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On the Dirichlet problem
for fully nonlinear elliptic Hessian systems

NIKOS KATZOURAKIS

Abstract. We consider the problem of existence and uniqueness of strong solu-
tions u : � ⇢ Rn �! RN in (H2 \ H10 )(�)N to the problem(

F
�
·, D2u

�
= f in �

u = 0 on @�
(1)

when f 2 L2(�)N , F is a Carathéodory map and � is convex. (1) has been
considered by several authors, firstly by Campanato and under Campanato’s el-
lipticity condition. By employing a new weaker notion of ellipticity introduced in
recent work of the author [25] for the respective global problem on Rn , we prove
well-posedness of (1). Our result extends existing ones under weaker hypotheses
than those known previously. An essential part of our analysis is an extension of
the classical Miranda-Talenti inequality to the vector case of second order linear
Hessian systems with rank-one convex coefficients.

Mathematics Subject Classification (2010): 35J46 (primary); 35J47, 35J60,
35D30, 32A50, 32W50 (secondary).

1. Introduction

Let � ✓ Rn be an open bounded C2 convex set, n, N � 2. Let also

F : � ⇥ RNn2
s �! RN

be a Carathéodory map, namely x 7! F(x,X) is measurable, for every X 2 RNn2
s

and X 7! F(x,X) is continuous, for almost every x 2 � ✓ Rn .
In this paper we consider the problem of existence and uniqueness of strong

a.e. solutions u : � ✓ Rn
�! RN in (H2 \ H10 )(�)N to the following Dirichlet

problem: (
F
�
·, D2u

�
= f in �

u = 0 on @�
(1.1)
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when f 2 L2(�)N . In the above, D2u(x) 2 RNn2
s is the Hessian tensor of u

at x and Du(x) 2 RNn is the gradient matrix. In the sequel we will employ the
summation convention for repeated indices when i, j, k, . . . run in {1, . . . , n} and
↵,�, � , . . . run in {1, . . . , N }, while RNn2

s is the vector space {X 2 RNn2
: X↵i j =

X↵ j i } into which the Hessians of our maps are valued. The standard bases of Rn ,
RN , RNn and RNn2

s will be denoted by {ei }, {e↵}, {e↵ ⌦ ei } and {e↵ ⌦ ei ⌦ e j }
respectively; “⌦” denotes the tensor product and we will write

x = xi ei , u = u↵e↵ , Du = (Diu↵) e↵ ⌦ ei , D2u = (D2i j u↵) e↵ ⌦ ei ⌦ e j .

Moreover, all the norms “| · |” appearing will always be the Euclidean, e.g., onRNn2
s

we use |X|
2

= X : X etc.
The problem (1.1) has been considered before by several authors and with dif-

ferent degrees of generality. The first one to address it was Campanato [3]-[6]
under a strong ellipticity condition which we recall later. Subsequent contributions
to this problem and problems relevant to Campanato’s work can be found in Tar-
sia [36]-[40], Fattorusso-Tarsia [15]-[18], Buica-Domokos [1], Domokos [12], Pala-
gachev [31, 32], Palagachev-Recke-Softova [33], Softova [34] and Leonardi [28].
However, all vectorial contributions, even the most recent ones [15, 16] (wherein
they consider systems of the form F(·, u, Du, D2u) = f ), are based on Cam-
panato’s original restrictive ellipticity notion, or a small extension of it due to Tar-
sia [40].

The main consequence of Campanato’s ellipticity is that the nonlinear operator
F[u] := F(·, D2u) is “near” the Laplacian 1u. Nearness is a functional analytic
notion also introduced by Campanato in order to solve the problem, which roughly
says that operators near those with “good properties” like bijectivity inherit these
properties. In the case at hand, nearness implies unique solvability of (1.1) in (H2\
H10 )(�)N , by the unique solvability of the Poisson equation 1u = f in (H2 \

H10 )(�)N and a fixed point argument. Campanato’s ellipticity relates to the Cordes
condition (see Cordes [8, 9] and also Talenti [35], Landis [27]) and Giaquinta [21].

Although Campanato’s condition is stringent, it should be emphasised that in
general it is not possible to obtain solvability in the class of strong solutions with
the mere assumption of uniform ellipticity. Well-known counterexamples which are
valid even in the linear scalar case of the second order elliptic equation

Ai j (x)D2i j u(x) = f (x)

with Ai j 2 L1(�) imply that the standard uniform ellipticity A � ⌫ I does not
suffice to guarantee well posedness of the Dirichlet problem when n > 2 and more
restrictive conditions are required (see, e.g., Ladyzhenskaya-Uraltseva [26]).

In this work we prove well posedness of (1.1) in the space (H2\ H10 )(�)N for
any f 2 L2(�)N under a new ellipticity condition on F which is strictly weaker
than the Campanato-Tarsia notion. This new notion has been introduced in the very
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recent paper of the author [25] in order to study the case of the global problem on
the whole space Rn for the same fully nonlinear Hessian system:

F(·, D2u) = f, u : Rn
�! RN .

The relevant first order global problem F(·, Du) = f has also been studied in [24],
which is a non-trivial generalisation of the Cauchy-Riemann equations. The idea
of our weaker notion is to require F to be “near” a general second order elliptic
systemwith constant coefficients which satisfies the Legendre-Hadamard condition,
instead of being “near” the Laplacian.

