Schrödinger-type operators with unbounded diffusion and potential terms

Anna Canale, Abdelaziz Rhandi and Cristian Tacelli

Abstract

We prove that the realization A_{p} in $L^{p}\left(\mathbb{R}^{N}\right)$, for $1<p<\infty$, of the Schrödinger-type operator $A=\left(1+|x|^{\alpha}\right) \Delta-|x|^{\beta}$ with domain $D\left(A_{p}\right)=$ $\left\{u \in W^{2, p}\left(\mathbb{R}^{N}\right): A u \in L^{p}\left(\mathbb{R}^{N}\right)\right\}$ generates a strongly continuous analytic semigroup provided that $N>2, \alpha>2$ and $\beta>\alpha-2$. Moreover this semigroup is consistent, irreducible, immediately compact and ultracontractive.

Mathematics Subject Classification (2010): 47D07 (primary); 47D08, 35J10, 35K20 (secondary).

1. Introduction

In this paper we study the generation of analytic semigroups in L^{p}-spaces of Schrö-dinger-type operators of the form

$$
\begin{equation*}
A u(x)=a(x) \Delta u(x)-V(x) u(x), \quad \text { for } \quad x \in \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

where $a(x)=1+|x|^{\alpha}$ and $V(x)=|x|^{\beta}$ with $\alpha>2$ and $\beta>\alpha-2$. We also investigate spectral properties of such semigroups. In the case where $\alpha \in[0,2]$ and $\beta \geq 0$, generation results of analytic semigroups for suitable realizations A_{p} of the operator A in $L^{p}\left(\mathbb{R}^{N}\right)$ have been proved in [4].

For $\beta=0$ and $\alpha>2$, the generation results depend upon N as it is proved in [8]. More specifically, if $N=1,2$ no realization of A in $L^{p}\left(\mathbb{R}^{N}\right)$ generates a strongly continuous (resp. analytic) semigroup. The same happens if $N \geq 3$ and $p \leq N /(N-2)$. On the other hand, if $N \geq 3$ and $p>N /(N-2)$, then the maximal realization A_{p} of the operator A in $L^{p}\left(\mathbb{R}^{N}\right)$ generates a positive analytic semigroup, which is also contractive if $\alpha \geq(p-1)(N-2)$.

This work has been supported by the M.I.U.R. research project Prin 2010MXMAJR and INdAMGNAMPA 2014.
Received September 9, 2014; accepted in revised form February 26, 2015.
Published online June 2016.

Generation results concerning the case where $\beta=0$ and with drift terms of the form $|x|^{\alpha-2} x$ were obtained recently in [9]. The operator with a more general diffusion term was also investigated in [10] and [14].

We also quote the recent paper [5]. Here the authors studied the generation of C_{0} and analytic semigroups in $L^{p}\left(\mathbb{R}^{N}\right)$, for $1<p<\infty$, of operators of the form $\mathcal{A}=|x|^{\alpha} \Delta+c|x|^{\alpha-2} x \cdot \nabla-b|x|^{\alpha-2}$. They prove for $\alpha \neq 2$, in particular for $c=0$ and $b=1$, that a suitable L^{p}-realization of \mathcal{A} generates a bounded analytic semigroup in $L^{p}\left(\mathbb{R}^{N}\right)$ if and only if $N / p<(N-2) / 2+\sqrt{1+(N-2)^{2} / 4}$, see [5, Theorem 1.2]. We note here that $\beta=\alpha-2$ corresponds to a critical case. The methods used in [5] are completely different from ours and lead to results which are not comparable with our case ($\beta>\alpha-2$).

Here we consider the case where $\alpha>2$ and assume that $N>2$. Let us denote by A_{p} the realization of A in $L^{p}\left(\mathbb{R}^{N}\right)$ endowed with its maximal domain

$$
\begin{equation*}
D_{p, \max }(A)=\left\{u \in L^{p}\left(\mathbb{R}^{N}\right) \cap W_{\mathrm{loc}}^{2, p}\left(\mathbb{R}^{N}\right): A u \in L^{p}\left(\mathbb{R}^{N}\right)\right\} \tag{1.2}
\end{equation*}
$$

After proving a priori estimates, we deduce that $D_{p, \max }(A)$ coincides with
$D_{p}(A):=\left\{u \in W^{2, p}\left(\mathbb{R}^{N}\right): V u,\left(1+|x|^{\alpha-1}\right)|\nabla u|,\left(1+|x|^{\alpha}\right)\left|D^{2} u\right| \in L^{p}\left(\mathbb{R}^{N}\right)\right\}$.
So we show in the main result of this paper that, for any $1<p<\infty$, the realization A_{p} of A in $L^{p}\left(\mathbb{R}^{N}\right)$, with domain $D_{p}(A)$, generates a positive strongly continuous and analytic semigroup $\left(T_{p}(t)\right)_{t \geq 0}$ for any $\beta>\alpha-2$. This semigroup is also consistent, irreducible, immediately compact and ultracontractive.

The paper is structured as follows. In Section 2 we study the invariance of $C_{0}\left(\mathbb{R}^{N}\right)$ under the semigroup generated by A in $C_{b}\left(\mathbb{R}^{N}\right)$ and show its compactness. In Section 3 we use reverse Hölder classes and some results in [13] to study the solvability of the elliptic problem in $L^{p}\left(\mathbb{R}^{N}\right)$. Finally, in Section 4 we prove the generation results.

Notation. For any $k \in \mathbb{N} \cup\{\infty\}$ we denote by $C_{c}^{k}\left(\mathbb{R}^{N}\right)$ the set of all functions $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$ that are continuously differentiable in \mathbb{R}^{N} up to k-th order and have compact support $($ denoted $\operatorname{supp}(f))$. The space $C_{b}\left(\mathbb{R}^{N}\right)$ is the set of all bounded and continuous functions $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$, and we denote by $\|f\|_{\infty}$ its sup-norm, i.e., $\|f\|_{\infty}=\sup _{x \in \mathbb{R}^{N}}|f(x)|$. We use also the space $C_{0}\left(\mathbb{R}^{N}\right):=\left\{f \in C_{b}\left(\mathbb{R}^{N}\right)\right.$: $\left.\lim _{|x| \rightarrow \infty} f(x)=0\right\}$. If f is smooth enough we set

$$
|\nabla f(x)|^{2}=\sum_{i=1}^{N}\left|D_{i} f(x)\right|^{2}, \quad\left|D^{2} f(x)\right|^{2}=\sum_{i, j=1}^{N}\left|D_{i j} f(x)\right|^{2}
$$

For any $x_{0} \in \mathbb{R}^{N}$ and any $r>0$ we denote by $B\left(x_{0}, r\right) \subset \mathbb{R}^{N}$ the open ball, centered at x_{0} with radius r. We simply write $B(r)$ when $x_{0}=0$. The function χ_{E} denotes the characteristic function of the (measurable) set E, i.e., $\chi_{E}(x)=1$ if $x \in E, \chi_{E}(x)=0$ otherwise.

For any $p \in[1, \infty)$ we denote by $L^{p}\left(\mathbb{R}^{N}\right)$ the Banach space of all measurable and p-integrable functions in \mathbb{R}^{N} with respect to the Lebesgue measure endowed with its usual norm $\|\cdot\|_{p}$. Finally, by $x \cdot y$ we denote the Euclidean scalar product of the vectors $x, y \in \mathbb{R}^{N}$.

Acknowledgements. We are grateful to the referee for his many helpful remarks and suggestions.

2. Generation of semigroups in $C_{0}\left(\mathbb{R}^{N}\right)$

In this section we recall some properties of the elliptic and parabolic problems associated with A in $C_{b}\left(\mathbb{R}^{N}\right)$. We prove the existence of a Lyapunov function for A in the case where $\alpha>2$ and $\beta>\alpha-2$. This implies the uniqueness of the solution semigroup $(T(t))_{t \geq 0}$ to the associated parabolic problem. Using a domination argument, we show that $T(t)$ is compact and $T(t) C_{0}\left(\mathbb{R}^{N}\right) \subset C_{0}\left(\mathbb{R}^{N}\right)$.

First, we endow A with its maximal domain in $C_{b}\left(\mathbb{R}^{N}\right)$

$$
D_{\max }(A)=\left\{u \in C_{b}\left(\mathbb{R}^{N}\right) \cap W_{\mathrm{loc}}^{2, p}\left(\mathbb{R}^{N}\right), \text { for } 1 \leq p<\infty: A u \in C_{b}\left(\mathbb{R}^{N}\right)\right\}
$$

Then, we consider for any $\lambda>0$ and $f \in C_{b}\left(\mathbb{R}^{N}\right)$ the elliptic equation

$$
\begin{equation*}
\lambda u-A u=f \tag{2.1}
\end{equation*}
$$

It is well-known that equation (2.1) admits at least one solution in $D_{\max }(A)$ (see [3, Theorem 2.1.1]). A solution is obtained as follows.

Take the unique solution to the Dirichlet problem associated with $\lambda-A$ into the balls $B(0, n)$ for $n \in \mathbb{N}$. Using Schauder interior estimates one can prove that the sequence of solutions so obtained converges to a solution u of (2.1). It is also known that a solution to (2.1) is in general not unique. The solution u, which we obtained by approximation, is nonnegative whenever $f \geq 0$.

