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Orbifold techniques in degeneration formulas

DAN ABRAMOVICH AND BARBARA FANTECHI

In memory of Eckart Viehweg

Abstract. We give a new approach for relative and degenerate Gromov-Witten
invariants, inspired by that of Jun Li but replacing predeformable maps by transver-
sal maps to a twisted target. The main advantage is a significant simplification in
the definition of the obstruction theory. We reprove in our language the degener-
ation formula, extending it to the orbifold case.

Mathematics Subject Classification (2010): 14N35 (primary); 14D22 (sec-
ondary).

Introduction

0.1. Gromov-Witten invariants in the smooth case

Gromov-Witten invariants were originally defined for a compact symplectic man-
ifold, and in the algebraic language for a smooth projective complex variety. For
an extensive bibliography see [24]. From an algebraic viewpoint the construction
proceeds via the following steps.

Step 1. Definition of a proper moduli stack

M := Mg,n(X,�)

of stable maps to X with fixed discrete invariants � 2 H2(X, Z) and g, n 2

N, together with an evaluation map ev : M ! Xn .
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Step 2. Construction on M of a 1-perfect obstruction theory, giving rise to a virtual
fundamental class [M]

vir
2 Ad(M), where d is the expected dimension

of M .
Step 3. Definition of the invariants by integrating cohomology classes on Xn

against ev⇤

��Q
 
mi
i

�
[M]

vir�.
This construction has subsequently been extended to the case of orbifolds, namely
smooth Deligne-Mumford stacks, see [7, 22]. For Step 1 above this case required
care in the definition of stable maps, which were replaced by twisted stable maps
in order to preserve properness of the moduli, see [11]; on the other hand, the
obstruction theory in Step 2 stayed essentially the same. The main difference in the
formalism of Step 3 is that the evaluation map takes values in I(X)n , where I(X)
is the so called rigidified cyclotomic inertia stack of X .

0.2. Invariants of pairs and degenerate varieties

If X is singular, the moduli stack of stable maps is still proper; however, the natural
obstruction theory is not perfect even for very mild singularities, and the construc-
tion has to be modified to stand a chance to work.

The issue was addressed for singular varieties W0 = X1 tD X2, with X1,
X2 and D smooth appearing as fibers in a one-parameter family with smooth to-
tal space, by A.-M. Li and Y. Ruan [40]. It was also studied at about the same
time by E. Ionel and T. Parker [31, 32], and subsequently worked out in the alge-
braic language by Jun Li [41, 42]. Here the moduli of stable maps was changed in
such a way as to have a perfect obstruction theory while keeping properness. With
similar techniques, relative Gromov-Witten invariants were defined for a pair
(X, D) with X a smooth projective variety and D a smooth divisor in X . The
main tool introduced here is that of expanded degenerations and expanded pairs.

The degeneration formula is a way to express the Gromov-Witten invariants of
W0 = X1 tD X2 in terms of the relative invariants of the pairs (Xi , D). It is now a
key tool in Gromov-Witten theory.

There is also work preceding the cited papers where the ideas involved appear
in different guises. The idea of expanded degenerations and its use in enumera-
tive geometry was introduced by Z. Ran [54]. Even earlier Harris and Mumford
introduced the related idea of admissible covers [28], revisited using logarithmic
geometry by Mochizuki [46]. Related ideas with a different view can be found
in [12, 15, 18, 29, 57]. A simple approach in special but important cases was devel-
oped by Gathmann [25].

0.3. The twisting method

In this paper we will give an alternative algebraic definition of Gromov-Witten in-
variants for singular varieties as above, and of relative Gromov-Witten invariants,
which extends naturally also to Deligne-Mumford stacks. Our treament follows
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closely that of Jun Li. However, introducing appropriate auxiliary orbifold struc-
tures along the nodes of both source curves and target varieties allows us to give
a shorter definition of the the obtruction theory in Step 2 above, and a streamlined
proof of the degeneration formula. At the same time we obtain a somewhat more
general result, which applies to the orbifold case, see Theorem 0.1 below. We note
that a symplectic geometry approach to the orbifold case was developed by B. Chen,
A.-M. Li, S. Sun and G. Zhao in [19].

In a nutshell, the most difficult point in Jun Li’s approach is to define an ob-
struction theory on predeformable maps. A predeformable map C ! W0 from a
nodal curve C to a variety W0 with codimension-1 nodal singularities locally looks
like

C = Spec C[u,v]

(uv)
// Spec C[x,y,zi ]

(xy) = W0
uc x�oo

vc y,�oo

and zi 7! fi (u, v) arbitrary. As soon as c, the contact order, is > 1, this prede-
formability condition is not open on maps but rather locally closed. This means that
deformations and obstructions as predeformable maps cannot coincide with defor-
mations and obstructions as maps, so an obstruction theory must be constructed by
other means. Jun Li does this by a delicate explicit construction.

Our approach to this is the following: we replace W0 by the orbifold W0 =

[Spec C[⇠,⌘,zi ]
(⇠⌘) /µc] havingW0 as its coarse moduli space. Hereµc acts via (⇠, ⌘) 7!

(⇣c⇠, ⇣
�1
c ⌘), and x = ⇠ c, y = ⌘c. Then the map C ! W0 locally lifts to

C // W0
u ⇠�oo

v ⌘.�oo

Transversal maps of this type form an open substack of all maps, so an obstruction
theory is immediately given by the natural obstruction theory of maps. An identical
twisting construction applies in the case of pairs.

This in itself works well when we look at one node of C mapping to a singular
locus of W0. When several nodes p j map to the same singular locus, they may
have different contact orders c j . If we pick an integer r divisible by all c j , take
W0 = [Spec C[⇠,⌘,zi ]

(⇠⌘) /µr ], and at each p j put a similar orbifold structure on C
with index r/c j , we still obtain a transversal map and therefore a good obstruction
theory. In order to keep the moduli stacks separated, we must select a way to choose
the integer r . We do this using the notion of a twisting choice – a rule that assigns
to a collection c = {c j } of contact orders a positive integer r = r(c) divisible by all
the contact orders c j , see Definition 3.20.

With this at hand we can define Gromov-Witten invariants. Theorem 4.7 shows
that our invariants are independent of the twisting choice. Theorem 4.11 shows they
are defomation invariants.
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0.4. The degeneration formula

Theorem 0.1.
*

nY
i=1

⌧mi (�i )

+W0
�,g

=

X
⌘2�

Q
j2M

d j

|M|!

X
� j2F
for j2M

(�1)✏
*Y
i2N1

⌧mi (�i )

����
Y
j2M

� j

+(X1,D)

41

·

*Y
i2N2

⌧mi (�i )

����
Y
j2M

�̃_j

+(X2,D)

42

.

0.4.1. User’s guide - left-hand side

1. W0 is a proper Deligne-Mumford stack having projective coarse moduli space
W̄0. The rigidified inertia stack of W0 is denoted I(W0).

2. W0 = X1tD X2 has first-order smoothable singular locus D separating it in two
smooth stacks X1, X2, see Subsections A.1 and A.2.

3. g � 0 is an integer and � is a curve class on W0 (see 3.1).
4. �1, . . . , �n 2 H⇤

orb(W0, Q) := H⇤(I(W0), Q) are classes having homogeneous
parity, see opening of Section 5. In particular only classes on sectors transversal
to D are relevant.

5. m1, . . . ,mn � 0 are integers.
6. Consider a twisting choice r (see 3.20) and the moduli stack K := Kr

0(W0) of
r-twisted stable maps (see 3.24).

7. K carries several universal maps, the coarsest of which is a stable map C ! W̄0
from the coarse contracted curve C to the coarse target W̄0. We have n sections
si : K ! C . We denote  i = s⇤i c1(!C/K).

8. We have n evaluation maps evi : K ! I(W0).
9. Finally we define

*
nY
i=1

⌧mi (�i )

+W0
�,g

= deg

  
nY
i=1

 
mi
i · ev⇤

i �i

!
\ [K]

vir

!
.

0.4.2. Right-hand side

1. F is a homogeneous basis for H⇤(I(D), Q).
2. �̃_ is the dual of � 2 F with respect to the Chen-Ruan pairing, i.e.

R
I(D)

1
r ◆

⇤�̃_j ·

�i =

R
I(D) ◆

⇤�̃_j · �i = �i, j , see Subsection 5.2.1.
3. � is the set of splittings of the data g, n,�, see 5.1 for all details. An element
⌘ = (41,42) 2 � includes in particular the data below:
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4. N1, N2 is a decomposition of {1, . . . , n} in two subsets.
5. 41,42 is a possibly disconnected splitting of the data �, g in two modular
graphs having roots labelled by M = {n + 1, . . . , n + |M|}, see 4.13.

6. di for i 2 M are assigned intersection multiplicities satisfying condition B of
5.1

7. We take K1 := Kr
41

(X1, D) and K2 := Kr
42

(X2, D).
8. For j 2 M the new evaluation maps are ev j : K1 ! I(D), and similarly for
K2.

9. (�1)✏ is the sign determined formally by the equality

nY
i=1

�i
Y
j2M

� j �̃
_

j = (�1)✏
Y
i2N1

�i
Y
j2M

� j
Y
i2N2

�i
Y
j2M

�̃_j .

10. Finally we define

*Y
i2N1

⌧mi (�i )

����
Y
j2M

� j

+(X1,D)

41

:= deg

  Y
i2N1

 
mi
i · ev⇤

i �i

! Y
j2M

ev⇤

j� j

!
\ [K1]vir

!

and similarly

* Y
j2N2

⌧m j (� j )

����
Y
j2M

�̃_j

+(X2,D)

41

:= deg

  Y
i2N2

 
mi
i · ev⇤

i �i

! Y
j2M

ev⇤

j �̃
_

j

!
\ [K2]vir

!
.

Perhaps the most mysterious part of the formula is the factor
Q

j2M d j . In previous
works this arises as a result of delicate deformation theory of admissible or prede-
formable maps. In this paper it arises as a natural, but still delicate, outcome of the
geometry of orbifold maps, see Lemma 1.6 and Proposition 5.18.

0.5. The symplectic approach

A degeneration formula for symplectic orbifolds was worked out in [19], which
relies on orbifold good maps in the sense of Chen and Ruan and on analytic tech-
niques. We have compared our formula with that of [19] and have been convinced
that the results coincide, although the formalisms are sufficiently different that a
direct comparison would be very technical.
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0.6. The logarithmic approach

Jun Li’s study of predeformable maps and their obstruction theory was inspired by
logarithmic structures. Recently a more direct use of logarithmic structures has be-
come possible, relying on the work of Olsson [50]. B. Kim [34] replaced J. Li’s
obstruction theory by one induced by the natural log structures, with a degeneration
formula worked out by Q. Chen in [21] and virtual localization worked out by Mol-
cho and Routis [47]. M. Gross and B. Siebert [27], Chen [20] and Abramovich and
Chen [3] have developed a logarithmic theory without expansions.

These approaches have been compared in [9], where it was shown that Li’s
invariants, the invariants introduced here, Kim’s invariants, and the logarithmic in-
variants defined without expansions all coincide.

0.7. Outline of the paper

In Section 1 we review twisted curves and root constructions, as their fine structure
is key to our methods.

In Section 2 we briefly review expanded pairs and expanded degenerations
and their twisted versions, and describe their boundary. In addition we introduce
a weighted version of the stacks of twisted expanded pairs and expanded degen-
erations. Finally we treat stable configurations of points on expanded pairs and
expanded degenerations.

Section 3 leads to the construction of stacks of r-twisted stable maps and a
proof of their properness.

In Section 4 we define Gromov-Witten invariants using r-twisted stable maps.
We prove their deformation invariance and independence of twisting choice.

The degeneration formula is restated and proven in Section 5.
Results in Sections 4 and 5 rely on compatibility results for virtual fundamen-

tal classes. We find it useful to systematically use Costello’s result [23, Theorem
5.0.1] and its generalization in [44, Proposition 2, Section 4.3] where a smoothness
assumption is removed.

In addition we have three appendices, with necessary material which the
knowledgeable reader may only wish to peruse when needed. In Appendix A we re-
view material concerning pairs (X, D), nodal singularities, and transversality. Ap-
pendix B is devoted to a number of basic construction with stacks. In Appendix
C we review the algebraicity of stacks of maps and construction and properties of
their obstruction theories.

0.8. Conventions

The following conventions will be in force throughout the paper.
We work over an algebraically closed base field of characteristic 0, denoted by

C. We note that the assumption that the field be algebraically closed is mostly for
convenience, whereas the characteristic assumption is significantly harder, and for
some purposes impossible, to avoid.
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Further, as soon as we study Gromov-Witten invariants, we require the field C
to be the field of complex numbers. This allows us to access singular cohomology,
in which a Künneth decomposition of the diagonal of D is available. One can avoid
this by stating a cycle-theoretic degeneration formula as in [42], but we do not
pursue this here.

All stacks and morphisms are assumed to be locally of finite type over C,
unless otherwise specified.

A point in a scheme or algebraic stack (sometimes denoted by p 2 X) is a
C-valued point, unless otherwise specified.

Whenever we say locally we always mean étale locally, unless otherwise spec-
ified.

If X is an algebraic stack, by D(X) we denote the derived category of sheaves
of OX -modules with coherent cohomology. An object F 2 D(X) is called perfect
of perfect amplitude contained in [a, b], or just perfect in [a, b] for brevity, if it is
locally isomorphic to a complex of locally free sheaves in degrees a, a + 1, . . . , b.

An element in a skew commutative graded ring is of homogeneous parity if it
is a sum of only even-degree or only odd-degree terms, in which case its parity is
even or odd, respectively.

