2+"

⌘
= P3(2

m(r�1))+5+".
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By substituting the estimate just obtained into (3.11), we conclude that

K (P;C) ⌧

⇣
P3+⌫+"

⌘1�2�m ⇣
P3(2

m(r�1))+5+"
⌘2�m

= P3r+⌫+(2�⌫)2�m+".

In view of our assumed upper bound 21�m(2� ⌫) < �, one therefore finds that for
each "0 > 0, one has K (P;C) ⌧ P3r+⌫+�/2+"0 . The conclusion of the theorem
follows on taking � = " and "0

=
1
2".

Proof when r = 2. An application of the elementary inequality |z1 · · · zn| 6 |z1|n+
. . . + |zn|n yields

Fl(�0) · · · Fl(�3) ⌧

X
06a<b<c63

|Fl(�a)Fl(�b)Fl(�c)|4/3,

and hence there exist integers a, b and c with 0 6 a < b < c 6 3 for which

Kl(P;C) ⌧

I
|Fl(�a)Fl(�b)Fl(�c)|4/3 d↵. (3.12)

It is convenient to define

�h(P;C) =

I
|h(�a)h(�b)h(�c)|4 d↵,

with h taken to be either f0 or g. It is immediate from [12, Theorem 1.8] that

�g(P;C) ⌧ P6+(6⌫2�1)/4+". (3.13)

The argument of the proof of the latter theorem also readily yields the estimate
� f0(P;C) ⌧ P6+⌫1+". In order to see this, one observes that the bound

Z 1

0
| f0(↵)|6 d↵ ⌧ P3+⌫1+",

stemming from Hua’s lemma (see [17, Lemma 2.5]), can be substituted for the
bound Z 1

0
| f0(↵)2g(↵)4| d↵ ⌧ P3+⌫2+"

underlying the proof of [12, Theorem 1.8]. In this way, one finds as in [12, equation
(4.10)] that

� f0(P;C) ⌧ P23/4+3⌫1/2+"
= P6+⌫1+".

In the above notation, when l = 1, we now infer from the bound (3.12) that

K1(P;C) ⌧ � f0(P;C) ⌧ P6+⌫1+".
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Also, applying Hölder’s inequality to (3.12), we obtain via (3.13) the estimate

K2(P;C) ⌧ � f0(P;C)1/3�g(P;C)2/3 ⌧ P6+⌫2+",

on observing that
1
3
⌫1 +

2
3

✓
6⌫2 � 1
4

◆
= ⌫2.

This completes the proof of Theorem 3.4 in the case r = 2.

4. Correlation estimates

We apply Theorem 3.4 in this section to provide estimates for the correlation sums
4s,⌘(N ; A;h). By reference to (1.1) and (1.2), we see that when A 2 Zr⇥2r is
a highly non-singular matrix, and hi 2 N [ {0}, then 42r,⌘(N ; A;h) counts the
number of integral solutions of the system

X j = 3 j (n) (1 6 j 6 2r), (4.1)

with n 2 P(N ), in which X j = x3j + y3j + z3j � h j and x j , y j , z j 2 N, and none
of the prime divisors of y j z j exceed (X j + h j )⌘/3. Since X j + h j is no larger than
CN , for a suitable positive constant C depending at most on the coefficients of the
3 j , one sees that x j , y j , z j are each bounded above by P = (CN )1/3.

The system (4.1) may be written in the shape ATn = X. It is convenient to
consider a block matrix decomposition of A, say A = (A1, A2) with A1 and A2
each r ⇥ r matrices, and also to write

X =

✓
X1
X2

◆
,

with X1 and X2 each r-dimensional column vectors. Thus Xi = ATi n for i = 1, 2.
Since A is highly non-singular, the matrices A1 and A2 are necessarily invertible,
and we deduce that

(A�1
1 )TX1 = n = (A�1

2 )TX2.