As regards the parabolic problem

$$
\begin{cases}u_{t}(t, x)=A u(t, x) & \text { for } x \in \mathbb{R}^{N} \text { and } t>0 \tag{2.2}\\ u(0, x)=f(x) & \text { for } x \in \mathbb{R}^{N},\end{cases}
$$

where $f \in C_{b}\left(\mathbb{R}^{N}\right)$, it is well-known that one can find a semigroup $(T(t))_{t \geq 0}$ of bounded operator in $C_{b}\left(\mathbb{R}^{N}\right)$ such that $u(t, x)=T(t) f(x)$ is a solution of (2.2) in the following sense:

$$
u \in C\left([0,+\infty) \times \mathbb{R}^{N}\right) \cap C_{\mathrm{loc}}^{1+\frac{\sigma}{2}, 2+\sigma}\left((0,+\infty) \times \mathbb{R}^{N}\right)
$$

and u solves (2.2) for any $f \in C_{b}\left(\mathbb{R}^{N}\right)$ and some $\sigma \in(0,1)$. Uniqueness of solutions to (2.2) in general is not guaranteed. Moreover the semigroup $(T(t))_{t \geq 0}$
is not strongly continuous in $C_{b}\left(\mathbb{R}^{N}\right)$ and does not preserve in general the space $C_{0}\left(\mathbb{R}^{N}\right)$. We note here that the obtained solution u is the minimal solution among all positive solutions of (2.2). For this reason the semigroup $T(t)$ will be called the minimal semigroup. For more details we refer to [3, Chapter 2, Section 2].

Uniqueness is obtained if there exists a positive function $\varphi(x) \in C^{2}\left(\mathbb{R}^{N}\right)$, called Lyapunov function, such that $\lim _{|x| \rightarrow \infty} \varphi(x)=+\infty$ and $A \varphi-\lambda \varphi \leq 0$ for some $\lambda>0$.

Proposition 2.1. Let $N>2, \alpha>2$ and $\beta>\alpha-2$. Let $\varphi=1+|x|^{\gamma}$ where $\gamma>2$. Then there exists a constant $C>0$ such that

$$
A \varphi \leq C \varphi
$$

Proof. An easy computation gives

$$
A \varphi=\gamma(N+\gamma-2)\left(1+|x|^{\alpha}\right)|x|^{\gamma-2}-\left(1+|x|^{\gamma}\right)|x|^{\beta}
$$

Then, since $\beta>\alpha-2$, there exists a $C>0$ such that

$$
\gamma(N+\gamma-2)\left(1+|x|^{\alpha}\right)|x|^{\gamma-2} \leq\left(1+|x|^{\gamma}\right)|x|^{\beta}+C\left(1+|x|^{\gamma}\right)
$$

Then we can assert that problem (2.2) admits a unique solution in $C\left([0, \infty) \times \mathbb{R}^{N}\right) \cap$ $C^{1,2}\left((0, \infty) \times \mathbb{R}^{N}\right)$ and problem (2.1) admits a unique solution in $D_{\max }(A)$.

In order to investigate the compactness of the semigroup and the invariance of $C_{0}\left(\mathbb{R}^{N}\right)$ we check the behaviour of $T(t) \mathbf{1}$. We use the following result (see [3, Theorem 5.1.11]):
Theorem 2.2. Let us fix $t>0$. Then $T(t) \boldsymbol{1} \in C_{0}\left(\mathbb{R}^{N}\right)$ if and only if $T(t)$ is compact and $C_{0}\left(\mathbb{R}^{N}\right)$ is invariant under $T(t)$.

Let A_{0} be the operator defined by $A_{0}:=a(x) \Delta$. By [6, Example 7.3] or [8, Proposition 2.2 (iii)], we have that the minimal semigroup $(S(t))$ is generated by $\left(A_{0}, D_{\max }\left(A_{0}\right) \cap C_{0}\left(\mathbb{R}^{N}\right)\right)$. Moreover the resolvent and the semigroup map $C_{b}\left(\mathbb{R}^{N}\right)$ into $C_{0}\left(\mathbb{R}^{N}\right)$ and are compact.

Set $v(t, x)=S(t) f(x)$ and $u(t, x)=T(t) f(x)$ for $t>0, x \in \mathbb{R}^{N}$ and $0 \leq f \in C_{b}\left(\mathbb{R}^{N}\right)$. Then the function $w(t, x)=v(t, x)-u(t, x)$ solves

$$
\begin{cases}w_{t}(t, x)=A_{0} w(t, x)+V(x) u(t, x) & \text { for } t>0 \\ w(0, x)=0 & \text { for } x \in \mathbb{R}^{N}\end{cases}
$$

So, applying [3, Theorem 4.1.3], we have $w \geq 0$ and hence $T(t) \leq S(t)$. Thus, $T(t) \mathbf{1} \in C_{0}\left(\mathbb{R}^{N}\right)$, since $S(t) \mathbf{1} \in C_{0}\left(\mathbb{R}^{N}\right)$ for any $t>0$ (see [8, Proposition 2.2 (iii)]). Thus, $T(t)$ is compact and $C_{0}\left(\mathbb{R}^{N}\right)$ is invariant under $T(t)(c f$. [3, Theorem 5.1.11]). Then we have proved the following proposition:

Proposition 2.3. The semigroup $(T(t))$ is generated by $\left(A, D_{\max }(A) \cap C_{0}\left(\mathbb{R}^{N}\right)\right)$, maps $C_{b}\left(\mathbb{R}^{N}\right)$ into $C_{0}\left(\mathbb{R}^{N}\right)$ and is compact.

3. Solvability of the elliptic problem in $L^{p}\left(\mathbb{R}^{N}\right)$

In this section we study the existence and uniqueness of solutions of the elliptic problem $\lambda u-A_{p} u=f$ for a given $f \in L^{p}\left(\mathbb{R}^{N}\right)$, where $1<p<\infty$ and $\lambda \geq 0$. Let us consider first the case $\lambda=0$.

We note that the equation $\left(1+|x|^{\alpha}\right) \Delta u-V u=f$ is equivalent to the equation

$$
\Delta u-\frac{V}{1+|x|^{\alpha}} u=\frac{f}{1+|x|^{\alpha}}=: \tilde{f}
$$

Therefore we focus our attention to the L^{p}-realization \tilde{A}_{p} of the Schrödinger operator

$$
\tilde{A}=\Delta-\frac{V}{1+|x|^{\alpha}}=\Delta-\tilde{V}
$$

Let us denote by G the Green function (or the fundamental solution) for $\tilde{A}, i . e$,

$$
\begin{equation*}
u(x)=\int_{\mathbb{R}^{N}} G(x, y) \tilde{f}(y) d y \tag{3.1}
\end{equation*}
$$

Thus, $u(x)=\int_{\mathbb{R}^{N}} G(x, y) \frac{f(y)}{1+|y|^{\alpha}} d y$ solves $A u=f$ for every $f \in L^{p}\left(\mathbb{R}^{N}\right)$. So we have to study the operator

$$
\begin{equation*}
u(x)=L f(x):=\int_{\mathbb{R}^{N}} G(x, y) \frac{f(y)}{1+|y|^{\alpha}} d y \tag{3.2}
\end{equation*}
$$

To this purpose, we use the bounds of $G(x, y)$ obtained in [13] when the potential of \tilde{A}_{p} belongs to the reverse Hölder class B_{q} for some $q \geq N / 2$.

We recall that a nonnegative locally L^{q}-integrable function V on \mathbb{R}^{N} is said to be in B_{q}, for $1<q<\infty$, if there exists $C>0$ such that the reverse Hölder inequality

$$
\left(\frac{1}{|B|} \int_{B} V^{q}(x) d x\right)^{1 / q} \leq C\left(\frac{1}{|B|} \int_{B} V(x) d x\right)
$$

holds for every ball B in \mathbb{R}^{N}. A nonnegative function $V \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$ is in B_{∞} if

$$
\|V\|_{L^{\infty}(B)} \leq C\left(\frac{1}{|B|} \int_{B} V(x) d x\right)
$$

for any ball B in \mathbb{R}^{N}.
One can verify that

$$
\tilde{V} \in \begin{cases}B_{\infty} & \text { if } \beta-\alpha \geq 0 \tag{3.3}\\ B_{q} & \text { if } \beta-\alpha>-\frac{N}{q} \\ B_{\frac{N}{2}} & \text { if } \beta-\alpha>-2 \\ B_{N} & \text { if } \beta-\alpha>-1\end{cases}
$$

for some $q>1$. So, it follows from [13, Theorem 2.7] that, if $\beta-\alpha>-2$, then for any $k>0$ there is some constant $C_{k}>0$ such that, for any $x, y \in \mathbb{R}^{N}$,

$$
\begin{equation*}
|G(x, y)| \leq \frac{C_{k}}{(1+m(x)|x-y|)^{k}} \cdot \frac{1}{|x-y|^{N-2}} \tag{3.4}
\end{equation*}
$$

where the function m is defined by

$$
\begin{equation*}
\frac{1}{m(x)}:=\sup _{r>0}\left\{r: \frac{1}{r^{N-2}} \int_{B(x, r)} \tilde{V}(y) d y \leq 1\right\}, \quad \text { for } x \in R^{N} \tag{3.5}
\end{equation*}
$$

Due to the importance of the auxiliary function m, we establish for it a lower bound:
Lemma 3.1. Let $\alpha-2<\beta<\alpha$. There exists $C=C(\alpha, \beta, N)$ such that

$$
\begin{equation*}
m(x) \geq C(1+|x|)^{\frac{\beta-\alpha}{2}} \tag{3.6}
\end{equation*}
$$

Proof. Fix $x \in \mathbb{R}^{N}$, and set $f_{x}(r)=\frac{1}{r^{N-2}} \int_{B(x, r)} \tilde{V}(y) d y, r>0$. Since $\tilde{V} \in B_{N / 2}$ implies $V \in B_{q}$ for some $q>\frac{N}{2}$, by [13, Lemma 1.2], we have

$$
\lim _{r \rightarrow 0} f_{x}(r)=0 \text { and } \lim _{r \rightarrow \infty} f_{x}(r)=\infty
$$

Thus, $0<m(x)<\infty$.
In order to estimate $\frac{1}{m(x)}$ we need to find $r_{0}=r_{0}(x)$ such that $r \in\left[r_{0}, \infty[\right.$ implies $f_{x}(r) \geq 1$. In this case we will have $\frac{1}{m(x)} \leq r_{0}$.