More precisely, our starting point for the system F(·, D2u) = f is based on
the analysis of the simpler case of F linear in X and independent of x , that is when

F↵(x,X) = A↵i� jX�i j . (1.2)

Here A is a linear symmetric operator A : RNn
�! RNn:

A 2 RNn⇥Nn
s , i.e., A↵i� j = A� j↵i .

For F as in (1.2), the system F(·, D2u) = f becomes

A↵i� j D2i j u� = f↵.

By introducing the contraction operation A : Z := (A↵i� jZ↵i j )e↵ (which extends
the trace inner product Z : Z = Z↵i jZ↵i j of RNn2

s ), we will write it compactly as

A : D2u = f. (1.3)

The appropriate notion of ellipticity in this case is that the quadratic form arising
from the operator A

A : RNn
⇥ RNn

�! R,

A : P ⌦ Q := A↵i� j P↵i Q� j ,
(1.4)

is (strictly) rank-one convex on RNn , that is

A : ⌘ ⌦ a ⌦ ⌘ ⌦ a � ⌫|⌘|
2
|a|2, (1.5)

for some ⌫ > 0 and all ⌘ 2 RN , a 2 Rn . For brevity, we will say “A is rank-one
positive” as a shorthand of the statement “the symmetric quadratic form defined by
A on RNn is rank-one convex”. Our ellipticity assumption for general F is given in
the following:
Definition 1.1 (K-Condition). Let � ✓ Rn be open and F : � ⇥ RNn2

s �! RN a
Carathéodory map. We say that F is elliptic (or that the PDE system F(·, D2u) = f
is elliptic) when there exist

A 2 RNn⇥Nn
s rank-one positive,

↵ 2 L1(�), ↵ > 0 a.e. on �, 1/↵ 2 L1(�),

�, � > 0 with � + � < 1,
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such that���A : Z � ↵(x)
⇣
F(x,X+ Z) � F(x,X)

⌘���  � ⌫(A)|Z| + � |A : Z|, (1.6)

for all X,Z 2 RNn2
s and a.e. x 2 �.

In the above definition ⌫(A) is the ellipticity constant of A:

⌫(A) := min
|⌘|=|a|=1

�
A : ⌘ ⌦ a ⌦ ⌘ ⌦ a

 
. (1.7)

By taking as A the monotone tensor

A↵i� j = �↵��i j ,

we reduce to a condition equivalent to Tarsia’s notion, and by further taking ↵(x)
constant we reduce to Campanato’s notion:���Z : I � ↵

⇣
F(x,X+ Z) � F(x,X)

⌘���  �|Z| + � |Z : I |, (1.8)

In (1.8) we have used the obvious contraction operation X : X := (X↵i j Xi j )e↵ .
Our new ellipticity notion (1.6) relaxes (1.8) substantially: a large class of nonlinear
operators which are elliptic are of the form

F(x,X) := g2(x)A : X + G(x,X)

where A is rank-one positive, g, 1/g 2 L1(�) and G is any nonlinear map, mea-
surable with respect to the first argument and Lipschitz with respect to the second
argument, with Lipschitz constant ofG(x, ·)/g2(x) smaller than ⌫(A) (see Example
5 in [25]). In particular, any F 2 C1

�
RNn2
s

�N such that F 0(0) is rank-one positive
and the Lipschitz constant of X 7! F(X) � F 0(0) : X is smaller than ⌫(F 0(0)),
is elliptic in the sense of Definition 1.1. On the other hand, even if F is linear,
F(X) = A : X and in addition A defines a strictly convex quadratic form on RN⇥n ,
that is when

A : Q ⌦ Q � c2|Q|
2, Q 2 RN⇥n,

then F may not be elliptic in the Campanato-Tarsia sense (see [25, Example 6]).
The program we deploy herein is the following: we first solve the Dirichlet

problem (1.1) in the linear case with constant coefficients for F(X) = A : X. This
is a simple application of classical variational and regularity results and is recalled
in Section 2. Next, in Section 3 we establish a crucial ingredient of our analysis:
a sharp estimate in (H2 \ H10 )(�)N for linear Hessian operators with rank-one
positive constant coefficients which is an extension of the classical Miranda-Talenti
inequality (see [29], [35] and also [13]). Namely, in Lemma 3.3 we show that if
A 2 RNn⇥Nn

s is rank-one positive and � is a bounded convex C2 domain, then for
all maps u : � ✓ Rn

�! RN in (H2 \ H10 )(�)N , we have the estimate

��D2u��L2(�)


1
⌫(A)

��A : D2u
��
L2(�)

. (1.9)
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The inequality (1.9) is a vectorial non-monotone extension of the Miranda-Talenti
inequality beyond the scalar case of the Laplacian of the classical result and appears
to be a new result even in the scalar case. By choosing N = 1 and as A the identity
of Rn

A↵i� j = �i j

we reduce to the classical scalar case with A : D2u = 1u and ⌫(A) = 1. However,
we point out a weakness of our result: we were able to prove (1.9) only under
an extra technical assumption on the minors of the fourth order tensor A, whose
necessity unfortunately we have not been able to verify. This extra assumption
trivialises in the scalar case; indeed, (1.9) holds when N = 1 for any positive
matrix A 2 Rn2

s without further restrictions. Notwithstanding, even under the extra
condition, (1.9) is still a genuine extension to a new realm. The proof builds on the
Miranda-Talenti identity

Z
�

n��D2v��2 � (1v)2
o
dLn = (n � 1)

Z
@�

|Dv|
2H · N dHn�1 (1.10)

valid for scalar functions v 2 (H2\H10 )(�), where N is the outwards pointing unit
vector field of @� and H is the mean curvature vector.