Thus we find that B0X = 0, where

B0

=

⇣
(A�1

1 )T ,�(A�1
2 )T

⌘
.

By applying Lemma 3.1, one sees that the matrix B0 is highly non-singular if
and only if (A�1

1 )T and (A�1
2 )T are non-singular, and all the square minors of

AT1 (A�1
2 )T = (A�1

2 A1)T are non-singular. The non-singularity of (A�1
1 )T and

(A�1
2 )T is immediate from that of A1 and A2. Likewise, the non-singularity of the
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square minors of (A�1
2 A1)T is equivalent to the non-singularity of the square mi-

nors of A�1
2 A1, which is a consequence of the highly non-singular nature of the

block matrix (A2, A1), again by Lemma 3.1. We hence conclude that B0 is highly
non-singular. Finally, we take � to be the least natural number with the property
that �B0 has integral entries, and define the matrix B = (bi j ) by putting B = �B0.

At this point, we have established that 42r,⌘(N ; A;h) is bounded above by the
number of solutions of the system of equations

2rX
j=1

bi j
⇣
x3j + y3j + z3j

⌘
= Hi (1 6 i 6 r),

with 1 6 x j 6 P and y j , z j 2 A(P, P⌘) (1 6 j 6 2r), in which

Hi =

2rX
j=1

bi j h j .

Define

� j =

rX
i=1

bi j↵i (1 6 j 6 2r).

Making use of the notation (3.2) with � taken implicitly to be 0, it therefore follows
from orthogonality that

42r,⌘(N ; A;h) 6
I
Fl(�1) · · · Fl(�2r )e(�↵ ·H) d↵ (l = 1, 2).

We note here that one should view ⌘ as being 1 in the case l = 1, and when l = 2
view ⌘ as being a positive number sufficiently small in terms of ". An application of
the triangle inequality in conjunction with Theorem 3.4 consequently reveals that
42r,⌘(N ; A;h) ⌧ P3r+⌫l+" (l = 1, 2). Theorems 1.1 and 1.2 follow by reference
to (3.3), since one has P = O(N1/3).

5. Systems of linear equations

We turn now to the proof of Theorem 1.3. Let C = (ci j ) denote an integral r ⇥ s
highly non-singular matrix with r > 2 and s > 2r + 1. We define

� j (↵) =

rX
i=1

ci j↵i (1 6 j 6 s).

Let N be a large positive number, and put P =
1
2N

1/3. Let ⌘ be a positive number
sufficiently small in the context of Lemma 3.2, and let � be a positive number
sufficiently small in terms of C and ⌘. Recalling (3.1), we put f(↵) = f0(↵) and
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g(↵) = g(↵), and for the sake of concision write g j = g(� j (↵)) and f j = f(� j (↵)).
WhenB ✓ [0, 1)r is measurable, we then define

N (P;B) =

Z
B

sY
j=1

f jg
2
j d↵.

By orthogonality, it follows from this definition thatN (P; [0, 1)r ) counts the num-
ber of integral solutions of the system

sX
j=1

ci j (x3j + y3j + z3j ) = 0 (1 6 i 6 r), (5.1)

with � P < x j , y j , z j 6 P and y j , z j 2 A(P, P⌘) (1 6 j 6 s). Hence we find
that N (P; [0, 1)r ) counts the solutions of the system (1.6) with each solution n
counted with weight ⇢⌘(n1; P) · · · ⇢⌘(ns; P), in which ⇢⌘(n; P) denotes the num-
ber of integral solutions of the equation n = x3 + y3 + z3, with � P < x, y, z 6 P
and y, z 2 A(P, P⌘). We aim to show thatN (P; [0, 1)r ) � (P3)s�r .