0.9. Notation

C fixed algebraically closed field of characteristic 0.
A The stack [A1/Gm].
LX/Y , L f cotangent complex of a morphism f : X ! Y .
k number of components in an expansion
` generic splitting divisor
r twisting index along a divisor
r, r twisting sequence on an expansion, twisting choice
nX , ei number of legs to general point, twisting tuple
nD , f j number of legs to boundary divisor, twisting tuple
c j , d j contact order and intersection multiplicity at such a point
d � · D
m index of ⌧ in descendant notation ⌧m(� )

h, j number of components of a disconnected graph, their index
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1. Roots and twists

The aim of this section is to briefly outline the definition and properties of several
stacks and universal families parametrizing twisted versions of the moduli spaces
used in Jun Li’s original proof. The starting point comes from the stack of twisted
prestable curves, which was introduced in [7, 11] to define GW invariants of orb-
ifolds: the only difference with the usual prestable curves is that it is allowed to
add a twisted, or stacky, structure at the marked points and nodes. In each case
the automorphism group is finite cyclic, and in the case of nodes it is also required
to be balanced, a necessary and sufficient condition for the twisted curves to be
smoothable.

We apply the same principle to Jun Li’s moduli stacks of expanded pairs and
expanded degenerations, where we twist both the boundary divisors and the singular
locus. We suggest that the reader skim through the definitions, going back to them
and to the properties as needed in the course of reading the paper.

1.1. Root stacks

We review here the theory developed in [7, Appendix B], [17, Section 2], [45, Sec-
tion 4].

1.1.1. Root stack of a line bundle

Let X be an algebraic stack, L a line bundle on X , and r > 0 an integer. We define
a stack rpL/X by requiring that it parametrizes r-th roots of the pullback of L:
objects of rpL/X over a base scheme S are triples ( f,M,�) where

(1) f : S ! X is a morphism, i.e., an object of X (S),
(2) M is an invertible sheaf on S, and
(3) � : Mr

! f ⇤L is an isomorphism.

An isomorphism between ( f,M,�) and ( f̄ , M̄, �̄) over the identity of S is an iso-
morphism ↵ : M ! M̄ of line bundles such that � = �̄ � ↵⌦r . Note that there is a
natural isomorphism rpL/X !

r
p
L_/X defined by mapping ( f,M,� : M⌦r

!

f ⇤L) to ( f,M_, (�_)�1).

Proposition 1.1. The stack rpL/X is algebraic, and it is a gerbe banded by µr
over X . In particular, the structure map rpL/X ! X is étale and proper.
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Note that trivialising the gerbe, i.e., giving an isomorphism rpL/X ! X ⇥

Bµr , is equivalent to choosing a line bundle M on X together with an isomorphism
M⌦r

! L .

1.1.2. Root of a divisor

Let X be an algebraic stack and D an effective Cartier divisor on X ; it defines a
line bundle OX (D) = I_

D with a canonical section 1D . We denote by X (
rpD)

the stack parametrizing simultaneous r-th roots of the pullback of I_

D and of the
section: objects over a base scheme S are tuples ( f,M,�, s) where

(1) f : S ! X is a morphism,
(2) M is an invertible sheaf on S,
(2) � : Mr

! f ⇤L an isomorphism, and
(4) s 2 H0(M) a section,

such that �(sr ) = 1D . Again arrows are given using pullbacks.
Notice that in case f : S ! X is a morphism such that f ⇤D is still a Cartier

divisor, then the groupoid X (
rpD)(S) is rigid, and each isomorphism class defines

a Cartier divisor D := Z(s) on S such that mD = f ⇤D.

Proposition 1.2. The stack X (
rpD)(S) is algebraic, and the structure morphism

f : X (
rpD)(S) ! X is flat of relative dimension zero, and an isomorphism away

from D. As a stack the divisor D is isomorphic to rpND⇢X/D.

If we choose a line bundle M on X together with an isomorphism M⌦r !

OX (D), we can associate to it a simple cyclic cover Y ! X branched over D; in
this case, X (

rpD) is isomorphic to the stack quotient [Y/µr ]. From this it follows
that if (X, D) is a locally smooth pair in the sense of A.1 (i.e., D is smooth and
X is smooth near D) then so is (X (

rpD),D). In this case we sometimes say that
(X (

rpD),D) is obtained from (X, D) by twisting D to order r .

1.1.3. Roots with several divisors

Given finitely many effective Cartier divisors D1, . . . , Dk on X , and given positive
integers r1, . . . , rk , we use the following notation:

X
⇣

r1
p
D1, . . . , rk

p
Dk

⌘
:= X

⇣
r1
p
D1

⌘
⇥X · · · ⇥X X

⇣
rk
p
Dk

⌘
.

We will mostly use this notation when (X, Di ) is a locally smooth pair for ev-
ery i and the divisors Di meet transversally: in this case, the same is true for
X ( r1

p

D1, . . . , rk
p

Dk) and the Di .

1.1.4. Comparison of roots

Note that if r = r 0
· r 00 then ⌫r = ⌫r 0 � ⌫r 00 . In particular we have canonical mor-

phisms rpL/X !
r 0pL/X and X (

rpD) ! X (
r 0pD). In fact this gives a canonical
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isomorphism
rpL/X // r 00

q
M
� �

r 0pL/X
�

and similarly an isomorphism

X (
rpD) //

⇣
X
⇣

r 0pD
⌘⌘ ⇣

r 00pD
⌘

.

1.1.5. Twisted curves as root stacks: the markings

Suppose now C is a twisted curve with markings 6i with indices ei . Then C is
canonically a root stack as follows. Consider the curve Cu obtained by gluing the
coarse moduli space of the smooth locus Csm with C r ([6i ). We have a “partial
coarse moduli space” morphism ⇡ 0

: C ! Cu . Denote by 6u
i the markings on Cu .

Then ⇡ 0⇤6u
i = rp6i . This gives a canonical morphism

C ! Cu
⇣

e1
p
61, . . . ,

en
p

6n
⌘

which is easily seen to be an isomorphism [7, Theorem 4.2.1].
Generalizing the structure of twisted curves at nodes is a bit more subtle,

see Subsection 1.4.

1.1.6. Triviality of relative automorphisms

We return to the general setup, and consider Since X (
rpD) ! X is representable

over the dense open X r D, the groupoid AutX (X (
rpD)) is equivalent to a group,

see Subsection B.1, and we regard it as a group. But since for dominant f : S ! X
an object ( f,M,�, s) is determined by f , the group AutX (X (

rpD)) is trivial.

1.1.7. Inertia of root stacks when X is a scheme

Inertia stacks are reviewed in Subsection B.2.1. Since we are working over C we
will identify inertia stacks and cyclotomic inertia stacks. It will be useful for us
to describe the cyclotomic inertia stack of X (

rpD) and its rigidified version, and
similarly for the substackD. The picture is clear when X is a scheme or an algebraic
space: since D is a gerbe we have I(D) = t

r�1
i=0D and I(D) = t

r�1
i=oDi , where

Di '
gpND⇢X/D and g = gcd(r, i). We similarly have

I
⇣
X
⇣

rpD
⌘⌘

= X
⇣

rpD
⌘

t

r�1a
i=1

D,

and

I
⇣
X
⇣

rpD
⌘⌘

= X
⇣

rpD
⌘

t

r�1a
i=1

Di .
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The latter follows from the decompositions into an open substack and closed com-
plement

I
⇣
X
⇣

rpD
⌘⌘

= (X r D) t I(D)

and

I
⇣
X
⇣

rpD
⌘⌘

= (X r D) t I(D).

1.1.8. Inertia of root stacks when X is an orbifold

In case X itself is an orbifold the picture is almost identical, using the inertia stacks
of X and D: we still have decompositions into an open substack and closed com-
plement precisely as above. The coarse moduli space of the stack I(D) consists of
r copies of the coarse moduli space of I(D). However the stack structure of the
components of I(D) and I(D) becomes slightly more involved than in the case
when X is representable.

We note that I(BGm) ' Gm⇥BGm , and the morphism I(BGm) ! I(BGm)
is simply ⌫r ⇥ ⌫r . In particular this morphism is a µr -gerbe over a µr torsor,
corresponding to the gerbe factor BGm ! BGm and the torsor factor Gm !

Gm . As discussed in Subsection B.2.1, forming the inertia is compatible with fiber
products. We obtain that I(D) = I(D) ⇥I(BGm) I(BGm) ! I(D) is canonically
a µr -gerbe over a µr torsor.

Since D is assumed Deligne-Mumford, the image of I(D) ! Gm is dis-
crete, so the torsor is trivial (though as a group scheme it is a possibly nontrivial
extension). In particular every component of I(D) is a µr -gerbe over the image
component of I(D). By definition this is the gerbe associated to the normal bundle
of D, namely the pullback of D. We obtain the following formula:

I(D) = µr ⇥ I(D) ⇥D D.

Of course the group scheme structure of I(D) ! D is not a product but the ex-
tension of the group scheme I(D) ⇥D D ! D by µr corresponding to the normal
bundle of D. Explicitly, one can look at local models on X of the form [V/G],
where V is smooth and G is the stabilizer of a geometric point. We may assume
that D is defined by an eigenfunction x . Denote the character of the action of G
on x by � : G ! Gm . Then a local model of X (

rpD) is given by [Ṽ /G̃], where
Ṽ = SpecV OV [u]/(ur � x), and G̃ = G ⇥

�,Gm ,⌫r
Gm is the natural extension of G

by µr .
A similar description follows for rigidified inertia stack. What we will need is

the following:
Lemma 1.3. Let (x̃, g̃) be an object of a component Z ⇢ I(D). Let (x, g) be the
image object of the corresponding component Z ⇢ I(D). Denote by (x̃, g̃)[]hg̃i and
(x, g)[]hgi the corresponding objects of components Z ⇢ I(D) and Z ⇢ I(D).
Write |hg̃i| =

r
c |hgi|. Then the morphism Z ! Z is a gerbe banded by µc.
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Proof. We have that Z ! Z is a gerbe banded by hg̃i and Z ! Z is a gerbe
banded by hgi. Also Z ! Z is banded by µr . Chasing the diagram shows that
Z ! Z is indeed a gerbe banded by a cyclic group, and its order is clearly the ratio
|hgi| · r/ |hg̃i| = c.

1.2. Twisted curves

A prestable twisted curve with n markings is a one dimensional separated con-
nected Deligne-Mumford stack C, with at most nodal singularities, together with a
collection of disjoint closed substacks 61, . . . ,6n of the smooth locus of C such
that:
(1) the open locus Csm r

S
6i in C is a scheme;

(2) each node is a balanced node.
The latter condition means that locally C looks like the model balanced node of
index rp

Nrp :=

h
Spec (C[u, v]/(uv))

�
µrp

i
where the action of µrp is balanced, namely (u, v) 7! (⇣rpu, ⇣�1

rp v).
Similarly, locally near each 6i the twisted curve C looks like⇥

SpecC[u] / µei
⇤

where µei acts via u 7! ⇣ei u. The integers e1, . . . , en are the orbifold indices of the
markings 6i .

A family of twisted prestable curves with orbifold indices e1, . . . , en is a flat
morphism C ! S together with closed substacks (61, . . . ,6n) of C such that:
(1) 6i is a gerbe banded by µei over S;
(2) each fiber (Cs,61,s, . . . ,6n,s) is a twisted prestable curve with orbifold in-

dices ei .
1.2.1. Automorphism groups of twisted curves

By [11, Lemma 4.2.3], see Subsection B.1, the 2-groupoid of twisted curves is
equivalent to a stack, so we can speak of automorphisms of twisted curves.

Let ⇡ : C ! C be the morphism from a twisted curve C to its coarse moduli
space C . Since the formation of C is functorial, the automorphism group of C acts
on C . Consider the group AutCC of automorphisms of C acting trivially on C . As
shown in [4, Proposition 7.1.1] there is a canonical isomorphism

AutCC '

Y
p2Sing(C)

µrp .

Notice that nodes contribute but markings do not. These automorphisms are known
as ghost automorphisms, as they become “invisible” when looking only at C . The
action of µrp is induced on local coordinates by (⇠, ⌘) 7! (⇣rp⇠, ⌘), equivalently
(⇠, ⌘) 7! (⇠, ⇣rp⌘). We further discuss these through gluing data in 1.4.2 below.
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1.2.2. Deformations of twisted curves

We now consider proper twisted curves. Just like the untwisted case, deformations
of twisted curves are unobstructed [8, Proposition 2.1.1], [4, 3.0.3]. The infinites-
imal theory is identical to the untwisted case: first-order infinitesimal automor-
phisms are in the group Hom(�1C(

P
6i ),OC), first-order deformations in Ext1 and

obstructions vanish since Ext2 = 0.
Again as in the untwisted case, the sheaf Ext1(�1C(

P
6i ),OC) is a sum of one-

dimensional skyscraper sheaves supported at the nodes: Ext1(�1C(
P
6i ),OC) =

�p2Sing(C)Ext1(�1C(
P
6i ),OC)p. The balanced action condition guarantees that

the action of the stabilizers on these skyscraper sheaves is trivial, therefore they are
generated by sections. The local-to-global spectral sequence for Ext gives epimor-
phisms

Ext1
⇣
�1C

⇣X
6i

⌘
,OC

⌘
! H0

✓
Ext1

⇣
�1C

⇣X
6i

⌘
,OC

⌘
p

◆

for all p 2 Sing(C), corresponding to a divisor 1p in the versal deformation space
– the locus where the node p persists.