Next, in Section 4 we consider the general case of fully nonlinear F satisfying
Definition 1.1 (Theorem 4.1). The idea is to use our ellipticity notion which serves
as a “perturbation device” and employ Campanato’s theorem of bijectivity of near
operators in order to connect the nonlinear to the linear problem. Campanato’s
result is taken from [7]. Our analysis follows very similar lines to the respective
proof of [25] for the global problem on Rn , but we chose to give all the details here
too. A byproduct of our method is a strong uniqueness estimate in the form of a
comparison principle for the distance of any solutions in terms of the distance of
the right hand sides of the equations. Moreover, in Section 5 we discuss a result of
stability type for the Dirichlet problem over bounded domains, along the lines of
respective result of [25] for global solutions.

We note that Campanato’s notion of nearness has been relaxed by Buica-
Domokos in [1] to a “weak nearness”, which still retains most of the features of
(strong) nearness. In the same paper, the authors also use an idea similar to ours,
namely a fully nonlinear operator being “near” a general linear operator, but they
implement this idea only in the scalar case.

We conclude this introduction by noting that (1.1) has been studied also when
F is coercive instead of elliptic. By using the analytic Baire category method of
Dacorogna-Marcellini [11], one can prove that, under certain structural and com-
patibility assumptions, the Dirichlet problem has infinitely many strong a.e. solu-
tions in W 2,1(�)N . This method is the “geometric counterpart” of Gromov’s Con-
vex Integration. However, ellipticity and coercivity of F are, roughly speaking,
mutually exclusive and this method does not in general give uniqueness. On the
other hand, the bibliography on the scalar theory of elliptic equations is vast, for
both classical/strong a.e. solutions, (see e.g., Gilbarg-Trudinger [20]) as well as
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for viscosity solutions of degenerate equations (for an elementary intorduction see
e.g., [23]). However, except for the broad theory for divergence structure systems
(see e.g., [22]), for fully nonlinear systems the existing theory is very limited and
this applies even to linear non-variational systems.

ACKNOWLEDGEMENTS. The author wishes to thank the anonymous referee for the
careful reading of the manuscript and the comments which improved the content
and the presentation of the paper.

2. Preliminaries and well-posedness of the linear problem

We begin by considering the question of unique solvability of the Dirichlet prob-
lem (1.1) in the case of linear systems(

A : D2u = f, in �

u = 0 on @�

for any f 2 L2(�)N , when A 2 RNn⇥Nn
s is strictly rank-one positive. This is a

standard application of the direct method of Calculus of Variations (see e.g., Da-
corogna [10]) in order to get existence of a weak solution of the Euler-Lagrange
equation

�Di
⇣
A↵i� j D ju�

⌘
+ fa = 0,

by minimizing the functional

E(u,�) =

Z
�

⇣
A : Du(x) ⌦ Du(x) + f (x) · u(x)

⌘
dx

in H10 (�)N and then apply regularity theory.

Lemma 2.1 (Well posedness of the linear problem). Let n, N � 2 and � ✓ Rn

a bounded domain with C2 boundary. Then, for any A 2 RNn⇥Nn
s strictly rank-one

positive and any f 2 L2(�)N , the problem(
A : D2u = f in �

u = 0 on @�

has a unique strong solution in the space (H2 \ H10 )(�)N , which solves the PDE
system a.e. on �. Moreover, the solution u satisfies the estimate

kukL2(�) + kDukL2(�) + kD2ukL2(�)  Ck f kL2(�),

with C > 0 depending only on �0, � and A.
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Proof of Lemma 2.1. The proof can be found, e.g., in Giaquinta-Martinazzi [22,
pages 55–72].

Remark 2.2 (Equivalent norms on (H2\ H10 )(�)N ). We record the standard fact
that the Poincaré inequality in H10 and the interpolation inequalities in L

2 (see e.g.,
Gilbarg-Trudinger [20]) imply that two equivalent norms on (H2 \ H10 )(�)N are

kD2ukL2(�) ⇡ kukH2(�) := kukL2(�) + kDukL2(�) + kD2ukL2(�).

3. The generalised Miranda-Talenti inequality for elliptic systems
with constant coefficients

In this section we establish the estimate (1.9) in Lemma 3.3 below. This is an ex-
tension of the Miranda-Talenti inequality from the case of the Laplacian to the case
of general A. We note that this result, even in the classical case of the Laplacian, is
non-trivial. The fact that we do not restrict the gradient to vanish on the boundary
is an essential difficulty. The inequality (1.9) in the smaller space

H20 (�)N = C1

c (�)N
k·kH2

(instead of (H2 \ H10 )(�)N ) does not require boundary regularity and holds for
rank-one positive A (that is ⌫(A) > 0) without extra conditions. The proof in
H20 (�)N follows by applying the Fourier transform, Plancherel’s theorem, the prop-
erties of rank-one convexity and an approximation argument. This is done in [25],
althought the result is stated directly for the whole space Rn . On the other hand,
standard global L2 regularity theory for linear systems (see [22]) says that (1.9) is
always true in (H2\H10 )(�)N for any C2 domain� without curvature restrictions,
but with a perhaps larger universal constant, instead of the sharp value 1/⌫(A).