Since $\tilde{V} \in B_{N / 2}$, there exists a constant C_{1} depending only α, β, N such that

$$
\left(\frac{1}{|B|} \int_{B} \tilde{V}^{N / 2}(y) d y\right)^{2 / N} \leq C_{1}\left(\frac{1}{|B|} \int_{B} \tilde{V}(y) d y\right)
$$

for any ball B in \mathbb{R}^{N}. Then we have

$$
\begin{aligned}
f_{x}(r) & =N^{-1} \sigma_{N} r^{2} \frac{1}{|B(x, r)|} \int_{B(x, r)} \tilde{V}(y) d y \\
& \geq \frac{N^{-1} \sigma_{N} r^{2}}{C_{1}}\left(\frac{1}{|B(x, r)|} \int_{B(x, r)} \tilde{V}(y)^{N / 2} d y\right)^{2 / N} \\
& =\frac{\left(N^{-1} \sigma_{N}\right)^{1-2 / N}}{C_{1}}\left(\int_{B(x, r)} \tilde{V}(y)^{N / 2} d y\right)^{2 / N},
\end{aligned}
$$

where σ_{N} is the $(N-1)$-dimensional measure of $\partial B(0,1)$. Hence, if

$$
\begin{equation*}
\int_{B(x, r)} \tilde{V}(y)^{N / 2} d y-C_{2} \geq 0 \tag{3.7}
\end{equation*}
$$

then $f_{x}(r) \geq 1$, where $C_{2}=C_{2}(\alpha, \beta, N)=\frac{C_{1}^{N / 2}}{\left(N^{-1} \sigma_{N}\right)^{N / 2-1}}$. Note that $\tilde{V} \geq \tilde{V}^{*}$ in $\mathbb{R}^{N} \backslash B(0,1)$ with $\tilde{V}^{*}(x)=\frac{1}{2}|x|^{\beta-\alpha}$. Hence,

$$
\begin{align*}
\int_{B(x, r)} \tilde{V}(y)^{N / 2} d y & \geq \int_{B(x, r) \backslash B(0,1)} \tilde{V}(y)^{N / 2} d y \geq \int_{B(x, r) \backslash B(0,1)} \tilde{V}^{*}(y)^{N / 2} d y \\
& =\int_{B(x, r)} \tilde{V}^{*}(y)^{N / 2} d y-\int_{B(x, r) \cap B(0,1)} \tilde{V}^{*}(y)^{N / 2} d y \\
& \geq \int_{B(x, r)} \tilde{V}^{*}(y)^{N / 2} d y-\int_{B(0,1)} \tilde{V}^{*}(y)^{N / 2} d y \\
& =\int_{B(x, r)} \tilde{V}^{*}(y)^{N / 2} d y-\frac{2^{1-N / 2} \sigma_{N}}{N(2-\alpha+\beta)} \\
& \geq N^{-1} \sigma_{N} r^{N} \inf _{B(x, r)}\left(\tilde{V}^{*}\right)^{N / 2}-C_{3}(\alpha, \beta, N) \tag{3.8}\\
& =N^{-1} \sigma_{N} \frac{2^{-N / 2} r^{N}}{(|x|+r)^{\frac{\alpha-\beta}{2} N}}-C_{3}(\alpha, \beta, N) \tag{3.9}
\end{align*}
$$

Let $\eta=\frac{\alpha-\beta}{2}<1$, let $\delta>0$ be a parameter to be chosen later, and set

$$
r_{0}=\delta(1+|x|)^{\eta}
$$

By (3.8) condition (3.7) becomes

$$
\begin{aligned}
\int_{B\left(x, r_{0}\right)} \tilde{V}(y)^{N / 2} d y-C_{2} & \geq N^{-1} \sigma_{N} \frac{2^{-N / 2} r_{0}^{N}}{\left(|x|+r_{0}\right)^{\frac{\alpha-\beta}{2} N}}-C_{2}-C_{3} \\
& =N^{-1} 2^{-N / 2} \sigma_{N} \frac{\delta^{N}(1+|x|)^{\eta N}}{\left(|x|+\delta(1+|x|)^{\eta}\right)^{\frac{\alpha-\beta}{2} N}}-C_{4} \\
& \geq N^{-1} 2^{-N / 2} \sigma_{N} \frac{\delta^{N}(1+|x|)^{\eta N}}{\left(1+|x|+\delta(1+|x|)^{\eta}\right)^{\frac{\alpha-\beta}{2}} N}-C_{4} \\
& \geq N^{-1} 2^{-N / 2} \sigma_{N} \frac{\delta^{N}(1+|x|)^{\eta N}}{((\delta+1)(1+|x|))^{\frac{\alpha-\beta}{2} N}}-C_{4} \\
& =N^{-1} 2^{-N / 2} \sigma_{N}\left(\frac{\delta}{(1+\delta)^{\frac{\alpha-\beta}{2}}}\right)^{N}-C_{4}
\end{aligned}
$$

Since $\frac{\alpha-\beta}{2}<1$ we can choose $\delta>0$ such that $N^{-1} 2^{-N / 2} \sigma_{N}\left(\frac{\delta}{(1+\delta)^{\frac{\alpha-\beta}{2}}}\right)^{N}-C_{4} \geq 0$.
So, (3.7) is satisfied for $r=r_{0}$ and hence it is satisfied for any $r>r_{0}$. Thus, $f_{x}(r) \geq 1$ for $r>r_{0}$, and, hence, $\frac{1}{m(x)} \leq r_{0}=\delta(1+|x|)^{\eta}$.

The same lower bound holds in the case $\beta \geq \alpha$ as the following lemma shows:
Lemma 3.2. Let $\beta \geq \alpha$. There exists $C=C(\alpha, \beta, N)$ such that

$$
\begin{equation*}
m(x) \geq C(1+|x|)^{\frac{\beta-\alpha}{2}} \tag{3.10}
\end{equation*}
$$

Proof. From [13, Lemma 1.4 (c)], there exist $C_{1}>0$ and $0<\eta_{0}<1$ such that, for $x, y \in \mathbb{R}^{N}$,

$$
m(x) \geq \frac{C_{1} m(y)}{(1+|x-y| m(y))^{\eta_{0}}}
$$

In particular,

$$
m(x) \geq \frac{C_{1} m(0)}{(1+|x| m(0))^{\eta_{0}}}
$$

where $\frac{1}{m(0)}=\sup _{r>0}\left\{r: f_{0}(r) \leq 1\right\}$ with

$$
f_{0}(r)=\frac{1}{r^{N-2}} \int_{B(0, r)} \frac{|z|^{\beta}}{1+|z|^{\alpha}} d z=\frac{\sigma_{N}}{r^{N-2}} \int_{0}^{r} \frac{\rho^{\beta+N-1}}{1+\rho^{\alpha}} d \rho
$$

We have $\frac{\sigma_{N}}{(\beta+N)\left(1+r^{\alpha}\right)} r^{\beta+2} \leq f_{0}(r) \leq \frac{\sigma_{N}}{\beta+N} r^{\beta+2}$. Since $\beta>0$ and $\beta-\alpha+2>0$ it follows that $\lim _{r \rightarrow 0} f_{0}(r)=0$ and $\lim _{r \rightarrow \infty} f_{0}(r)=\infty$. Consequently,

$$
0<\sup _{r>0}\left\{r: f_{0}(r) \leq 1\right\}<\infty
$$

and, hence, $m(0)=C_{2}$ for some constant $C_{2}>0$. Then

$$
\begin{equation*}
m(x) \geq \frac{C_{1} C_{2}}{\left(1+C_{2}|x|\right)^{\eta_{0}}} \geq \frac{C_{3}}{(1+|x|)^{\eta_{0}}} \tag{3.11}
\end{equation*}
$$

for some constant $C_{3}>0$.
On the other hand, since $\beta \geq \alpha$, we obtain by (3.3) that $\tilde{V} \in B_{\infty}$. Then, by [13, Remark 2.9], we have

$$
\begin{equation*}
m(x) \geq C_{5} \tilde{V}^{1 / 2}(x)=C_{5}|x|^{\frac{\beta}{2}}(1+|x|)^{-\frac{\alpha}{2}} \tag{3.12}
\end{equation*}
$$

The thesis follows taking into account (3.11) and (3.12).
Applying the estimate (3.4) and the previous lemma we obtain the following upper bounds for the Green function G :

Lemma 3.3. Let $G(x, y)$ denote the Green function of the Schrödinger operator $\Delta-\frac{|x|^{\beta}}{1+|x|^{\alpha}}$ and assume that $\beta>\alpha-2$. Then,

$$
\begin{equation*}
G(x, y) \leq C_{k} \frac{1}{1+|x-y|^{k}(1+|y|)^{\frac{\beta-\alpha}{2} k}} \frac{1}{|x-y|^{N-2}}, \quad \text { for } x, y \in \mathbb{R}^{N} \tag{3.13}
\end{equation*}
$$

for any $k>0$ and some constant $C_{k}>0$ depending on k.