1.2.3. Comparing deformations and automorphisms of C and C

Since AutCC is discrete, it does not affect first-order infinitesimal automorphisms,
so the homomorphism

Hom
⇣
�1C

⇣X
6i

⌘
,OC

⌘
! Hom

⇣
�1C

⇣X
6̄i

⌘
,OC

⌘

is an isomorphism.
On the other hand the action of AutCC on H0

⇣
Ext1(�1C(

P
6i ),OC)

⌘
is eas-

ily seen to be effective. The deformation spaces of C and C are smooth and have
the same dimension. It follows that the deformation space DefC,6i of the twisted
curve is a branched cover of the deformation space DefC,6̄i

of the coarse moduli
space, with index rp along 1p. See [1, 3.5], [52, 1.10]. If we denote by 1 p̄ the
corresponding divisor in DefC,6̄i

, then the pullback of the divisor 1 p̄ in DefC,6i is
the divisor rp1p. It follows that over the smooth locus of1p, the scheme-theoretic
inverse image of 1 p̄ is locally of the form 1p ⇥ SpecC[✏]/(✏rp ).

1.2.4. Moduli of twisted curves

Families of twisted prestable curves of genus g with n markings form an algebraic
stack, denotedMtw

g,n; its connected components are labeled by the indices ei of the
markings, and they are all isomorphic to each other ( [7, Theorem 4.2.1], [52, The-
orem 1.8]). We have an evident embeddingMg,n ,! Mtw

g,n , since a curve is in par-
ticular a twisted curve. Taking coarse moduli spaces gives a left inverse morphisms
Mtw

g,n ! Mg,n . Even when fixing ei , the latter morphism is not of finite type
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and not separated – over the nodal locus of Mg,n there are infinitely many bound-
ary components of Mtw

g,n corresponding to different indices at the nodes. Along
a boundary component 1 ⇢ Mtw

g,n corresponding to a node with index rp, this
morphism is branched with index rp as described above. A similar result holds on
universal families [1, Section 3.3], given by the usual identification of the universal
families in terms of moduli of curves with an additional untwisted marking [11,
Corollary 9.1.3].

1.3. Maps and lifts

We now follow the key observation of Cadman’s work [17], especially Theorem
3.3.6, relating tangency with orbifold maps. Suppose now (C,6) a twisted curve,
(X, D) a locally smooth pair and g : C ! X a morphism such that g⇤D = c6.
We call c the contact order of C and D at p. (Note that if 6 is twisted with index
e, then deg6 = 1/e and the intersection multiplicity of C and D at P is d = c/e.)

Lemma 1.4. Let r, r6 � 1 be integers, let X 0
= X (

rpD) with divisor D, and
similarly C 0

= C(
r6
p

6) with divisor 6̃. We assume c divides r . Then

(1) g : C ! X lifts to g̃ : C 0
! X 0 if and only if r |c · r6 ,

(2) when r |c · r6 such lift is unique up to unique isomorphism,
(3) the lift is representable if and only if r = c · r6 , and
(4) the lift is transversal if and only if r = c · r6 .

Proof. (see [17, Theorem 3.3.6]) For:

(1) a lift corresponds to a line bundle M onC 0 and a section s such that sr = g̃⇤1D .
But g⇤1D = 1c6 and 16 pulls back to 1

r�
6̃
on C 0. So g̃⇤1D = 1c·r6

6̃
. It follows

that if a lift exists then r |c · r� . And if rd = c · r� for some integer d, the pair
(O(d6̃), 1d

6̃
) gives the desired lift C 0

! X 0.
(2) Uniqueness follows since (O(6̃), 16̃)|Cr6 ' (O, 1) which has no nontrivial

automorphisms.
(3) It suffices to consider points over6. Here automorphisms of an object (L , s =

0, Lr6 ' O(6̃)) of C 0 are given by L ⇣
! L with ⇣ a primitive r6 - root. The

action on O(d6̃) = Ld is via ⇣ d , which has a nontrivial kernel exactly when
d > 1.

(4) We have g̃⇤D = d6̃, so g̃ is transversal if and only if d = 1.

Remark 1.5. A similar result holds without the assumption that c|r , with part (3)
modified. See [17, Theorem 3.3.6].

Given a morphism (C,6) ! (X, D), the restriction 6 ! D is an object
of a component Z of I(D). When r = cr6 , the representable and transversal lift
(C 0, 6̃) ! (X 0,D) gives rise to an object 6̃ ! D of a component Z of I(D)
lying over Z . The following computation will be used in the degeneration formula:
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Lemma 1.6. The morphism Z ! Z is a gerbe banded by µc.

Proof. The object 6 ! D is the rigidification of an object corresponding to (x, g)
with |hgi| = e, and 6̃ ! D is the rigidification of an object corresponding to (x̃, g̃)
with |hg̃i| = e · r6 . But r6 = r/c and the result follows from Lemma 1.3.

1.4. Twisting along a nodal divisor

We now want to generalize the singularity structure of a twisted curve to the fol-
lowing case. Let W be an algebraic stack, nodal and first order smoothable along a
closed substack D, as discussed in A.3. Assume also thatW = X1tD X2 where X1
and X2 are closed substacks, which along D are smooth and intersect transversally.
The ordering of Xi will be kept throughout the discussion. Assume we are given an
isomorphism of Ext1(�W ,OW )|D with OD , i.e., an isomorphism ↵ : N1 ! N_

2 ,
where Ni = ND/Xi .
Definition 1.7. We define the stack obtained by twisting W along D with index
r , or adding a balanced node structure of index r along D, denoted W (

rpD), as
follows. Let X 0

i := Xi ( rpD), and D0

i ⇢ X 0

i the reduced inverse image of D, so
that D0

i is isomorphic to
rpNi/D. Let ⇡i : D0

i ! D be the structure morphism,
and let �i : L⌦r

i ! ⇡⇤

i Ni the universal line r-th root. Let � : D0

1 ! D0

2 be the
morphism defined by the triple (L_

1 ,⇡1,↵ � (�_

1 )�1); it is easy to see that � is an
isomorphism. We defineW (

rpD) to be the stack obtained by gluing X 0

1 to X
0

2 along
the identification of D0

1 with D
0

2 via �. We let D
0 be the closed substack image of

either D0

i .
Remark 1.8. A generalization of this construction and more information about it
may be found in [2] and [16].

1.4.1. Gluing as pushout

In Definition 1.7, the term gluing means the existence of a 2-pushout diagram

D0 //

✏✏

X 0

1

✏✏
X 0

2
// W (

rpD).

See [7, Appendix A]. In particular, for every algebraic stack Y , the groupoid of
morphisms fromW(

rpD) to Y has as objects the triples ( f1, f2, ")where fi : X 0

i !Y
is a morphism and " is a 2-morphism between f1|D0

1
and f2|D0

2
� �; a 2-morphism

from ( f1, f2, ") to (g1, g2, ⇣ ) is a pair of 2-morphisms ↵i : fi ! gi such that the
two 2-morphisms from f1|D0

1
to g2|D0

2
� � induced respectively by " and ↵2 and by

↵1 and ⇣ coincide.
In particular, the structure maps X 0

i ! W and the identity of � define a mor-
phism ⇡ : W (

rpD) ! W .
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Lemma 1.9.

(1) W (
rpD) is an algebraic stack which is nodal and first-order smoothable along

D0
;

(2) ⇡ is proper, quasifinite and an isomorphism over W r D.

Proof.

(1) The only nontrivial part to check is the first-order smoothability. This comes
from the identification of L2 with L_

1 via �, and the fact that Li = ND0

i/X
0

i
.

(2) Properness is local in the smooth topology of the target, so we may assume that
W = An

⇥ N1; then W (
rpD) = An

⇥ Nr , and we are done since Nr ! N1
is proper. Quasifiniteness is also smooth local in the target and follows in the
same way. The isomorphism over W r D is obvious from the definition, as it
is the case D = ;.

1.4.2. Automorphisms

Unlike root stacks, twisted nodal stacks do have nontrivial relative automorphisms.

Proposition 1.10. Let hi be an automorphism of Xi restricting to the identity on
D, and let h : W ! W be the induced automorphism. Each hi acts on Ni by
multiplication by a nowhere vanishing regular function �i on D. Then the set of
isomorphism classes of automorphisms of W (

rpD) lifting h (in the sense of Lemma
B.2) is in natural bijection with the set of regular functions " on D such that
"r = �1�2.

Proof. Write W 0
:= W (

rpD) for brevity. We apply 1.4.1 with the stack Y = W 0.
Let h0

: W 0
! W 0 be a lifting, and (h0

1, h
0

2, ") the corresponding triple. Then
h0

1 and h
0

2 are determined up to unique 2-isomorphism by Lemma B.2. All that is
left is to find a two-isomorphism " : h0

1|D0

1
! h0

2 � � lifting the 2-isomorphism
� : h1|D1 ! h2|D1 induced by h. Since h|D acts on L = Ext1(�W ,OW )|D by
multiplication with �1�2, we have to find an automorphism " of its r-th root whose
r th power is �1�2. Every automorphism of a line bundle is a nowhere vanishing
function ", and the lifting condition means "r = �1�2.

Corollary 1.11. In particular the group of automorphisms of W (
rpD) in the sense

of Subsection B.1 lifting the identity of W is naturally isomorphic to µr (D); if D is
connected, then it is just µr .

As in the case of curves, elements of this group are called ghost automor-
phisms.
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1.4.3.

See [1, Section 3.3]: suppose given a one-parameter smoothing of W along D, that
is a flat morphism ⇡ : W ! B with B a smooth curve and an isomorphism of
W0 := ⇡�1(b0) with W such thatW is smooth along D. Then the balanced node
structure can be described more directly as follows. LetW 0 be the fiber product over
W̃ ofW( rpW1) andW( rpW2); by the universal property, the morphismW 0

! B
induces ⇡̃ : W 0

! B( rpb0). Then W (
rpD) is just the fiber of ⇡̃ over a geometric

point of B( rpb0) over b0.
Note that the one-parameter smoothing induces a trivialization of Ext1(�W,OW),

unique up to a non-zero scalar (corresponding to a choice of the basis of Tb0B).

1.4.4. Twisted curves and twisted nodes

Consider a node } of index r on a twisted curve C, and assume the two branches of
C at } belong to two different components of C. Replacing C by an open neighbor-
hood of } we may assume C = C1 t} C2. Let C be the coarse moduli space of C
and p the image of }. It follows from the definition that C = C( rpp).

Even if the node } is not locally separating in the Zariski topology, there is
an étale neighborhood where it is, so in fact every twisted node is obtained by this
construction locally in the étale topology. See [52] for a formalism which works in
general; we will not use this generality in this paper.

1.4.5. Maps and lifts

Here is the result analogous to 1.4 for nodes:
Lemma 1.12. Let C = C1 t6 C2 be a nodal twisted curve and let W = X1 tD X2
have first-order smoothable nodal singularities. Let g : C ! W be a representable
morphism, given via gi : Ci ! Xi ⇢ W and an isomorphism � : (g1)|6 ! (g2)|6 .
Assume g⇤

i D = c · 6 as Cartier divisor on Ci (so the two contact orders agree).
Let r, r6 � 1 be an integers, and consider the twisted structures W 0

= Y (
rpD) and

C 0
= C(

r6
p

D). We again assume c divides r . Then
(1) g : C ! W lifts to g̃ : C 0

! X 0 if and only if r |c · r6 ,
(2) such lift is representable if and only if r = c · r6 , and
(3) such lift is transversal if and only if r = c · r6 .
Proof. The necessity in (1) as well as (2) and (3) hold since the Lemma 1.4 applies
to gi . To show that r |c·r6 is sufficient in (1), consider the lift g̃i of gi corresponding
to the line bundle O(d6̃) on (Ci )0 with section si = 1d

6̃
, where rd = cr6 as in

Lemma 1.4; it clearly satisfies sri = g̃⇤

i 1E .
The isomorphism � of Definition 1.7 sends O(C1)0(6̃)|6̃ to O(C2)0(6̃)_|6̃ . In

particular it sends O(C1)0(d6̃)|6̃ to O(C1)0(d6̃)|6̃ , giving the gluing data for a lift
g̃ : C 0

! X 0.

Remark 1.13. In this case we do not have uniqueness since we may compose by
ghost automorphisms.
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2. Expanded pairs and degenerations

2.1. Expanded pairs

Convention 2.1. In this subsection we fix a locally smooth pair (X, D), i.e., X
is an algebraic stack smooth along a smooth divisor D. Write N for ND/X . Let
P := PD(N � OD), with its sections D� and D+ having normal bundle N_ and
N respectively. Let Pi (for i � 1) be copies of P, and let D�

i and D
+

i be the corre-
sponding sections. For a positive integer r , let Dr :=

rpN/D, see Subsection 1.1.
Definition 2.2. Let k � 0 be an integer. Define X[k] to be the algebraic stack
obtained by gluing X to P1 via the natural isomorphism of D with D�

1 , and for
every i 2 {1, . . . , k � 1} gluing Pi with Pi+1 via the natural isomorphism of D+

i
with D�

i+1.

X[k] := X1 t

D=D�

1

P1 t

D+

1 =D�

2

· · · t

D+

k�1=D�

k

Pk .

Note that X[k] has nodal first-order smoothable singularities along its singular lo-
cus, which is the disjoint union of D0, . . . , Dk�1 (where Di is the image of either
D�

i+1 or D
+

i ). Write Dk for the image of D
+

k ; note that X[k] is smooth along Dk
and that ◆⇤NDk/X[k] = N , if ◆ : D ! Dk ⇢ X[k] is the natural isomorphism.