As we have already pointed out in the introduction, in the vectorial case we
need an extra technical condition on A except for rank-one convexity. This restric-
tion is void in the scalar case N = 1 and the scalar version of (1.9) is true for a
general positive A 2 Rn⇥n

s . The assumption we need is the next one:

Structural Hypothesis (SH). Let n, N � 1. Consider a tensor A 2 RNn⇥Nn
s ,

which we view as a linear map

A : Rn2
�! RN2, A : X =

�
A↵i� j Xi j

�
e↵ ⌦ e� .

We assume there exist matrices B1, . . . , BN in RN2
s and A1, . . . , AN in Rn2

s such
that A can be written as

A = B1 ⌦ A1 + · · · + BN ⌦ AN
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and B� , A� satisfy
8>>><
>>>:

R(B� )? R(B�), for � 6= �

B1 + · · · + BN > 0
A1 > 0, . . . , AN > 0
dim

⇣TN
�=1 N

�
A�

� �1(A� )I
�⌘

� 1.

In the above, �1 denotes the smallest eigenvalue, R denotes the range and N denotes
the nullspace.

Remark 3.1 ((SH) =) rank-one convexity). Every tensorAwhich satisfies (SH)
is necessarily rank one positive: indeed, for any ⌘ 2 RN and a 2 Rn , we have

A : ⌘ ⌦ a ⌦ ⌘ ⌦ a =

�
B�

: ⌘ ⌦ ⌘
��
A�

: a ⌦ a
�

�

h�
B1 + · · · + BN

�
: ⌘ ⌦ ⌘

i
min

�=1,...,N

�
A�

: a ⌦ a
 

�

n
�1
�
B1 + · · · + BN

�
min

�=1,...,N
�1(A� )

o
|⌘|

2
|a|2

and the quantity in the last bracket is strictly positive by the positivity of the sum
B1 + · · · + BN and of A1, . . . , AN . Let us also record the identity

⌫(A) = �1(A) = min
|a|=1

�
A : a ⌦ a

 
,

which is valid for any positive A 2 Rn2
s and we have just used it in the last step of

the previous inequality.
We also note that (SH) implies that each B� is non-negative, but in general may

have non-trivial nullspace. However, the sum B1+· · ·+ BN is strictly positive and
the direct orthogonal sum of their ranges spans the space RN .

Remark 3.2. The existence of plenty of non-trivial examples ofA’s satisfying (SH)
is fairly obvious. The special case of the monotone operator A = I ⌦ A with
A 2 Rn2

s positive, that is when

A↵i� j = �↵� Ai j ,

automatically satisifes (SH) with

B1 = I, B2 = · · · = BN = 0, A1 = · · · = AN = A.

If in addition A = I , that is if A↵i� j = �↵��i j , then A gives rise to the vectorial
Laplacian operator: A↵i� j D2i j u� = D2i i u↵ = 1u↵ .
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Lemma 3.3. (The generalised Miranda-Talenti inequality for linear Hessian
systems). Let A 2 RNn⇥Nn

s be rank-one positive with ellipticity constant ⌫(A)
given by (1.7) and satisfying the structural hypothesis (SH).

Let also � ✓ Rn be open, convex and bounded. Then, we have the estimate
��D2u��L2(�)



1
⌫(A)

��A : D2u
��
L2(�)

, (3.1)

valid for all maps u : � ✓ Rn
�! RN in (H2 \ H10 )(�)N .

The proof of Lemma 3.3 is based on the Miranda-Talenti identity ( [29, 35])Z
�

n��D2v��2 � (1v)2
o
dLn = (n � 1)

Z
@�

|Dv|
2H · N dHn�1 (3.2)

valid for scalar functions v 2 (H2\H10 )(�), where N is the outwards pointing unit
vector field of @�, H is the mean curvature vector, Ln is the Lebesgue measure and
Hn�1 is the Hausdorff measure.
The idea of the proof. Roughly, (SH) allows to decouple A to a sum of product
subtensors which are in a certain sense orthogonal to each other. For each de-
composed subtensor, we can use appropriate transformations to reduce the matrices
comprising it to the product of the identity matrices on RN and Rn respectively.
Then, we can apply the classical result (3.2) to each component of the tranformed
product subtensors. By reassembling all the components back together and invert-
ing the tranformations, we get (3.1). The idea is simple, but the proof has some
technicalities.

Remark 3.4 (On the convexity assumption for @�). It is well know that if � is
convex, then the mean curvature vector points towards the interior. When n � 3,
this is strictly weaker than convexity and even non-simply connected domains may
satisfy it. For example, the torus T2 ✓ R3 can satisfy H · N  0 if the ratio of
the radii is chosen appropriately. However, in the general case of A we are dealing
with in this work, we can not in general relax the convexity requirement for�. This
will be obvious from the proof and counterexamples are easy to demostrate, but we
refrain from this task.

