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Multiple positive or sign-changing solutions for a type
of nonlinear Schrödinger equation

WEI LONG AND SHUANGJIE PENG

Abstract. This paper is concerned with the existence of multiple non-radial
positive solutions for(

�1u + (1+ �V (y))u = |u|p�2u y 2 RN

u(y) ! 0 as |y| ! +1

where 2 < p < 2⇤, 2⇤ =
2N
N�2 for N > 2 and 2⇤ = +1 for N = 2, � can be

regarded as a parameter and V (|y|) > 0 decays exponentially to zero at infinity.
We prove that, for any positive integer k > 1, there exists a suitable range of
� such that the above problem has a non-radial positive solution with exactly k
maximum points which tending to infinity as � ! +1 (or 0+).

Mathematics Subject Classification (2010): 35J20 (primary); 35J60 (sec-
ondary).

1. Introduction

In this paper we consider the following nonlinear Schrödinger problem(
�1u + (1+ �V (y))u = |u|p�2u y 2 RN

u(y) ! 0 as |y| ! +1

(1.1)

where 2 < p < 2⇤, 2⇤
=

2N
N�2 for N > 2 and 2⇤

= +1 for N = 2, � can be
regarded as a parameter and V (y) > 0 decays to zero exponentially at infinity.

Problem (1.1) arises from looking for standing waves9(t, y) = exp(i Et)u(y)
for the following nonlinear Schrödinger equation in RN ,

i
@9

@t
= �19 + V̂9 � |9|

p�29, (1.2)
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where i is the imaginary unit, E 2 R and V̂ (y) : RN
! R+ is a continuous func-

tion. Problem (1.2) arises in many applications (see, e.g., [2, 7, 8]). For example,
in some problems arising in nonlinear optics, in plasma physics and in condensed
matter physics, the presence of many particles leads one to considering nonlinear
terms which simulate the interaction effect among them. The function V̂ (y) rep-
resents the potential acting on the particle, which avoids the spreading of the wave
packets in the time-dependent version of the above equation.

Assuming that the amplitude u(y) is positive and vanishes at infinity, we see
that9(t, y) satisfies (1.2) if and only if u solves the nonlinear elliptic problem (1.1)
with 1+ �V (y) = V̂ (y) � E .

The study of the existence of ground states and higher energy solutions for (1.1)
has attracted considerable attention in recent years, and there are a lot of results in
the literature: one can refer to [2–4, 6, 12, 16–18, 20, 21, 24, 25] and the references
therein. If � > 0 and

inf
y2RN

V (y) < lim
|y|!+1

V (y), (1.3)

then, using the concentration compactness principle [20, 21], one can show that
(1.1) has a least energy solution. See also for example [13,20–22]. But if (1.3) does
not hold, (1.1) may not have least energy solutions. For example, if V (y) satisfies

V (y) > inf
y2RN

V (y) = lim
|y|!+1

V (y),

then it is easy to see that problem (1.1) has no least energy solutions. So, in this
case, one needs to find solutions with higher energy. For results on this aspect, the
readers can refer to [3, 4, 24, 25] and the references therein.

Here we want to mention some results in [5], where Bartsch and Wang consid-
ered (1.1) with � = intV�1(0) non-empty and µ{y 2 Rn

: V (y)  M0} < 1

for some M0 > 0. They considered the existence of the least energy solution, mul-
tiplicity of solutions and certain concentration behavior of the solutions for large
� > 0. Very recently, in [17], Lin, Liu and Chen showed that if V (y) satisfies

lim
|y|!1

V (y) = 0, and lim
|y|!1

ln |V (y)|
|y|

= 0, (1.4)

then as � ! 0, equation (1.1) has multiple positive solutions. In [25], Wei and Yan
used a construction argument and obtained a very interesting result, which says that
if

V (y)=V (|y|) ⇠

1
rm

+O
✓

1
rm+✓

◆
, (m > 1, ✓ > 0), as r = |y| ! +1, (1.5)

(this is a special case of condition (1.4)), then for any � fixed, problem (1.1) has
infinitely many non-radial positive solutions.

Now an interesting problem left is the following case:

lim
|y|!1

ln |V (y)|
|y|

< 0. (1.6)
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In this paper we will consider (1.1) under the assumption (1.6). Our aim is to prove
the existence of multiple positive solutions to equation (1.1).

For simplicity, we suppose that V (y) = V (|y|) is a positive continuous func-
tion in RN and satisfies the following decay assumption at infinity, which is a spe-
cial case of (1.6):

(V ) There are a 2 R, ↵ 2 (0, 1], such that

V (r) ⇠ rae�↵r , as r ! +1.

Our main result in this paper can be stated as follows:

Theorem 1.1. Suppose that (V ) holds and k > 1 is an integer. Then problem (1.1)
has a non-radial positive solution with exactly k maximum points provided that k
and � satisfy one of the following conditions:

(i) If 2 sin ⇡k < ↵, then � > �⇤

1 for suitably large �
⇤

1 > 0;
(ii) If 2 sin ⇡k > ↵, then 0 < � < �̄⇤

1 for suitably small �̄
⇤

1 > 0.