In pursuit of the above objective, we apply the Hardy-Littlewood method.
Write L = log log P , denote byN the union of the intervals

N(q, a) = {↵ 2 [0, 1) : |q↵ � a| 6 LP�3
},

with 0 6 a 6 q 6 L and (a, q) = 1, and put n = [0, 1) \ N. Finally, we introduce
a multi-dimensional set of arcs. Let Q = L10r , and define the narrow set of major
arcsP to be the union of the boxes

P(q, a) = {↵ 2 [0, 1)r : |↵i � ai/q| 6 QP�3 (1 6 i 6 r)},

with 0 6 ai 6 q 6 Q (1 6 i 6 r) and (a1, . . . , ar , q) = 1.

Lemma 5.1. One hasN (P;P) � P3s�3r .

Proof. We begin by defining the auxiliary functions

S(q, a) =

qX
r=1

e(ar3/q) and v(�) =

Z P

� P
e(�� 3) d� .

For 1 6 j 6 s, put S j (q, a) = S(q, � j (a)) and v j (�) = v(� j (�)), and define

A(q) =

qX
a1=1

· · ·

qX
ar=1

(q,a1,...,ar )=1

q�3s
sY
j=1

S j (q, a)3 and V (�) =

sY
j=1

v j (�)3. (5.2)

Finally, write B(X) for [�X P�3, X P�3
]
r , and define

J(X) =

Z
B(X)

V (�) d� and S(X) =

X
16q6X

A(q).
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We prove first that there exists a positive constant C with the property that

N (P;P) � CS(Q)J(Q) ⌧ P3s�3r L�1. (5.3)

It follows from [18, Lemma 8.5] (see also [16, Lemma 5.4]) that there exists a
positive constant c = c(⌘) such that whenever ↵ 2 P(q, a) ✓ P, then

g(� j (↵)) � cq�1S j (q, a)v j (↵ � a/q) ⌧ P(log P)�1/2.

Under the same constraints on ↵, one finds from [17, Theorem 4.1] that

f(� j (↵)) � q�1S j (q, a)v j (↵ � a/q) ⌧ log P.

Thus, whenever ↵ 2 P(q, a) ✓ P, one has
sY
j=1

f jg
2
j � c2sq�3s

sY
j=1

S j (q, a)3v j (↵ � a/q)3 ⌧ P3s(log P)�1/2.

The measure of the major arcsP is O(Q2r+1P�3r ), so that on integrating overP,
we confirm the relation (5.3) with C = c2s .

We next discuss the singular integral J(Q). By applying an argument parallel-
ing that of [6] leading to equation (4.4) of that paper, one finds that

J(Q) � P3s�3r . (5.4)

Here, we make use of the hypothesis that the system (1.6) has a solution n 2

(0,1)s , and hence also one with n 2 (0, 1)s . Thus, on taking � sufficiently small,
we ensure that a non-singular solution n of (1.6) exists with n 2 (2�, 1)s .

We turn now to the singular series S(Q). It follows from [17, Theorem 4.2]
that whenever (q, a) = 1, one has S(q, a) ⌧ q2/3. Given a summand a in the
formula for A(q) provided in (5.2), write h j = (q, � j (a)). Then we find that

A(q) ⌧ q�s
qX

a1=1
· · ·

qX
ar=1

(q,a1,...,ar )=1

h1 · · · hs .

By hypothesis, we have s > 2r + 1. The proof of [7, Lemma 23] is therefore easily
modified to show that

A(q) ⌧

X
u1|q

. . .
X
ur |q

(u1,...,ur )⌧1

qr�s(u1 · · · ur )s/r�1 ⌧ qr�s+(s�r)(1�1/r)+".

Thus, the seriesS = lim
X!1

S(X) is absolutely convergent and

S � S(Q) ⌧

X
q>Q

q�1�1/(2r)
⌧ Q�1/(2r)

⌧ L�1.
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We observe in the next step that the system (5.1) has a non-singular p-adic solution.
For on taking (x j , y j , z j ) = (1,�1, 0) for each j , we solve (5.1) with the Jacobian
determinant

det
⇣
3ci j x2j

⌘
16i, j6r

= 3r det(ci j )16i, j6r

non-zero, since the first r columns of C are linearly independent. A modification
of the proof of [7, Lemma 31] therefore shows that S > 0, whence S(Q) =

S + O(L�1) > 0. The proof of the lemma is completed by recalling (5.4) and
substituting into (5.3) to obtain the lower bound

N (P;P) � P3s�3r + O(P3s�3r L�1).