We call the sequence of morphisms D ! X[k] ! X an untwisted expanded
pair. (It is also sometimes called an untwisted half accordion.) of length k.
Definition 2.3. Let r := (r0, . . . , rk) be a sequence of positive integers. Define
X[k](r) ! X[k] to be the morphism obtained by twisting X[k] along Di with
index ri ; note that we can apply the construction in Subsection 1.4 since the relevant
normal bundles are naturally dual to each other. We call the sequence of morphisms
Drk

◆
! X[k](r) ! X the r-twisted expanded pair of length k over (X, D), or just

a twisted expansion of (X, D). Its twisting index is defined to be the integer rk .
Note that an untwisted expansion of length k is the same as a 1-twisted ex-

pansion of length k, where 1 = (1, . . . , 1). Moreover, there is a natural morphism
X[k](r) ! X[k] which, if X is a scheme or algebraic space, is just the morphism
to the coarse moduli space.

2.1.1. Stacks of expanded pairs

Forming stacks of families of expanded pairs is slightly more subtle than it might
seem, since in general not all deformations are good. The stack T u of untwisted
expanded pairs was defined by Jun Li, see [41, Proposition 4.5] where the notation
Zrel is used for its universal family, and [26, Section 2.8] where the notation T
for the stack we denote here by T u is introduced. In this paper we also use the
stack T tw of twisted expanded pairs. The stacks T u and T tw are studied in [2],
where various alternative definitions and properties are described. It is shown in
[2, Theorem 1.3.2] that the various definitions of T u coincide. We rely on [2,
Definitions 2.1.5 and 2.4.2(1)] in this text.
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We denote by T twr ⇢ T tw the open and closed substack of twisted expansions
of index r , so that T tw = tT twr .

We denote the universal families of expanded pairsX u
univ!T u andX tw

univ!T tw.
Proposition 2.4.

(1) The stacks T twr and T u are smooth connected algebraic stacks of dimension
0 [2, Theorem 1.3.1].

(2) The stacks T tw and T u do not depend on the choice of the pair (X, D) [2,
Remark 2.1.7].

2.2. Twisted expanded degenerations

We now discuss stacks analogous to the Artin stack underlying Jun Li’s family W
of expanded degenerations.
Convention 2.5. In this subsection we fix ⇡ : W ! B, a flat morphism such that
B is a smooth curve, W is a smooth stack, and b0 2 B is the unique critical value of
⇡ ; we set W0 := ⇡�1(b0) an assume W0 = X1 tD X2 is the union of two smooth
closed substacks X1 and X2 intersecting transversally along D, a smooth divisor in
each Xi . This implies that W0 is nodal and first-order smoothable along its singular
locus D.
Definition 2.6.

(1) Let k � 0 be an integer. Define W0[k] to be the Deligne-Mumford stack
obtained by gluing the k-th untwisted expanded pair X1[k] over (X1, D) to
X2 via the identification of Dk ⇢ X1[k] with D ⇢ X2; denote the image of
Di ⇢ X1[k] again by Di .

(2) Let r := (r0, . . . , rk) be a sequence of positive integers. Define W0[k](r) !

W0[k] to be the morphism obtained by twisting W0[k] along Di with index ri .
(3) We call the morphismW0[k](r) ! W0 the (k, r) twisted expansion or overW0,

or just an expansion ofW0. We call it an untwisted expansion if r = (1, . . . , 1)
or equivalently if it has the form W0[k] ! W0. An expanded degeneration of
W is either a general fiber or a twisted or untwisted expansion.

Again we rely on [2, Definitions 2.3.6 and 2.4.2(2)] for the definition of the stacks
Tu
B,b0 and TtwB,b0 of untwisted and twisted expanded degenerations.
We denote the universal families of expanded degenerationsWu

univ ! Tu and
W tw
univ ! Ttw.
Here is the analogue of Proposition 2.4:

Proposition 2.7.

(1) The stacks TtwB,b0 and Tu
B,b0 only depend on the base (B, b0) but not on the

family W [2, Remark 2.3.8].
(2) The stacks TtwB,b0 and Tu

B,b0 are smooth, algebraic connected stacks of dimen-
sion 1 [2, Theorem 1.3.1].
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2.3. The singular case in the absence of smoothing

We have defined Tu
0 = Tu

B,b0⇥B {b0} and Ttw0 = TtwB,b0⇥B {b0}. When ⇡ : W ! B
is as in 2.2 above, these stacks parametrize untwisted and twisted expansions of
the singular fiber W0. But more is true: consider a first-order smoothable W0 =

X1 tD X2. We define untwisted and twisted expansions on W0 as before, and they
obviously coincide with the previous definition if W0 is provided with a smoothing
over some curve B. The general setup in [2, Definitions 2.3.6 and 2.4.2(2)] includes
families of expansions of W0. We have the following.

Proposition 2.8.

(1) The stacks Ttw0 and Tu
0 are the stacks of twisted and untwisted expansions of

W0.
(2) These stacks Ttw0 and Tu

0 are independent of W0.

In particular, if W0 is a fiber in a one-parameter family ⇡ : W ! B, the universal
families over Ttw0 and Tu

0 are independent of the smoothing.
Note that the stacks Ttw0 and Tu

0 are singular, and Ttw0 is nonreduced.

2.4. Split expansions

As the stacks Ttw0 and Tu
0 are normal crossings, their normalizations are of interest.

In [2, Section 7.4] we define the stack T
r,spl
0 to be the stack of twisted expan-

sions with a choice of a splitting divisor D of twisting index r . We similarly T
u,spl
0

in the untwisted case. We have a natural map T
r,spl
0 ! Tr

0 ⇢ Ttw0 and T
u,spl
0 ! Tu

0.
Consider now the stackQ = T

u,spl
0 ⇥Tu

0
Ttw0 . It decomposes as a disjoint union

Q = trQr , where over he reduction of Qr the splitting divisor in the universal
family is twisted with index r .

Lemma 2.9 ([2, Proposition 7.4.2(2)]). The morphism T
r,spl
0 ! Qr is of degree

1/r .

Consider the universal familyWr,spl
univ over T

r,spl
0 . Taking the partial normaliza-

tion along the splitting divisor D gives two families D ! X1 and D ! X2 of
expanded pairs, which define a morphism T

r,spl
0 ! T twr ⇥ T twr .

Lemma 2.10 ([2, Proposition 7.4.2(1)]). The natural morphism

T
r,spl
0 ! T twr ⇥ T twr

corresponding to the two components of the partial normalization of the universal
familyWr,spl

univ is a gerbe banded by µr ; in particular it has degree 1/r .
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2.5. Weighted and r-twisted expansions

In Theorem 4.7 we will need a slightly refined version of the stacks T tw of expanded
pairs and Ttw of expanded degenerations, namely the stacks T r and Tr of r-twisted
1-wighted expansions.

2.5.1. 1-weighted expansions

As a first step we consider a set 1 and stacks T 1 and T1 in which the splitting
divisors of the universal object are weighted, in a sense analogous to Costello [23,
Section 2], by elements of1. In our application of Theorem 4.7 the set1 is the set
of finite multi-sets c = {c1, . . . , cn} of positive integers, which will indicate contact
orders of branches of a curve along a splitting divisor. (Recall that a multi-set is
an unordered sequence, with elements possibly appearing several times). Unlike
Costello’s situation we will not need a monoid structure on the weight set.

The construction, algebraicity and basic properties of the stacks T 1 and T1 is
detailed in [2, Section 7.1].

There are evident forgetful maps T1
! Ttw and T 1

! T tw. By construction
these maps are étale and representable. The universal families on T1 and T 1 are
given by pullback along the respective forgetful map. As before we define T1

0 to be
the inverse image of b0.

2.5.2. r-twisted expansions

Next we consider a function r : 1 ! N with positive integer values. An object of
T1 or T 1 is said to be r-twisted if the `-th splitting divisor is twisted with index
r(c`). We obtain open substacks T r

⇢ T 1 and Tr
⇢ T1 of r-twisted, 1-weighted

expansions. Again Tr
0 denotes the inverse image of b0. These stacks are described

using logarithmic structures in [2, Definition 7.2.3, Lemma 7.2.4].
We define a partial ordering � on functions r : 1 ! N by divisibility: r � r0

if an only if r(c)|r0(c) for all c 2 1.

Lemma 2.11 ([2, Section 7.3]). Assume that we are given functions r and r0
: 1!

N such that r � r0. Then there are natural partial untwisting morphisms Tr0

B,b0 !

Tr
B,b0 , T

r0

0 ! Tr
0 and T r0

! T r. These morphisms lift canonically to universal
families, i.e.: for every algebraic stack S and every family of expansionsW 0

! S
corresponding to a morphism f 0

: S ! Tr0 , letW ! S be the family induced by
the composite morphism f : S ! Tr; then there is a natural morphism p : W 0

!

W lifting Tr0

B,b0 ! Tr
B,b0 .

The following proposition is a manifestation of the well-known fact that given
a twisted curve, there is essentially a unique way to increase its indices by any given
amount.

Proposition 2.12. The morphisms Tr0

B,b0 ! Tr
B,b0 , T

r0

0 ! Tr
0 and T r0

! T r are
proper, quasi-finite, flat and surjective. Moreover this map has pure degree 1 in the
sense of [23, Section 5].
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Proof. We indicate the proof for T r0
! T r, the other cases are identical. This

is essentially [2, Proposition 7.3.1], except that the fact that the morphisms are
proper, quasi-finite, flat and surjective was not stated there. We use the proof of [2,
Proposition 7.2.2] instead: the required properties are local on an S-point of T r and
we may assume the logarithmic structure on S is free. Then T r0

⇥T r S ! S is a
root stack, which is indeed proper, quasi-finite, flat and surjective.

3. Stacks of twisted stable maps and their properness

3.1. Conventions on stacks of maps

Wewill extend Jun Li’s construction [41, Section 3] to the case where we degenerate
an orbifold instead of a smooth variety, and we introduce the twisted version of that
stack which allows us to replace predeformable maps by transversal ones. We do
the same for pairs as well. In this section, the ambient space for both degenerations
and pairs will be denoted by the letter W .

By a curve class on W we mean an algebraic equivalence class � = [C] of an
algebraic curve C ⇢ W in the coarse moduli space of W , an element of the Chow
group modulo algebraic equivalence.

We will use data as set in one of the following two conventions:
Convention 3.1 (Data for a degeneration). Consider a morphism ⇡ : W ! B
and W0 = X1 tD X2 as in Section 2.2. We also fix 0 = (�, g, N , e) where

(1) � is a curve class in the fiber of W ! B;
(2) g � 0 is an integer;
(3) N is a finite ordered set, possibly empty, which we may take to be {1, . . . , n};
(4) e = (ei )i2N is a tuple of positive integers such that Iei (Wb) 6= ; for all b 2 B,

i 2 N ; note that if W is a variety one must have ei = 1 for all i .

Convention 3.2 (Data for a pair). Fix a smooth pair (W, D) with W a Deligne-
Mumford stack. We also fix 0 = {�, g, N ,M, e, f, c} where

(1) � is a curve class on W ;
(2) g � 0 is an integer;
(3) N ,M are disjoint finite ordered sets, which we may take to be {1, . . . , n} and

{n + 1, . . . , n + |M|};
(4) e = (ei )i2N as above, and f = ( f j ) j2M is similarly a tuple of positive integers

such that I f j (D) 6= ; for all j 2 M;
(5) c = (c j ) j2M are positive integers such that

P
j2M c j/ f j = (� · D)X .

We denote by d = (d j ) j2M the tuple formed by d j = c j/ f j .
Remark 3.3. Following Jun Li, we will later find it useful to think in either case of
the data 0 as a weighted modular graph. In the degenerate case it has one vertex
marked with (g,�), no edges or loops, legs corresponding to the set N and weighted
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by ei , and no roots. In the pair case it has again one vertex, no edges or loops, legs
corresponding to the set N and weighted by ei , and roots corresponding to the
set M and weighted by ( f j , c j ) (see Definition 4.13). Indeed, the degeneration
formula requires working with disconnected graphs. To avoid heavy notation here
we postpone the disconnected case to Subection 4.7.

Consider the universal familiesW tw
univ ! TtwB,b0 andW

u
univ ! Tu

B,b0 of twisted
and untwisted expanded degenerations. They both satisfy the assumptions in Con-
vention C.1 with D = ;. Similarly consider the universal families of pairs (W tw

univ,
Dtwuniv) ! T tw and (Wu

univ,Du
univ) ! T u . These satisfy the assumptions in C.1

with D = Duniv.
Convention 3.4 (Shorthand for stacks of maps). The notation Ktw, Ku , and
K (W ) will be used for either one of the following three cases

(1) (Degeneration case) W ! B is a degeneration as in 3.1, T tw = TtwB,b0 , T
u

=

Tu
B,b0 .

Ktw := K0(W tw
univ/T

tw
B,b0), Ku

:= K0(Wu
univ/T

u
B,b0)),

K (W ) := K0(W/B).

(2) (Singular case) W = W0 is first-order smoothable, B = SpecC, T tw = Ttw0 ,
T u = Tu

0.

Ktw := K0(W tw
0 univ/T

tw
0 ), Ku

:= K0(Wu
0,univ/T

u
0)),

K (W ) := K0(W0).

(3) (Relative case) (W, D) a pair, T tw = T tw, T u = T u .

Ktw := K0((W tw
univ,Dtwuniv)/T tw), Ku

:= K0((Wu
univ,Du

univ)/T u)),

K (W ) := K0(W, D).

We follow the notation K ,Knd and Knd of C.6, adding a superscript tw or u to
denote the corresponding substacks of Ktw or Ku . We will suppress the superscript
tw or u when statements hold for both.

In either of the three cases we will write f : (C,6) ! W ! W for a stable
map belonging to K (i.e., Ktw or Ku). We will indicate the divisor D only when
necessary.
Remark 3.5. We note that if we view a pair as a subvariety of a singular fiber, and
view a fiber as a subvariety of a degeneration, the notion of curve class changes, as
inequivalent classes can become equivalent through each transition.