Using the above lemma we have the following estimate:
Lemma 3.4. Assume that $\alpha>2, N>2$ and $\beta>\alpha-2$. Then there exists a positive constant C such that for every $0 \leq \gamma \leq \beta$ and $f \in L^{p}\left(\mathbb{R}^{N}\right)$

$$
\begin{equation*}
\left\||x|^{\gamma} L f\right\|_{p} \leq C\|f\|_{p} \tag{3.14}
\end{equation*}
$$

where L is defined in (3.2).
Proof. Let $\Gamma(x, y)=\frac{G(x, y)}{1+|y|^{\alpha}}, f \in L^{p}\left(\mathbb{R}^{N}\right)$ and

$$
u(x)=\int_{\mathbb{R}^{N}} \Gamma(x, y) f(y) d y
$$

We have to show that

$$
\left\||x|^{\gamma} u\right\|_{p} \leq C\|f\|_{p}
$$

Let us consider the regions $E_{1}:=\{|x-y| \leq(1+|y|)\}$ and $E_{2}:=\{|x-y|>$ $(1+|y|)\}$ and write

$$
u(x)=\int_{E_{1}} \Gamma(x, y) f(y) d y+\int_{E_{2}} \Gamma(x, y) f(y) d y=: u_{1}(x)+u_{2}(x)
$$

In E_{1} we have

$$
\frac{1+|x|}{1+|y|} \leq \frac{1+|x-y|+|y|}{1+|y|} \leq 2
$$

So, by Lemma 3.2

$$
\begin{aligned}
\left||x|^{\gamma} u_{1}(x)\right| & \leq|x|^{\gamma} \int_{E_{1}} \Gamma(x, y)|f(y)| d y \leq \frac{1+|x|^{\beta}}{1+|x|^{\alpha}} \int_{E_{1}} \frac{1+|x|^{\alpha}}{1+|y|^{\alpha}} G(x, y)|f(y)| d y \\
& \leq C(1+|x|)^{\beta-\alpha} \int_{\mathbb{R}^{N}} G(x, y)|f(y)| d y \leq C m^{2}(x) \tilde{u}(x),
\end{aligned}
$$

where $\tilde{u}(x)=\int_{\mathbb{R}^{N}} G(x, y)|f(y)| d y$. By (3.3) we have $\tilde{V} \in B_{\frac{N}{2}}$. So, applying [13, Corollary 2.8], we obtain $\left\|m^{2} \tilde{u}\right\|_{p} \leq C\|f\|_{p}$ and then $\left\||x|^{\gamma} u_{1}\right\|_{p} \leq C\|f\|_{p}$.

In the region E_{2}, we have, by Hölder's inequality,

$$
\begin{align*}
\left||x|^{\gamma} u_{2}(x)\right| & \leq|x|^{\gamma} \int_{E_{2}} \Gamma(x, y)|f(y)| d y \\
& =\int_{E_{2}}\left(|x|^{\gamma} \Gamma(x, y)\right)^{\frac{1}{p^{\prime}}}\left(|x|^{\gamma} \Gamma(x, y)\right)^{\frac{1}{p}}|f(y)| d y \tag{3.15}\\
& \leq\left(\int_{E_{2}}|x|^{\gamma} \Gamma(x, y) d y\right)^{\frac{1}{p^{\prime}}}\left(\int_{E_{2}}|x|^{\gamma} \Gamma(x, y)|f(y)|^{p} d y\right)^{\frac{1}{p}} .
\end{align*}
$$

We propose to estimate first $\int_{E_{2}}|x|^{\gamma} \Gamma(x, y) d y$. In E_{2} we have $1+|x| \leq 1+|y|+$ $|x-y| \leq 2|x-y|$, then from (3.13) it follows that

$$
\begin{aligned}
|x|^{\gamma} \Gamma(x, y) & \leq|x|^{\gamma} G(x, y) \\
& \leq C \frac{1+|x|^{\beta}}{|x-y|^{k}(1+|y|)^{k \frac{\beta-\alpha}{2}}} \frac{1}{|x-y|^{N-2}} \\
& \leq C \frac{1}{|x-y|^{k-\beta+N-2}} \frac{1}{(1+|y|)^{k \frac{\beta-\alpha}{2}}} .
\end{aligned}
$$

For every $k>\beta-N+2$, taking into account that $\frac{1}{|x-y|}<\frac{1}{1+|y|}$, we get

$$
|x|^{\gamma} \Gamma(x, y) \leq \frac{1}{(1+|y|)^{k \frac{\beta-\alpha+2}{2}+N-2-\beta}} .
$$

Since $\beta-\alpha+2>0$ we can choose k such that $\frac{k}{2}(\beta-\alpha+2)+N-2-\beta>N$, then

$$
\int_{E_{2}}|x|^{\gamma} \Gamma(x, y) d y \leq \int_{E_{2}}|x|^{\gamma} G(x, y) d y \leq C \int_{\mathbb{R}^{N}} \frac{1}{(1+|y|)^{\frac{k}{2}(2+\beta-\alpha)+N-2-\beta}} d y<C
$$

Moreover by the symmetry of G we have

$$
\begin{aligned}
|x|^{\gamma} \Gamma(x, y) & \leq|x|^{\gamma} G(x, y) \\
& \leq C \frac{1+|x|^{\beta}}{|x-y|^{k}(1+|x|)^{k \frac{\beta-\alpha}{2}}} \frac{1}{|x-y|^{N-2}} \\
& \leq C \frac{1}{|x-y|^{k-\beta+N-2}} \frac{1}{(1+|x|)^{k \frac{\beta-\alpha}{2}}} .
\end{aligned}
$$

Taking into account that $\frac{1}{|x-y|} \leq 2 \frac{1}{1+|x|}$, arguing as above we obtain

$$
\begin{equation*}
\int_{E_{2}}|x|^{\gamma} \Gamma(x, y) d x \leq C . \tag{3.16}
\end{equation*}
$$

Hence (3.15) implies

$$
\begin{equation*}
\left||x|^{\gamma} u_{2}(x)\right|^{p} \leq C \int_{E_{2}}|x|^{\gamma} \Gamma(x, y)|f(y)|^{p} d y . \tag{3.17}
\end{equation*}
$$

Thus, by (3.17) and (3.16), we have

$$
\begin{aligned}
\left\||x|^{\gamma} u_{2}\right\|_{p}^{p} & \leq C \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}}|x|^{\gamma} \Gamma(x, y) \chi_{\{|x-y|>1+|y|\}}(x, y)|f(y)|^{p} d y d x \\
& =C \int_{\mathbb{R}^{N}}|f(y)|^{p}\left(\int_{E_{2}}|x|^{\gamma} \Gamma(x, y) d x\right) d y \leq C\|f\|_{p}^{p} .
\end{aligned}
$$

We are now ready to show the invertibility of A_{p} and $D_{p, \max }(A) \subset D(V)$:
Proposition 3.5. Assume that $N>2, \alpha>2$ and $\beta>\alpha-2$. Then the operator A_{p} is closed and invertible. Moreover there exists $C>0$ such that, for every $0 \leq \gamma \leq \beta$, we have

$$
\begin{equation*}
\left\||\cdot|^{\gamma} u\right\|_{p} \leq C\left\|A_{p} u\right\|_{p}, \quad \forall u \in D_{p, \max }(A) . \tag{3.18}
\end{equation*}
$$

Proof. Let us first prove the injectivity of A_{p}. Let $u \in D_{p, \max }(A)$ such that $A_{p} u=$ 0 , in particular $\tilde{A}_{p} u=0$. It follows that $u \in D_{p, \max }(\tilde{A})=D(\Delta) \cap D\left(\frac{|x|^{\beta}}{1+|x|^{\alpha}}\right)$, (see [11]). Then multiplying $A_{p} u$ by $u|u|^{p-2}$ and integrating over \mathbb{R}^{N} we obtain, by [7],

$$
\begin{aligned}
0 & =\int_{\mathbb{R}^{N}} u|u|^{p-2} \Delta u d x-\int_{\mathbb{R}^{N}} \frac{|x|^{\beta}}{1+|x|^{\alpha}}|u|^{p} d x \\
& =-(p-1) \int_{\mathbb{R}^{N}}|u|^{p-2}|\nabla u|^{2} d x-\int_{\mathbb{R}^{N}} \frac{|x|^{\beta}}{1+|x|^{\alpha}}|u|^{p} d x,
\end{aligned}
$$

from which we have $u \equiv 0$. On the other hand, we recall that the function given by (3.2) solves $A u=f$ for every $f \in L^{p}\left(\mathbb{R}^{N}\right)$. Applying Lemma 3.4 with $\gamma=0$, we deduce that $u \in L^{p}\left(\mathbb{R}^{N}\right)$ and so by elliptic regularity we have $u \in D_{p, \max }(A)$. This, together with the injectivity of A_{p} gives the invertibility of A_{p} and $A_{p}^{-1} \in$ $\mathcal{L}\left(L^{p}\left(\mathbb{R}^{N}\right)\right)$. This implies in particular that A_{p} is closed. Finally, the estimate (3.18) follows from (3.14).

The previous theorem gives in particular the A_{p}-boundedness of the potential V and the following regularity result:

Corollary 3.6. Assume that $N>2, \alpha>2$ and $\beta>\alpha-2$. Then:
(i) there exists $C>0$ such that for every $u \in D_{p, \max }(A)$

$$
\|(1+V) u\|_{p} \leq C\left\|A_{p} u\right\|_{p}
$$

(ii)

$$
D_{p, \max }(A)=\left\{u \in W^{2, p}\left(\mathbb{R}^{N}\right) \mid A u \in L^{p}\left(\mathbb{R}^{N}\right)\right\}
$$

Proof. We have only to prove the inclusion $D_{p, \max }(A) \subset\left\{u \in W^{2, p}\left(\mathbb{R}^{N}\right) \mid A u \in\right.$ $\left.L^{p}\left(\mathbb{R}^{N}\right)\right\}$. Let $u \in D_{p, \max }(A)$. Then, by (i), $V u \in L^{p}\left(\mathbb{R}^{N}\right)$ and hence

$$
\Delta u=\frac{A u+V u}{1+|x|^{\alpha}} \in L^{p}\left(\mathbb{R}^{N}\right)
$$

So, the thesis follows from the Calderon-Zygmund inequality.

We can now state the main result of this section:
Theorem 3.7. Assume that $N>2, \beta>\alpha-2$ and $\alpha>2$. Then, $[0,+\infty) \subset \rho\left(A_{p}\right)$ and $\left(\lambda-A_{p}\right)^{-1}$ is a positive operator on $L^{p}\left(\mathbb{R}^{N}\right)$ for any $\lambda \geq 0$. Moreover, if $f \in L^{p}\left(\mathbb{R}^{N}\right) \cap C_{0}\left(\mathbb{R}^{N}\right)$, then $\left(\lambda-A_{p}\right)^{-1} f=(\lambda-A)^{-1} f$.