Recall the definition of the major arcs M(q, a) and their union M from (2.13). In
order to prune a wide set of major arcs down to the narrow set P just considered,
we introduce the auxiliary sets of arcs

M j = {↵ 2 [0, 1)r : � j (↵) 2 M + Z},

and we put V = M1 \ . . . \ Ms . In addition, we define m j = [0, 1)r \ M j
(1 6 j 6 s), and write v = [0, 1)r \ V. Thus v ✓ m1 [ . . . [ ms . We begin with
an auxiliary lemma.
Lemma 5.2. Let � be a fixed positive number. Then one hasZ

M

��f(✓)g(✓)2
��2+� d✓ ⌧ P3+3�

and Z
M\N

��f(✓)g(✓)2
��2+� d✓ ⌧ P3+3�L��/6.

Proof. On applying a special case of [5, Lemma 9], we obtain the boundZ
M

��f(✓)
��2+���g(✓)

��2 d✓ ⌧ P1+�,

and so the first conclusion follows on making use of a trivial estimate for g(✓). For
the second inequality, one observes that the methods of [17, Chapter 4] show that

sup
↵2M\N

|f(✓)| ⌧ PL�1/3.

Thus, on making use also of a trivial estimate for g(✓), one obtains in like manner
the boundZ

M\N

��f(✓)g(✓)2
��2+� d✓ ⌧ (PL�1/3)�/2P2+2�

Z
M\N

��f(✓)
��2+�/2��g(✓)

��2 d✓
⌧ (PL�1/3)�/2P3+5�/2.

This completes the proof of the lemma.
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Lemma 5.3. One hasN (P;V \ P) ⌧ P3s�3r (log L)�1.

Proof. Let ↵ 2 V \ P, and suppose temporarily that � jm 2 N + Z for r dis-
tinct indices jm 2 [1, s]. For each m there is a natural number qm 6 L hav-
ing the property that kqm� jmk 6 LP�3. With q = q1 · · · qr , one has q 6 Lr
and kq� jmk 6 Lr P�3. Next eliminating between � j1, . . . , � jr in order to iso-
late ↵1, . . . ,↵r , one finds that there is a positive integer  , depending at most on
(ci j ), such that kq↵lk 6 Lr+1P�3 (1 6 l 6 r). Since q 6 Lr+1, it follows
that ↵ 2 P, yielding a contradiction to our hypothesis that ↵ 2 V \ P. Thus
�⌫(↵) 2 n + Z for at least s � r > r + 1 of the suffices ⌫ with 1 6 ⌫ 6 s. Let H
denote the set of all r element subsets of {1, 2, . . . , s}, and put H = card(H). Then
by Hölder’s inequality, we find that

N (P;V \ P) 6
Y
⌫2H

I (⌫)1/H , (5.5)

where

I (⌫) =

Z
V\P

rY
j=1

|f⌫ jg
2
⌫ j |

s/r d↵.

When ⌫ 2 H, one finds by a change of variable that

I (⌫) 6
Z

Mr

rY
j=1

|f(� j )g(� j )
2
|
s/r d�,

so that Lemma 5.2 shows that I (⌫) ⌧ P3s�3r . Further, since there exists some
⌫ 2 H such that �⌫ j (↵) 2 n + Z for 1 6 j 6 r , one finds for this subset that one
has the bound

I (⌫) 6
Z

(M\N)r

rY
j=1

|f(� j )g(� j )
2
|
s/r d� ⌧ P3s�3r L�1/6.