Here �⇤

1 and �̄
⇤

1 depend on ↵, k and N .

Remark 1.2. In fact, our result is true for more general problems with more general
V (y) (

�1u + (1+ �V (y))u = f (u) y 2 RN

u(y) ! 0 as |y| ! +1

where f (t) satisfies the following assumptions (see, for example [11]):

( f1) f 2 C1,� (R), f (0) = f 0(0) = 0, f (�t) = � f (t) for all t 2 R;
( f2) the following problem8<

:
�1w + w = f (w), u > 0 y 2 RN ,

w(0) = max
RN

w(y) w 2 H1
�
RN �

has a unique solution w, which is nondegenerate, i.e., denoting by L the
linearized operator

L : H2
⇣
RN

⌘
! L2

⇣
RN

⌘
, L(u) = �1u + u � f 0(w)u,

then
Kernel(L) = span

⇢
@w

@xi
: i = 1, · · · , N

�
.

V (y) = V (y0, y00) = V (|y0
|, |y3|, · · · , |yN |) ((y0, y00) 2 R2 ⇥ RN�2) satisfies

(V 0) There is ↵ 2 (0, 1], such that

V (y) ⇠ k(|y|)e�↵|y|, as |y| ! +1,

where k(|y|) > 0 satisfies a1|y|a  k(|y|)  b1|y|b for some constants a1 >
0, b1 > 0 and a, b 2 R, a  b.



606 WEI LONG AND SHUANGJIE PENG

Remark 1.3. In assumption (V ) (or (V 0)), if ↵ 2 (1, 2), then part (ii) of Theo-
rem 1.1 is still true, which will be clarified in Remark 3.5 in Section 3 later.

There is a lot of literature concerning time-independent semilinear Schrödinger
equations. In particular, the singular perturbed equation

�"21u + V (y)u = |u|p�2u, u 2 H1
⇣
RN

⌘
(1.7)

has been extensively studied. Solutions of (1.7) as " ! 0+ are called semi-classical
states, which usually exhibit a concentration phenomenon, that is, the solutions may
concentrate at some points such at the critical points of V (y), see for instance [8–
11,14,15,18,19,22,23]. The solutions we obtain in Theorem 1.1 do not concentrate
near any fixed point, and they have multiple bumps separated far apart with each
bump resembling the shape of the solution of (1.8). Similar phenomenon was also
observed in [16,17,25].

Now, let us outline the main idea in the proof of Theorem 1.1.
We will use the unique ground state U of(

�1u + u = u p�1, u > 0 y 2 RN

u(0) = max
RN

u(y) u 2 H1
�
RN � , (1.8)

to build up the approximate solutions for (1.1). It is well-known thatU(y) = U(|y|)
is nondegenerate (see the definition ( f2) in Remark 1.3) and satisfies

U 0(r) < 0, lim
r!1

r
N�1
2 erU(r) = C > 0, lim

r!1

U 0(r)
U(r)

= �1.

Let

x j =

✓
r cos

2( j � 1)⇡
k

, r sin
2( j � 1)⇡

k
, 0, · · · , 0

◆
2 RN , j = 1, 2, · · · , k,

where r > 0 will be determined later.
Set y = (y0, y00), y0

2 R2, y00
2 RN�2. Define

Hs =

⇢
u : u 2 H1

⇣
RN

⌘
, u is even in yi , i = 2, · · · , N ,

u(r cos ✓, r sin ✓, y00) = u
✓
r cos

✓
✓ +

2 j⇡
k

◆
, r
✓
✓ + sin

2 j⇡
k

◆
, y00

◆�
.

Denote

Ur (y) =

kX
j=1

Ux j (y),

where Ux j (y) = U(y � x j ).
To prove Theorem 1.1, it suffices to verify the following result:
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Theorem 1.4. If 2 sin ⇡k 6= ↵ then (1.1) has a solution u = Ur + !r provided that
one of the following conditions holds:

(i) If 2 sin ⇡k < ↵, then � > �⇤

1 for suitably large �
⇤

1 > 0;
(ii) If 2 sin ⇡k > ↵, then 0 < � < �̄⇤

1 for suitably small �̄
⇤

1 > 0,

Here �⇤

1 and �̄
⇤

1 depend on ↵, k and N .
Moreover, r 2

h
(1��) ln�
↵�2 sin ⇡k

, (1+�) ln�
↵�2 sin ⇡k

i
for small � > 0, and !r 2 Hs satisfies

Z
RN

|r!r |
2
+ |!r |

2
! 0, as � ! +1

�
or 0+

�
.