Following [41], we can characterize points of K belonging to the Deligne-
Mumford locus K using semistable components:
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Definition 3.6. Let f : (C,6) ! W ! W be a stable map corresponding to a
point in Ktw. Let E ⇢ C be an irreducible component.

We say that E is a semistable component if it is a standard cyclic cover of a
line occuring as a fiber in some P, explicitly if

(1) E is smooth, irreducible, of genus zero, contains no marked points;
(2) E maps to a fiber F ofW ! W ;
(3) f |E : E ! F is branched at most over the intersection of F with the singular

locus ofW;
(4) E \ Csing maps toWsing.

Lemma 3.7. A point of K given by a stable map f : (C,6) ! W ! W is in K
if and only if there is no irreducible component Pi such that every component of C
whose image meets Pi r (D+

i [ D�

i ) is a semistable component.

Proof. The point is in K if and only if no positive dimensional subgroup of the
group of automorphisms of the expansion W lifts to an automorphism of C . Up
to the finitely many ghost automorphisms, such automorphism are given by a copy
of Gm for every component Pi . The Deligne-Mumford condition is equivalent to
ensuring that for each i there is at least one component Xi mapping to Pi to which
the Gm action does not lift. It is easy to see that the only components whose im-
age meets Pi r (D+

i [ D�

i ) to which the action lifts are exactly the semistable
components.

3.2. Transversal maps and predeformable maps

Recall the natural morphisms between TtwB,b0 and Tu
B,b0 in Proposition 2.7 (3), and

the corresponding ones for the singular and relative cases. By the functoriality of
[11, Corollary 9.1.2], these induce an open embeddingKu

! Ktw and an untwisting
morphism Ktw ! Ku which is its left inverse. These are compatible with the
morphisms Ku

! K (W ),Ktw ! K (W ).
Definition 3.8. Let f : (C,6) ! W ! W be a stable map corresponding to a
point in Ktw. We say that f is transversal if it is transversal to both the singular
locus and the boundary divisor in the sense of Subsection A.2.

Note that the condition is vacuous when W is nonsingular and D empty.
Remark 3.9. If f is a transversal stable map, then it is nondegenerate.

By Lemma A.2 the transversal condition is open. This allows us to formulate
the following:
Definition 3.10. We define Ktr

⇢ Ktw to be the open substack of transversal maps;
we write K tr

:= K tw \ Ktr .
The main objects we will use are transversal maps. However we find appropri-

ate to relate them to predeformablemaps, a notion used by Jun Li and other previous
authors. Accordingly, our arguments will go by way of predeformable maps, even
though this detour can be avoided.
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Definition 3.11. We say that a nondegenerate map C ! W is predeformable if it
is in the set-theoretic image of Ktr in Ku .

3.2.1. Contact orders and Li’s predeformability

In [41, Definition 2.5], a nondegenerate morphism f : C ! W over an alge-
braically closed field is defined to be predeformable if at every point p 2 C map-
ping to a singular component D` of W , locally the map is described as

�
Spec k[u, v]/(uv)

�sh
�!

�
Spec k[x, y, z1, . . . , zm]/(xy)

�sh
where

x 7! ucp , y 7! vcp

for some positive integer cp, called the contact order at p. Note that we put no con-
dition at points mapping to the boundary divisor, if nonempty; however for points
p mapping to the boundary divisor we define a contact order as usual: locally the
map is described as

�
Spec k[u]

�sh
�!

�
Spec k[x, z1, . . . , zm]

�sh
where x 7! ucp , and the contact order is again cp.

We now show that the two notions of predeformability coincide in a precise
way. The key points are Lemmas 1.4 and 1.12.

Lemma 3.12.

(1) Let C ! W be a predeformable map in the sense of Definition 3.11. Then
C ! W is predeformable in the sense of [41, Definition 2.5].

(2) Let f : C ! W be predeformable in the sense of [41, Definition 2.5]. For any
component D of the singular locus of W fix a positive integer rD divisible by
the contact order cp for every node of C mapping to the given singular compo-
nent D. LetW be the root stack of W with index rD over each component D
of the singular locus. Then there is a transversal map f̃ : C ! W mapping to
f : C ! W ; in particular f is predeformable in the sense of Definition 3.11.

(3) Any twisted stable map f̃ : C ! W , with W as in (2) above, and lifting
f : C ! W is transversal.

Proof.

(1) Let C ! W be a transversal map which liftsC ! W . Consider a point p 2 C ,
and a lifting p̃ in C. In local coordinates, if p is a node the map C ! W is
given by x 7! u, y 7! v and arbitrary zi 7! fi (u, v). The coordinates on C
are ū = urp and v̄ = vrp . The coordinates on W are x̄ = xrD , ȳ = yrD , and zi
unchanged. Then x̄(urp ) = urD and similarly for ȳ. We thus have rD = cp · rp
for some cp and may take ū = x̄ cp , v̄ = ȳcp as needed. When p maps to
boundary divisor the calculation is similar.
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(2) Applying Lemmas 1.4 and 1.12 a transversal representable lift exists with C
having twisting index rp = rD/cp, locally at each p mapping to a component
D. Since such a lift is unique away from the union of the D, these local lifts
glue to a lift C ! W .

(3) This follows from part (4) of Lemma 1.4 and part (3) of Lemma 1.12.

We now consider the scheme structure for stacks of transversal and predeformable
maps. Since there are infinitely many choices for the twisting index rD in Lemma
3.12, we need the following for constructibility:

Lemma 3.13.

(1) (Base change property.) Let C ! W ! S be a family of transversal maps
over S, and let ˜W ! W be a family of root stacks. Let ˜C =

˜W ⇥W C. Then
˜C ! S is a twisted nodal curve and ˜C !

˜W ! S is a family of transversal
maps.

(2) (Descent property.) Assume ˜C !
˜W ! S is a family of transversal maps with

underlying untwisted maps C ! W ! S. Assume that there is an integer d,
and D ⇢ W , either a component of the singular locus or the boundary divisor,
such that ˜W is twisted at D with twisting index rD such that for any point p
of C mapping to D`, we have d · cp|rD. Write r =

rD
d and let W ! W be

isomorphic to W (
rpD) near D and to ˜W elsewhere. Then the representable

map C ! W ! S obtained by stabilizing ˜C ! W ! S is transversal.

Proof. The transversality property is tested on fibers. The base change property is
now a local computation, e.g., in case of a node

�
Spec k[u, v]/(uv)

�sh
�!

�
Spec k[x, y, z1, . . . , zm]/(xy)

�sh
where x 7! u, y 7! v and z 7 ! fi (u, v), the map ˜C !

˜W is given by
�
Spec k[ũ, ṽ]/(ũṽ)

�sh
�!

�
Spec k[x̃, ỹ, z1, . . . , zm]/(x̃ ỹ)

�sh
where x̃ 7! ũ, ỹ 7! ṽ and z 7 ! fi (u, v) as before.

For the descent property, note that C is obtained as the relative coarse moduli
space of ˜C ! W . Its formation commutes with base change so we can restrict to
fibers again. The integer r is divisible by the contact orders, so Lemmas 1.4 and
1.12 apply. In particular, since the map is representable we have r = f pcp, and
therefore it is transversal.

Lemma 3.14. The collection of predeformable maps is closed in Ku
nd ⇢ Ku , the

open locus of nondegenerate maps.

Proof. This is a local statement in the étale topology; hence we can use the proof
given by Jun Li, see [41, Lemma 2.7].
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Given a deformation of a nondegenerate map over a base of finite type, only
finitely many contact orders occur. Lemma 3.13 implies that the following gives a
well defined closed substack:
Definition 3.15. We define the stack of predeformable maps Ktwpd to be the stack-
theoretic image of Ktr in Ku . We define Ku

pd , K
u
pd , K

tw
pd as the intersections of the

appropriate sunbstacks of Ktw with Ktwpd .

Remark 3.16. A more precise form of the statement in Lemma 3.12, which we
do not use in this paper, is the following: if W ! B is a projective morphism of
schemes, then the stack Ku

pd is naturally isomorphic toM(W,0) in [41].
Set-theoretically this is shown in Lemma 3.12. The subtle scheme structure in

J. Li’s stack relies on [41, Lemmas 2.3], which describes the scheme structure of
a predeformable map over a base scheme, and [41, Lemmas 2.4] which shows that
the scheme structure behaves well under base change and can be glued. One can
lift these to the root stacks described in Lemma 3.12 and show that indeed a family
of predeformable maps underlies a family of transversal maps.
Remark 3.17. As remarked by Jun Li, Ku

pd is locally closed, but in general not
open, in Ku ; this makes it hard to write down a perfect obstruction theory for it,
see [42, 1.2-1.3 pages 213-129 and Appendix, pages 284-288].

3.3. Properness of the stack of predeformable maps

Our goal below is to prove properness for certain stacks of transversal maps, which
can be done directly. However we find it appropriate to relate this to previous work
and go through properness of predeformable maps.

Theorem 3.18. The natural morphism Ku
pd ! K (W ) is proper.

The reader who is familiar with both Jun Li’s proof and the definition of twisted
stable maps will be able to directly modify Jun Li’s proof of [41, Lemmas 3.8, 3.9]
to cover the orbifold case treated here. We have provided a different proof, based
on stable expanded configurations of points, in [6].

Corollary 3.19. Under the assumptions for this section, assume moreover that
W ! B is proper and has projective coarse moduli space. Then Ku

pd is proper
over B.

Proof. This follows since by [11, Theorem 1.4.1] the stack K (W ) is proper.

3.4. r-twisted stable maps and their properness

Definition 3.20. A twisting choice is a map rwhich associates to every finite multi-
set of positive integers c = {c1, . . . , cn} a positive integer r(c) such that c j |r(c) for
all j .
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Definition 3.21. We define a partial order on twisting choices by saying that r � r0

if r(c) divides r0(c) for every c.
Note that there is a unique minimal twisting choice, namely

rmin(c) = lcm(c1, . . . , ck).

Similarly, given any two twisting choices we obtain a third larger than both by
laking their least common multiple.
Remark 3.22. We find it important to allow choosing a twisting choice, for two
reasons. First, a non-minimal choice is used in [5]. Second, keeping track of the
fact that the invariants we define do not depend on the twisting choice helps make
sure that we are doing things right.
Definition 3.23. Let r be a twisting choice. A map f : (C,6) ! W is called an
r-twisted stable map if it is in K tr and the following holds. Let f u : Cu

! Wu

be the image of f in Ku
pd . Consider any splitting divisor D` of W , and let c` be

the multiset of contact orders of the nodes in Cu mapping to Du
` . Then the twisting

index of D` is r(c`).
Finally we arrive at the main moduli stacks of this paper:

Definition 3.24. If r is a twisting choice, we define the substackKr of K tr to be the
full substack of families whose points are r-twisted stable maps. In the following
sections we will use case-specific notations for Kr:

(1) (Degeneration case) Kr
0(W/B),

(2) (Singular case) Kr
0(W0),

(3) (Pair case) Kr
0(X, D).

Lemma 3.25. The stack Kr is open in K tr .

Proof. It is enough to prove that it is stable under generalization. Assume we have
a family of twisted transversal stable maps over Spec R, with R a discrete valuation
ring, and that the fiber over the special point is r-twisted. Let D` be a splitting
divisor on the general fiber; then it induces a splitting divisor on the special fiber,
and since twisting indices are locally constant along deformations so long as the
node (or the splitting divisor) does not get smoothed out, all the contact orders
and the twisting of the splitting divisor are the same at the special point and at the
general point of Spec R.

Theorem 3.26. Let r be a twisting choice. Then the canonical morphism Kr
!

Ku
pd is proper.

Proof. First we claim that the morphism is of finite type locally over Ku
pd . Choose

an open covering of Ku
pd where in each chart only finitely many contact orders

appear. Then objects in Kr involve maps to targets with bounded twisting, and the
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stack of these targets is of finite type over the base. Since Kr is proper over that
stack the claim follows.

It now suffices to use the valuative criterion of properness. We take 1 =

Spec R for R a discrete valuation ring, with generic point ⌘ and closed point s. We
assume we are given a commutative diagram

⌘ //

✏✏

K r

✏✏

// T tw

✏✏
1 // Ku

pd // T u

and we want to find a unique lifting 1 ! K r. We denote the induced families of
stable maps as (C,6, f : C ! W) and (C̃⌘, 6̃⌘, f̃⌘ : C⌘ ! W⌘). The stack of
twisted stable maps intoW tw

univ is proper over T
tw. Therefore it is enough to show

that there is a unique lifting 1 ! T tw such that the induced family’s central fiber
(C̃s, 6̃s, f̃s) is in K r.

Consider the set1 of multisets of positive integers. We have a canonical lifting
of Ku

pd ! T u to a morphism Ku
pd ! T1 to the stack of 1-weighted expansions,

see 2.5, where we weigh the expansions by the contact order at each splitting divi-
sor. Similarly we have a canonical lifting of K r

! T u to a morphism K r
! T r

to the stack of r-twisted 1-weighted expansions, since the expansions in K r are by
definition r-twisted 1-weighted expansions. We obtain he following refinement of
the previous commutative diagram:

⌘ //

✏✏

K r

✏✏

// T r

✏✏
1 // Ku

pd // T1.

Note that T1
= T 1 is the stack of 1-twisted (namely untwisted)1-weighted expan-

sions, so by Proposition 2.12 the morphism T r
! T1 is proper. Therefore, after a

suitable base change we obtain a unique lifting 1 ! T r. By Lemma 3.12 (3), any
lift of {s} ! Ku

pd ⇥T u T r is in K r, in particular the limit (C̃s, 6̃s, f̃s) is in K r, as
needed.

Corollary 3.27. If W/B is proper with projective coarse moduli space, then the
stack Kr is proper for every twisting choice r.
Proof. This follows from Corollary 3.19.

