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Pointwise estimates and existence of solutions
of porous medium and p-Laplace evolution equations

with absorption and measure data

MARIE-FRANÇOISE BIDAUT-VÉRON AND QUOC-HUNG NGUYEN

Abstract. Let � be a bounded domain of RN (N � 2). We obtain a necessary
and a sufficient condition, expressed in terms of capacities, for the existence of a
solution to the porous medium equation with absorption8><

>:
ut � 1(|u|m�1u) + |u|q�1u = µ in � ⇥ (0, T )

u = 0 on @� ⇥ (0, T )

u(0) = �

where � andµ are bounded Radon measures, q > max(m, 1), andm > N�2
N . We

also obtain a sufficient condition for the existence of a solution to the p-Laplace
evolution equation8><

>:
ut � 1pu + |u|q�1u = µ in � ⇥ (0, T )

u = 0 on @� ⇥ (0, T )

u(0) = �

where q > p � 1 and p > 2.

Mathematics Subject Classification (2010): 35K92 (primary); 35K55, 35K15
(secondary).

1. Introduction and main results

Let� be a bounded domain ofRN , N � 2 and T > 0, and�T = �⇥(0, T ). In this
paper we study the existence of solutions to the following two types of evolution
problems: the porous medium problem with absorption8><

>:
ut � 1(|u|m�1u) + |u|q�1u = µ in �T
u = 0 on @� ⇥ (0, T )

u(0) = �

(1.1)
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where m > N�2
N and q > max(1,m), and the p-Laplace evolution problem with

absorption 8><
>:
ut � 1pu + |u|q�1u = µ in �T
u = 0 on @� ⇥ (0, T )

u(0) = �

(1.2)

where q > p � 1 > 1, and µ and � are bounded Radon measures respectively
on �T and �. In the sequel, for any bounded domain O of Rl(l � 1), we denote
byMb(O) the set of bounded Radon measures in O , and byM+

b (O) its positive
cone. For any ⌫ 2Mb(O), we denote by ⌫+ and ⌫� respectively its positive and
negative part.

When m = 1, p = 2 and q > 1 the problem has been studied by Brezis and
Friedman [8] with µ = 0. It is shown that in the subcritical case q < 1 + 2/N ,
the problem can be solved for any � 2 Mb(�), and it has no solution when q �

1 + 2/N and � is a Dirac mass. The general case has been solved by Baras and
Pierre [2] and their results are expressed in terms of capacities. For s > 1,↵ > 0,
the capacity CapG↵,s of a Borel set E ⇢ RN is defined by

CapG↵,s(E) = inf
n��g��sLs(RN )

: g 2 Ls
+

⇣
RN

⌘
,G↵ ⇤ g � 1 on E

o
,

where G↵ is the Bessel kernel of order ↵ and the capacity Cap2,1,s of a compact set
K ⇢ RN+1 is defined by

Cap2,1,s(K )= inf
n��'��sW 2,1

s (RN+1)
:'2 S

⇣
RN+1

⌘
,'�1 in a neighborhood of K

o
,

where ��'��W 2,1
s (RN+1) =

��'��Ls(RN+1) +

��'t��Ls(RN+1) +

��
|r'|

��
Ls(RN+1)

+

X
i, j=1,2,...,N

��'xi x j��Ls(RN+1).

The capacity Cap2,1,s is extended to Borel sets by the usual method. Note the
relation between the two capacities:

C�1 CapG2� 2s ,s(E)  Cap2,1,s(E ⇥ {0})  C CapG2� 2s ,s(E)

for any Borel set E ⇢ RN , see [19, Corollary 4.21]. In particular, for any ! 2

Mb(RN ) and a 2 R, the measure !⌦�{t=a} inRN+1 is absolutely continuous with
respect to the capacity Cap2,1,s (in RN+1) if and only if ! is absolutely continuous
with respect to the capacity CapG2� 2s ,s (in RN ). We recall that a measure µ is
absolutely continuous with respect to the capacity Cap if, for any Borel set E,

Cap(E) = 0 =) |µ|(E) = 0.
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From [2], the problem
8><
>:
ut � 1u + |u|q�1u = µ in �T
u = 0 on @� ⇥ (0, T )

u(0) = �

has a solution if and only if the measures µ and � are absolutely continuous with
respect to Cap2,1,q 0 in �T and CapG 2

q
,q 0 in � respectively, where q 0

=
q

q�1 .
In Section 2 we study problem (1.1).
For m > 1, Chasseigne [10] has extended the results of [8] for µ = 0 in the

new subcritical range m < q < m +
2
N . The supercritical case q � m +

2
N where

µ = 0 and � is positive is studied in [9]. He has essentially proved that if problem
(1.1) has a solution, then � ⌦ �{t=0} is absolutely continuous with respect to the
capacity Cap2,1, q

q�m ,q 0 , defined for any compact set K ⇢ RN+1 by

Cap2,1, q
q�m ,q 0(K )

= inf

(��'�� q
q�m

W 2,1
q

q�m ,q0
(RN+1)

: ' 2 S
⇣
RN

⌘
,' � 1 in a neighborhood of K

)
,

where
��'��W 2,1

q
q�m ,q0

(RN+1) =

��'��
L

q
q�m (RN+1)

+

��'t��Lq0

(RN+1) +

��
|r'|

��
L

q
q�m (RN+1)

+

X
i, j=1,2,...,N

��'xi x j��L q
q�m (RN+1)

.

In this section we first give necessary conditions on the measures µ and � for exis-
tence, which cover the results mentioned above.

Theorem 1.1. Let q > max(1,m) and µ 2Mb(�T ) and � 2Mb(�). If problem
(1.1) has a very weak solution, then µ and � ⌦ �{t=0} are absolutely continuous
with respect to Cap2,1, q

q�m , q
q�1

.

Remark 1.2. The capacity Cap2,1, q
q�m , q

q�1
is absolutely continuous with respect to

Cap2,1, q
q�max{m,1}

, since

��'��W 2,1
q

q�m ,q0
(RN+1)  C(| supp(')|)

��'��W 2,1
q

q�max{m,1}
(RN+1), 8' 2 C1

c

⇣
RN+1

⌘
.

Thereforeµ and�⌦�{t=0}are absolutely continuous with respect to Cap2,1, q
q�max{m,1}

.
In particular � is absolutely continuous with respect to CapG 2max{m,1}

q
, q
q�max{m,1}

.
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The main result of this section is the following sufficient condition for exis-
tence, where we use the notion of R-truncated Riesz parabolic potential I2 onRN+1

of a measure µ 2M+

b (�T ), defined by

IR2 [µ](x, t) =

Z R

0

µ
�
Q̃⇢(x, t)

�
⇢N

d⇢
⇢

for any (x, t) 2 RN+1,

with R 2 (0,1], and Q̃⇢(x, t) = B⇢(x) ⇥ (t � ⇢2, t + ⇢2).

Theorem 1.3. Let m > N�2
N , q > max(1,m), µ 2Mb(�T ) and � 2Mb(�).

i. If m > 1 and µ and � are absolutely continuous with respect to Cap2,1,q 0 in �T
and CapG 2

q
,q 0 in �, then there exists a very weak solution u of (1.1), satisfying

for a.e.(x, t) 2 �T

|u(x, t)|  C
✓✓

|� |(�) + |µ|(�T )

dN

◆m1
+ |� |(�) + |µ|(�T ) + 1

+ I2d2
⇥
|� | ⌦ �{t=0} + |µ|

⇤
(x, t)

◆
,

(1.3)

where C = C(N ,m) > 0 and

m1 =

(N + 2)(2mN + 1)
m(mN + 2)(1+ 2N )

, d = diam(�) + T 1/2.

ii. If N�2
N < m  1, and µ and � are absolutely continuous with respect to

Cap2,1, 2q
2(q�1)+N (1�m)

in �T and CapG 2�N (1�m)
q

, 2q
2(q�1)+N (1�m)

in �, there exists a

very weak solution u of (1.1), such that for a.e.(x, t) 2 �T

|u(x, t)|  C
✓✓

|� |(�) + |µ|(�T )

dN

◆m2
+ 1

+

⇣
I2d2

⇥
|� | ⌦ �{t=0} + |µ|

⇤
(x, t)

⌘ 2
2�N (1�m)

◆
,

(1.4)

where C = C(N ,m) > 0 and

m2 =

2N (N + 2)(m + 1)
(2+ Nm)(2� N (1� m))(2+ N (1+ m))

.

Moreover we give existence results in the subcritical case, for any µ 2 Mb(�T )
and � 2Mb(�), see Theorem 2.9.
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We also give other types of sufficient conditions for measures which are good
in time, that means

� 2 L1(�) and |µ|  f + ! ⌦ F,

where f 2 L1
+
(�T ), F 2 L1

+
((0, T )),! 2M+

b (�),
(1.5)

see Theorem 2.10. The proof is based on estimates for the stationary problem in
terms of elliptic Riesz potential.

In Section 3, we consider problem (1.2). Let us recall some former results
about it.