The idea of our proof is essentially inspired by [25]. The key part of the idea
is to establish a balance between two main terms in the expansion of the energy
functional, one is

R
RN V (y)Ur (y)2 arising from the effect of V (y), the other isR

RN U p�1
xi Ux j (i 6= j) which is from interaction among the peaks. In [25], the

potential V (y) satisfies assumption (1.5), which means that V (y) decays to zero
algebraically at infinity. Hence the term

R
RN V (y)Ur (y)2 decays also to zero alge-

braically as r ! +1. The other main term
R
RN U p�1

xi Ux j (i 6= j) approaches
to zero exponentially as r ! +1. A balance between these two main terms
can be obtained for any fixed parameter � > 0. However, in this paper, since
the potential V (y) decays to zero exponentially at infinity, both of the main termsR
RN V (y)Ur (y)2 and

R
RN U p�1

xi Ux j (i 6= j) are exponentially small as r ! +1,
which implies that one term can control the other. In this case, we need to ad-
just the parameter � to keep a balance between these two terms. More precisely,
if 2 sin ⇡k < ↵, the term

R
RN V (y)Ur (y)2 can dominate

R
RN V (y)Ur (y)2. Hence

we need the parameter � to be large. Otherwise, when 2 sin ⇡k > ↵, the termR
RN V (y)Ur (y)2 is overwhelming, so the parameter � should be small.
This paper is organized as follows. In Section 2, we will make an energy

expansion for the functional corresponding to problem (1.1). In Section 3, we will
carry out a reduction procedure and study the reduced finite dimensional problem
to prove Theorem 1.4.

ACKNOWLEDGEMENTS. The authors are grateful to the referee’s thoughtful read-
ing of details of the paper and nice suggestions.

2. Energy expansion

The variational functional corresponding to (1.1) can be defined as follows

I (u) =

1
2

Z
RN

⇣
|ru|2 + (1+ �V (|y|))u2

⌘
�

1
p

Z
RN

|u|p, 8 u 2 H1
⇣
RN

⌘
.
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In this section, we will give an energy expansion related to the approximate solu-
tions. In the sequel, we always assume

r 2 S =:


(1� �) ln�
↵ � 2 sin ⇡k

,
(1+ �) ln�
↵ � 2 sin ⇡k

�
, (2.1)

where ↵ is the constant in expansion for V , and � 2 (0, 1) is a small constant.
The following result can be found in [1, Lemma 3.7].

Lemma 2.1. Suppose that u, u0
: RN

! R two positive continuous radial func-
tions satisfy

u(x) ⇠ |x |ae�b|x |, u0(x) ⇠ |x |a
0

e�b
0
|x |, (|x | ! 1),

where a, a0
2 R, b0 > b > 0. Let ⇠ 2 RN tend to infinity. Then,

Z
RN

u⇠u0

⇠ e�b|⇠ ||⇠ |a,

where u⇠ = u(y + ⇠).

Lemma 2.2. For � > 0 large (or small) enough, there holds
Z

RN
V (y)U2r = B�rae�↵r + O

⇣
e�(1+⌧ )↵r

⌘
,

where B� 2 [C1,C2], C1, C2 and ⌧ are positive constants independent of �.

Proof. Set

� j =

⇢
y = (y0, y00) 2 R2 ⇥ RN�2

:

⌧
y0

|y0
|

,
x j

|x j |

�
� cos

⇡

k

�
, j = 1, 2, · · · , k.

For any y 2 �i and j 6= i , we have
���y � x j

��� �

���y � xi
��� , 8 y 2 �i ,

which gives |y � x j | �
1
2 |x

j
� xi | if |y � xi | �

1
2 |x

j
� xi |. On the other hand, if

|y � xi | 
1
2 |x

j
� xi |, then

���y � x j
��� �

���x j � xi
���� ���y � xi

��� �

1
2

���x j � xi
��� .

So, we find ���y � x j
��� �

1
2

���x j � xi
��� , 8 y 2 �i .
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Thus, for any ⌘ 2 (0, 1),

Ux j  Ce�⌘|y�x
j
|e�(1�⌘)|y�x j |

 Ce�(1�⌘)|y�xi |e�
⌘
2 |x j�xi |

 Ce�⌘r sin
⇡
k e�(1�⌘)|y�xi |, 8 y 2 �i .

(2.2)

Hence using (2.2), we knowZ
RN

V (y)UxiUx j  Ck
Z
�i

V (y)UxiUx j

 Ck
Z
�i

V (y)Uxi e�⌘r sin
⇡
k e�(1�⌘)|y�xi |

 Cke�⌘r sin
⇡
k

Z
RN

V (y � xi )Ue�(1�⌘)|y|

= Cke�⌘r sin
⇡
k

Z
B(1�� )r (0)

V (y � xi )Ue�(1�⌘)|y|

+ Cke�⌘r sin
⇡
k

Z
RN

\B(1�� )r (0)
V (y � xi )Ue�(1�⌘)|y|.