4. Relative and degenerate Gromov-Witten invariants
4.1. Curve classes and orbifold cohomology on nodal DM stacks

Gromov-Witten invariants require two type of homological entries: curve classes
�, which affect the moduli space one constructs, and cohomology insertions �i ,
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whose pullbacks are integrated over the moduli space and determine the invariants.
Curve classes were introduced in Section 3.1. Since we are considering invariants
of stacks, the cohomological insertions we must use are elements �1, . . . , �n 2

H⇤

orb(W0, Q) := H⇤(I(W0), Q) of Chen and Ruan’s orbifold cohomology. Since
all evaluation maps land in the smooth locus of an expansion ofW0, we need only to
consider classes in H⇤(I(W0), Q) supported on sectors meeting the smooth locus
of W0.

4.2. Gromov-Witten invariants for nodal DM stacks

In this Section 4.2 we fix a nodal, first order smoothable proper DM stack W0 =

X1tD X1 with a projective coarse moduli scheme. We also fix data 0 = (�, g, N , e)
as in 3.1.

We denote by Kr
0(W0) the stack of transversal, r-twisted stable maps to ex-

pansions of W0. This stack is proper by Theorem 3.26. The structure morphism to
Ttw0 has a relative perfect obstruction theory, by a standard construction described in
Section C.2. Since Ttw0 has pure dimension zero, it has a natural fundamental class,
and we can therefore define an induced virtual fundamental class [Kr

0(W0)]vir.
Definition 4.1. The stackKr

0(W0) carries a universal family of twisted stable maps
to expansions of W0 denoted as follows:

6i
� � //

##GGGGGGGGG Ctw
f tw //

ptw
✏✏

W tw
0,univ

Kr
0(W0).

We denote the underlying family of predeformable maps as follows:

6i
� � //

##GGGGGGGGG Cu
f u //

pu
✏✏

Wu
0,univ

Kr
0(W0).

Composing with the morphismWu
0,univ ! W0 and stabilizing, we obtain a diagram

6i
� � //

##HHHHHHHHH C //

✏✏

W0

Kr
0(W0).

The markings 6i remain the same since the curves Ctw,Cu and C are isomorphic
in a neighborhood of the 6i .
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For i 2 N the morphism 6i ! W0 induces an evaluation morphism evi :

Kr
0(W0) ! Iei (W0) ⇢ I(W0), where I(W0) is the rigidified inertia stack of W0.

See [7, 4.4].
Finally, the family of coarse curvesC ! Kr

0(W0) has sections si : Kr
0(W0) !

C induced by 6i . Following [7, 8.3] we denote

 i = c1
⇣
s⇤i !C/Kr

0(W0)

⌘
.

Definition 4.2. Assume for i 2 N we are given positive integers mi and cohomol-
ogy classes �i 2 H⇤(I(W0)). We define the Gromov-Witten invariant

*Y
i2N

⌧mi (�i )

+W0
0

:= deg

 Y
i2N

( 
mi
i · ev⇤

i �i ) \ [Kr
0(W0)]vir

!
.

Remark 4.3. Recall that in r-twisted stable maps, the image of a marked point is
never in a splitting divisor. This implies that the evaluation maps only land in sectors
on I(W0) transversal to D. In particular Gromov-Witten invariants involving a class
�i from a sector supported in I(D) vanish.

4.3. Relative Gromov-Witten invariants

Here we fix a proper DM smooth pair (X, D) with a projective coarse moduli
scheme. We also fix data 0 = (�, g, N ,M, e, f, c) as in 3.2.

We denote by Kr
0(X, D) stack of transversal, r-twisted stable maps to expan-

sions of (X, D). Again this stack is proper by Theorem 3.26, and the structure
morphism to T tw has a relative perfect obstruction theory described in Section C.2,
with induced virtual fundamental class [Kr

0(X, D)]vir.
Evaluation maps evi : Kr

0(X, D) ! I(X) and classes i for i 2 N are defined
as in 4.1. Note however that for j 2 M the markings6r

j ⇢ Cr and6 j ⇢ Cu are not
isomorphic: 6r

j ! 6u
j is a gerbe banded by µr/c j , where r = r({c j } j2M) is the

twisting of the divisor. An additional subtlety is the fact that the stack D ! T tw
is not a product, and we are only interested in the relative part of inertia. Since the
root markings 6 j map to D and 6r

j map to D we can define the following:

Definition 4.4. We denote by ev j : Kr
0(X, D) ! I f j (D) ⇢ I(D) the evaluation

map induced by 6 j ! D. We denote by evr
j : Kr

0(X, D) ! I(D/T tw) the
evaluation map induced by 6r

j ! D. Note that these land in I f j r/c j (D/T tw) ⇢

I(D/T tw).

The maps evrj will play a role in the proof of the degeneration formula. Gromov-
Witten invarians involve only ev j :
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Definition 4.5. Let mi , i 2 N be nonnegative integers; �i 2 H⇤(X), i 2 N and
� j 2 H⇤(I(D)), j 2 M . We define relative Gromov-Witten invariants with gravi-
tational descendants by the formula

*Y
i2N

⌧mi (�i )
�� Y
j2M

� j

+(X,D)

0

:= deg

  Y
i2N

 
mi
i · ev⇤

i �i

!
·

 Y
j2M

ev j ⇤� j

!
\ [Kr

0(X, D)]vir

!
.

Remark 4.6. Note that unless the conditionX
i2M

di = � · D (4.1)

is satisfied, the moduli stack Kr
0(X, D) is empty and hence the invariant is zero.

4.4. Independence of twisting choice

Theorem 4.7. The Gromov-Witten invariants defined above are independent of the
twisting choice r.

The proof requires some preparation. Let 1 be the set of multi-sets c =

{c1,. . .,ck} of positive integers, and recall the stackTr
0⇢T1

0 of r-twisted,1-weight-
ed expansions, defined in Section 2.5. There is a natural morphismKr

0(W0) ! T1
0

mapping each stable map to the labeling of each divisor by the multiset of contact
orders of the associated predeformable map. Its image is clearly contained in the
open substack Tr

0. Similarly we have Kr
0(X, D) ! T r.

Proposition 4.8. Assume that r and r0 are twisting choices with r � r0. Write
for brevity K ! T for Kr

0(W0) ! Tr
0 (respectively, Kr

0((X, D)) ! T r) and
K0

! T 0 for Kr0

0(W0) ! Tr0

0 , (respectively, Kr0

0((X, D)) ! T r0); similarly for the
maps evi , ev0i and classes  i ,  

0

i .

(1) There is a natural morphism K0
! K.

(2) This morphism induces a 2-cartesian diagram

K0

� //

✏✏

K

✏✏
T r0 // T r,

where the lower arrow is given by Lemma 2.11.
(3) There is a natural isomorphism �⇤EK/Tr ! EK0/Tr0 .
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(4) We have 0

i = �⇤ i , and there is a natural equivalence between ev0i and evi ��
for i 2 N t M .

Proof.

(1) Let (C 0,60) ! W 0
! W be a family of r0-twisted maps over a base scheme

S. By Lemma 2.11 there are morphisms T r0
! T r and correspondinglyW 0

!

W . Consider the stabilization (C,6) ! W of the composition (C 0,60) !

W 0
! W (in the sense of [11, Proposition 9.1.1]). It is easy to see that this

defines a family of r-twisted stable maps over S, and that this construction
commutes with base change; hence, it defines a morphism K0

! K.
(2) It is easy to check that the diagram is commutative. To construct a morphism

from the fiber product to K0, assume that we are given a family of labeled
expansions W 0

! S (corresponding to a morphism S ! T r0) and a family
of twisted degenerate stable maps (C,6) ! W over S, in such a way that
W ! S is induced byW 0

! S as a family of labeled twisted expansions. We
then define C 0

:= W 0
⇥W C , and 60 the inverse image of 6; again, it is easy

to check the required properties.
(3) The diagram

C 0 //

✏✏

W 0

✏✏
C // W

is Cartesian. The isomorphism of obstruction theories now follows directly
from their definition.

(4) The untwisted curve (Cu0

,60) is the pullback of (Cu,6). Both claims easily
follow.

Proof of Theorem 4.7. By Remark 3.21 we may assume that r � r0. Using the
notation in Proposition 4.8 we have that �⇤EK/Tr

0
! EK0/Tr0

0
. The morphism

Tr0

0 ! Tr
0 has degree 1 in the sense of [23, Section 5] by Proposition 2.12. By [23,

Theorem 5.0.1] we have an equality of the associated virtual fundamental classes
[Kr

0(W )]vir = [Kr
0(W )]vir. The equality of invariants follows by the projection

formula.

4.5. Invariance under twisting

The following is used in [5]:

Proposition 4.9. Let X = X (
rpD) and D =

rpN/D, and let ⇡ : X ! X be the
natural map. Then

*Y
i2N

⌧mi (�i )
�� Y
j2M

� j

+(X,D)

0

=

*Y
i2N

⌧bi (⇡
⇤�i )

�� Y
j2M

⇡⇤� j

+(X ,D)

0

.
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Proof. For fixed 0 Let r be a twisting choice giving a constant r0 for all contact or-
ders appearing inKpd , and r0

= r · r. ThenKr0

0(X ,D) andKr
0(X, D) are identical.

The result follows by the projection formula.

Remark 4.10. A similar result holds for invariants of a singular variety.

4.6. Deformation invariance

Assume we are given a flat proper family ⇡ : W ! B such that B is a smooth
curve, b0 2 B is a point, ⇡ is smooth over B r b0 and W0 := ⇡�1(b0) is as in the
previous section

Theorem 4.11. The Gromov-Witten invariants of Wb are independent of b, in the
following sense: fix data 0 = (�, . . .) on W and enumerate 0t = (�t , . . .), t =

1, . . . where �t are all the distinct curve classes on Wb whose image in W is �. Let
�i be cohomology classes on W , and denote their pullback to Wb also by �i . Then
the sum

X
t

*Y
i2N

⌧mi (�i )

+Wb

0t

is independent of b.

Proof. This follows from [14, Proposition 7.2 (2)], since the obstruction theory for
Kr
0(W/B) relative to TB,b0 restricts to that of Kr

0(Wb) relative to T0.

Remark 4.12. It would be interesting to prove a version of this result which ac-
counts for monodromy, and separates different �i and at the same time allows for
cohomological insertions �i supported on the fibers.

4.7. Disconnected maps and invariants

We fix an abelian semigroup H . In the application we have in mind, H will be the
semigroup of effective curve classes.

Definition 4.13. Anmodular graph4 is a collection of vertices V (4), edges E(4)
legs L(4) and roots R(4) with the usual relations and properties – here we divided
the usual set of legs into two disjoint sets of legs and roots. These are weighted by
the following data

(1) each vertex v 2 V (4) is assigned an integer g(v) � 0 – the genus – and an
element �(v) 2 H – its weight.

(2) each leg l 2 L(4) is assigned an integer e(l) > 0 – its index.
(3) each root r 2 R(4) is assigned two integers f (l), c(l) > 0 – its index and

contact order.
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The total weight �(4) of the graph is the sum of the weight of the vertices. The
total genus g(4) is given by the standard formula

2g(4) � 2 =

X
v2V (4)

�
2g(v) � 2

�
+ 2#E(4).

Note that we do not assume the graph to be connected or even nonempty. The letter
4 is supposed to remind you of that.

A labeling of the legs and roots by disjoint sets M, N is the choice of a bijection
M $ L(4) and a bijection N $ R(4).

4.7.1. Moduli stacks and their properties

The theory developed in the last two sections applies to disconnected curves as
well. Consider a possibly disconnected twisted curve C = t

h
⌫=1C⌫ with C⌫ its con-

nected components of arithmetic genera g j , each with marked points with labeling
in disjoint subsets N⌫ and M⌫ forming partitions of given ordered sets N ,M . We
assume for simplicity that for each ⌫ the set M⌫ [ N⌫ is nonempty. There is no loss
of generality in assuming N = {1, . . . , n} and M = {n + 1, . . . , n + |M|}. We
assign each C⌫ with a target curve class �⌫ and package the data in the notation of
a modular graph 4 = t0⌫ consisting of h vertices assigned genera g⌫ and weights
�⌫ , no edges, legs indexed by N⌫ ⇢ N with weights ei , i 2 N⌫ corresponding to
the indices of these markings, and roots indexed by M⌫ ⇢ M with similar weights
f j , j 2 M⌫ . We further assume given contact orders {c j | j 2 N }.

An expanded r twisted stable map of type4 into (X, D) is a morphismC ! X
of type 4 into an expanded pair, with finite automorphism group over X , which
is transversal and r twisted. We again denote by Kr

4(X, D) the moduli stack of
expanded r twisted stable map of type 4. These stacks are algebraic and proper by
the same arguments as in the connected case.

4.7.2. Disconnected Gromov-Witten invariants

The stack Kr
4(X, D) admits a perfect obstruction theory relative to T tw as before.

This gives rise to a virtual fundamental class. We can use 4.3 to construct Gromov-
Witten invariants

DQ
i2N ⌧bi (�i )

��Q
j2M � j

E(X,D)

4
with the exact same formula.

4.7.3. Contraction morphisms

Given an r-twisted stable map C ! X of type 4, we have for each ⌫ a map
C⌫ ! X . This map is not necessarily stable, since some components of X require
other C⌫0 to stabilize them; it is not necessarily r-twisted since some contact orders
are removed. There is a canonical way to stabilize C⌫ ! X as follows:

(1) Let X ! X r the canonical partial untwisting associated to the contact orders
appearing in C⌫ and the twisting choice r. Let Cr

⌫ ! X r be the associated
twisted stable map as in [11, Corollary 9.1.2].
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(2) By definition, any semistable component P of X r has the same twisting on its
two boundary divisors. It follows from [11, Section 9.2] that there is a canon-
ical contraction X r

!
¯X r of all semistable components. We again define

C̄r
⌫ !