For q > p � 1 > 0, Pettitta, Ponce and Porretta [21] have proved that it
admits a (unique renormalized) solution provided � 2 L1(�) and µ 2 Mb(�T )
is a diffuse measure, i.e., absolutely continuous with respect to the Cp-capacity in
�T , defined on a compact set K ⇢ �T by

Cp(K ,�T ) = inf
���'��W : ' 2 C1

c (�T ), ' � 1 on K
 
, (1.6)

where

W =

n
z 2 L p

⇣
(0, T );W 1,p

0 (�) \ L2(�)
⌘

:

zt 2 L p
0

⇣
(0, T );W�1,p0

(�) + L2(�)
⌘ o

.

In the recent work [4], we have proved a stability result for the p-Laplace parabolic
equation, see Theorem 3.5 below, for p > 2N+1

N+1 . As a first consequence, in the new
subcritical range

q < p � 1+

p
N

,

problem (1.2) admits a renormalized solution for any measures µ 2Mb(�T ) and
� 2 L1(�). Moreover, we have obtained sufficient conditions for existence, for
measures that have a good behavior in time, of the form (1.5). It is shown that (1.2)
has a renormalized solution if ! 2 M+

b (�) is absolutely continuous with respect
to CapGp,

q
q�p+1

. The proof is based on estimates of [5] for the stationary problem
which involve Wolff potentials.

Here we give new sufficient conditions when p > 2. Our second main result is
the following:

Theorem 1.4. Let q > p� 1 > 1 and µ 2Mb(�T ) and � 2Mb(�). If µ and �
are absolutely continuous with respect to Cap2,1,q 0 in �T and CapG 2

q
,q 0 in �, then

there exists a distribution solution of problem (1.2) which satisfies the pointwise
estimate

|u(x,t)|C
✓
1+D+

✓
|� |(�)+|µ|(�T )

DN

◆m3
+ I2D2

⇥
|� |⌦�{t=0}+|µ|

⇤
(x, t)

◆
(1.7)
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for a.e (x, t) 2 �T with C = C(N , p) and

m3 =

(N + p)(� + 1)(p � 1)
((p � 1)N + p)(1+ �(p � 1))

, � = min{1/(p � 1), 1/N },

D = diam(�) + T 1/p.
(1.8)

Moreover, if � 2 L1(�), u is a renormalized solution.

2. Porous medium equation

For k > 0 and s 2 R we set Tk(s) = max{min{s, k},�k}.

2.1. Weak solutions

The solutions of (1.1) are considered in a weak sense:

Definition 2.1. Let µ 2Mb(�T ) and � 2Mb(�) and g 2 C(R).

i. A function u is a weak solution of problem
8><
>:
ut � 1(|u|m�1u) + g(u) = µ in �T
u = 0 on @� ⇥ (0, T )

u(0) = � in �

(2.1)

if u 2 C([0, T ] ; L2(�)), |u|m 2 L2((0, T ); H10 (�)) and g(u) 2 L1(�T ), and
for any ' 2 C2,1c (� ⇥ [0, T )),

�

Z
�T

u't dxdt +

Z
�T

r(|u|m�1 u) · r'dxdt

+

Z
�T

g(u)'dxdt =

Z
�T

'dµ +

Z
�

'(0)d�.

ii. A function u is a very weak solution of (2.1) if u 2 Lmax{m,1}(�T ) and g(u) 2

L1(�T ), and for any ' 2 C2,1c (� ⇥ [0, T )),

�

Z
�T

u't dxdt�
Z

�T

|u|m�1u1'dxdt+
Z

�T

g(u)'dxdt=
Z

�T

'dµ+

Z
�
'(0)d�.

2.2. Necessary conditions for existence

Next we show the necessary conditions stated in Theorem 1.1.
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Proof of Theorem 1.1. As in [2, Proof of Proposition 3.1], it is enough to claim that,
for any compact K ⇢ � ⇥ [0, T ) such that µ�(K ) = 0 and (��

⌦ �{t=0})(K ) = 0
and Cap2,1, q

q�m ,q 0(K ) = 0, there holds µ+(K ) = 0 and (�+
⌦ �{t=0})(K ) = 0.

For " > 0 we choose an open set O such that (|µ| + |� | ⌦ �{t=0})(O\K ) < " and
K ⇢ O ⇢ � ⇥ (�T, T ). One can find a sequence {'n} ⇢ C1

c (O) which satisfies
0  'n  1, 'n|K = 1 and 'n ! 0 in W 2,1

q
q�m ,q 0

(RN+1) and almost everywhere in
O (see [2, Proposition 2.2]). We get

Z
�T

'ndµ +

Z
�

'n(0)d�

= �

Z
�T

u('n)t dxdt �

Z
�T

|u|m�1u1'ndxdt +

Z
�T

|u|q�1u'ndxdt



⇣��u��Lq (�T )
+

��u��mLq (�T )

⌘ ��'n��W 2,1
q

q�m ,
q

q�1
(RN+1) +

Z
�T

|u|q'ndxdt.

Note thatZ
�T

'ndµ+

Z
�
'n(0)d� �µ+(K )+

�
�+

⌦ �{t=0}
�
(K )�

�
|µ|+|� | ⌦ �{t=0}

�
(O\K )

�µ+(K )+
�
�+

⌦ �{t=0}
�
(K ) � ".

This implies

µ+(K ) +

�
�+

⌦ �{t=0}
�
(K )



⇣��u��Lq (�T )
+

��u��mLq (�T )

⌘ ��'n��W 2,1
q

q�m ,
q

q�1
(RN+1) +

Z
�T

|u|q'ndxdt + ".

As n ! 1, we get µ+(K ) + (�+
⌦ �{t=0})(K )  ". Therefore, µ+(K ) =

(�+
⌦ �{t=0})(K ) = 0.

2.3. Estimates on the porous media equation without absorption

The proof of existence results for problem 1.1 is highly dependent on estimates
for the equation of porous media without absorption. We begin by simple a priori
estimates:

Proposition 2.2. Let u 2 L1(�T ) with |u|m 2 L2((0, T ); H10 (�)) be a weak
solution of problem

8><
>:
ut � 1(|u|m�1u) = µ in �T
u = 0 on @� ⇥ (0, T )

u(0) = � in �

(2.2)
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with � 2 Cb(�) and µ 2 Cb(�T ). Then,��u��L1((0,T );L1(�))
 |� |(�) + |µ|(�T ), (2.3)

��u��Lm+2/N ,1(�T )
 C1

�
|� |(�) + |µ|(�T )

� N+2
mN+2 , (2.4)

��
|r(|u|m�1u)|

��
L
mN+2
mN+1 ,1

(�T )
 C2

�
|� |(�) + |µ|(�T )

�m(N+1)+1
mN+2 , (2.5)

where C1 = C1(N ,m),C2 = C2(N ,m).

Proof of Proposition 2.2. By using Steklov averages, we can take Tk(|u|m�1u), k >
0 as a test function. Setting Hk(a) =

R a
0 Tk(|y|

m�1y)dy,we find for any ⌧ 2 (0, T )

Z
�⌧

(Hk(u))t dxdt +

Z
�⌧

|rTk(|u|m�1u)|2dxdt =

Z
�⌧

Tk(|u|m�1u)dµ(x, t).

This leads toZ
�T

|rTk(|u|m�1u)|2dxdt  k(|� |(�) + |µ|(�T )) and (2.6)
Z

�
(Hk(u))(⌧ )dx  k(|� |(�) + |µ|(�T )), 8⌧ 2 (0, T ).

Since Hk(a) � k
⇣
|a| � k

1
m
⌘
for any a and k > 0, we find

Z
�

⇣
|u|(⌧ ) � k

1
m
⌘
dx  |� |(�) + |µ|(�T ), 8⌧ 2 (0, T ).

Letting k ! 0, we get (2.3).
Next we prove (2.4). By the Gagliardo-Nirenberg embedding theorem, there

holds
Z

�T

���Tk ⇣|u|m�1u
⌘��� 2(N+1)

N dxdt

 C1
���Tk ⇣|u|m�1u

⌘���2/N
L1((0,T );L1(�))

Z
�T

���rTk ⇣|u|m�1u
⌘���2 dxdt

 C1k
2(m�1)
mN

��u��2/NL1((0,T );L1(�))

Z
�T

���rTk ⇣|u|m�1u
⌘���2 dxdt.

Thus, from (2.6) and (2.3) we get

k
2(N+1)

N
���

|u|m > k
 ��



Z
�T

���Tk ⇣|u|m�1u
⌘��� 2(N+1)

N dxdt

 c1k
2(m�1)
mN +1�

|� |(�) + |µ|(�T )
� N+2

N ,
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which implies (2.4). Finally, we prove (2.5). Thanks to (2.6) and (2.4) we have for
k, k0 > 0

���n���r ⇣|u|m�1u
⌘��� > k

o��� 

1
k2

Z k2

0
|{|r(|u|m�1u)| > `}|d`



���
|u|m > k0

 ��
+

1
k2

Z
�T

���rTk0
⇣
|u|m�1u

⌘���2 dxdt
 C1k

�
2
mN �1

0
�
|� |(�)+|µ|(�T )

� N+2
N

+ k0k�2(|� |(�)+|µ|(�T )).