On the other hand, using Lemma 2.1, we findZ
B(1�� )r (0)

V (y � xi )Ue�(1�⌘)|y|
 C

Z
B(1�� )r (0)

���y � xi
���a e�↵|y�xi |e�(1�⌘)|y|U

 C
Z

RN

���y � xi
���a e�↵|y�xi |e�(1�⌘)|y|U

 Crae�↵r

andZ
RN

\B(1�� )r (0)
V (y � xi )Ue�(1�⌘)|y|

 C
Z

RN
\B(1�� )r (0)

V (y � xi )e�(2�⌘)|y|

 Ce�(2�⌘)(1�� )r
Z

RN
V (y � xi )

 Ce�↵r ,

provided (2� ⌘)(1� � ) > ↵.
Thus, we seeZ

RN
V (y)UxiUx j  Cke�⌘r sin

⇡
k

Z
RN

V (y � xi )Ue�(1�⌘)|y|

 Cke�⌘r sin
⇡
k
�
rae�↵r + e�↵r

�
 Ce�(1+⌧ )↵r ,

(2.3)

where C, ⌧ are constants independent of �.
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Similarly, we have
Z

RN
V (y)U2xi =

Z
RN

V
⇣
y � xi

⌘
U2

=(1+ o�(1))
Z
B(1�� )r (0)

���y � xi
���a e�↵|y�xi |U2

+

Z
RN

\B(1�� )r (0)
V
⇣
y � xi

⌘
U2

=B�,1rae�↵r + O
⇣
e�(1+⌧ )↵r

⌘
,

(2.4)

where B�,1 2 [C 0

1,C
0

2], C
0

1,C
0

2 are positive constants independent of � and o�(1)
denotes a small data satisfying o�(1) ! 0 as � ! +1 (or 0+). Combining (2.3)
and (2.4), we get

Z
RN

V (|y|)U2r =

Z
RN

V (y)

 
kX
i=1

Uxi

!2

= k
Z

RN
V (y)U2xi +

kX
i 6= j

Z
RN

|y|ae�↵|y|UxiUx j

= B�rae�↵r + O
⇣
e�(1+⌧ )↵r

⌘
.

Proposition 2.3. There is a small constant ⌧ > 0, such that

I (Ur ) = A + �B�rae�↵r � B0

�r
1�N
2 e�2r sin

⇡
k

+ O
⇣
�e�(1+⌧ )↵r

+ e�(1+⌧ )2r sin ⇡k
⌘

,

where A =

�1
2�

1
p
�
k
R
RN U p, and B�, B0

� 2 [C1,C2],C1,C2 are positive constants
independent of �.

Proof. Using the symmetry, we see

Z
RN

⇣
|rUr |2 +U2r

⌘
=

kX
j=1

kX
i=1

Z
RN

U p�1
x j Uxi

= k
Z

RN
U p

+ k
kX
i=2

Z
RN

U p�1
x1 Uxi .

(2.5)
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By Lemma 2.1, we get

Z
RN

U p
r = k

Z
RN

U p
x1 + kp

Z
RN

kX
i=2

U p�1
x1 Uxi

+

8>>>>><
>>>>>:

O

 Z
RN

kX
i 6= j

U
p
2
xi U

p
2
x j

!
(2 < p  3)

O

 Z
RN

kX
i 6= j

U p�2
xi U2x j

!
(p > 3)

= k
Z

RN

 
U p

+ pU p�1
x1

kX
i=2

Uxi

!
+ kO

⇣
e�(1+⌧ )|x2�x1|

⌘
.

(2.6)

Combining Lemma 2.2, (2.5) and (2.6), we have

I (Ur ) =

1
2

Z
RN

⇣
|rUr |2 + (1+ �V (|y|))U2r

⌘
�

1
p

Z
RN

U p
r

=

1
2
k

 Z
RN
U p
x1+

kX
i=2

Z
RN
U p�1
x1 Uxi

!
�

1
p
k

 Z
RN

U p
x1 + p

kX
i=2

Z
R3
U p�1
x1 Uxi

!

+

�

2

Z
RN

V (|y|)U2r + kO
⇣
e�(1+⌧ )|x2�x1|

⌘

=

✓
1
2

�

1
p

◆
k
Z

RN
U p

�

k
2

Z
RN

⇣
U p�1
x1 Ux2 +U p�1

x1 Uxk
⌘

+

�

2

Z
RN
V (|y|)U2r

+ kO
⇣
e�(1+⌧ )|x2�x1|

⌘

= A + �B�rae�↵r � C� |x2 � x1|�
N�1
2 e�|x2�x1|

+ O
⇣
�e�(1+⌧ )↵r

+ e�(1+⌧ )|x2�x1|
⌘

= A+�B�rae�↵r�B0

�r
1�N
2 e�2r sin

⇡
k +O

⇣
�e�(1+⌧ )↵r

+e�(1+⌧ )2r sin ⇡k
⌘

.

3. Proof of the main result

Let
Z j =

@Ux j

@r
, j = 1, 2, · · · , k.