Proof of Lemma 3.3. Step 1. We first prove (3.1) in the scalar case of a positive
A = A 2 Rn2

s . Since A > 0, by the Spectral theorem we can find an orthogonal
matrix O 2 O(N , R) and a positive diagonal matrix 3 2 Rn2

s such that

A = K K>, K = O3,

3 =

2
64

p

�1 0
. . .

0
p

�n

3
75 , �i = �i (A),

� (A) =

�
�1, . . . ., �n

 
, �i  �i+1.
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Namely, the entries of3 are the square roots of the eigenvalues of A. We now show
the following algebraic inequality

��3 X 3
��

� ⌫(A) |X |
2, (3.3)

which is true for any X 2 Rn2
s . Indeed, since3i j = 0 for i 6= j and3i i =

p

�i , we
have (we will now disengage the summation convention in order to avoid confusion
with the repeated indices which do not sum)

��3 X 3
��2

=

�
3 X 3

�
:

�
3 X 3

�

=

✓X
i, j

p
�i Xi j

p
� j ei ⌦ e j

◆
:

 X
kl

p
�k Xkl

p
�l ek ⌦ el

!

=

X
i, j,k,l

Xi j
p

�i
p

� j Xkl
p

�k
p

�l �ik� jl

=

X
i, j

Xi j
p

�i
p

� j Xi j
p

�i
p

� j

=

X
i, j

(Xi j )2 �i � j .

Since �i � �1 = ⌫(A), we obtain
��3 X 3

��2
� (�1)

2
X
i, j

(Xi j )2

= ⌫(A)2|X |
2

and hence (3.3) has been established. Next, we fix v 2 C2(�) \ C10(�) and set

�̃ := K�1�, ṽ : �̃ ✓ Rn
�! R, ṽ(x) := v(Kx).

Then, for any fixed x 2 �̃, we have

D2i j ṽ(x) = D2klv(Kx) Kki Kl j = K>

ik D
2
klv(Kx) Kl j

and hence
1ṽ(x) = D2klv(Kx) Kki Kli = A : D2v(Kx). (3.4)

Moreover, we have
��D2ṽ(x)

��2
=

���K>D2v(Kx)K
���2

=

���3⇣
O>D2v(Kx) O

⌘
3
���2

(3.3)
� ⌫(A)2

���O>D2v(Kx) O
���2 .
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Hence, we get
��D2ṽ(x)

��2
� ⌫(A)2

���O>D2v(Kx) O
���2

= ⌫(A)2 O>

ik D
2
klv(Kx) Olj O>

i p D
2
pqv(Kx) Oqj

= ⌫(A)2 D2klv(Kx) D2pqv(Kx) �pk�ql

which gives ���D2ṽ(x)
���2 � ⌫(A)2

���D2v(Kx)
���2 . (3.5)

We now claim that since � is a C2 bounded convex set, �̃ = K�1� is C2 bounded
convex too. Indeed, since

K�1
= (O3)�1 = 3�1O>,

we have �̃ = 3�1(O>�). Since O is orthogonal, O>� is isometric to � and
hence convex. Let us set

C := O>�.

Then, �̃ = 3�1C is also a convex set. To see this, note that we can find a convex
function F 2 C2(Rn) such that { f < 0} = C . For example, one such function is
given by

F(x) := inf
n
t > �1 : x 2

�
(t + 1)(C � x̄)

�
+ x̄

o
where x̄ is any fixed point in �. Then, we consider the function

F̃(x) := F(3x), F̃ 2 C2(Rn).

Then, we have
D2i j F̃(x) = D2pq F(3x)3pi 3q j

and hence for any a 2 Rn , the convexity of F implies

D2 F̃(x) : a ⌦ a = D2i j F̃(x) ai a j
= D2pq F(3x)3pi 3q j ai a j
= D2F(3x) :

�
3a
�
⌦

�
3a
�

� 0.

Hence, F̃ is convex too, which means the sublevel set {F̃ < 0} is convex. Moreover,

�̃ = 3�1C = 3�1�x 2 Rn
: F(x) < 0

 
=

�
3�1x 2 Rn

: F(x) < 0
 

=

�
y 2 Rn

: F(3y) < 0
 

=

�
y 2 Rn

: F̃(y) < 0
 
.

Thus, �̃ is convex and the conclusion follows.
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Now, since ṽ 2 H2(�̃) \ H10 (�̃) and �̃ is convex, we may applying the
Miranda-Talenti identity (3.2) to ṽ and �̃ to obtain

Z
�̃

��D2ṽ(x)
��2dx 

Z
�̃

��1ṽ(x)
��2dx .

Hence, by using (3.4) and (3.5), we obtain

⌫(A)2
Z

�̃

���D2v(Kx)
���2 

Z
�̃

��A : D2v(Kx)
��2dx .

We conclude by using the change of variables y = Kx which sends �̃ back to �
and a standard approximation argument in the Sobolev norm. Hence, our inequal-
ity (3.1) has been established in the scalar case.