Choosing k0 = k
Nm

Nm+1 (|� |(�) + |µ|(�T ))
m

Nm+1 , we get (2.5).

The crucial result used to establish Theorem 1.3 is the following a priori esti-
mates, due to of Liskevich and Skrypnik [17] for m � 1 and Bogelein, Duzaar and
Gianazza [7] for m  1.
Theorem 2.3. Let m > N�2

N and µ 2 (Cb(�T ))+. Let u 2 L1

+
(�T ) with um 2

L2((0, T ); H1loc(�)) be a weak solution to equation

ut � 1(um) = µ in �T .

Then there exists C = C(N ,m) such that, for almost all (y, ⌧ ) 2 �T and any
cylinder Q̃r (y, ⌧ ) ⇢⇢ �T , there holds:

i. If m > 1

u(y, ⌧ )  C
✓✓

1
r N+2

Z
Q̃r (y,⌧ )

|u|m+
1
2N dxdt

◆ 2N
1+2N

+

��u��L1((⌧�r2,⌧+r2);L1(Br (y))) + 1+ I2r2 [µ](y, ⌧ )

◆
;

ii. If m  1,

u(y, ⌧ )  C
✓✓

1
r N+2

Z
Q̃r (y,s)

|u|
2(1+mN )
N (1+m) dxdt

◆ 2N (m+1)
(2�N (1�m))(2+N (1+m))

+ 1

+

⇣
I2r2 [µ](y, ⌧ )

⌘ 2
2�N (1�m)

◆
.

As a consequence we get a new a priori estimate for the porous medium equation:
Corollary 2.4. Let m > N�2

N and µ 2 Cb(�T ). Let u 2 L1(�T ) with |u|m 2

L2((0, T ); H10 (�)) be the weak solution of problem8><
>:
ut � 1(|u|m�1u) = µ in �T
u = 0 on @� ⇥ (0, T )

u(0) = 0 in �.
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Then there exists C = C(N ,m) such that, for a.e. (y, ⌧ ) 2 �T :

i. If m > 1,

|u(y, ⌧ )|  C
✓✓

|µ|(�T )

dN

◆m1
+ |µ|(�T ) + 1+ I2d2 [|µ|](y, ⌧ )

◆
; (2.7)

ii. If m  1,

|u(y, ⌧ )|  C
✓✓

|µ|(�T )

dN

◆m2
+ 1+

⇣
I2d12 [|µ|](y, ⌧ )

⌘ 2
2�N (1�m)

◆
, (2.8)

where m1,m2 and d are defined in Theorem 1.3.

Proof. Let x0 2 �, and Q = B2d(x0) ⇥ (�(2d)2, (2d)2). Consider the function
U 2 (Cb(Q))+, with Um

2 L p((�(2d)2, (2d)2); H10 (B2d(x0))) such that U is
weak solution of

8><
>:
Ut � 1(Um) = ��T |µ| in B2d(x0) ⇥

�
� (2d)2, (2d)2

�
U = 0 on @B2d(x0) ⇥

�
� (2d)2, (2d)2

�
U(�(2d)2) = 0 in B2d(x0).

(2.9)

From Theorem 2.3, we get, for a.e. (y, ⌧ ) 2 �T ,

U(y, ⌧ )  c1
✓✓

1
dN+2

Z
Q̃d (y,⌧ )

|U |
m+

1
2N dxdt

◆ 2N
1+2N

+

��U��L1((⌧�d2,⌧+d2);L1(Bd (y)))
+ 1+ I2d2 [|µ|](y, ⌧ )

◆

if m > 1; and

U(y, ⌧ )  C
✓✓

1
dN+2

Z
Q̃d (y,s)

|u|
2(1+mN )
N (1+m) dxdt

◆ 2N (m+1)
(2�N (1�m))(2+N (1+m))

+ 1

+

⇣
I2r2 [µ](y, ⌧ )

⌘ 2
2�N (1�m)

◆

if m  1. By Proposition 2.2, we have
��U��L1((⌧�d2,⌧+d2);L1(Bd (y)))

 |µ|(�T ),

|{|U | > `}|  c2(|µ|(�T ))
2+N
N `�

2
N �m

8` > 0.
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Thus, for any `0 > 0,
Z
Q
Um+

1
2N dxdt =

✓
m +

1
2N

◆Z
1

0
`m+

1
2N �1

|{U > `}|d`

=

✓
m +

1
2N

◆Z `0

0
`m+

1
2N �1

|{U > `}|d`

+

✓
m +

1
2N

◆Z
1

`0

`m+
1
2N �1

|{U > `}|d`

 c3dN+2`
m+

1
2N

0 + c4`
1
2N �

2
N

0 (|µ|(�T ))
2+N
N .

Choosing `0 =

⇣
|µ|(�T )
dN

⌘ N+2
mN+2 , we get

Z
Q
U (�+1)(p�1)dxdt  c5dN+2

✓
|µ|(�T )

dN

◆ (N+2)(2mN+1)
2mN (mN+2)

.

Thus, for a.e. (y, ⌧ ) 2 �T ,

U(y, ⌧ )  c6
✓✓

|µ|(�T )

dN

◆m1
+ |µ|(�T ) + 1+ I2d2 [|µ|](y, ⌧ )

◆

if m > 1. Similarly, we also obtain for a.e. (y, ⌧ ) 2 �T ,

U(y, ⌧ )  c7
✓✓

|µ|(�T )

dN

◆m2
+ 1+

⇣
I2d12 [|µ|](y, ⌧ )

⌘ 2
2�N (1�m)

◆
,

if m  1. By the comparison principle we get |u|  U in �T , and (2.7)-(2.8)
follow.

2.4. Sufficient conditions for existence

In this section we prove Theorem 1.3 by following several steps of approximation.

2.4.1. Case of bounded nonlinearity and zero initial data

First, we show that the existence of solution to equations8><
>:
ut � 1(|u|m�1u) + g(u) = µ in �T
u = 0 on @� ⇥ (0, T )

u(0) = 0 in �

(2.10)

when g : R ! R is a nondecreasing continuous and bounded function, such that
g(0) = 0, and µ 2Mb(�T ). We first consider the case where µ is continuous and
bounded.
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Lemma 2.5. Let g 2 Cb(R) be nondecreasing with g(0) = 0, and µ 2 Cb(�T ).
There exists a weak solution u 2 L1(�T ) with |u|m 2 L2((0, T ); H10 (�)) of
problem (2.10).

Moreover, the comparison principle holds for these solutions: if u1, u2 are
weak solutions of (2.10) when (µ, g) is replaced by (µ1, g1) and (µ2, g2), where
µ1, µ2 2 Cb(�T ) with µ1 � µ2 and g1, g2 have the same properties as g with
g1  g2 in R then u1 � u2 in �T .

As a consequence, if µ � 0 then u � 0.

Proof of Lemma 2.5. Set

an(s) =

8><
>:
m|s|m�1 if 1/n  |s|  n
m|n|m�1 if |s| � n
m(1/n)m�1 if |s|  1/n

and An(⌧ ) =

R ⌧
0 an(s)ds. Then one can find un being a weak solution of the

following problem:8><
>:

(un)t � div(an(un)run) + g(un) = µ in �T
un = 0 on @� ⇥ (0, T )

un(0) = 0 in �.

(2.11)

It is easy to see that |un(x, t)|  t
��µ��L1(�T )

for all (x, t) 2 �T . Thus, choosing
An(un) as a test function, we obtainZ

�T

|rAn(un)|2dxdt  C1
�
T,
��µ��L1(�T )

�
. (2.12)

Now set 8n(⌧ ) =

R ⌧
0 |An(s)|ds. Choosing |An(un)|' as a test function in (2.11),

where ' 2 C2,1c (�T ), we get the relation

(8n(un))t � div(|An(un)|rAn(un)) + rAn(un).r|An(un)| + |An(un)|g(un)
= |An(un)|µ

in D0(�T ). Hence,��(8n(un))t
��
L1(�T )+L2((0,T );H�1(�))



����An(un)rAn(un)
����
L2(�T )

+

����
rAn(un)

����2
L2(�T )

+

��An(un)g(un)��L1(�T )
+

��An(un)µ��L1(�T )
.

Combining this with (2.12) and the estimate |An(un)|  C2(T,
��µ��L1(�)

), we
deduce that

sup
n

��(8n(un))t
��
L1(�T )+L2((0,T );H�1(�))

< 1.
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On the other hand, since |An(un)|  |un|an(un)  T
��µ��L1(�)

an(un), there holds
Z

�T

|r8n(un)|2dxdt =

Z
�T

|An(un)|2|run|2dxdt

 T
��µ��L1(�)

Z
�T

|an(un)|2|run|2dxdt

 T
��µ��L1(�)

Z
�T

|rAn(un)|2dxdt  C3
�
T,
��µ��L1(�)

�
.

Therefore, 8n(un) is relatively compact in L1(�T ). Note that

8n(s) =

8>>><
>>>:

m
2

⇣
1
n

⌘m
|s|2sign(s) if |s| 

1
n

(m � 1)
⇣
1
n

⌘m ⇣
|s| �

1
n

⌘
sign(s) +

1
m+1

✓
|s|m+1

�

⇣
1
n

⌘m+1
◆
sign(s)

if 1n  |s|  n.