Thus we conclude from (5.5) that

N (P;V \ P) ⌧ P3s�3r L�1/(6H),

and the conclusion of the lemma follows.

Our final task in the application of the Hardy-Littlewood method is the analysis
of the minor arcs v.

Lemma 5.4. There is a positive number � such thatN (P; v) ⌧ P3s�3r�� .
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Proof. Since v ✓ m1 [ . . . [ ms , the conclusion of the lemma follows by showing
that N (P;m j ) ⌧ P3s�3r�� for 1 6 j 6 s. By symmetry, moreover, we may
restrict attention to the case j = s. Suppose then that �s(↵) 2 m + Z. Observe
that the matrix C is highly non-singular, and thus the matrix C 0, in which the final
s � 2r columns of C are deleted, is also highly non-singular. Then it follows from
(3.7) and Theorem 3.4 that

I 2rY
j=1

|f jg
2
j | d↵ ⌧ P3r+⌫2+".

Observe that by Weyl’s inequality (see [15, Lemma 1]), one has

sup
�s(↵)2m+Z

|f(�s(↵))| ⌧ P3/4+".

Hence, by employing trivial estimates for f j and g j as necessary, one obtains the
bound

N (P;ms) 6 P3s�6r�1
✓

sup
�s(↵)2m+Z

|f(�s(↵))|

◆I 2rY
j=1

|f jg
2
j | d↵

⌧ P3s�3r+⌫2�1/4+".

From (3.3), we have ⌫2 < 1/4, and so the conclusion of the lemma now fol-
lows.

By combining the conclusions of Lemmas 5.1, 5.3 and 5.4, we conclude that

N (P) = N (P;P) +N (P;V \ P) +N (P; v) � P3s�3r . (5.6)

Our final task is to remove the multiplicity of representations implicit in the def-
inition of ⇢⌘(n; P). Note that ⇢⌘(n; P) 6 ⇢⌘(n) for each n 2 N. It is useful to
introduce the set

S✓ (N ) = {1 6 n 6 N : ⇢⌘(n) > N ✓
}.

Lemma 5.5. One has X
n2S✓ (N )

⇢⌘(n) ⌧ N1+⇠�✓+".

Proof. In view of (1.5), one has
X

n2S✓ (N )

⇢⌘(n) < N�✓
X

n2S✓ (N )

⇢⌘(n)2 ⌧ N1+⇠�✓+",

and the conclusion of the lemma follows.



SUMS OF THREE CUBES 815

Let � be a positive number, and consider the number Y1 of solutions of the
system (5.1) in which one has ⇢⌘(x3j + y3j + z3j ) > N2⇠+� for some index j with
1 6 j 6 s. Without loss of generality, one may assume that j = s. Then by
orthogonality, one has

Y1 ⌧

X
n2S2⇠+�(N )

⇢⌘(n)
I ✓s�1Y

j=1
f jg

2
j

◆
e(n�s(↵)) d↵.

By the triangle inequality, Theorem 3.4 and Lemma 5.5, we thus deduce that

Y1 ⌧ Ns�r�1+⇠+"
X

n2S2⇠+�(N )

⇢⌘(n)

⌧ Ns�r+2⇠�(2⇠+�)+2"
⌧ Ns�r��/2.

Let Y0 denote the contribution to N (P) arising from those solutions of (5.1) in
which ⇢⌘(x3j + y3j + z3j ) 6 N2⇠+� for all j . Then it follows from (5.6) that

Y0 � Ns�r
+ O(Ns�r��/2) � Ns�r .

Since Y0 counts solutions n of (1.6), with each solution counted with weight at
most ⇢⌘(n1) · · · ⇢⌘(ns) 6 (N2⇠+�)s , we conclude that 7(N ) � Ns�r (N2⇠+�)�s .
As � may be chosen arbitrarily small, though positive, this completes the proof of
Theorem 1.3.
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