¯X r as in [11, Corollary 9.1.2].

This defines a contraction morphism Kr
4(X, D) ! Kr

0⌫
(X, D). Combining these

we obtain a morphism

" : Kr
4(X, D) !

hY
⌫=1

Kr
0⌫

(X, D).

Proposition 4.14.

"⇤[Kr
4(X, D)]vir =

hY
⌫=1

[Kr
0⌫

(X, D)]vir.

This immediately implies a result on Gromov-Witten invariants. Assume all classes
�i have homogeneous parity and consider the sign (�1)✏ determined formally by
the equality

Y
i2N

�i ·

Y
j2M

� j = (�1)✏
hY
⌫=1

 Y
i2N⌫

�i ·

Y
j2M⌫

� j

!

Corollary 4.15.
*Y
i2N

⌧bi (�i )
�� Y
j2M

� j

+(X,D)

4

= (�1)✏
hY
⌫=1

*Y
i2N⌫

⌧bi (�i )
�� Y
j2M⌫

� j

+(X,D)

0⌫

.

Proof. This follows from the projection formula.

4.7.4. An auxiliary stack of expansions

We prove Proposition 4.14 by applying the main technical result, Theorem 5.0.1
of [23]. This needs some preparation.

Let T 0 be the stack defined as follows. T 0(S) = {D⇥S ⇢ X "⌫
! X⌫

✓⌫
! X⇥S}

where:

(1) D ⇥ S ! Xi ! X ⇥ S is an expanded pair for each ⌫ = 1, . . . , h;
(2) there is a morphism ⇢ : X ! X ⇥ S such that ⇢ is isomorphic to ✓⌫ � "⌫ for

each ⌫ = 1, . . . , h;
(3) D ⇥ S ! X ⇢

! X ⇥ S is an expanded pair;
(4) for each ⌫ = 1, . . . , h the morphism "⌫ is a partial contraction;
(5) for each Pi in X there exists at least one 1  ⌫  h such that "⌫ |Pi is an

isomorphism with its image.
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There is a natural forgetful morphism T 0
! (T tw)h given by

{D ⇥ S ⇢ X ! X⌫ ! X ⇥ S} 7! {D ⇥ S ⇢ X⌫!X ⇥ S}⌫=1,...,h .

This map has degree 1 in the sense of [23, Section 5], since both source and target
have SpecC as a dense open substack.

Lemma 4.16. There is a natural cartesian diagram

K4 //

✏✏

QK0⌫

✏✏
T 0 // T h .

Proof. That the diagram is commutative is obvious. To prove that it is cartesian, let
S be a base scheme. Let {(C⌫, f⌫,D ⇥ S ! X⌫ ! X ⇥ S}⌫=1,...,h be an object ofQK0⌫ (S), and {D ⇥ S ⇢ X ! X⌫ ! X ⇥ S} an object in T 0(S). Define curves
C 0

⌫ by C 0

⌫ := C⌫ ⇥X⌫ X ; lift the marked gerbes of C 0

⌫ to C̃ 0

⌫ in the unique possible
way if they do not map to D ⇥ S and respecting the map to D ⇥ S otherwise. Let
C := tC 0

⌫ and f : C ! X be the morphism such that f |C 0

⌫
is induced by the

fiber product. We leave it to the reader to check that this provides an inverse to the
natural map from K4 to the fiber product of T 0 and

QK0⌫ over T h .

Let T 0
! T be the forgetful morphism defined by

�
D ⇥ S ⇢ X ! X⌫ ! X ⇥ S

 
7!

�
D ⇥ S ⇢ X!X ⇥ S

 
.

Lemma 4.17. The morphism T 0
! T so defined is étale.

Proof. This is identical to [5, Lemma 3.1.8].

The construction in Section C gives relative obstruction theories for the mor-
phisms K0⌫ ! T , hence for the morphismQK0⌫ ! T h , and for K4 ! T 0.

Lemma 4.18. The obstruction theory for K4/T 0 is the pullback of the obstruction
theory

QK0⌫ ! T h .

Proof. Write K0 for K4, and fix an index ⌫. We consider the commutative diagram

C0

⌫

p
✏✏

g // X
q

✏✏
C⌫

✏✏

f // X⌫

K0
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where C⌫ is the pullback to K0 of the universal curve over K0⌫ and C0

⌫ is the
corresponding component of the universal curve over K0, together with the struc-
ture maps. Note that C0

⌫ ! C⌫ is a partial stabilization map, i.e., it is locally a
base change of some forgetful morphism M̄ tw

g,n+k ! M̄ tw
g,n . This implies that

R⇡⇤OC0 = OC , and therefore that R⇡⇤ � L⇡⇤
: D(C) ! D(C) is the identity

morphism. On the other hand, the fact that the square in the diagram is cartesian
shows that the pullback of the complex L from C⌫ is the corresponding complex
for C0

⌫ .

Proof of Proposition 4.14. This is now immediate from [23, Theorem 5.0.1], as we
have shown that the obstruction theories are compatible and the map T 0

! (T tw)h

is of pure degree 1.

5. Degeneration formula

5.1. Setup

We fix a variety W0 = X1 tD X2 with first-order smoothable singularity along D
dividing it in two smooth pairs (X1, D) and (X2, D). We let H be the monoid of
curve classes on W0, and H1, H2 the corresponding monoids on X1, X2. We view
H1, H2 as submonoids of H .

We point out that, although H⇤

orb(W0) = H⇤(I(W0)) has a rational degree
shifting, when we consider parity we always refer to the unshifted grading.

In this section we will keep fixed the notation introduced in Subsection 4.2.
In particular we fix 0 = (g, N ,�, e) as in Convention 3.1, which we may view as
a modular graph with one vertex with genus g and weight �, a curve class on W0
and legs labelled by an ordered set N and marked with indices ei . We will also fix
cohomology classes

�i 2 H⇤(I(W0)), i 2 N
with homogeneous parity, and nonnegative integers m1, . . . ,mn . These will be
used for insertions in Gromov-Witten invariants. In this section we may take
N = {1, . . . , n}.
Definition 5.1. A splitting ⌘ of 0 is an ordered pair ⌘ = (41,42) where

1. 41 and 42 are modular graphs as in Definition 4.13 with no edges or loops;
2. the labelling of legs L(41) $ N1 and L(42) $ N2 forms a partition N1tN2 =

N ;
3. the labelling of roots R(41) $ M and R(42) $ M is in the same ordered set
disjoint from N , which can be safely taken as {n + 1, . . . , n + |M|};

4. to a leg l 2 L(41)[L(42) corresponding to i 2 N is assigned the corresponding
index ei ;

5. to a root r 2 R(41) corresponding to j 2 M is assigned index f j and contact
order c j . To a root r 2 R(42) is assigned the same corresponding index f j and
contact order c j ;
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6. to a vertex v 2 V (41) is assigned genus g(v) and weight �(v) 2 H1; similarly
the weight of v 2 V (42) is a curve class �(v) 2 H2.

We define d = (d j , j 2 M) by d j = c j/ f j . These are in general rational numbers,
which we call intersection multiplicities. We denote the set of roots incident to a
vertex v by R(v) and identify it with a subset of M .

These data must satisfy the following conditions:

A. The graph 0 obtained by gluing 41 and 42 along the legs labeled by {n +

1, . . . , n + nD} is connected of genus g and total weight1 �.
B. For every vertex v 2 V (41), one hasX

j2R(v)

d j = (�(v) · D)X1 .

Similarly if v 2 V (42) thenX
j2R(v)

d j = (�(v) · D)X2 .

Remark 5.2. Let �1 be the total weight of 41 and �2 the total weight of 42. Then
(B) implies that (�1 · D)X1 = (�2 · D)X2 .
Remark 5.3. The distinction between intersection multiplicities d j and contact or-
ders c j is a feature of the orbifold situation, the ratios fi = ci/di being the indices
of the corresponding marked points mapping to D. We see in Subsection 5.2.1 that
one can avoid the need for the ci in the forumla as stated in Theorem 0.1, but our
proof requires using them.
Definition 5.4. An isomorphism of splittings (41,42) ! (40

1,4
0

2) is an isomor-
phism of modular graphs respecting the labellings, in particular the orders of N
and M .

We denote by �(0) the set of isomorphism classes of splittings of 0.
Remark 5.5. Passing to isomorphism classes is harmless: since by assumption the
glued graph is connected, every vertex in41,42 is incident to at least one root, and
since the roots are labelled by an ordered finite set, the automorphism group of a
splitting is trivial. So the groupoid of splittings is rigid and therefore equivalent to
the set �(0).
Definition 5.6. The symmetric group S(M) acts on � by its action on M . Two
splittings are said to be equivalent if they belong to the same S(M)-orbit. We let �
be the set of equivalence classes.
Definition 5.7. Fix a twisting choice r. For each ⌘ 2 �, we define

r(⌘) := r(c).

1 Of course here we are tacitly identifying an element of H2(Xe) with its image in H2(X).
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Definition 5.8. Consider the standard pairing

H⇤(I(D)) ⇥ H⇤(I(D)) ! Q
(✓1, ✓2) 7!

R
I(D) ✓1 · ✓2.

Let F be a basis of H⇤(I(D)) of classes with homogeneous parity. For each � 2 F
we denote by �_ be the dual element in the dual basis with respect to this pairing.
In order to avoid issues of signs we define �_ to be dual to � if

R
I(D)) �

_
· � = 1

in this order – this ensures that the Poincaré dual class of the diagonal of I(D) isP
�2F � ⇥ �_.

5.2. Statement of the formula

Here is the degeneration formula the way it naturally arises in our proof:

Theorem 5.9. For any choice of nonegative integers m1, . . . ,mn , and cohomology
classes �i 2 H⇤(I (W0)), the following degeneration formula holds:

*
nY
i=1

⌧mi (�i )

+Wb0

�,g

=

P
⌘2�

Q
j2M c j
|M|!

P
�i2F (�1)✏

*Y
i2N1

⌧mi (�i )
�� Y
i2M

�i

+(X1,D)

01

·

*Y
i2N2

⌧mi (�i )
�� Y
i2M

◆⇤�_i

+(X2,D)

02

.

The sign (�1)✏ is fixed in terms of the parity of the classes so that formally the
following holds:

Y
i2N

�i ·

Y
j2M

� j�
_

j = (�1)✏
Y
i2N1

�i
Y
i2M

�i
Y
i2N2

�i
Y
i2M

�_i .

Remark 5.10. In [42], one sums over the set of equivalence classes � of splitting
types, and therefore the factor |M|! in the denominator is replaced by |Eq(⌘)|, the
stabilizer of ⌘ inside S|M|, introduced in [41, page 574], [42, page 203].

5.2.1. The Chen-Ruan pairing and Theorem 0.1

As in [7, Section 6.4], or [22], the formalism becomes a bit more elegant if one
uses the Chen-Ruan pairing. Here one treats the evaluation maps ev j , j 2 M as if
their target is I(D) rather than I(D), and further includes ◆ in the pairing. In our
situation, if we identify � 2 F with its pullback in H⇤(I(D)), the dual element
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with respect to the standard pairing of H⇤(I(D)) becomes r · �_. Further, we can
change this pairing by applying ◆ on the right element, namely use

H⇤(I(D)) ⇥ H⇤(I(D)) ! Q
(✓1, ✓2) 7!

R
I(D)) ✓1◆

⇤✓2,

equivalently
H⇤(I(D)) ⇥ H⇤(I(D)) ! Q

(✓1, ✓2) 7!

R
I(D))

1
r ✓1◆

⇤✓2,

obtaining the Chen Ruan pairing. Then the dual element of � with respect to the
Chen-Ruan pairing is �̃_ = r · ◆⇤�_. Note again that the duality is defined so thatR
I(D)) ◆

⇤�̃_� = 1 to avoid signs in the decomposition of the class of the diagonal.
Theorem 0.1 follows as a version of the Theorem 5.9 above, in which the

contact orders ci are not used but the more invariant intersection multiplicities di =

c j/ f j instead. Indeed the pullback under the evaluation map ev j : Kr
4i

(Xi , D) !

I(D) of the involution-invariant locally constant factor r is the index f j . This givesY
j2M

c jev⇤

j ◆
⇤�_j =

Y
j2M

d jev⇤

j ◆
⇤�̃_j

as required.

5.3. Outline of proof of Theorem 5.9

Fix a twisting choice r and write K for Kr
0(W,⇡)b0 . The proof goes in several

steps. These will be completed in the next sections, as follows:
SECTIONS 5.4, 5.5, 5.6: for ⌘ 2 � we define a proper Deligne-Mumford stack
K⌘ parametrizing maps to a twisted expansion with a fixed splitting divisor of type
⌘, together with a morphisms st⌘ : K⌘ ! K. We prove (Proposition 5.13)

[K]
vir

=

X
⌘2�

r(⌘)
|M|!

st⌘⇤[K⌘]vir.

SECTION 5.7: fix ⌘ = (41,42) 2 �, and letK41 andK42 be the moduli stacks of
relative stable maps corresponding to41 and42 respectively. OnK41 ⇥K42 there
is a canonical gerbe banded by µr(⌘), which we denote u⌘ : K1,2 ! K41 ⇥ K42 ,
which parametrizes pairs of twisted stable maps together with the data of a glued
target.
SECTIONS 5.8-5.9: We construct a commutative diagram with cartesian square

K⌘
q⌘ //

""FF
FF

FF
FF

F
K⇤

⌘
//

✏✏

K1,2

✏✏
I(D)M

1
// (I(D) ⇥ I(D))M
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where the morphism on the right is the product of the two evaluation maps in M ,
and 1 is the diagonal with the second factor composed with ◆; In Proposition 5.18
we prove that

q⌘⇤[K⌘]vir =

 Y
j2M

c j

!
·1!