So, for every n1, n2 � n and |s1|, |s2|  T
��µ��L1(�)

,

1
m + 1

��
|s1|ms1 � |s2|ms2

��
 C4

⇣
m, T

��µ��L1(�)

⌘✓1
n

◆m
+

��8n1(s1) � 8n2(s2)
��.

Hence, for any " > 0,
����
⇢

1
m + 1

��
|un1 |

mun1 � |un2 |
mun2

�� > 2"
����� 

���
|8n1(un1) � 8n2(un2)| > "

 �� ,

for all n1, n2 �

⇣
C4(m, T

��µ��L1(�)
)/"
⌘1/m

. Thus, up to a subsequence {un} con-
verges a.e. in �T to a function u. From (2.11) we can write

�

Z
�T

un't dxdt �

Z
�T

An(un)1'dxdt +

Z
�T

g(un)'dxdt =

Z
�T

'dµ,

for any ' 2 C2,1c (�T ). Thanks to the dominated convergence Theorem we deduce
that

�

Z
�T

u't dxdt �

Z
�T

|u|m�1u1'dxdt +

Z
�T

g(u)'dxdt =

Z
�T

'dµ.

By the Fatou Lemma and (2.12) we also get |u|m 2 L2((0, T ); H10 (�)).
Furthermore, from the classical maximum principle, see [15, Theorem 9.7], if

{ũn} is a sequence of solutions to equations (2.11) where (g, µ) is replaced by (h, ⌫)
such that ⌫ 2 Cb(�T ) with ⌫ � µ and h has the same properties as g, satisfying
h  g in R, then un  ũn . As n ! 1, we get u  ũ. This achieves the proof.
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Next we come to the general case where µ is a bounded measure:

Lemma 2.6. Let m > N�2
N and g 2 Cb(R), such that g is nondecreasing and

g(0) = 0, and let µ 2Mb(�T ).
There exists a very weak solution u of equation (2.10) which satisfies (2.7)-

(2.8) and
Z

�T

|g(u)|dxdt  |µ|(�T ),
��u��Lm+2/N ,1(�T )

 C(|µ|(�T ))
N+2
mN+2 . (2.13)

where C = C(m, N ) > 0.
Moreover, the comparison principle holds for these solutions: if u1, u2 are very

weak solutions of (2.10) when (µ, g) is replaced by (µ1, g1) and (µ2, g2), where
µ1, µ2 2 Mb(�T ) with µ1 � µ2 and g1, g2 have the same properties as g with
g1  g2 in R then u1 � u2 in �T .

Proof. Let {µn} be a sequence in C1

c (�T ) converging to µ inMb(�T ), such that
|µn|  'n⇤|µ| and |µn|(�T )  |µ|(�T ) for any n 2 N, where {'n} is a sequence of
mollifiers in RN+1. By Lemma 2.5 there exists a very weak solution un of problem

8><
>:

(un)t � 1(|un|m�1un) + g(un) = µn in �T
un = 0 on @� ⇥ (0, T )

un(0) = 0 in �

which satisfies for a.e. (y, ⌧ ) 2 �T ,

|un(y, ⌧ )|  C
✓✓

|µ|(�T )

dN

◆m1
+ |µ|(�T ) + 1+ 'n ⇤ I2d2 [|µ|](y, ⌧ )

◆
if m > 1,

|un(y, ⌧ )|  C
✓✓

|µ|(�T )

dN

◆m2
+ 1+

⇣
'n ⇤ I2d12 [|µ|](y, ⌧ )

⌘ 2
2�N (1�m)

◆
if m  1,

and
Z

�T

���rTk ⇣|un|m�1un
⌘���2 dxdt  k|µ|(�T ), 8k > 0, (2.14)

|{|un| > `}|  C1`�
2
N �m(|µ|(�T ))

N+2
N , 8` > 0, (2.15)Z

�T

|g(un)|dxdt  |µ|(�T ).

For l > 0, we consider Sl 2 C2c (R) such that

Sl(a) = |a|ma, for |a|  l, and Sl(a) = (2l)m+1sign(a), for |a| � 2l.
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Then we find the relation

(Sl(un))t� div
⇣
S0

l (un)r
⇣
|un|m�1un

⌘⌘
+ m|un|m�1

|run|2S00

l (un) + g(un)S0

l (un)

= S0

l (un)µn

in D0(�T ). It leads to
��(Sl(un))t��L1(�T )+L2((0,T );H�1(�))



��S0

l (un)|r(|un|m�1un)|
��
L2(�T )

+ m
��
|un|m�1

|run|2S00

l (un)
��
L1(�T )

+

��g(un)S0

l (un)
��
L1(�T )

+

��S0

l (un)µn
��
L1(�T )

.

Since |S0

l (un)|  C2�[�2l,2l](un) and |S00

l (un)|  C3|un|m�1�[�2l,2l](un), we ob-
tain

��(Sl(un))t��L1(�T )+L2((0,T );H�1(�))

 C4
✓������rT(2l)m

⇣
|un|m�1un

⌘������
L2(�T )

+

��g��L1(R)
|�T | + |µn|(�T )

◆
.

From (2.14) we deduce that{(Sl(un))t } is bounded in L1(�T )+L2((0, T );H�1(�))
and for any n 2 N,��(Sl(un))t��L1(�T )+L2((0,T );H�1(�))

 C4
⇣
(2l)m/2(|µ|(�T ))1/2 +

��g��L1(R)
|�T | + |µ|(�T )

⌘
.

Moreover, {Sl(un)} is bounded in L2((0, T ); H10 (�)). Hence, {Sl(un)} is relatively
compact in L1(�T ) for any l > 0. Thanks to (2.15) we find�����

|un1 |
mun1 � |un1 |

mun1
�� > `

 ��


���
|un1 | > l}| + |{|un2 | > l

 ��
+

���
|Sl(un1) � Sl(un2)| > `

 ��
 2C2l�

2
N �m

|µ|(�T )
N+2
N +

���
|Sl(un1) � Sl(un2)| > `

 ��.
Thus, up to a subsequence {un} converges a.e. in�T to a function u. Consequently,
u is a very weak solution of equation (2.10) and satisfies (2.13) and (2.7)-(2.8). The
other conclusions follow in the same way.

Remark 2.7. If supp(µ) ⇢ � ⇥ [a, T ] for some a > 0, then the solution u in
Lemma 2.6 satisfies u = 0 in � ⇥ [0, a).

2.4.2. Proof of Theorem 1.3

Now we recall the important approximation property of Radon measures which was
proved in [3] and [19].
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Proposition 2.8. Let s > 1 and µ 2 M+

b (�T ). If µ is absolutely continuous
with respect to Cap2,1,s0 in �T , there exists a nondecreasing sequence {µn} ⇢

M+

b (�T ), with compact support in �T which converges to µ weakly inMb(�T )

and satisfies IR2 [µn] 2 Lsloc(RN+1) for any R > 0.

We are now ready to prove Theorem 1.3. We reduce to the case of zero initial
data by considering the problem on (�T, T ) with the measure �+

⌦ �{t=0} + µ in
� ⇥ (�T, T ).

Proof of Theorem 1.3. First suppose m > 1. Assume that µ, � are absolutely con-
tinuous with respect to Cap2,1,q 0 in �T and CapG 2

q
,q 0 in �. Then �+

⌦ �{t=0} +

µ+, ��
⌦ �{t=0} + µ� are absolutely continuous with respect to Cap2,1,q 0 in � ⇥

(�T, T ). Applying Proposition 2.8 to �+
⌦ �{t=0} + µ+, ��

⌦ �{t=0} + µ�,
there exist two nondecreasing sequences {�1,n} and {�2,n} of positive bounded
measures with compact support in � ⇥ (�T, T ) which converge respectively to
�+

⌦ �{t=0} + µ+ and ��
⌦ �{t=0} + µ� inMb(� ⇥ (�T, T )) and such that

I2d12 [�1,n], I2d12 [�2,n] 2 Lq(� ⇥ (�T, T )) for all n 2 N.
Step 1. For any n1, n2 2 N, we show that there exists a very weak solution un1,n2 :=

u of8><
>:
ut � 1

�
|u|m�1u

�
+ |u|q�1u = �1,n1 � �2,n2 in � ⇥ (�T, T )

u = 0 on @� ⇥ (�T, T )

u(�T ) = 0 in �.