Define

E :=

(
u : u 2 Hs,

kX
j=1

Z
RN

U p�2
x j Z ju = 0

)
.
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The norm of H1(RN ) is defined as

kuk2 = hu, ui, u 2 H1
⇣
RN

⌘
,

where hu1, u2i =

R
RN ru1 · ru2 + (1+ �V (|y|))u1u2.

We define the following linear operator L on E , satisfying

hLu1, u2i =

Z
RN

ru1 · ru2 + (1+ �V (|y|))u1u2 � (p � 1)U p�2
r u1u2. (3.1)

Lemma 3.1. There is a constant ⇢ > 0 such that

kLuk � ⇢kuk, 8 u 2 E

provided that one of the following conditions holds:

(i) If 2 sin ⇡k < ↵, then � > �⇤

1 for suitably large �
⇤

1 > 0;
(ii) If 2 sin ⇡k > ↵, then 0 < � < �̄⇤

1 for suitably small �̄
⇤

1 > 0.

Proof. We only prove the lemma for the case 2 sin ⇡k < ↵ since the other one is
similar.

We argue by contradiction. Suppose that there are un 2 E,�n ! +1, such
that

kLunk = o(1), kunk = 1.
For simplicity, we use � to denote �n and x j to denote

x j,n =

✓
rn cos

2( j � 1)⇡
k

, rn sin
2( j � 1)⇡

k
, 0
◆

.

We have Z
RN

run · r' + (1+ �V (|y|))un' � (p � 1)U p�2
r un'

= hLun,'i = o(1)k'k, ' 2 E .

(3.2)

In particular,Z
RN

|run|2 + (1+ �V (|y|))u2n � (p � 1)U p�2
r u2n = o(1)

and Z
RN

|run|2 + (1+ �V (|y|))u2n = 1. (3.3)

Seteun(y) = un(y + x1). Then for any R > 0,Z
BR(x1)

|run|2 + (1+ �V (|y|))u2n  1,



SOLUTIONS FOR NONLINEAR SCHRÖDINGER EQUATION 613

which implies Z
BR(0)

|reun|2 + (1+ �V (|y|))eu2n  1.

So we can suppose that there is a u 2 H1(RN ), such that as n ! +1,

eun * u, in H1
⇣
RN

⌘
,

and
eun ! u, in L2loc

⇣
RN

⌘
.

Since eun is even in yi , i = 2, . . . , N , it is easy to see that u is even in yi , i =

2, . . . , N . It follows from
R
RN U p�2

x1 Z1un = 0 that
R
RN U p�2 @U

@x1eun = 0. So, u
satisfies Z

RN
U p�2 @U

@x1
u = 0. (3.4)

Now, we claim that u satisfies

�1u + u � (p � 1)U p�2u = 0 in RN . (3.5)

Indeed, we set

eE =

⇢
' : ' 2 H1

⇣
RN

⌘
,

Z
RN

U p�2 @U
@x1

' = 0
�

.

For any R > 0, let ' 2 C1

0 (BR(0) \
eE be any function, satisfying that ' is even in

yi , i = 2, . . . , N . Then '1(y) = '(y � x1) 2 C1

0 (BR(x1)). Using (3.2), we see
Z
BR(x1)

run · r'1 + (1+ �V (|y|))un'1 � pU p�1
r un'1 = o(1),

i.e.,
Z
BR(0)

reunr' + (1+ �V (|y + x1|))eun' � pU p�1eun'

+O

 Z
BR(0)

kX
j=2

U p�2
⇣
y + x1 � x j

⌘
Ueun'

!
= o(1).

Since
����
Z
BR(0)

�V (|y + x1|))eun'
����  C�rae�↵rkũnk = C�

�2 sin ⇡k +↵�

↵�2 sin ⇡k = o(1)
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and�����
Z
BR(0)

kX
j=2

U p�2�y + x1 � x j
�
Ueun'

�����  CeRe�min{p�2,1}|x
2
�x1|

kũnk = o(1),

we find Z
RN

rur' + u' � pU p�1u' = 0. (3.6)

On the other hand, since u is even in yi , i = 2, . . . , N , (3.6) holds for any ' 2

C1

0 (BR(0) \
eE).We know that ' =

@U
@x1 is a solution of (3.4), and thus (3.6) is true

for any ' 2 H1(RN ). So we have proved (3.5).
Since U is nondegenerate, we see that u = c @U@x1 because u is even in yi , i =

2, . . . , N . From
R
RN U p�2 @U

@x1 u = 0, we find

u = 0.

As a result, Z
BR(x1)

u2n = o(1), 8R > 0.

Thus,

o(1)kunk = hLun, uni =

Z
RN

|run|2 + (1+ �V (y))u2n � (p � 1)U p�2u2n

� ckunk2 + oR(1)kunk2 + o(1)
> c0 > 0

provided that R and n are large enough.
As a result, we get a contradiction.

Let

J (!) = I (Ur + !)

=

1
2

Z
RN

⇣
|r(Ur + !)|2 + (1+ �V (|y|))(Ur + !)2

⌘
�

1
p

Z
RN

|Ur + !|
p.