Proof. Let us first prove that if $0 \leq \lambda \in \rho\left(A_{p}\right)$, then $\left(\lambda-A_{p}\right)^{-1}$ is a positive operator on $L^{p}\left(\mathbb{R}^{N}\right)$. To this purpose, take $0 \leq f \in L^{p}\left(\mathbb{R}^{N}\right)$ and set $u=(\lambda-$ $\left.A_{p}\right)^{-1} f$. Then, by Corollary 3.6, $u \in D\left(\tilde{A}_{p}\right)$ and

$$
-\left(\tilde{A}_{p}-\lambda q\right) u=q f=: \tilde{f}
$$

where $q(x)=\frac{1}{1+|x|^{\alpha}}$. Since \tilde{A}_{p} generates an exponentially stable and positive C_{0}-semigroup $\left(\tilde{T}_{p}(t)\right)_{t \geq 0}$ on $L^{p}\left(\mathbb{R}^{N}\right)$ (see [4, Theorem 2.5]), it follows that the semigroup $\left(e^{-t \lambda q} \tilde{T}_{p}(t)\right)_{t \geq 0}$ generated by $\tilde{A}_{p}-\lambda q$ is positive and exponentially stable. Hence,

$$
u=\left(\lambda q-\tilde{A}_{p}\right)^{-1} \tilde{f} \geq 0
$$

We show that $E=[0,+\infty) \cap \rho\left(A_{p}\right)$ is a non-empty open and closed set in $[0,+\infty)$. By Proposition 3.5 we have $0 \in \rho\left(A_{p}\right)$ and hence $E \neq \emptyset$. On the other hand, using the above positivity property and the resolvent equation we have $\left(\lambda-A_{p}\right)^{-1} \leq$ $\left(-A_{p}\right)^{-1}=L$ for any $\lambda \in E$ and therefore

$$
\begin{equation*}
\left\|\left(\lambda-A_{p}\right)^{-1}\right\| \leq\|L\| \tag{3.19}
\end{equation*}
$$

It follows that the operator norm of $\left(\lambda-A_{p}\right)^{-1}$ is bounded in E and consequently E is closed. Finally, since $\rho\left(A_{p}\right)$ is an open set, it follows that E is open in $[0,+\infty)$. Thus, $E=[0,+\infty)$.

Now in order to show the last statement we may assume $f \in C_{c}^{\infty}$, the thesis will follow by density. Setting $u:=\left(\lambda-A_{p}\right)^{-1} f$, we obtain, by local elliptic regularity ($c f$. [2, Theorem 9.19]), that $u \in C_{\mathrm{loc}}^{2+\sigma}\left(\mathbb{R}^{N}\right.$) for some $0<\sigma<1$. On the other hand, $u \in W^{2, p}\left(\mathbb{R}^{N}\right)$, by Corollary 3.6. If $p \geq \frac{N}{2}$, then by the Sobolev's inequality, $u \in L^{q}\left(\mathbb{R}^{N}\right)$ for all $q \in[p,+\infty)$. In particular, $u \in L^{q}\left(\mathbb{R}^{N}\right)$ for some $q>\frac{N}{2}$ and hence $A u=-f+\lambda u \in L^{q}\left(\mathbb{R}^{N}\right)$. Moreover, since $u \in C_{\text {loc }}^{2+\sigma}\left(\mathbb{R}^{N}\right)$, it follows that $u \in W_{\text {loc }}^{2, q}\left(\mathbb{R}^{N}\right)$. So, $u \in D_{q, \max }(A) \subset W^{2, q}\left(\mathbb{R}^{N}\right) \subset C_{b}\left(\mathbb{R}^{N}\right)$, by Corollary 3.6 and Sobolev's embedding theorem, since $q>\frac{N}{2}$.

Let us now suppose that $p<\frac{N}{2}$. Take the sequence $\left(r_{n}\right)$, defined by $r_{n}=$ $1 / p-2 n / N$ for any $n \in \mathbb{N}$, and set $q_{n}=1 / r_{n}$ for any $n \in \mathbb{N}$. Let n_{0} be the smallest integer such that $r_{n_{0}} \leq 2 / N$ noting that $r_{n_{0}}>0$. Then, $u \in D_{p, \max }(A) \subset$ $L^{q_{1}}\left(\mathbb{R}^{N}\right) \cap L^{p}\left(\mathbb{R}^{N}\right)$, by Sobolev's embedding theorem. As above we obtain that $u \in$ $D_{q_{1}, \max }(A) \subset L^{q_{2}}\left(\mathbb{R}^{N}\right)$. Iterating this argument, we deduce that $u \in D_{q_{n_{0}}, \max }(A)$.

So we can conclude that $u \in C_{b}\left(\mathbb{R}^{N}\right)$ arguing as in the previous case. Thus, $A u=-f+\lambda u \in C_{b}\left(\mathbb{R}^{N}\right)$. Again, since $u \in C_{\text {loc }}^{2+\sigma}\left(\mathbb{R}^{N}\right)$, it follows that $u \in$ $W_{\text {loc }}^{2, q}\left(\mathbb{R}^{N}\right)$ for any $q \in(1,+\infty)$. Hence, $u \in D_{\max }(A)$. So, by the uniqueness of the solution of the elliptic problem, we have $\left(\lambda-A_{p}\right)^{-1} f=(\lambda-A)^{-1} f$ for any $f \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$.

4. Generation of semigroups

In this section we show that A_{p} generates an analytic semigroup on $L^{p}\left(\mathbb{R}^{N}\right)$, for $1<p<\infty$, provided that $N>2, \alpha>2$ and $\beta>\alpha-2$.

We start by giving the characterization of the domain of A. More precisely we prove that the maximal domain $D_{p, \max }(A)$ coincides with the weighted Sobolev space $D_{p}(A)$ defined by

$$
D_{p}(A):=\left\{u \in W^{2, p}\left(\mathbb{R}^{N}\right): V u,\left(1+|x|^{\alpha-1}\right) \nabla u,\left(1+|x|^{\alpha}\right) D^{2} u \in L^{p}\left(\mathbb{R}^{N}\right)\right\}
$$

endowed with its canonical norm.
To this purpose we need the following covering result, see [1, Proposition 6.1], to prove a weighted gradient estimate:

Proposition 4.1. For every $0 \leq k<1 / 2$ there exists a natural number $\zeta=\zeta(N, k)$ with the following property: given $\mathcal{F}=\{B(x, \rho(x))\}_{x \in \mathbb{R}^{N}}$, where $\rho: \mathbb{R}^{N} \rightarrow \mathbb{R}_{+}$is a Lipschitz continuous function with Lipschitz constant k, there exists a countable subcovering $\left\{B\left(x_{n}, \rho\left(x_{n}\right)\right)\right\}_{n \in \mathbb{N}}$ of \mathbb{R}^{N} such that at most ζ among the double balls $\left\{B\left(x_{n}, 2 \rho\left(x_{n}\right)\right)\right\}_{n \in \mathbb{N}}$ overlap.

We need the following weighted gradient and second derivative estimate:
Lemma 4.2. Assume that $N>2, \alpha>2$ and $\beta>\alpha-2$. Then there exists a constant $C>0$ such that for every $u \in D_{p}(A)$ we have

$$
\begin{align*}
\| & \left(1+|x|^{\alpha-1}\right) \nabla u \|_{p} \tag{4.1}
\end{align*} \leq C\left\|A_{p} u\right\|_{p}, ~ 子\left(1+|x|^{\alpha}\right) D^{2} u\left\|_{p} \leq C\right\| A_{p} u \|_{p} .
$$

Proof. Let $u \in D_{p}(A)$. We fix $x_{0} \in \mathbb{R}^{n}$ and choose $\vartheta \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ such that $0 \leq \vartheta \leq 1, \vartheta(x)=1$ for $x \in B(1)$ and $\vartheta(x)=0$ for $x \in \mathbb{R}^{N} \backslash B(2)$. Moreover, we set $\vartheta_{\rho}(x)=\vartheta\left(\frac{x-x_{0}}{\rho}\right)$, where $\rho=\frac{1}{4}\left(1+\left|x_{0}\right|\right)$. We apply the well-known inequality

$$
\begin{equation*}
\|\nabla v\|_{L^{p}(B(R))} \leq C\|v\|_{L^{p}(B(R))}^{1 / 2}\|\Delta v\|_{L^{p}(B(R))}^{1 / 2} \tag{4.3}
\end{equation*}
$$ where $v \in W^{2, p}(B(R)) \cap W_{0}^{1, p}(B(R)) \quad$ and $R>0$,

to the function $\vartheta_{\rho} u$ and obtain, for every $\varepsilon>0$,

$$
\begin{aligned}
& \left\|\left(1+\left|x_{0}\right|\right)^{\alpha-1} \nabla u\right\|_{L^{p}\left(B\left(x_{0}, \rho\right)\right)} \leq\left\|\left(1+\left|x_{0}\right|\right)^{\alpha-1} \nabla\left(\vartheta_{\rho} u\right)\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)} \\
& \leq C\left\|\left(1+\left|x_{0}\right|\right)^{\alpha} \Delta\left(\vartheta_{\rho} u\right)\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}^{\frac{1}{2}}\left\|\left(1+\left|x_{0}\right|\right)^{\alpha-2} \vartheta_{\rho} u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}^{\frac{1}{2}} \\
& \leq C\left(\varepsilon\left\|\left(1+\left|x_{0}\right|\right)^{\alpha} \Delta\left(\vartheta_{\rho} u\right)\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}+\frac{1}{4 \varepsilon}\left\|\left(1+\left|x_{0}\right|\right)^{\alpha-2} \vartheta_{\rho} u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}\right) \\
& \leq C\left(\varepsilon\left\|\left(1+\left|x_{0}\right|\right)^{\alpha} \Delta u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}+\frac{2 M}{\rho} \varepsilon\left\|\left(1+\left|x_{0}\right|\right)^{\alpha} \nabla u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}\right. \\
& \left.\quad \quad+\frac{\varepsilon M}{\rho^{2}}\left\|\left(1+\left|x_{0}\right|\right)^{\alpha} u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}+\frac{1}{4 \varepsilon}\left\|\left(1+\left|x_{0}\right|\right)^{\alpha-2} u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}\right) \\
& \leq C\left(\varepsilon\left\|\left(1+\left|x_{0}\right|\right)^{\alpha} \Delta u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}+8 M \varepsilon\left\|\left(1+\left|x_{0}\right|\right)^{\alpha-1} \nabla u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}\right. \\
& \left.\quad+\left(16 \varepsilon M+\frac{1}{4 \varepsilon}\right)\left\|\left(1+\left|x_{0}\right|\right)^{\alpha-2} u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}\right) \\
& \leq C(M)\left(\varepsilon\left\|\left(1+\left|x_{0}\right|\right)^{\alpha} \Delta u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}+\varepsilon\left\|\left(1+\left|x_{0}\right|\right)^{\alpha-1} \nabla u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}\right. \\
& \left.\quad \quad+\frac{1}{\varepsilon}\left\|\left(1+\left|x_{0}\right|\right)^{\alpha-2} u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}\right)
\end{aligned}
$$

where $M=\|\nabla \vartheta\|_{\infty}+\|\Delta \vartheta\|_{\infty}$. Since $2 \rho=\frac{1}{2}\left(1+\left|x_{0}\right|\right)$ we get

$$
\frac{1}{2}\left(1+\left|x_{0}\right|\right) \leq 1+|x| \leq \frac{3}{2}\left(1+\left|x_{0}\right|\right), \quad \text { for } x \in B\left(x_{0}, 2 \rho\right)
$$