(2.16)

By Lemma 2.6, for k1, k2 > 0 there exists a weak solution uk1,k2 of the problem8>>>>>><
>>>>>>:

�
uk1,k2

�
t � 1

⇣��uk1,k2��m�1uk1,k2
⌘

+ Tk1
⇣⇣
u+

k1,k2

⌘q⌘

�Tk2
⇣⇣
u�

k1,k2

⌘q⌘
= �1,n1 � �2,n2 in � ⇥ (�T, T )

uk1,k2 = 0 on @� ⇥ (�T, T )

uk1,k2(�T ) = 0 in �

which satisfies

|uk1,k2 |  C
✓✓

|� |(�) + |µ|(�T )

dN

◆m1

+ |� |(�) + |µ|(�T ) + 1+ I2d2
⇥
�1,n1 + �2,n2

⇤ ◆
,

(2.17)

and Z
�T

Tk1
⇣⇣
u+

k1,k2

⌘q⌘
dxdt +

Z
�T

Tk2
⇣⇣
u�

k1,k2

⌘q⌘
dxdt  |µ|(�T ).
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Moreover, for any n1 2 N, k2 > 0, {uk1,k2}k1 is non-increasing and for any n2 2

N, k1 > 0, {uk1,k2}k2 is non-decreasing. Therefore, thanks to the fact that I
2d1
2 [�1,n],

I2d12 [�2,n] 2 Lq(� ⇥ (�T, T )) and from (2.17) and the dominated convergence
theorem, u = limk1!1 limk2!1 uk1,k2 is a very weak solution of (2.16).
Step 2. We show that u = limn2!1 limn1!1 un1,n2 is a very weak solution of
(1.1). By Lemma 2.6, {un1,n2}n1 is non-increasing, {un1,n2}n2 is non-decreasing and
(2.17) is true when uk1,k2 is replaced by un1,n2 , andZ

�T

|un1,n2 |qdxdt  |µ|(�T ) 8 n1, n2 2 N.

From the monotone convergence theorem we obtain that u = limn2!1 limn1!1

un1,n2 is a very weak solution of8><
>:
ut � 1

�
|u|m�1u

�
+ |u|q�1u = � ⌦ �{t=0} + ��T µ in � ⇥ (�T, T )

u = 0 on @� ⇥ (�T, T )

u(�T ) = 0 in �

with u = 0 in � ⇥ (�T, 0), and u satisfies (1.3). Clearly, u is a very weak solution
of equation (1.1).

Next suppose m  1. The proof is similar, with the new capacitary assump-
tions, and (1.3) is replaced by (1.4).

2.4.3. The subcritical case

We also obtain the description of the subcritical case.

Theorem 2.9. Let m > N�2
N and 0 < q < m +

2
N . Then problem (1.1) has a very

weak solution for any µ 2Mb(�T ) and � 2Mb(�).

Proof. As the proof of Theorem 1.3, we can reduce to the case � = 0. By Lemma
2.6, there exists a very weak solution uk1,k2 of8>>>><

>>>>:

�
uk1,k2

�
t � 1

⇣��uk1,k2��m�1uk1,k2
⌘

+ Tk1
⇣⇣
u+

k1,k2

⌘q⌘
�Tk2

⇣⇣
u�

k1,k2

⌘q⌘
= µ in �T

un = 0 on @� ⇥ (0, T )

un(0) = 0 in �

such that {uk1,k2}k1 and {uk1,k2}k2 are monotone sequences and��uk1,k2��Lm+2/N ,1(�T )
 C(|µ|(�T ))

N+2
mN+2 .

In particular, {uk1,k2} is a uniformly bounded in Ls(�T ) for any 0 < s < m +
2
N .

Therefore, we get that u = limk2!1 limk1!1 uk1,k2 is a very weak solution of
(1.1). This completes the proof.
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2.4.4. Existence for good measures in time

Next, from an idea of [4, Theorem 2.3], we obtain an existence result for measures
which present a good behaviour in time:

Theorem 2.10. Let m > N�2
N , q > max(1,m) and f 2 L1(�T ), µ 2 Mb(�T ),

such that

|µ|  ! ⌦ F for some ! 2M+

b (�) and F 2 L1
+
((0, T )).

If ! is absolutely continuous with respect to CapG2, q
q�m

in �, then there exists a
very weak solution of problem

8><
>:
ut � 1(|u|m�1u) + |u|q�1u = f + µ in �T
u = 0 on @� ⇥ (0, T )

u(0) = 0.
(2.18)

Proof. For R 2 (0,1], we define the R-truncated Riesz elliptic potential of a
measure ⌫ 2M+

b (�) by

IR2 [⌫](x) =

Z R

0

⌫(B⇢(x))
⇢N�2

d⇢
⇢

8x 2 �.

By [5, Theorem 2.6], there exists sequence {!n} ⇢M+

b (�) with compact support
in � which converges to ! inMb(�) and such that I2diam(�)

2 [!n] 2 Lq/m(�) for
any n 2 N. We can write

f + µ = µ1 � µ2, µ1 = f +

+ µ+, µ2 = f �

+ µ�,

and µ+, µ� 5 ! ⌦ F.We set

µ1,n=Tn( f +)+inf{µ+,!n ⌦ Tn(F)}, µ2,n=Tn( f �)+inf{µ�,!n ⌦ Tn(F)}.

Then
�
µ1,n

 
,
�
µ2,n

 
are nondecreasing sequences converging to µ1, µ2 respec-

tively inMb(�T ) and µ1,n, µ2,n  !̃n ⌦ �(0,T ), with !̃n = n(�� + !n) and
I2diam(�)
2 [!̃n] 2 Lq/m(�). As in the proof of Theorem 1.3, there exists a sequence
of weak solution {un1,n2,k1,k2} of equations
8>>>>>><
>>>>>>:

�
un1,n2,k1,k2

�
t�1

���un1,n2,k1,k2��m�1un1,n2,k1,k2
�
+ Tk1

⇣⇣
u+

n1,n2,k1,k2

⌘q⌘
�Tk2

⇣⇣
u�

n1,n2,k1,k2

⌘q⌘
= µ1,n1 � µ2,n2 in �T

un1,n2,k1,k2 = 0 on @� ⇥ (0, T )

un1,n2,k1,k2(0) = 0 in �.

(2.19)
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Using the comparison principle as in [4], we can assume that

�vn2  |un1,n2,k1,k2 |
m�1un1,n2,k1,k2  vn1,

where for any n 2 N, vn is a nonnegative weak solution of(
�1vn = !̃n in �

un = 0 on @�

such that
vn  c1I2diam(�)

2 [!̃n] 8 n 2 N.

Hence, utilizing the arguments in the proof of Theorem 1.3, it is easy to obtain the
result as desired.

3. p�Laplacian evolution equation

Here we consider solutions in the weak sense of distributions, or in the renormalized
sense.

3.1. Distribution and renormalized solutions

We first consider weak solutions in the sense of distributions:
Definition 3.1. Let µ 2 Mb(�T ), � 2 Mb(�) and B 2 C(R). A measurable
function u is a distribution solution of problem8><

>:
ut � 1pu + B(u) = µ in �T
u = 0 on @� ⇥ (0, T )

u(0) = � in �

(3.1)

if u 2 Ls((0, T );W 1,s
0 (�)) for any s 2

h
1, p �

N
N+1

⌘
, and B(u) 2 L1(�T ), such

that

�

Z
�T

u't dxdt+
Z

�T

|ru|p�2ru.r'dxdt+
Z

�T

B(u)'dxdt=
Z

�T

'dµ+

Z
�
'(0)d�

for every ' 2 C1c (� ⇥ [0, T )).
Remark 3.2. Let � 0

2Mb(�) and a0
2 (0, T ), set ! = µ + � 0

⌦ �
{t=a0

}
. Let u be

a distribution solution of problem (3.1) with data ! and � = 0, such that

supp(µ) ⇢ � ⇥ [a0, T ], and u = 0, B(u) = 0 in � ⇥ (0, a0).

Then ũ := u|�⇥[a0,T ) is a distribution solution of problem (3.1) in�⇥ (a0, T ) with
data µ and � 0.
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As it is well known, when p 6= 2, this notion is not well adapted to the quasilin-
ear problem. The notion of renormalized solution is stronger. It was first introduced
by Blanchard and Murat [6] to obtain uniqueness results for the p-Laplace evolu-
tion problem for L1 data µ and � , and developed by Petitta [20] for measure data
µ. It requires a decomposition of the measure µ, that we recall now.

Let M0(�T ) be the space of Radon measures in �T which are absolutely
continuous with respect to the Cp-capacity, defined at (1.6), andMs(�T ) be the
space of measures in�T with support on a set of zero Cp-capacity. Classically, any
µ 2Mb(�T ) can be written in a unique way under the form µ = µ0 + µs where
µ0 2 M0(�T ) \Mb(�T ) and µs 2 Ms(�T ). In turn µ0 can be decomposed
under the form

µ0 = f � divg + ht ,

where f 2 L1(�T ), g 2 (L p0

(�T ))N and h 2 L p((0, T );W 1,p
0 (�)), see [12]; and

we say that ( f, g, h) is a decomposition of µ0. We say that a sequence of {µn} in
Mb(�T ) converges to µ 2Mb(�T ) in the narrow topology of measures if

lim
n!1

Z
�T

'dµn =

Z
�T

'dµ 8' 2 C(�T ) \ L1(�T ).