By a direct calculation, we have

J (!) = J (0) + l(!) +

1
2
hL!,!i + R(!),

where

l(!) =

Z
RN

kX
j=1

�V (y)Ux j! �

Z
RN

 
U p�1
r �

kX
j=1

U p�1
x j

!
!
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and

R(!) = �

1
p

Z
RN

✓
|Ur + !|

p
�U p

r � pU p�1
r ! �

p(p � 1)
2

U p�2
r !2

◆
.

We have the following estimates.

Lemma 3.2. There is a constant C > 0 independent of � such that

kR0(!)k = O
⇣
k!k

min{2,p�1}
⌘

and
kR00(!)k = O

⇣
k!k

min{1,p�2}
⌘

.

Proof. By direct calculation, we have
⌦
R0(!), 

↵
= �

Z
RN

⇣
(Ur + !)p�1 �U p�1

r � (p � 1)U p�2
r !

⌘
 

and ⌦
R00(!)( , ⇠)

↵
= �(p � 1)

Z
RN

⇣
(Ur + !)p�2 �U p�2

r
⌘
 ⇠.

Here we only deal with the case p > 3, since the situation 2 < p < 3 is similar.
Noting

��⌦R0(!), 
↵��

 C
Z

RN
U p�3
r |!|

2
| |  C

✓Z
RN

�
U p�3
r |!|

2� p
p�1

◆ p�1
p

k ks,

we find ��R0(')
��

 C
✓Z

RN

�
U p�3
r |'|

2� p
p�1

◆ p�1
p

.

Considering that Ur is bounded and 2 < 2p
p�1 < p, we obtain

��R0(')
��

 C
✓Z

RN
|'|

2p
p�1

◆ p�1
p

 Ck'k
2
s .

For the estimate of kR00(')k, we have
��R00(')( , ⇠)

��
 C

Z
RN

U p�3
r |'|| ||⇠ |

 C
Z

RN
|'|| ||⇠ |  C

✓Z
RN

|'|
3
◆ 1
3
✓Z

RN
| |

3
◆ 1
3
✓Z

RN
|⇠ |3

◆ 1
3

 Ck'ksk ksk⇠ks .

Therefore, ��R00(')
��

 Ck'ks .
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Lemma 3.3. For any ⌧ 2 (0, 1), we can find C > 0 independent of � such that

klk  C
⇣
�e�(1�⌧ )↵r

+ e�min{p�1�⌧, 2�⌧ }r sin
⇡
k
⌘

.

Proof. Using Lemma 2.1, we have

|hl,!i| =

�����
Z

RN

kX
j=1

�V (y)Ux j! �

 
U p�1
r �

kX
j=1

U p�1
x j

!
!

�����
 k�

Z
RN

V (y)Ux1 |!| +

Z
RN

�����U p�1
r �

kX
j=1

U p�1
x j

����� |!|

 k�
Z

RN
V 2(|y + x1|)U2

� 1
2
✓Z

RN
!2
◆ 1
2

+

8>>>><
>>>>:

C
Z

RN

X
i 6= j

U p�2
xi Ux j |!| (p > 3)

C
Z

RN

X
i 6= j

U
p�1
2

xi U
p�1
2

x j |!| (2 < p  3)

 C�e�(1�⌧ )↵r
k!k + Ce�min{p�1�⌧, 2�⌧ }r sin

⇡
k k!k.

Hence
klk  C

⇣
�e�(1�⌧ )↵r

+ e�min{p�1�⌧, 2�⌧ }r sin
⇡
k
⌘

.

Proposition 3.4. Under the conditions of Lemma 3.1, for any r 2 S, there is a
unique ! 2 E satisfying

J 0(!)|E = 0. (3.7)

Moreover,
k!k  C

⇣
�e�(1�⌧ )↵r

+ e�min{p�1�⌧, 2�⌧ }r sin
⇡
k
⌘

,

where ⌧ is the same as that of Lemma 3.3.

Proof. By Lemma 3.3, l(!) is a bounded linear functional on E . We know by Riesz
representation theorem that there is an l 2 E, such that

l(!) = hl,!i.

So, finding a critical point for J (!) is equivalent to solving

l + L! + R0(!) = 0. (3.8)

By Lemma 3.1, L is invertible. Thus, (3.8) is equivalent to

! = A(!) =: �L�1�l + R0(!)
�
.
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Set

Sr :=

n
! 2 E : k!k  �e�(1�⌧1)↵r

+ e�min{p�1�⌧1, 2�⌧1}r sin
⇡
k
o

,

where ⌧ < ⌧1 < 1.
Now we verify that A is a contraction from Sr to Sr . Indeed, we see

kA(!)k 

�
klk + kR0(!)k

�
 klk + Ck!k

min{2,p�1}

 C
⇣
�e�(1�⌧ )↵r

+ e�min{p�1�⌧, 2�⌧ }r sin
⇡
k
⌘

+ C
⇣
�e�(1�⌧1)↵r

+ e�min{p�1�⌧1, 2�⌧1}r sin
⇡
k
⌘min{2,p�1}

 �e�(1�⌧1)↵r
+ e�min{p�1�⌧1, 2�⌧1}r sin

⇡
k ,

which implies that A maps Sr to Sr . On the other hand, for any !1, !2 2 Sr ,

kA(!1) � A(!2)k =

��L�1R(!1) � L�1R(!2)
��

 CkR(!1) � R(!2)k

 C
��R0(✓!1 � (1� ✓)!2)

��
k!1 � !2k

 Ck!1 + !2kk!1 � !2k



1
2
k!1 � !2k.