Step 2. We now start working towards the general vector case. Hence, let A 2

RNn⇥Nn
s satisfy the structural hypothesis (SH) for some matrices {B1, . . . , BN } ✓

RN2
s and {A1, . . . , AN } ✓ Rn2

s . We begin by showing that we may further assume
that all the positive matrices A1, . . . , AN have the same first eigenvalue:

�1(A1) = · · · = �1(AN ) =: �1 > 0.

Indeed, if this is not the case, we may find positive constants c1, . . . , cN such that

A = B1 ⌦ A1 + · · · + BN ⌦ AN

= (c1B1) ⌦

A1

c1
+ · · · + (cN BN ) ⌦

AN

cN
=: B̃1 ⌦ Ã1 + · · · + B̃N ⌦ ÃN

and the rescaled families of matrices {B̃1, . . . , B̃N } and { Ã1, . . . , ÃN } have the
same properties as {B1, . . . , BN } and {A1, . . . , AN }, but in addition there exists an
ā 2 Rn with |ā| = 1 and �1 > 0 such that

min
|a|=1

�
Ã�

: a ⌦ a
 

= Ã�
: ā ⌦ ā = �1, (3.6)

for all � = 1, . . . , N . The existence of such an ā for all the � ’s is provided by
(SH): by assumption, all nullspaces N

�
A�

� �1(A� )I
�
for � = 1, . . . , N intersect

at least along a common line of Rn .
Next, we show that, under the previous simplification, the ellipticity constant

⌫(A) of A defined by (1.7) is also given by

⌫(A) =

✓
min

�=1,...,N
min
|a|=1

�
A�

: a ⌦ a
 ◆
min
|⌘|=1

n�
B1 + · · · + BN

�
: ⌘ ⌦ ⌘

o
. (3.7)



DIRICHLET PROBLEM FOR FULLY NONLINEAR SYSTEMS 719

Indeed, we have

⌫(A) = min
|a|=|⌘|=1

n�
B�

⌦ A�
�

: ⌘ ⌦ ⌘ ⌦ a ⌦ a
o

= min
|a|=|⌘|=1

n�
A�

: a ⌦ a
��
B�

: ⌘ ⌦ ⌘
�o

�

✓
min

�=1,...,N
min
|a|=1

�
A�

: a ⌦ a
 ◆
min
|⌘|=1

n�
B1 + · · · + BN

�
: ⌘ ⌦ ⌘

o
,

and conversely, by the previous arguments (see (3.6)),

⌫(A) = min
|a|=|⌘|=1

n�
A�

: a ⌦ a
��
B�

: ⌘ ⌦ ⌘
�o

 min
|⌘|=1

n�
A�

: ā ⌦ ā
��
B�

: ⌘ ⌦ ⌘
�o

= min
|⌘|=1

n
�1
h�
B1 + · · · + BN

�
: ⌘ ⌦ ⌘

io

= �1 min
|⌘|=1

n�
B1 + · · · + BN

�
: ⌘ ⌦ ⌘

o

=

✓
min

�=1,...,N
min
|a|=1

�
A�

: a ⌦ a
 ◆
min
|⌘|=1

n�
B1 + · · · + BN

�
: ⌘ ⌦ ⌘

o
.

Hence, (3.7) has been established.

Step 3. Now we complete the proof of (3.1) in the general case, by using Steps 1
and 2. We begin by observing the identity

min
|⌘|=1

n�
B1+· · ·+BN

�
: ⌘⌦⌘

o
= min

�=1,...,N

✓
min

|⌘|=1, ⌘2R(B� )

�
B�

: ⌘ ⌦ ⌘
 ◆

. (3.8)

Indeed, (3.8) follows by applying the Spectral theorem to B1, . . . , BN and by using
that by our hypothesis (SH) we have

R(B1) � · · · � R(BN ) = RN , R(B� )? R(B�) for � 6= �.

Next, we consider the orthogonal projections on the ranges of B� :

P�
:= ProjR(B� ), � = 1, . . . , N , (3.9)
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and we recall that (3.1) has been established when N = 1: that is, for any v 2

C2(�) \ C10(�), we have

�1(A)2
Z

�
|D2v|

2


Z
�

|A : D2v|
2, (3.10)

when A > 0. Fix now a map u 2 C2(�)N \ C10(�)N and apply (3.10) to v :=

(P� u)↵ and A := A� for indices ↵, � fixed and then sum with respect to ↵ and � ,
by using that by Step 2 all the A� ’s have the same first eigenvalue �1:

(�1)
2
Z

�

X
�

��D2(P� u)
��2



Z
�

X
�

��A�
: D2(P� u)

��2. (3.11)

Note now that by perpendicularity we have P1 + · · · + PN
= I and hence

��D2u��2 =

X
�

��D2(P� u)
��2. (3.12)

On the other hand, again by perpendicularity we have B� B�
= 0 for � 6= �, which

implies (we again disengage the summation convention in the equalities right below
to avoid confusion)

��A : D2u
��2

=

X
↵,,�,i, j,p,q,� ,�

⇣
B�

↵ D
2
i j u A

�
i j

⌘ ⇣
B�

↵� D
2
pqu� A�

pq

⌘

=

X
↵,,�,i, j,p,q,�

⇣
B�

↵ D
2
i j u A

�
i j

⌘ ⇣
B�

↵� D
2
pqu� A

�
pq
⌘

=

X
�

��B� D2u : A�
��2

=

X
�

���B� P�
�
D2u : A�

����2.