We recall that if u is a measurable function defined and finite a.e. in �T , such that
Tk(u) 2 L p((0, T );W 1,p

0 (�)) for any k > 0, there exists a measurable function
v : �T ! RN such that rTk(u) = �|u|kv a.e. in �T and for all k > 0. We define
the gradient ru of u by v = ru.
Definition 3.3. Let p > 2N+1

N+1 and µ = µ0 + µs 2 Mb(�T ), � 2 L1(�) and
B 2 C(R). A measurable function u is a renormalized solution of (3.1) if there
exists a decomposition ( f, g, h) of µ0 such that

v=u�h2Ls
⇣
(0, T );W 1,s

0 (�)
⌘
\L1

⇣
(0, T );L1(�)

⌘
, 8s2


1,p�

N
N+1

◆
,

Tk(v) 2 L p
⇣
(0, T );W 1,p

0 (�)
⌘

8k > 0, B(u) 2 L1(�T ),

(3.2)

and:
(i) For any S 2 W 2,1(R) such that S0 has compact support on R, and S(0) = 0,

�

Z
�
S(� )'(0)dx �

Z
�T

't S(v)dxdt +

Z
�T

S0(v)|ru|p�2ru · r'dxdt

+

Z
�T

S00(v)'|ru|p�2ru · rvdxdt +

Z
�T

S0(v)'B(u)dxdt

=

Z
�T

( f S0(v)' + g.r(S0(v)')dxdt

(3.3)

for any ' 2 L p((0, T );W 1,p
0 (�)) \ L1(�T ) such that 't 2 L p0

((0, T );
W�1,p0

(�)) + L1(�T ) and '(., T ) = 0;
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(ii) For any � 2 C(�T ),

lim
m!1

1
m

Z
{mv<2m}

�|ru|p�2ru · rvdxdt =

Z
�T

�dµ+

s and (3.4)

lim
m!1

1
m

Z
{�m�v>�2m}

�|ru|p�2ru · rvdxdt =

Z
�T

�dµ�

s . (3.5)

We first mention a convergence result of [4].

Proposition 3.4. Let {µn} be bounded inMb(�T ) and {�n} be bounded in L1(�),
and B ⌘ 0. Let un be a renormalized solution of (3.1) with data µn = µn,0 + µn,s
relative to a decomposition ( fn, gn, hn) of µn,0 and initial data �n .

If { fn} is bounded in L1(�T ), {gn} bounded in (L p0

(�T ))N and {hn} conver-
gent in L p((0, T );W 1,p

0 (�)), then, up to a subsequence, {un} converges to a func-
tion u in L1(�T ). Moreover, if {µn} is bounded in L1(�T ), then {un} is convergent
in Ls((0, T );W 1,s

0 (�)) for any s 2

h
1, p �

N
N+1

⌘
.

Next we recall the fundamental stability result of [4].

Theorem 3.5. Suppose that p > 2N+1
N+1 and B ⌘ 0. Let � 2 L1(�) and

µ = f � divg + ht + µ+

s � µ�

s 2Mb(�T ),

with f 2 L1(�T ), g 2 (L p0

(�T ))N , h 2 L p((0, T );W 1,p
0 (�)) and µ+

s , µ�

s 2

M+

s (�T ). Let �n 2 L1(�) and

µn = fn � divgn + (hn)t + ⇢n � ⌘n 2Mb(�T ),

with fn 2 L1(�T ), gn 2 (L p0

(�T ))N , hn 2 L p((0, T );W 1,p
0 (�)), and ⇢n, ⌘n 2

M+

b (�T ), such that

⇢n = ⇢1n � div⇢2n + ⇢n,s, ⌘n = ⌘1n � div⌘2n + ⌘n,s,

with ⇢1n , ⌘
1
n 2 L1(�T ), ⇢2n , ⌘

2
n 2 (L p0

(�T ))N and ⇢n,s, ⌘n,s 2M+

s (�T ).
Assume that {µn} is bounded inMb(�T ), {�n}, { fn}, {gn}, {hn} converge to

�, f, g, h in L1(�), weakly in L1(�T ), in (L p0

(�T ))N , in L p((0, T );W 1,p
0 (�)) re-

spectively; and {⇢n}, {⌘n} converge to µ+

s , µ�

s in the narrow topology of measures;
and

�
⇢1n
 
,
�
⌘1n
 
are bounded in L1(�T ), and

�
⇢2n
 
,
�
⌘2n
 
bounded in (L p0

(�T ))N .
Let {un} be a sequence of renormalized solutions of8><

>:
(un)t � 1pun = µn in �T
un = 0 on @� ⇥ (0, T )

un(0) = �n in �

(3.6)
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relative to the decomposition ( fn + ⇢1n � ⌘1n, gn + ⇢2n � ⌘2n, hn) of µn,0. Let vn =

un � hn.
Then up to a subsequence, {un} converges a.e. in �T to a renormalized so-

lution u of (3.1), and {vn} converges a.e. in �T to v = u � h. Moreover, {rvn}
converge to rv a.e. in �T , and {Tk(vn)} converges to Tk(v) strongly in L p((0, T );
W 1,p
0 (�)) for any k > 0.

In order to apply this result, we need some the following properties concerning
approximate measures of µ 2M+

b (�T ), see also [4].

Proposition 3.6. Let µ = µ0 + µs 2M+

b (�T ), µ0 2M0(�T ) \M+

b (�T ) and
µs 2Ms(�T ). Let

�
'1,n

 
,
�
'2,n

 
be sequences of mollifiers inRN , R respectively.

There exist sequences of measures µn,0 = ( fn, gn, hn), and µn,s , such that
fn, gn , hn, µn,s 2 C1

c (�T ) and strongly converge to f, g, h in L1(�T ), (L p0

(�T ))N

and L p((0, T );W 1,p
0 (�)) respectively, µn,s converges to µs 2 M+

s (�T ), and
µn = µn,0 + µn,s converges to µ, in the narrow topology, and satisfying 0 

µn  ('1,n'2,n) ⇤ µ, and
�� fn��L1(�T )

+ kgnk(L p0 (�T ))N +

��hn��L p((0,T );W 1,p
0 (�))

+ µn,s(�T )

 2µ(�T ) for any n 2 N.

Proposition 3.7. Let µ = µ0+µs, µn = µn,0+µn,s 2M+

b (�T ) with µ0, µn,0 2

M0(�T ) \M+

b (�T ) and µn,s, µs 2 M+

s (�T ) such that {µn} is nondecreasing
and converges to µ inMb(�T ).

Then,
�
µn,s

 
is nondecreasing and converging to µs inMb(�T ); and there

exist decompositions ( f, g, h) of µ0, ( fn, gn, hn) of µn,0 such that { fn} , {gn} , {hn}
strongly converge to f, g, h in L1(�T ), (L p0

(�T ))N and L p((0, T );W 1,p
0 (�)) re-

spectively, satisfying
�� fn��L1(�T )

+ kgnk(L p0 (�T ))N +

��hn��L p((0,T );W 1,p
0 (�))

+ µn,s(�T )

 2µ(�T ) for any n 2 N.

3.2. Estimates on the p-Laplace equation without absorption

Here the crucial point for proving existence results for problem (1.2) is a result of
Liskevich, Skrypnik and Sobol [16] for the p-Laplace evolution problem without
absorption:

Theorem 3.8. Let p > 2, and µ 2 Mb(�T ). Let u 2 C([0, T ]; L2loc(�)) \

L ploc((0, T );W 1,p
loc (�)) be a distribution solution to equation

ut � 1pu = µ in �T . (3.7)
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Then there exists C = C(N , p) such that, for every Lebesgue point (x, t) 2 �T of
u, and any ⇢ > 0 such that Q⇢,⇢ p (x, t) := B⇢(x) ⇥ (t � ⇢ p, t + ⇢ p) ⇢ �T , there
holds

|u(x, t)|C

0
@1+

 
1

⇢N+p

Z
Q⇢,⇢ p (x,t)

|u|(�+1)(p�1)

! 1
1+�(p�1)

+ P⇢
p[µ](x, t)

1
A (3.8)

where � = min{1/(p � 1), 1/N } and

P⇢
p[µ](x, t) =

1X
i=0

Dp(⇢i )(x, t),

Dp(⇢i )(x, t) = inf
⌧>0

(
(p � 2)⌧�

1
p�2

+

1
2(p � 1)p�1

|µ|(Q⇢i ,⌧⇢
p
i
(x, t))

⇢Ni

)

with ⇢i = 2�i⇢, Q⇢,⌧⇢ p (x, t) = B⇢(x) ⇥ (t � ⌧⇢ p, t + ⌧⇢ p).

As a consequence, we deduce the following estimate:
Proposition 3.9. Let u be a distribution solution of the problem8><

>:
ut � 1pu = µ in �T
u = 0 on @� ⇥ (0, T )

u(0) = 0 in �

with data µ 2 Cb(�T ). Then there exists C = C(N , p) such that for a.e. (x, t) 2

�T ,

|u(x, t)|  C
✓
1+ D +

✓
|µ|(�T )

DN

◆m3
+ I2D2 [|µ|](x, t)

◆
, (3.9)

where m3 and D are defined at (1.8).
Proof. Let x0 2 � and Q = B2D(x0) ⇥ (�(2D)p, (2D)p). Let

U 2 L p
�
(�(2D)p, (2D)p);W 1,p

0 (B2D(x0))
�

with U 2 C(Q) be the distribution solution of8><
>:
Ut � 1pU = ��T |µ| in Q
u = 0 on @B2D(x0) ⇥ (�(2D)p, (2D)p)

u(�(2D)p) = 0 in B2D(x0)
(3.10)

for x0 2 �. Thus, by Theorem 3.8 we find, for any (x, t) 2 �T ,

U(x, t)c1

0
@1+

 
1

DN+p

Z
QD,Dp (x,t)

|U |
(�+1)(p�1)

! 1
1+�(p�1)

+ PDp [µ](x,t)

1
A, (3.11)

where QD,Dp (x, t) = BD(x) ⇥ (t � Dp, t + Dp).
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According to Proposition 4.8 and [4, Remark 4.9], there exists a constant C2 >
0 such that

|{|U | > `}|  c2(|µ|(�T ))
p+N
N `�p+1� p

N 8` > 0.