Hence, A is a contraction map in Sr and the result follows from the contraction
mapping theorem.

Now we are ready to prove Theorem 1.4. Let ! = !r be obtained in Proposi-
tion 3.4, and define

F(r) = I (Ur + !), 8r 2 S.

It is well known that if r is a critical point of F(r), then Ur + !r is a solution of
(1.1) (see [15,18]).

Proof of Theorem 1.4. Since

F(r) = I (Ur + !)

= I (Ur ) + l(!) +

1
2
hL!,!i + R(!)

= I (Ur ) + O
⇣
klkk!k + k!k

2
⌘

,
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it follows from Propositions 2.3 and 3.4 that

F(r) = A + �B�rae�↵r � B0

�r
1�N
2 e�2r sin

⇡
k

+ O
�
e�2(1+⌧ )r sin

⇡
k + �2e�2(1�⌧ )↵r

�
= A +

�
�B�rae�↵r � B0

�r
1�N
2 e�2r sin

⇡
k
�

+ O
�
e�2(1+⌧ )r sin

⇡
k + �e�(1+⌧ )↵r �.

(3.9)

We first consider the case 2 sin ⇡k < ↵.
Define

F1(r) = �B�rae�↵r � B0

�r
1�N
2 e�2r sin

⇡
k + O

�
�e�(1+⌧ )↵r

+ e�2(1+⌧ )r sin
⇡
k
�
.

We consider the following minimization problem:

min
r2S

F1(r).

Supposing that r̂ is a minimizer, we will prove that r̂ is an interior point of S.
For any k > 0 satisfying

2 sin
⇡

k
< ↵,

we can check that the function

G(r) = �B�rae�↵r � B0

�r
1�N
2 e�2r sin

⇡
k

has a minimum point

er =

✓
1

↵ � 2 sin ⇡k
+ o(1)

◆
ln�

and

e�(↵�2 sin ⇡k )er
=

1
�

B0

�

B�
er 1�N2 �a

N�1
2 + 2er sin ⇡k
↵er � a

.

By direct computation, we deduce that

F1
�er� = e�2er sin ⇡k

⇣
B��erae�(↵�2 sin ⇡k )er

� B0

�er 1�N2
⌘

+ O
⇣
�e�(1+⌧ )↵er

+ e�(1+⌧ )2er sin ⇡k
⌘

= e�2er sin ⇡k B0

�er 1�N2
 
2 sin ⇡ker +

N�1
2

↵er � 1
� 1

!
+ O

 
�

�2 sin ⇡k ��0
↵�2 sin ⇡k

!

= �

�2 sin ⇡k
↵�2 sin ⇡k B0

�er 1�N2
✓2 sin ⇡k

↵
� 1+ o

✓
1
er
◆◆

< 0.
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On the other hand, we find

F1
✓

1� �

↵ � 2 sin ⇡k
ln�

◆
= B��rae

�↵ 1��
↵�2 sin ⇡k

ln�
� B0

�r
1�N
2 e

�2 sin ⇡k
1��

↵�2 sin ⇡k
ln�

+ O
⇣
�e�(1+⌧ )↵r

+ e�(1+⌧ )2r sin ⇡k
⌘

= B�
✓

1� �

↵ � 2 sin ⇡k
ln�

◆a
�

�2 sin ⇡k +↵�

↵�2 sin ⇡k

� B0

�

✓
1� �

↵ � 2 sin ⇡k
ln�

◆ 1�N
2
�

�2 sin ⇡k +2 sin ⇡k �
↵�2 sin ⇡k

+ O

 
�

�2 sin ⇡k +↵���0
↵�2 sin ⇡k

!

> 0 > F1
�er�

and

F1
✓

1+ �

↵ � 2 sin ⇡k
ln�

◆
= B��rae

�↵ 1+�
↵�2 sin ⇡k

ln�
� B0

�r
1�N
2 e

�2 sin ⇡k
1+�

↵�2 sin ⇡k
ln�

+ O
⇣
�e�(1+⌧ )↵r

+ e�(1+⌧ )2r sin ⇡k
⌘

= B�
✓

1+ �

↵ � 2 sin ⇡k
ln�

◆a
�

�2 sin ⇡k �↵�

↵�2 sin ⇡k

� B0

�

✓
1+ �

↵ � 2 sin ⇡k
ln�

◆ 1�N
2
�

�2 sin ⇡k �2 sin ⇡k �
↵�2 sin ⇡k

+ O

 
�

�2 sin ⇡k �2 sin ⇡k ���0
↵�2 sin ⇡k

!