Next, for brevity we set

⇠�
:= P�

�
D2u : A�

�
: � ✓ Rn

�! R(B� ), (3.13)

for � = 1, . . . , N . Then, by (3.13), (3.12) and Step 2, we may rewrite (3.11) as

✓
min

�=1,...,N
min
|a|=1

�
A�

: a ⌦ a
 ◆2 Z

�

��D2u��2 

Z
�

X
�

��⇠�
|
2. (3.14)
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By denoting by “sgn” the sign function, the above calculation gives (since ⇠� (x) 2

R(B� ) for all x 2 �)
��A : D2u

��2
=

X
�

��B� ⇠�
��2

=

X
�

sup
⌘ 6=0

⇣
B�

: ⇠�
⌦

⌘

|⌘|

⌘2

�

X
�

⇣
B�

: ⇠�
⌦ sgn

�
⇠�
� ⌘2

=

X
�

⇣
B�

: sgn
�
⇠�
�
⌦ sgn

�
⇠�
� ⌘2

|⇠�
|
2

�

X
�


min

�=1,...,N

✓
min

|⌘|=1, ⌘2R(B�)

�
B�

: ⌘ ⌦ ⌘
 ◆�2

|⇠�
|
2

=


min

�=1,...,N

⇣
min

|⌘|=1, ⌘2R(B�)

�
B�

: ⌘ ⌦ ⌘
 ⌘�2 X

�

|⇠�
|
2.

By employing the identity (3.8), the above estimate gives
��A : D2u

��2h
min|⌘|=1

n
(B1 + · · · + BN ) : ⌘ ⌦ ⌘

oi2 �

X
�

|⇠�
|
2. (3.15)

Finally, by (3.15), (3.14) and (3.7), the desired estimate (3.1) follows and Lem-
ma 3.3 ensues.

4. Well-posedness of the fully nonlinear problem

We now come to the general fully nonlinear case of the Dirichlet problem (1.1).
We will utilise the results of Sections 2 and 3 plus a result of Campanato on near
operators, which is recalled later. Our ellipticity condition of Definition 1.1 will
work as a “perturbation device”, allowing to establish existence for the nonlinear
problem by showing it is “near” a linear well-posed problem. In view of the well-
known problems to pass to limits with weak convergence in nonlinear equations,
Campanato’s idea furnishes an alternative to the stability problem for nonlinear
equations, by avoiding this insuperable difficulty.

The main result of this paper and this section is the next theorem:

Theorem 4.1 (Existence-Uniqueness for the fully nonlinear problem). Let� ✓

Rn be an open, convex, C2 bounded set. Let also F : � ⇥ RNn2
s �! RN a

Carathéodory map, satisfying Definition 1.1 and F(·, 0) 2 L2(�)N , n, N � 2.



722 NIKOS KATZOURAKIS

Moreover, suppose that the tensor A of Definition 1.1 satisfies the structural hy-
pothesis (SH).

Then, for any f 2 L2(�)N , the problem(
F(·, D2u) = f in �

u = 0 on @�

has a unique solution u in the space (H2 \ H10 )(�)N , which also satisfies the
estimate

kukH2(�)  Ck f kL2�, (4.1)
for some C > 0 depending only on F and �. Moreover, for any two maps w, v 2

(H2 \ H10 )(�)N , we have

kw � vkH2(�)  C
��F(·, D2w) � F(·, D2v)

��
L2(�)

, (4.2)

for some C > 0 depending only on F and �.

We note that (4.2) is a strong uniqueness estimate, which is a form of “com-
parison principle in integral norms”. Moreover, the restriction to homogeneous
boundary condition “u = 0 on @�” does not harm generality, since the Dirich-
let problem we solve is equivalent to a Dirichlet problem with non-homogeneous
boundary condition by redefining the nonlinearity F : the problem(

G
�
·, D2u

�
= f in �, f 2 L2(�)N

u = g on @�, g 2 H2(�)N ,

is equivalent to (1.1), by taking F(x,X) := G
�
x,X+ D2g(x)

�
.

The proof of Theorem 4.1 utilises the following result of Campanato taken
from [7].

Theorem 4.2 (Campanato’s near operators). Let F, A : X �! X be two maps
from the set X 6= ; to the Banach space (X, k · k). Suppose there exists 0 < K < 1
such that ���F[u] � F[v] �

�
A[u] � A[v]

����  K
��A[u] � A[v]

��, (4.3)

for all u, v 2 X. Then, if A is a bijection, F is a bijection as well.