Thus, for any `0 > 0,
Z
Q
|U |

(�+1)(p�1)dxdt=(� + 1)(p � 1)
Z

1

0
`(�+1)(p�1)�1

|{|U | > `}|d`

=(� + 1)(p � 1)
✓Z `0

0
`(�+1)(p�1)�1

|{|U | > `}|d`

+

Z
1

`0

`(�+1)(p�1)�1
|{|U | > `}|d`

◆

c3DN+p`
(�+1)(p�1)
0 +c4`

(�+1)(p�1)�p+1� p
N

0 (|µ|(�T ))
p+N
N .

Choosing `0 =

⇣
|µ|(�T )
DN

⌘ N+p
(p�1)N+p we get

Z
Q

|U |
(�+1)(p�1)dxdt  c5DN+p

✓
|µ|(�T )

DN

◆ (N+p)(�+1)(p�1)
(p�1)N+p

. (3.12)

Next we show that

Pd2p [µ](x, t)  (p � 2)D + c6I2D2 [|µ|](x, t). (3.13)

Indeed, we have

Dp(⇢i )(x, t)  (p � 2)⇢i +

1
2(p � 1)p�1

|µ|(Q̃⇢i (x, t))
⇢Ni

,

where ⇢i = 2�i D. Thus,

PDp [µ](x, t)  (p � 2)D +

1
2(p � 1)p�1

1X
i=0

|µ|(Q̃⇢i (x, t))
⇢Ni

 (p � 2)D + C5
Z 2D

0

|µ|(Q̃⇢(x, t))
⇢N

d⇢
⇢

.

So from (3.12), (3.13) and (3.11) we get, for any (x, t) 2 �T ,

|U(x, t)|  C
✓
1+ D +

✓
|µ|(�T )

DN

◆m3
+ I2D2 [|µ|](x, t)

◆
.

By the comparison principle we get |u|  U in �T , thus (3.9) follows.
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As a consequence we obtain a new existence result for equation (3.7):

Proposition 3.10. Let p > 2, and µ 2 Mb(�T ), � 2 Mb(�). There exists a
distribution solution u of problem8><

>:
ut � 1pu = µ in �T
u = 0 on @� ⇥ (0, T )

u(0) = �

(3.14)

which satisfies for any (x, t) 2 �T

|u(x, t)|

C
✓
1+D+

✓
|� |(�) + |µ|(�T )

DN

◆m3
+ I2D2

⇥
|� | ⌦ �{t=0} + |µ|

⇤
(x, t)

◆
,
(3.15)

where C = C(N , p). Moreover, if � 2 L1(�), u is a renormalized solution.

Proof. Let {'1,n}, {'2,n} be sequences of standard mollifiers in RN and R. Let
µ = µ0 + µs 2Mb(�T ), with µ0 2M0(�T ), µs 2Ms(�T ).

By Lemma 3.6, there exist sequences of nonnegative measures µn,0,i =

( fn,i , gn,i , hn,i ) and µn,s,i such that fn,i , gn,i , hn,i 2 C1

c (�T ) and strongly con-
verge to some fi ,gi ,hi respectively in L1(�T ),(L p0

(�T ))N and L p((0,T );W 1,p
0 (�)),

and µn,1, µn,2, µn,s,1, µn,s,2 2 C1

c (�T ) converge to µ+, µ�, µ+

s , µ�

s in the nar-
row topology, with µn,i = µn,0,i + µn,s,i , for i = 1, 2, and satisfying

µ+

0 = ( f1, g1, h1), µ�

0 = ( f2, g2, h2) and
0  µn,1  ('1,n'2,n) ⇤ µ+, 0  µn,2  ('1,n'2,n) ⇤ µ�.

Let �1,n, �2,n 2 C1

c (�), converging to �+ and �� in the narrow topology, and in
L1(�) if � 2 L1(�), such that

0  �1,n  '1,n ⇤ �+, 0  �2,n  '1,n ⇤ ��.

Set µn = µn,1 � µn,2 and �n = �1,n � �2,n .
Let un be solution of the approximate problem8><

>:
(un)t � 1pun = µn in �T
un = 0 on @� ⇥ (0, T )

un(0) = �n on �.

(3.16)

We set gn,m(x, t) = �n(x)
R t
�T '2,m(s)ds. By Theorem 3.5, we can see that there

exists a sequence {un,m}m of solutions of the problem8><
>:

(un,m)t � 1pun,1,m =

�
gn,m

�
t + ��T µn in � ⇥ (�T, T )

un,1,m = 0 on @� ⇥ (�T, T )

un,m(�T ) = 0 on �

(3.17)
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which converges to un in � ⇥ (0, T ). By Proposition 3.9, there holds, for any
(x, t) 2 �T ,

|un,m(x, t)|  C
✓
1+ D +

✓
|µn|(�T ) + (|�n| ⌦ '2,m)(� ⇥ (�T, T ))

DN

◆m3

+ I2D2 [|µn| + |�n| ⌦ '2,m](x, t)
◆

.

Therefore

|un,m(x, t)|  C
✓
1+ D +

✓
|µn|(�T ) + (|�n| ⌦ '2,m)(� ⇥ (�T, T ))

DN

◆m3◆

+ C('1,n'2,m) ⇤ I2D2
⇥
|µ| + |� | ⌦ �{t=0}

⇤
(x, t).

Letting m ! 1, we deduce that

|un(x, t)|  C
✓
1+ D +

✓
|µn|(�T ) + |�n|(�)

DN

◆m3◆

+ c1('1,n) ⇤

⇣
I2D2

⇥
|µ| + |� | ⌦ �{t=0}

⇤
(·, t)

⌘
(x).

Therefore, by Proposition 3.4 and Theorem 3.5, up to a subsequence, {un} con-
verges to a distribution solution u of (3.14) (a renormalized solution if � 2 L1(�)),
and satisfying (3.15).

3.3. Sufficient conditions for existence

In this part we prove Theorem 1.4.

Proof of Theorem 1.4.

Step 1. First, assume that � 2 L1(�). Since µ is absolutely continuous with
respect to Cap2,1,q 0 , the same happens for µ+ and µ�. Applying Proposition 2.8
to µ+, µ�, there exist two nondecreasing sequences {µ1,n} and {µ2,n} of positive
bounded measures with compact support in �T which converge to µ+ and µ� in
Mb(�T ) respectively and such that I2D2 [µ1,n], I2D2 [µ2,n] 2 Lq(�T ) for all n 2 N.

For i = 1, 2, set µ̃i,1 = µi,1 and µ̃i, j = µi, j � µi, j�1 � 0, so µi,n =Pn
j=1 µ̃i, j . We write

µi,n = µi,n,0 + µi,n,s, µ̃i, j = µ̃i, j,0 + µ̃i, j,s,

with µi,n,0, µ̃i,n,0 2M0(�T ), µi,n,s, µ̃i,n,s 2Ms(�T ).

Let {'m} be a sequence of mollifiers in RN+1. As in the proof of Proposition
3.10, for any j 2 N and i = 1, 2, there exist sequences of nonnegative mea-
sures µ̃m,i, j,0 = ( fm,i, j , gm,i, j , hm,i, j ) and µ̃m,i, j,s such that fm,i, j , gm,i, j , hm,i, j 2
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C1

c (�T ) and strongly converge to some fi, j , gi, j , hi, j in L1(�T ), (L p0

(�T ))N

and L p((0, T );W 1,p
0 (�)) respectively; and µ̃m,i, j , µ̃m,i, j,s 2 C1

c (�T ) converge
to µ̃i, j , µ̃i, j,s in the narrow topology, with µ̃m,i, j = µ̃m,i, j,0 + µ̃m,i, j,s, which
satisfy µ̃i, j,0 = ( fi, j , gi, j , hi, j ), and

0  µ̃m,i, j  'm ⇤ µ̃i, j , µ̃m,i, j (�T )  µ̃i, j (�T ),

�� fm,i, j
��
L1(�T )

+

��gm,i, j
��

(L p0 (�T ))N +

��hm,i, j
��
L p((0,T );W 1,p

0 (�))

+µm,i, j,s(�T )  2µ̃i, j (�T ).
(3.18)

Note that, for any n,m 2 N,

nX
j=1

�
µ̃m,1, j + µ̃m,2, j

�
 'm ⇤

�
µ1,n + µ2,n

�

and
nX
j=1

�
µ̃m,1, j (�T ) + µ̃m,2, j (�T )

�
 |µ|(�T ).