Thus,

$$
\begin{align*}
& \left\|(1+|x|)^{\alpha-1} \nabla u\right\|_{L^{p}\left(B\left(x_{0}, \rho\right)\right)} \leq\left(\frac{3}{2}\right)^{\alpha-1}\left\|\left(1+\left|x_{0}\right|\right)^{\alpha-1} \nabla u\right\|_{L^{p}\left(B\left(x_{0}, \rho\right)\right)} \\
& \leq C\left(\varepsilon\left\|\left(1+\left|x_{0}\right|\right)^{\alpha} \Delta u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}+\varepsilon\left\|\left(1+\left|x_{0}\right|\right)^{\alpha-1} \nabla u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}\right. \\
& \left.\quad+\frac{1}{\varepsilon}\left\|\left(1+\left|x_{0}\right|\right)^{\alpha-2} u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}\right) \tag{4.4}\\
& \leq C\left(2^{\alpha} \varepsilon\left\|(1+|x|)^{\alpha} \Delta u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}+2^{\alpha-1} \varepsilon\left\|(1+|x|)^{\alpha-1} \nabla u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}\right. \\
& \left.\quad+\frac{2^{\alpha-2}}{\varepsilon}\left\|(1+|x|)^{\alpha-2} u\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}\right)
\end{align*}
$$

Let $\left\{B\left(x_{n}, \rho\left(x_{n}\right)\right)\right\}$ be a countable covering of \mathbb{R}^{N} as in Proposition 4.1 such that at most ζ among the double balls $\left\{B\left(x_{n}, 2 \rho\left(x_{n}\right)\right)\right\}$ overlap.

We write (4.4) with x_{0} replaced by x_{n} and sum over n. Taking into account the above covering result, we get

$$
\begin{gathered}
\left\|(1+|x|)^{\alpha-1} \nabla u\right\|_{p} \leq C\left(\varepsilon\left\|(1+|x|)^{\alpha} \Delta u\right\|_{p}+\varepsilon\left\|(1+|x|)^{\alpha-1} \nabla u\right\|_{p}\right. \\
\left.+\frac{1}{\varepsilon}\left\|(1+|x|)^{\alpha-2} u\right\|_{p}\right) .
\end{gathered}
$$

Choosing ε such that $\varepsilon C<1 / 2$ we have

$$
\frac{1}{2}\left\|(1+|x|)^{\alpha-1} \nabla u\right\|_{p} \leq \frac{1}{2}\left\|(1+|x|)^{\alpha} \Delta u\right\|_{p}+\frac{C}{\varepsilon}\left\|(1+|x|)^{\alpha-2} u\right\|_{p}
$$

Furthermore $\left\||x|^{\alpha-2} u\right\|_{p} \leq\left\|\left(1+|x|^{\beta}\right) u\right\|_{p} \leq C\left\|A_{p} u\right\|_{p}$ for any $u \in D_{p}(A) \subset$ $D_{p, \max }(A)$ and some $C>0$ by Corollary 3.6. Hence,

$$
\left\|(1+|x|)^{\alpha-1} \nabla u\right\|_{p} \leq C\left(\left\|A_{p} u\right\|_{p}+\|u\|_{p}\right) .
$$

As regards the second order derivatives we consider the classical CalderónZygmund inequality on $B(1)$

$$
\left\|D^{2} v\right\|_{L^{p}(B(1))} \leq C\|\Delta v\|_{L^{p}(B(1))}, \quad v \in W^{2, p}(B(1)) \cap W_{0}^{1, p}(B(1)),
$$

by rescaling and translating we get

$$
\begin{equation*}
\left\|D^{2} v\right\|_{L^{p}\left(B\left(x_{0}, R\right)\right)} \leq C\|\Delta v\|_{L^{p}\left(B\left(x_{0}, R\right)\right)} \tag{4.5}
\end{equation*}
$$

for every $x_{0} \in \mathbb{R}^{N}, R>0$ and $v \in W^{2, p}\left(B\left(x_{0}, R\right)\right) \cap W_{0}^{1, p}\left(B\left(x_{0}, R\right)\right)$. We observe that the constant C does not depend on R and x_{0}.

Then we fix $x_{0} \in \mathbb{R}^{n}$ and choose ρ and $\vartheta_{\rho} \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ as above. Applying (4.5) to the function $\vartheta_{\rho} u$ in $B\left(x_{0}, 2 \rho\right)$, we obtain

$$
\begin{aligned}
\left\|\left(1+\left|x_{0}\right|\right)^{\alpha} D^{2} u\right\|_{L^{p}\left(B\left(x_{0}, \rho\right)\right)} & \leq\left\|\left(1+\left|x_{0}\right|\right)^{\alpha} D^{2}\left(\vartheta_{\rho} u\right)\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)} \\
& \leq C\left\|\left(1+\left|x_{0}\right|\right)^{\alpha} \Delta\left(\vartheta_{\rho} u\right)\right\|_{L^{p}\left(B\left(x_{0}, 2 \rho\right)\right)}
\end{aligned}
$$

Reasoning as above we obtain

$$
\begin{aligned}
& \left\|(1+|x|)^{\alpha} D^{2} u\right\|_{p} \\
\leq & C\left(\left\|(1+|x|)^{\alpha} \Delta u\right\|_{p}+\left\|(1+|x|)^{\alpha-1} \nabla u\right\|_{p}+\left\|(1+|x|)^{\alpha-2} u\right\|_{p}\right) .
\end{aligned}
$$

The lemma follows by Corollary 3.6 and by the gradient estimate (4.1).

The following lemma shows that $C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ is a core for $\left(A, D_{p}(A)\right)$.
Lemma 4.3. Assume $N>2, \alpha>2$ and $\beta>\alpha-2$. The space $C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ is dense in $D_{p}(A)$ with respect to the graph norm.

Proof. Let us first observe that $C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ is dense in $W_{c}^{2, p}\left(\mathbb{R}^{N}\right)$ with respect to the operator norm. Let $u \in W_{c}^{2, p}\left(\mathbb{R}^{N}\right)$ and consider $u_{n}=\rho_{n} * u$, where ρ_{n} are standard mollifiers. We have $u_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right), u_{n} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{N}\right)$ and $D^{2} u_{n} \rightarrow D^{2} u$ in $L^{p}\left(\mathbb{R}^{N}\right)$. Moreover, supp $\mathrm{u}_{\mathrm{n}} \subset \operatorname{supp} \mathrm{u}+\mathrm{B}(1):=\mathrm{K}$ for any $n \in \mathbb{N}$. Then

$$
\begin{aligned}
& \left\|A_{p} u-A u_{n}\right\|_{p}=\left\|A_{p} u-A u_{n}\right\|_{L^{p}(K)} \\
& \leq\left\|\left(1+|x|^{\alpha}\right) \Delta\left(u-u_{n}\right)\right\|_{L^{p}(K)}+\left\||x|^{\beta}\left(u-u_{n}\right)\right\|_{L^{p}(K)} \\
& \leq\left\|\left(1+|x|^{\alpha}\right)\right\|_{L^{\infty}(K)}\left\|\Delta\left(u-u_{n}\right)\right\|_{L^{p}(K)} \\
& \quad+\left\||x|^{\beta}\right\|_{L^{\infty}(K)}\left\|\left(u-u_{n}\right)\right\|_{L^{p}(K)} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Now, let u in $D_{p, \max }(A)$ and let η be a smooth function such that $\eta=1$ in $B(1)$, $\eta=0$ in $\mathbb{R}^{N} \backslash B(2), 0 \leq \eta \leq 1$ and set $\eta_{n}(x)=\eta\left(\frac{x}{n}\right)$. Then consider $u_{n}=$ $\eta_{n} u \in W_{c}^{2, p}\left(\mathbb{R}^{N}\right)$. First we have $u_{n} \rightarrow u$ in $L^{p}\left(\mathbb{R}^{N}\right)$ by dominated convergence. As regard $A_{p} u_{n}$ we have

$$
\begin{aligned}
A_{p} u_{n}(x) & =\left(1+|x|^{\alpha}\right) \Delta\left(\eta_{n} u\right)(x)-|x|^{\beta} \eta_{n}(x) u(x) \\
& =\eta_{n}(x) A_{p} u(x)+2\left(1+|x|^{\alpha}\right) \nabla \eta_{n}(x) \nabla u(x)+\left(1+|x|^{\alpha}\right) \Delta \eta_{n}(x) u(x) \\
& =\eta_{n}(x) A_{p} u(x)+\frac{2}{n}\left(1+|x|^{\alpha}\right) \nabla \eta\left(\frac{x}{n}\right) \nabla u(x)+\frac{1}{n^{2}}\left(1+|x|^{\alpha}\right) \Delta \eta\left(\frac{x}{n}\right) u(x)
\end{aligned}
$$

and

$$
\eta_{n} A_{p} u \rightarrow A_{p} u \quad \text { in } \quad L^{p}\left(\mathbb{R}^{N}\right)
$$

by dominated convergence. As regards the last terms we note that $\nabla \eta(x / n)$ and $\Delta \eta(x / n)$ can be different from zero only for $n \leq|x| \leq 2 n$, then we have

$$
\frac{1}{n}\left(1+|x|^{\alpha}\right)\left|\nabla \eta\left(\frac{x}{n}\right)\right||\nabla u| \leq C\left(1+|x|^{\alpha-1}\right)|\nabla u| \chi_{\{n \leq|x| \leq 2 n\}}
$$

and

$$
\frac{1}{n^{2}}\left(1+|x|^{\alpha}\right)\left|\Delta \eta\left(\frac{x}{n}\right)\right||u| \leq C\left(1+|x|^{\alpha-2}\right)|u| \chi_{\{n \leq|x| \leq 2 n\}}
$$