� �C(ln�)
1�N
2 �

�2 sin ⇡k �2 sin ⇡k �
↵�2 sin ⇡k > F1

�er�,
for some �0 > 0.

The above estimates imply that r̂ is indeed an interior point of S. Thus

Ur̂ + !r̂

is a solution of (1.1).
Now we investigate the case 2 sin ⇡k > ↵. In this case, we should solve (1.1)

for � > 0 sufficiently small.
We consider the following maximization problem:

max
r2S

F1(r).
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We will prove that the maximizer ř is an interior point of S.
For any k > 0 satisfying

2 sin
⇡

k
> ↵,

we find that
G(r) = �B�rae�↵r � B0

�r
1�N
2 e�2r sin

⇡
k

has a maximum point

er =

✓
1

↵ � 2 sin ⇡k
+ o(1)

◆
ln�

and

e�(↵�2 sin ⇡k )er
=

1
�

B0

�

B�
er 1�N2 �a

N�1
2 + 2er sin ⇡k
↵er � a

.

By direct computation, we deduce that

F1(er) = e�2er sin ⇡k
⇣
B��erae�(↵�2 sin ⇡k )er

� B0

�er 1�N2
⌘

+ O
⇣
�e�(1+⌧ )↵er

+ e�(1+⌧ )2er sin ⇡k
⌘

= e�2er sin ⇡k B0

�er 1�N2
 
2 sin ⇡ker +

N�1
2

↵er � 1
� 1

!
+ O

 
�

2 sin ⇡k +�0
2 sin ⇡k �↵

!

= �

2 sin ⇡k
2 sin ⇡k �↵ B0

�er 1�N2
✓2 sin ⇡k

↵
� 1+ o

✓
1
er
◆◆

> 0.

On the other hand, we see

F1
✓

1� �

↵ � 2 sin ⇡k
ln�

◆
= B��rae

�↵ 1��
↵�2 sin ⇡k

ln�
� B0

�r
1�N
2 e

�2 sin ⇡k
1��

↵�2 sin ⇡k
ln�

+ O
⇣
�e�(1+⌧ )↵r

+ e�(1+⌧ )2r sin ⇡k
⌘

= B�
✓

1� �

↵ � 2 sin ⇡k
ln�

◆a
�

2 sin ⇡k �↵�

2 sin ⇡k �↵

� B0

�

✓
1� �

↵ � 2 sin ⇡k
ln�

◆ 1�N
2
�

2 sin ⇡k �2 sin ⇡k �
2 sin ⇡k �↵

+ O

 
�

2 sin ⇡k �↵�+�0
2 sin ⇡k �↵

!

< 0 < F1
�er�
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and

F1
✓

1+ �

↵ � 2 sin ⇡k
ln�

◆
= B��rae

�↵ 1+�
↵�2 sin ⇡k

ln�
� B0

�r
1�N
2 e

�2 sin ⇡k
1+�

↵�2 sin ⇡k
ln�

+ O
⇣
�e�(1+⌧ )↵r

+ e�(1+⌧ )2r sin ⇡k
⌘

= B�
✓

1+ �

↵ � 2 sin ⇡k
ln�

◆a
�

2 sin ⇡k +↵�

2 sin ⇡k �↵

� B0

�

✓
1+ �

↵ � 2 sin ⇡k
ln�

◆ 1�N
2
�

2 sin ⇡k +2 sin ⇡k �
2 sin ⇡k �↵

+ O

 
�

2 sin ⇡k +2 sin ⇡k �+�0
2 sin ⇡k �↵

!

 C(| ln�|)a�

2 sin ⇡k +↵�

2 sin ⇡k �↵ < F1(er)
for some �0 > 0.

The above estimate implies that ř is actually an interior point of S. Thus

Uř + !ř

is a solution of (1.1).

Remark 3.5. In assumption (V ) (or (V 0)), if ↵ 2 (1, 2), then part (ii) of Theo-
rem 1.4 is still true. Indeed, in this case, we should modify the proof of Lemma 3.3
and obtain the following estimate on l

klk  C
⇣
�e�(1�⌧ )r

+ e�min{p�1�⌧, 2�⌧ }r sin
⇡
k
⌘

.

Hence, we have the following energy expansion

F(r)= A + �B�rae�↵r � B0

�r
1�N
2 e�2r sin

⇡
k + O

�
e�2(1+⌧ )r sin

⇡
k + �2e�2(1�⌧ )r

�
= A + �B�rae�↵r � B0

�r
1�N
2 e�2r sin

⇡
k + O

�
e�2(1+⌧ )r sin

⇡
k + �e�(1+⌧ )↵r �.

Now proceeding as we have done to prove Theorem 1.4, we can complete the
proof.
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