Step 1.a For any n, k2N, we show that there exist a renormalized solution un,k := u
to 8><

>:
ut � 1pu + Tk

�
|u|q�1u

�
= µ1,n � µ2,n in �T

u = 0 on @� ⇥ (0, T )

u(0) = Tn(�+) � Tn(��) on �

(3.19)

relative to the decomposition (
Pn

j=1 f1, j �

Pn
j=1 f2, j ,

Pn
j=1 g1, j �

Pn
j=1 g2, j ,Pn

j=1 h1, j �

Pn
j=1 h2, j ) of µ1,n,0 � µ2,n,0 and a renormalized solution vn,k := v

to 8><
>:

vt � 1pv + Tk(vq) = µ1,n + µ2,n in �T
v = 0 on @� ⇥ (0, T )

v(0) = Tn(|� |) on �,

(3.20)

relative to the decomposition (
Pn

j=1 f1, j +

Pn
j=1 f2, j ,

Pn
j=1 g1, j +

Pn
j=1 g2, j ,Pn

j=1 h1, j +

Pn
j=1 h2, j ) of µ1,n,0 + µ2,n,0, such that

|u|vC
✓
1+ D +

✓
|� |(�) + |µ|(�T )

DN

◆m3
+ I2D2

⇥
Tn(|� |) ⌦ �{t=0}

⇤◆

+ CI2D2
⇥
µ1,n + µ2,n

⇤
,

(3.21)

and Z
�T

Tk(vq)dxdt  |µ|(�T ) + |� |(�). (3.22)
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Indeed, for any m 2 N, let un,k,m := um, vn,k,m := vm 2 W be solutions of
problems8>>><
>>>:

(um)t � 1pum + Tk
�
|um |

q�1um
�

=

nP
j=1

�
µ̃m,1, j � µ̃m,2, j

�
in �T

um = 0 on @� ⇥ (0, T )

um(0) = Tn(�+) � Tn(��) on �

and 8>>><
>>>:

(vm)t � 1pvm + Tk
�
v
q
m
�

=

nP
j=1

�
µ̃m,1, j + µ̃m,2, j

�
in �T

vm = 0 on @� ⇥ (0, T )

vm(0) = Tn(|� |) on �.

By the comparison principle and Proposition 3.9 we have

|um |  vm  c1
✓
1+ D +

✓
|� |(�) + |µ|(�T )

DN

◆m3
+ I2D2

⇥
Tn(|� |) ⌦ �{t=0}

⇤◆

+ c1'm ⇤ I2D2
⇥
µ1,n + µ2,n

⇤
.

Moreover, Z
�T

Tk(v
q
m)dxdt  |µ|(�T ) + |� |(�).

From Proposition 3.4, up to subsequences, {um}m, {vm}m converge to some u, v
a.e. in �T . Then, applying Theorem 3.5 to data (

Pn
j=1(µ̃m,1, j � µ̃m,2, j ) �

Tk(|um |
q�1um), Tn(�+)�Tn(��)) and (

Pn
j=1(µ̃m,1, j+µ̃m,2, j )�Tk(v

q
m), Tn(|� |)),

up to subsequences, {um}m converges to a renormalized solution u of problem
(3.19) and {vm}m converges to a solution v of (3.20). Clearly, u and v satisfy (3.21)
and (3.22).
Step 1.b For any n 2 N , we show that there exist renormalized solutions un :=

u, vn := v to8><
>:
ut � 1pu + |u|q�1u = µ1,n � µ2,n in �T
u = 0 on @� ⇥ (0, T )

u(0) = Tn(�+) � Tn(��) on �

(3.23)

relative to the decomposition (
Pn

j=1 f1, j �

Pn
j=1 f2, j ,

Pn
j=1 g1, j �

Pn
j=1 g2, j ,Pn

j=1 h1, j �

Pn
j=1 h2, j ) of µ1,n,0 � µ2,n,0 and8><
>:

vt � 1pv + vq = µ1,n + µ2,n in �T
v = 0 on @� ⇥ (0, T )

v(0) = Tn(|� |) on �

(3.24)
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relative to the decomposition (
Pn

j=1 f1, j +

Pn
j=1 f2, j ,

Pn
j=1 g1, j +

Pn
j=1 g2, j ,Pn

j=1 h1, j +

Pn
j=1 h2, j ) of µ1,n,0 + µ2,n,0, respectively and u, v satisfies (3.21)

and Z
�T

vqdxdt  |µ|(�T ) + |� |(�). (3.25)

Indeed, for any k 2 N, by Step 1.a, there exist renormalized solutions un,k, vn,k
of equations (3.19) and (3.20), respectively, which satisfy (3.21) and (3.22) with
u = un,k, v = vn,k .

Thanks to Proposition 3.4, up to subsequences, {un,k}k, {vn,k}k converge to
some un, vn a.e. in �T . Then, {Tk(|un,k |q�1un,k)}k, {Tk(v

q
n,k)}k converge to some

|un|q�1un, (vn)q in L1(�T ), respectively, from (3.21) and the dominated conver-
gence Theorem, since I2D2 [µ1,n + µ2,n] 2 Lq(�T ) for any n 2 N. Thus, by The-
orem 3.5, up to a subsequence, {un,k}k {vn,k}k converge to renormalized solutions
un, vn of problems (3.23) and (3.24) which still satisfy (3.21) with u = un, v = vn

and (3.25).
Moreover, we can see that the sequence {vn}n is increasing. Note that from

(3.18) we have�� fi, j��L1(�T )
+

��gi, j��(L p0 (�T ))N +

��hi, j��L p((0,T );W 1,p
0 (�))

 2µ̃i, j (�T ),

which implies�����
nX
j=1

fi, j

�����
L1(�T )

+

�����
nX
j=1

gi, j

�����
(L p0 (�T ))N

+

�����
nX
j=1

hi, j

�����
L p((0,T );W 1,p

0 (�))

 2µ̃i,n(�T )  2|µ|(�T ).

(3.26)

Step 1.cWe show that, up to subsequence, {un}n converges to a renormalized solu-
tion u of problem 8><

>:
ut � 1pu + |u|q�1u = µ in �T
u = 0 on @� ⇥ (0, T )

u(0) = � in �

(3.27)

relative to the decomposition (
P

1

j=1 f1, j �

P
1

j=1 f2, j ,
P

1

j=1 g1, j �

P
1

j=1 g2, j ,P
1

j=1 h1, j �

P
1

j=1 h2, j ) of µ0 , and {vn}n converges to a renormalized solution v
of problem 8><

>:
vt � 1pv + vq = |µ| in �T
v = 0 on @� ⇥ (0, T )

v(0) = |� | in �

(3.28)

relative to the decomposition (
P

1

j=1 f1, j +

P
1

j=1 f2, j ,
P

1

j=1 g1, j +

P
1

j=1 g2, j ,P
1

j=1 h1, j +

P
1

j=1 h2, j ) of |µ0| and

|u|vC
✓
1+D+

✓
|� |(�) + |µ|(�T )

DN

◆m3
+ I2D2

⇥
|� | ⌦ �{t=0} + |µ|

⇤◆
. (3.29)
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Indeed, by Proposition 3.4, up to subsequences, {un}n, {vn}n converges to some
u, v a.e. in�T . Then, thanks to (3.25) with v = vn , the fact that {vn}n is increasing
and the monotone convergence Theorem, we deduce that un, vn converge to u, v in
Lq(�T ).

Therefore, from (3.26), we can apply Theorem 3.5 to obtain that, up to subse-
quences, {un}n , {vn}n converge to renormalized solutions u, v of problems (3.27)
and (3.28) which satisfy (3.29).

Note that, if � ⌘ 0 and supp(µ) ⇢ � ⇥ [a, T ], a > 0, then u = v = 0 in
� ⇥ (0, a), since un,k = vn,k = 0 in � ⇥ (0, a).

Step 2. We consider any � 2 Mb(�) such that � is absolutely continuous with
respect to CapG 2

q
,q 0 in�. Then µ+� ⌦�{t=0} is absolutely continuous with respect

to Cap2,1,q 0 in � ⇥ (�T, T ). As above, we verify that there exists a renormalized
solution u of8><

>:
ut � 1pu + |u|q�1u = ��T µ + � ⌦ �{t=0} in � ⇥ (�T, T )

u = 0 on @� ⇥ (�T, T )

u(�T ) = 0 on �

satisfying u = 0 in � ⇥ (�T, 0) and (1.7). Finally, we get the result from Re-
mark 3.2, achieving the proof.
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tions with absorption and measure data, J. Math. Pures Appl. 102 (2014), 315–337.

[6] D. BLANCHARD and F. MURAT, Renormalized solutions of nonlinear parabolic equation
with L1 data: existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997),
1153–1179.

[7] V. BOGELEIN, F. DUZAAR and U. GIANAZZA, Very weak solutions of singular porous
medium equations with measure data, Inst. Mittag-Leffler, Commun. Pure Appl. Math.
Anal. 14 (2015), 23–49.

[8] H. BREZIS and A. FRIEDMAN, Nonlinear parabolic equations involving measures as initial
conditions, J. Math. Pures Appl. 62 (1983), 73–97.
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