The right-hand sides tend to 0 as $n \rightarrow \infty$, since by Proposition 3.5 and Lemma 4.2 we have $\left\|\left(1+|x|^{\alpha-2}\right) u\right\|_{p} \leq C\left\|A_{p} u\right\|_{p}$ and $\left\|\left(1+|x|^{\alpha-1}\right) \nabla u\right\|_{p} \leq C\left\|A_{p} u\right\|_{p}$. So, applying again the dominated convergence theorem, we obtain $A_{p} u_{n} \rightarrow A_{p} u$ in $L^{p}\left(\mathbb{R}^{N}\right)$. This ends the proof of the lemma.

We can give now the complete characterization of $D_{p, \max }(A)$.

Theorem 4.4. Assume that $N>2, \alpha>2$ and $\beta>\alpha-2$. Then maximal domain $D_{p, \max }(A)$ coincides with $D_{p}(A)$.

Proof. We have to prove only the inclusion $D_{p, \max }(A) \subset D_{p}(A)$.
Let $\tilde{u} \in D_{p, \max }(A)$ and set $f=A \tilde{u}$. The operator A in $B(\rho)$, for $\rho>0$, is an elliptic operator with bounded coefficients, then the problem

$$
\begin{cases}A u=f & \text { in } B(\rho) \tag{4.6}\\ u=0 & \text { on } \partial B(\rho),\end{cases}
$$

admits a unique solution u_{ρ} in $W^{2, p}(B(\rho)) \cap W_{0}^{1, p}(B(\rho))(c f .[2$, Theorem 9.15]). Now $u_{\rho} \in D_{p}(A)$ and by Lemma 4.2 and Corollary 3.6 (i)

$$
\begin{aligned}
& \left\|\left(1+|x|^{\alpha-2}\right) u_{\rho}\right\|_{L^{p}(B(\rho))}+\left\|\left(1+|x|^{\alpha-1}\right) \nabla u_{\rho}\right\|_{L^{p}(B(\rho))} \\
& +\left\|\left(1+|x|^{\alpha}\right) D^{2} u_{\rho}\right\|_{L^{p}(B(\rho))}+\left\|V u_{\rho}\right\|_{L^{p}(B(\rho))} \leq C\left\|A u_{\rho}\right\|_{p}
\end{aligned}
$$

with C independent of ρ. Using a standard weak compactness argument we can construct a sequence $u_{\rho_{n}}$ which converges to a function u in $W_{\text {loc }}^{2, p}$ such that $A u=$ f. Since the estimates above are independent of ρ, also $u \in D_{p}(A)$. Then we have $A \tilde{u}=A u$ and since $D_{p}(A) \subset D_{p, \max }(A)$ and A is invertible on $D_{p, \max }(A)$ by Proposition 3.5, we have $\tilde{u}=u$.

Let us give now the main result of this section:
Theorem 4.5. Assume $N>2, \alpha>2$ and $\beta>\alpha-2$. Then the operator A_{p} with domain $D_{p, \max }(A)$ generates an analytic semigroup in $L^{p}\left(\mathbb{R}^{N}\right)$.

Proof. Let $f \in L^{p}$, and $\rho>0$. Consider the operator $\widetilde{A_{p}}:=A_{p}-\omega$ where ω is a constant which will be chosen later. It is known that the elliptic problem in $L^{p}(B(\rho))$

$$
\begin{cases}\lambda u-\widetilde{A_{p}} u=f & \text { in } B(\rho) \tag{4.7}\\ u=0 & \text { on } \partial B(\rho)\end{cases}
$$

admits a unique solution u_{ρ} in $W^{2, p}(B(\rho)) \cap W_{0}^{1, p}(B(\rho))$ for $\lambda>0,(c f$. [2, Theorem 9.15]).

Let us prove that that $e^{ \pm i \theta} \widetilde{A_{p}}$ is dissipative in $B(\rho)$ for $0 \leq \theta \leq \theta_{\alpha}$ with suitable $\theta_{\alpha} \in\left(0, \frac{\pi}{2}\right]$. To this purpose observe that

$$
\widetilde{A_{p}} u_{\rho}=\operatorname{div}\left(\left(1+|x|^{\alpha}\right) \nabla u_{\rho}\right)-\alpha|x|^{\alpha-1} \frac{x}{|x|} \nabla u_{\rho}-|x|^{\beta} u_{\rho}-\omega u_{\rho}
$$

Set $u^{\star}=\bar{u}_{\rho}\left|u_{\rho}\right|^{p-2}$ and recall that $a(x)=1+|x|^{\alpha}$. Multiplying $\widetilde{A_{p}} u_{\rho}$ by u^{\star} and integrating over $B(\rho)$, we obtain

$$
\begin{aligned}
\int_{B(\rho)} \widetilde{A_{p}} u_{\rho} u^{\star} d x= & -\int_{B(\rho)} a(x)\left|u_{\rho}\right|^{p-4}\left|\operatorname{Re}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x \\
& -\int_{B(\rho)} a(x)\left|u_{\rho}\right|^{p-4}\left|\operatorname{Im}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x \\
& -(p-2) \int_{B(\rho)} a(x)\left|u_{\rho}\right|^{p-4} \bar{u}_{\rho} \nabla u_{\rho} \operatorname{Re}\left(\bar{u}_{\rho} \nabla u_{\rho}\right) d x \\
& -\alpha \int_{B(\rho)} \bar{u}_{\rho}\left|u_{\rho}\right|^{p-2}|x|^{\alpha-1} \frac{x}{|x|} \nabla u_{\rho} d x-\int_{B(\rho)}\left(|x|^{\beta}+\omega\right)\left|u_{\rho}\right|^{p} d x .
\end{aligned}
$$

We note here that the integration by part in the singular case $1<p<2$ is allowed thanks to [7]. By taking the real and imaginary part of the left- and the right-hand side, we have

$$
\begin{aligned}
& \operatorname{Re}\left(\int_{B(\rho)} \widetilde{A_{p}} u_{\rho} u^{\star} d x\right) \\
&=-(p-1) \int_{B(\rho)} a(x)\left|u_{\rho}\right|^{p-4}\left|\operatorname{Re}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x-\int_{B(\rho)} a(x)\left|u_{\rho}\right|^{p-4}\left|\operatorname{Im}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x \\
&-\alpha \int_{B(\rho)}\left|u_{\rho}\right|^{p-2}|x|^{\alpha-1} \frac{x}{|x|} \operatorname{Re}\left(\bar{u}_{\rho} \nabla u_{\rho}\right) d x-\int_{B(\rho)}\left(|x|^{\beta}+\omega\right)\left|u_{\rho}\right|^{p} d x \\
&=-(p-1) \int_{B(\rho)} a(x)\left|u_{\rho}\right|^{p-4}\left|\operatorname{Re}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x-\int_{B(\rho)} a(x)\left|u_{\rho}\right|^{p-4}\left|\operatorname{Im}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x \\
&-\frac{\alpha}{p} \int_{B(\rho)}|x|^{\alpha-1} \frac{x}{|x|} \nabla\left(\left|u_{\rho}\right|^{p}\right) d x-\int_{B(\rho)}\left(|x|^{\beta}+\omega\right)\left|u_{\rho}\right|^{p} d x \\
&=-(p-1) \int_{B(\rho)} a(x)\left|u_{\rho}\right|^{p-4}\left|\operatorname{Re}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x-\int_{B(\rho)} a(x)\left|u_{\rho}\right|^{p-4}\left|\operatorname{Im}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x \\
&+\int_{B(\rho)}\left(\frac{\alpha(N-2+\alpha)}{p}|x|^{\alpha-2}-|x|^{\beta}-\omega\right)\left|u_{\rho}\right|^{p} d x
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Im}\left(\int_{B(\rho)} \widetilde{A_{p}} u_{\rho} u^{\star} d x\right)= & -(p-2) \int_{B(\rho)} a(x)\left|u_{\rho}\right|^{p-4} \operatorname{Im}\left(\bar{u}_{\rho} \nabla u_{\rho}\right) \operatorname{Re}\left(\bar{u}_{\rho} \nabla u_{\rho}\right) d x \\
& -\alpha \int_{B(\rho)}\left|u_{\rho}\right|^{p-2}|x|^{\alpha-1} \frac{x}{|x|} \operatorname{Im}\left(\bar{u}_{\rho} \nabla u_{\rho}\right) d x
\end{aligned}
$$

We can choose $\tilde{c}>0$ and $\omega>0$ (depending on \tilde{c}) such that

$$
\frac{\alpha(N-2+\alpha)}{p}|x|^{\alpha-2}-|x|^{\beta}-\omega \leq-\tilde{c}|x|^{\alpha-2}
$$