Proof of Theorem 4.1. Let ↵ be the L1 function of Definition 1.1. By our as-
sumptions, there exist C,M > 0 depending only on F , such that for any u 2

(H2 \ H10 )(�)N , we have��↵(·)F(·, D2u)
��
L2(�)



��↵(·)F(·, 0)
��
L2(�)

+ Mk↵kL1(�)kD2ukL2(�)

= k↵kL1(�)

⇣
C + MkD2ukL2(�)

⌘

 N
⇣
1 + kukH2(�)

⌘ (4.4)
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for some N > 0. The last inequality is a consequence of Remark 2.2. Let also
A 2 RNn⇥Nn

s be the tensor given by Definition 1.1 corresponding to F . Then we
have

kA : D2ukL2(�)  |A| kD2ukL2(�)  |A|kukH2(�). (4.5)

By (4.4) and (4.5) we obtain that the operators
(
A[u] := A : D2u
F[u] := ↵(·)F(·, D2u)

(4.6)

map (H2\ H10 )(�)N into L2(�)N . Let u, v 2 (H2\ H10 )(�)N . By Definition 1.1,
we have���↵(·)

⇣
F(·,D2u) � F(·, D2v)

⌘
� A :

�
D2u � D2v

����
L2(�)

 �⌫(A)
��D2u � D2v

��
L2(�)

+ �
��A : (D2u � D2v)

��
L2(�)

.

SinceA satisfies the structural assumption (SH), by the generalised Miranda-Talenti
Hessian estimate of Lemma 3.3, we obtain���↵(·)

⇣
F(·,D2u) � F(·, D2v)

⌘
� A :

�
D2u � D2v

����
L2(�)

 (� + � )
��A : (D2u � D2v)

��
L2(�)

.
(4.7)

Lemma 2.1 implies that the linear operator

A : (H2 \ H10 )(�)N �! L2(�)N

is a bijection. Hence, in view of the inequality (4.7) and the fact that � + � < 1,
Campanato’s Theorem 5.1 implies that F : (H2\H10 )(�)N �! L2(�)N is a bijec-
tion as well. As a result, for any g 2 L2(Rn)N , the PDE system ↵(·)F(·, D2u) = g
has a unique solution in (H2\H10 )(�)N . Since ↵, 1/↵ 2 L1(�), by selecting g =

↵ f , we conclude that the problem (1.1) has a unique solution in (H2 \ H10 )(�)N .
Finally, by (4.7) we have

���F(·, D2u) � F(·, D2v)
���
L2(�)

�

1� (� + � )

k↵kL1(�)

��A : (D2u � D2v)
��
L2(�)

and by Lemma 3.3 and Remark 2.2, we deduce the estimate
���F(·, D2u) � F(·, D2v)

���
L2(�)

�

✓
⌫(A)

1� (� + � )

k↵kL1(�)

◆��D2u � D2v
��
L2(�)

� C ku � vkH2(�)

for some C > 0. The theorem ensues.
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5. Stability of the Dirichlet problem

In this section we discuss an extension of Theorem 4.1 in the form of a “stability
theorem” for the Dirichlet problem.

Theorem 5.1 (Stability of strong solutions to the Dirchlet problem, cf. [25]).
Let n, N � 2, � ✓ Rn a bounded open set and F,G : � ⇥ RNn2

s �! RN

Carathéodory maps. We suppose that

F : (H2 \ H10 )(�)N �! L2(�)N

is a bijection. If G(·, 0) 2 L2(�)N and

ess sup
x2�

sup
X6=Y

�����
�
F(x,Y) � F(x,X)

�
�

�
G(x,Y) � G(x,X)

�
|Y � X|

����� < ⌫(F) (5.1)

where

⌫(F) := inf
v 6=w

��F(·, D2w) � F(·, D2v)
��
L2(�)

kD2w � D2vkL2(�)

> 0, (5.2)

then, the problem (
G(·, D2u) = g in �

u = 0 on @�

has a unique solution u in the space (H2 \ H10 )(�)N , for any given g 2 L2(�)N .

Theorem 4.1 provides sufficient conditions on F and� is order to obtain solv-
ability. The theorem says that every G which is “close to F” in the sense of (5.1),
gives rise to a nonlinear coefficient such that the respective Dirichlet problem is
well posed.

Proof of Theorem 5.1. We denote the right-hand side of (5.1) by ⌫(F,G) and we
may rewrite (5.1) as

0 < ⌫(F,G) < ⌫(F). (5.3)
For any u, v 2 (H2 \ H10 )(�)N , we have
���F(·, D2u) � F(·, D2v) �

�
G(·, D2u) � G(·, D2v)

����
L2(�)



 
ess sup

�
sup
X6=Y

�����
F(·,Y) � F(·,X) �

�
G(·,Y) � G(·,X)

�
|Y � X|

�����
! ��D2u � D2v

��
L2(�)

= ⌫(F,G)
��D2u � D2v

��
L2(�)



⌫(F,G)

⌫(F)

��F(·, D2u) � F(·, D2v)
��
L2(�)

.

(5.4)
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Hence, we obtain the inequality
���F(·, D2u) � F(·, D2v)�

�
G(·, D2u) � G(·, D2v)

����
L2(�)



⌫(F,G)

⌫(F)

��F(·, D2u) � F(·, D2v)
��
L2(�)

,
(5.5)

which is valid for any u, v 2 (H2 \ H10 )(�)N . By (5.1), Remark 2.2 and the
inequality above for v ⌘ 0, we have that F,G map (H2 \ H10 )(�)N into L2(�)N .
By assumption, F : (H2 \ H10 )(�)N �! L2(�)N is a bijection. Hence, in view
of Campanato’s Theorem 5.1, inequalities (5.3) and (5.5) imply that G : (H2 \

H10 )(�)N �! L2(�)N is a bijection as well. The theorem follows.
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