So, we obtain

$$
\begin{aligned}
& -\operatorname{Re}\left(\int_{B(\rho)} \widetilde{A_{p}} u_{\rho} u^{\star} d x\right) \geq(p-1) \int_{B(\rho)} a(x)\left|u_{\rho}\right|^{p-4}\left|\operatorname{Re}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x \\
& +\int_{B(\rho)} a(x)\left|u_{\rho}\right|^{p-4}\left|\operatorname{Im}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x+\tilde{c} \int_{B(\rho)}\left|u_{\rho}\right|^{p}|x|^{\alpha-2} d x \\
= & (p-1) B^{2}+C^{2}+\tilde{c} D^{2} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \left|\operatorname{Im}\left(\int_{B(\rho)} \widetilde{A_{p}} u_{\rho} u^{\star} d x\right)\right| \\
& \leq|p-2|\left(\int_{B(\rho)}\left|u_{\rho}\right|^{p-4} a(x)\left|\operatorname{Re}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x\right)^{\frac{1}{2}} \\
& \quad \cdot\left(\int_{B(\rho)}\left|u_{\rho}\right|^{p-4} a(x)\left|\operatorname{Im}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x\right)^{\frac{1}{2}} \\
& \quad+\alpha\left(\int_{B(\rho)}\left|u_{\rho}\right|^{p-4}|x|^{\alpha}\left|\operatorname{Im}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x\right)^{\frac{1}{2}}\left(\int_{B(\rho)}\left|u_{\rho}\right|^{p}|x|^{\alpha-2} d x\right)^{\frac{1}{2}} \\
& =|p-2| B C+\alpha C D
\end{aligned}
$$

where

$$
\begin{aligned}
B^{2} & =\int_{B(\rho)}\left|u_{\rho}\right|^{p-4} a(x)\left|\operatorname{Re}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x \\
C^{2} & =\int_{B(\rho)}\left|u_{\rho}\right|^{p-4} a(x)\left|\operatorname{Im}\left(\bar{u}_{\rho} \nabla u_{\rho}\right)\right|^{2} d x \\
D^{2} & =\int_{B(\rho)}\left|u_{\rho}\right|^{p}|x|^{\alpha-2} d x
\end{aligned}
$$

Let us observe that, choosing $\delta^{2}=\frac{|p-2|^{2}}{4(p-1)}+\frac{\alpha^{2}}{4 \tilde{c}}$ (which is independent of ρ), we obtain

$$
\left|\operatorname{Im}\left(\int_{B(\rho)} \widetilde{A_{p}} u_{\rho} u^{\star} d x\right)\right| \leq \delta\left\{-\operatorname{Re}\left(\int_{B(\rho)} \widetilde{A_{p}} u_{\rho} u^{\star} d x\right)\right\}
$$

If $\tan \theta_{\alpha}=\delta$, then $e^{ \pm i \theta} \widetilde{A_{p}}$ is dissipative in $B(\rho)$ for $0 \leq \theta \leq \theta_{\alpha}$. From [12, Theorem I.3.9] follows that the problem (4.7) has a unique solution u_{ρ} for every $\lambda \in \Sigma_{\theta}, 0 \leq \theta<\theta_{\alpha}$ where

$$
\Sigma_{\theta}=\{\lambda \in \mathbb{C} \backslash\{0\}:|\operatorname{Arg} \lambda|<\pi / 2+\theta\} .
$$

Moreover, there exists a constant C_{θ} which is independent of ρ, such that

$$
\begin{equation*}
\left\|u_{\rho}\right\|_{L^{p}(B(\rho))} \leq \frac{C_{\theta}}{|\lambda|}\|f\|_{L^{p}}, \quad \text { for } \lambda \in \Sigma_{\theta} \tag{4.8}
\end{equation*}
$$

Let us now fix $\lambda \in \Sigma_{\theta}$, with $0<\theta<\theta_{\alpha}$ and a radius $r>0$. We apply the interior L^{p} estimates ($c f$. [2, Theorem 9.11]) to the functions u_{ρ} with $\rho>r+1$. So, by (4.8), we have

$$
\left\|u_{\rho}\right\|_{W^{2, p}(B(r))} \leq C_{1}\left(\left\|\lambda u_{\rho}-\widetilde{A_{p}} u_{\rho}\right\|_{L^{p}(B(r+1))}+\left\|u_{\rho}\right\|_{L^{p}(B(r+1))}\right) \leq C_{2}\|f\|_{L^{p}}
$$

Using a weak compactness and a diagonal argument, we can construct a sequence $\left(\rho_{n}\right) \rightarrow \infty$ such that the functions $\left(u_{\rho_{n}}\right)$ converge weakly in $W_{\text {loc }}^{2, p}$ to a function u which satisfies $\lambda u-\widetilde{A_{p}} u=f$ and

$$
\begin{equation*}
\|u\|_{p} \leq \frac{C_{\theta}}{|\lambda|}\|f\|_{p}, \quad \text { for } \lambda \in \Sigma_{\theta} \tag{4.9}
\end{equation*}
$$

Moreover, $u \in D_{p, \max }\left(A_{p}\right)$. We have now only to show that $\lambda-\widetilde{A_{p}}$ is invertible on $D_{p, \max }\left(A_{p}\right)$ for $\lambda \in \Sigma_{\theta}$. Consider the set

$$
E=\left\{r>0: \Sigma_{\theta} \cap C(r) \subset \rho\left(\widetilde{A_{p}}\right)\right\}
$$

where $\underset{\sim}{C}(r):=\{\lambda \in \mathbb{C}:|\lambda|<r\}$. Since, by Theorem 3.7, 0 is in the resolvent set of $\widetilde{A_{p}}$, then $R=\sup E>0$. On the other hand, the norm of the resolvent is bounded by $C_{\theta} /|\lambda|$ in $C(R) \cap \Sigma_{\theta}$, consequently it cannot explode on the boundary of $C(R)$, then $R=\infty$ and this ends the proof of the theorem.

Remark 4.6. Since A_{p} generates an analytic semigroup $T_{p}(\cdot)$ on $L^{p}\left(\mathbb{R}^{N}\right)$ and the semigroups $T_{q}(\cdot)$, for $q \in(1, \infty)$ are consistent, see Theorem 3.7, one can deduce (as in the proof of [4, Proposition 2.6]) using Corollary 3.6 that $T_{p}(t) L^{p}\left(\mathbb{R}^{N}\right) \subset$ $C_{b}^{1+v}\left(\mathbb{R}^{N}\right)$ for any $t>0, \nu \in(0,1)$ and for any $p \in(1, \infty)$.

We end this section by studying the spectrum of A_{p}. We recall from Proposition 3.5 that

$$
\left\||x|^{\beta} u\right\|_{p} \leq C\left\|A_{p} u\right\|_{p}, \quad \forall u \in D_{p, \max }(A)
$$

So, arguing as in [4], we obtain the following results:
Proposition 4.7. Assume $N>2, \alpha>2$ and $\beta>\alpha-2$. Then:
(i) The resolvent of A_{p} is compact in L^{p};
(ii) The spectrum of A_{p} consists of a sequence of negative real eigenvalues which accumulates at $-\infty$. Moreover, $\sigma\left(A_{p}\right)$ is independent of p;
(iii) The semigroup $T_{p}((\cdot)$ is irreducible, the eigenspace corresponding to the largest eigenvalue λ_{0} of A is one-dimensional and is spanned by a strictly positive function ψ, which is radial, belongs to $C_{b}^{1+v}\left(\mathbb{R}^{N}\right) \cap C^{2}\left(\mathbb{R}^{N}\right)$ for any $v \in(0,1)$ and tends to 0 when $|x| \rightarrow \infty$.

References

[1] G. Cupini and S. Fornaro, Maximal regularity in L^{p} for a class of elliptic operators with unbounded coefficients, Differential Integral Equations 17 (2004), 259-296.
[2] D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order", Second edition, Springer, Berlin, 1983.
[3] L. Lorenzi and M. Bertoldi, "Analytical Methods for Markov Semigroups", Chapman \& Hall/CRC, Taylor \& Francis Group, Roca Baton, 2007.
[4] L. Lorenzi and A. Rhandi, On Schrödinger type operators with unbounded coefficients: generation and heat kernel estimates, J. Evol. Equ. 15 (2015), 53-88.
[5] G. Metafune, N. Okazawa, M. Sobajima and C. Spina, Scale invariant elliptic operators with singular coefficients, J.Evol.Equ.(2016), 1-49, doi 10.1007/s00028-015-0307-1.
[6] G. Metafune, D. Pallara and M. Wacker, Feller Semigroups on \mathbb{R}^{N}, Semigroup Forum 65 (2002), 159-205.
[7] G. Metafune and C. Spina, An integration by parts formula in Sobolev spaces, Mediter. J. Math. 5 (2008), 359-371.
[8] G. Metafune and C. Spina, Elliptic operators with unbounded coefficients in L^{p} spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), 303-340.
[9] G. Metafune, C. Spina and C. Tacelli, Elliptic operators with unbounded diffusion and drift coefficients in L^{p} spaces, Adv. Differential Equations 19 (2014), 473-526.
[10] G. Metafune, C. Spina and C. Tacelli, On a class of elliptic operators with unbounded diffusion coefficients, Evol. Equ. Control Theory 3 (2014), 671-680.
[11] N. Okazawa, An L^{p} theory for Schrödinger operators with nonnegative potentials, J. Math. Soc. Japan 36 (1984), 675-688.
[12] A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations", Applied Mathematical Sciences, Springer-Verlag, 1983.
[13] Z. SHEN, L_{p} estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546.
[14] M. Sobajima and C. Spina, Second order elliptic operators with diffusion coefficients growing as $|x|^{\alpha}$ at infinity, Forum Math. 28 (2016), 391-402.

Dipartimento di Ingegneria dell'Informazione Ingegneria Elettrica e Matematica Applicata Università degli Studi di Salerno Via Giovanni Paolo II, 132 I 84084 Fisciano (Sa), Italia acanale@unisa.it arhandi@unisa.it ctacelli@unisa.it