[K1,2]vir 2 A⇤(K⇤

⌘).

SECTION 5.10: The degeneration formula follows by another application of the
projection formula.

5.4. Splitting the coarse target

We form the following cartesian diagram:

KQ
s //

✏✏

K

✏✏
Q //

✏✏

Ttw0

✏✏
T
u,spl
0

// Tu
0

The stack T
u,spl
0 of untwisted expansions with a choice of splitting divisor is defined

in Section 2.4. It is nonsingular, and coincides with the normalization of Tu
0.

The stacks Q and KQ are formed as the fibered products making the diagram
cartesian. Therefore the perfect obstruction theory of E•

K/Ttw0
pulls pack to a perfect

obstruction theory E•

KQ/Q defining a virtual fundamental class which we denote
[KQ]

vir.
Since T

u,spl
0 ! Tu

0 is the normalization of a reduced normal crossings stack, it
has pure degree 1 in the sense of [23, Section 5]. Since Ttw0 ! Tu

0 is flat, it follows
that the morphismQ ! Ttw0 is of pure degree 1 in the same sense as well. We have
the following:

Lemma 5.11.
s⇤[KQ]

vir
= [Kb0]

vir .

Proof. This follows from [23, Theorem 5.0.1], see also [44, Proposition 2, Sec-
tion 4.3].

5.5. Splitting the stack target

In Section 2.4 we introduced a natural decomposition of Q = Tu,spl
0 ⇥Tu

0
Ttw0 into

open and closed loci according to the twisting index of the twisted expansion along



ORBIFOLD TECHNIQUES IN DEGENERATION FORMULAS 561

the chosen singular component:

Q =

a
r�1

Qr

and accordingly we have a decomposition

KQ =

a
r�1

KQr .

The stack Qr is nonreduced. The reduced substack is the smooth stack T
r,spl
0 , the

stack of twisted expansions with splitting divisor of index r .
By Lemma 2.9 the morphism T

r,spl
0 ! Qr is of degree 1/r , in the sense that

the image of [Tr,spl
0 ] is r�1

[Qr ]. This is sufficient for applying [23, Theorem 5.0.1]
in Manolache’s version [44, Proposition 2, Section 4.3]. We therefore obtain the
following:

Lemma 5.12. Consider the fiber diagram

Ksplr
tr //

✏✏

KQr

✏✏
T
r,spl
0

// Qr .

Then ⇥
KQr

⇤vir
= r · (tr )⇤

h
Ksplr

ivir
.

The multiplicity r in this lemma depends on the twisting choice, since the formation
of the moduli spaces does. It is important to notice that at the end it will be cancelled
by that appearing in Lemma 5.15 below.

5.6. Decomposing the moduli space with split target

Recall that we denote by � = �/⇠ the set of equivalence classes of splitting types
under the action of the symmetric group S(M), and by ⌘̄ the equivalence class of
⌘ 2 �.

Given a positive integer r , denote by�r the set of isomorphism classes of types
⌘ satisfying r(⌘) = r , and by �̄r the set of equivalence classes. We can now refine
the decomposition as follows:

Ksplr =

a
⌘̄2�̄r

Kspl⌘̄ .
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Denote by t⌘̄ : Kspl⌘̄ ! KQr the restricted morphism. On the level of virtual
fundamental classes, Lemma 5.12 gives

[KQr ] = r · (t⌘̄)⇤
X
⌘̄2�̄r

h
Kspl⌘̄

i
.

Now denote by K⌘ ! K⌘̄ the cover obtained by labeling the distinguished nodes
of the source curve by the set M . This is clearly an S|M|-bundle, and therefore it
has an associated perfect obstruction theory and virtual fundamental class. Denote
by t⌘ : K⌘ ! KQr the composite map.

Putting Lemmas 5.11 and 5.12 together we obtain

Proposition 5.13.

[K] =

X
⌘2�

r(⌘)
|M|!

· (s � t⌘)⇤
h
Kspl⌘

i
.

5.7. Gluing the target

Recall from Section 2.1.1 that for an integer r (not to be confused by the implicit
twisting choice) we denote by T twr ⇢ T tw the substack of relative twisted expanded
degenerations with twisting index r along D. In Lemma 2.10 we considered the
natural morphism T

r,spl
0 ! T twr ⇥T twr corresponding to the two components of the

partial normalization of the universal familyW tw
0,univ and showed that it is a gerbe

banded by µr .
We begin approaching Kspl⌘ from the other direction, namely from stacks of

relative stable maps to the components of W0. Given ⌘ = (41,42) we denote r =

r(⌘), and use the shorthand notation K41 = Kr
41

(X1, D) and K42 = Kr
42

(X2, D).

Definition 5.14. We define K1,2 by the following fiber diagram:

K1,2
u⌘ //

✏✏

K41 ⇥K42

✏✏
T
r,spl
0

// T twr ⇥ T twr .

The stack K1,2, which depends on ⌘, parametrizes a glued twisted target, along
with a pair of relative stable maps of types41 and42 to the two parts of the twisted
target.

Composing with the projections, we have morphisms u⌘1 : K1,2 ! K41 and
u⌘2 : K1,2 ! K42 .
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Recall (Lemmas C.7, C.10) that we have perfect obstruction theories EK41/T twr !

LK41/T twr and EK42/T twr ! LK42/T twr . These are defined as follows: consider the
universal relative twisted stable map

C1
p1

✏✏

f1 // X1

K41

Denote by P1 ⇢ C the divisor given by the leg markings.
Consider the complex L⇤1 := [ f ⇤

1 LX1/T twr ! �1C1/K41
(log P1)]. We have a

perfect relative obstruction theory on K41/T twr given by taking the complex

E•

K41/T twr
=

⇣
Rp1⇤

⇣
L_

⇤1

⌘⌘
_

[�1]

with its natural map to LK41/T twr . The construction for E•

K42/T twr
is identical.

Combining these, we have a perfect obstruction theory E•

K41/T twr
� E•

K42/T twr
on K41 ⇥ K42/T twr ⇥ T twr . As the morphism T

r,spl
0 ! T twr ⇥ T twr is étale, so is

the morphism K1,2 ! K41 ⇥ K42 , and the pullback of the same complex gives
a perfect obstruction theory for K1,2/Tr,spl

0 . We denote by [K1,2]vir and [K41 ⇥

K42]vir = [K41]vir⇥ [K42]vir the associated virtual fundamental classes. Since the
degree of u⌘ : K1,2 ! K41 ⇥K42 is r�1 we obtain the following:

Lemma 5.15.
[K41 ⇥K42]vir = r · (u⌘)⇤[K1,2]vir.

Notice that the multiplicity r = r(⌘) obtained here, which depends on the twisting
choice, coincides with the multiplicity appearing in Lemma 5.12. In the comparison
of invariants this multiplicity cancels out.

Denote byD the universal boundary divisor over K1,2. It is a gerbe banded by
µr over the coarse boundary divisor K1,2 ⇥ D.

5.8. Gluing the source

There is a natural morphism
v⌘ : K⌘ ! K1,2

obtained by associating to a map C ! W tw
0 with splitting of type ⌘ the two maps

C1 ! X1 ,! W tw
0 of type41 and C2 ! X2 ,! W tw

0 of type42 with source curves
determined by the splitting. We now put this in a fiber diagram and demonstrate the
compatibility of the given perfect obstruction theories.

Recall from Definition 4.4 that the restriction of a stable map f1 : C1 ! X1 to
61 j gives rise to the evaluation map evr

j41
: K41 ! I(D/T tw).
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Composing with u⌘1 � v⌘ : K⌘ ! K41 denote the product morphisms

evr⌘ =

Y
j2M

evr
j41

� u⌘1 � v⌘ : K⌘ ! I(D/T tw)MT tw .

This notation means that we are taking the M-th fibered product over T tw. Since
this notation is cumbersome we use the shorthand

IM := I(D/T tw)MT tw .

Also denote

evr1,2 =

Y
j2M

(evr
j41

� u⌘1) ⇥ (evr
j42

� u⌘2) : K1,2 ! (I ⇥ I)M .

On the right we again use shorthand where I stands for I(D/T tw) and all products
are fibered over T tw. As in [7, Section 5], we have a cartesian diagram

K⌘ v //

evr⌘
✏✏

K1,2
evr1,2

✏✏

IM
1̃ // (I ⇥ I)M .

Here the map 1̃ sends I(D/T tw) to itself by the identity map on the left component,
and by the map ◆ : I(D/T tw) ! I(D/T tw) inverting the band on the right. Indeed
an object of the fibered product consists of a pair of maps to the glued target along
with an isomorphism of the restricted maps on the gerbe with band inverted. Since
the glued curve is a pushout, such a pair of maps with isomorphism is precisely the
data of a map from the glued curve, hence an object of K⌘. This works for arrows
as well.

We now have the following:
Proposition 5.16.

[K⌘]vir = 1̃!

[K1,2]vir.
Proof. Recall the perfect obstruction theory E•

K⌘/Ttw,spl
0,r

! L•

K⌘/Ttw,spl
0,r

defined in

Lemma C.7. By [14, Proposition 5.10] it suffices to produce a diagram of distin-
guished triangles

v⇤E•

K1,2/Ttw,spl
0,r

//

✏✏

E•

K⌘/Ttw,spl
0,r

//

✏✏

evr⇤

⌘ L1̃
[1] //

id

✏✏
v⇤L•

K1,2/Ttw,spl
0,r

// L•

K⌘/Ttw,spl
0,r

// evr⇤

⌘ L1̃
[1] // .

Since 1̃ is a regular embedding L1̃ ' N_

1̃
[1].
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Consider the cartesian and co-cartesian square

G ◆1 //

◆2
✏✏

C1
⌫1

✏✏
C1

⌫2 // C

where G is the disjoint union of the marking corresponding to the roots of41 or42.
Also denote the normalization map ⌫ : C1 tC2 ! C and the embedding ◆ : G ! C.
We have the standard normalization triangle

L_

⇤
// ⌫⇤L⌫⇤L_

⇤
// ◆⇤L◆⇤L_

⇤
[1] //

and a natural decomposition

⌫⇤L⌫⇤L_

⇤ = ⌫1⇤L⌫⇤

1L_

⇤ � ⌫2⇤L⌫⇤

2L_

⇤.

Lemma 5.17.
L⌫⇤

1L_

⇤ = L_

⇤1
, L⌫⇤

2L_

⇤ = L_

⇤2
,

and
L◆⇤L_

⇤ = ( f � ◆)⇤TD.

Proof of Lemma. The commutative diagram

C1 //

✏✏

X1

✏✏
C // W

induces a canonical arrow L⌫⇤

1L⇤ ! L⇤1 , and similarly for L⌫⇤

2L⇤ ! L⇤2 . We
can check that this is an isomorphism locally. Away from D nothing is changed.
Near D, the complex L⇤ is the conormal to C ! W since f is transversal, and it
restricts to L⇤1 , the conormal to C1 ! X1. For the same reason the conormal to
C ! W restricts on G to the conormal of G ! D.

The triangle now looks as follows:

L_

⇤
// ⌫1⇤L_

⇤1
� ⌫2⇤L_

⇤2
// ◆⇤( f � ◆)⇤TD

[1] // .

Since D is a gerbe, the tangent sheaf TD is the pullback of TD , and it follows from
the Tangent Bundle Lemma (see [7, Lemma 3.6.1]) that

p⇤◆⇤( f � ◆)⇤TD = evr⇤

⌘ N1̃.
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Therefore when applying R⇡⇤, dualizing and rotating the above triangle we get

⇣
Rp1⇤L_

⇤1

⌘
_

�

⇣
Rp2⇤L_

⇤2

⌘
_

// �Rp⇤L_

⇤

�
_ // evr⇤

⌘ N_

1̃
[1] [1] //

which is clearly compatible with the triangle of cotangent complexes, as required.
(A detailed verification of such compatibility is found in [5, Appendix].)

5.9. Comparison with 1

We now translate Proposition 5.16 into a result involving 1 : I(D)M ! (I(D) ⇥

I(D))M instead of IM = I(D/T tw)MT tw and 1̃.
We have a cartesian diagram

K⌘
q⌘ //

✏✏

K⇤

⌘
//

✏✏

K1,2

✏✏
I(D)M

q //
⇤

//

✏✏

(I(D) ⇥ I(D))M

✏✏
T tw ⇥ I(D)M

Id⇥1 //

✏✏

T tw ⇥ (I(D) ⇥ I(D))M

✏✏
I(D)M

1 // (I(D) ⇥ I(D))M .

The arrow 1 is again the diagonal composed with ◆ on the right.
By Lemma 1.6, the component Z j of I(D/T tw) where evr

j maps is a gerbe
over the corresponding component Z j of T tw ⇥ I(D), and this gerbe is banded by
µc j . It follows that the arrows q and q⌘ are étale surjective of pure degree

Q
j2M c j :

the arrow q is the product of the étale surjective morphisms Z j
! Z j

⇥Z j Z j
=

Z j
⇥ Bµc j . Therefore we have the following:

Proposition 5.18.

(q⌘)⇤ [K⌘]vir =

 Y
j2M

c j

!
· 1!

[K1,2]vir.

We can now use the projection formula. The composite top morphism in the last
diagram is v⌘ : K⌘ ! K1,2. We can compose the vertical arrow on the right and
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obtain the “untwisted” evaluation morphism ev1,2 : K1,2 ! (I(D) ⇥ I(D))M .

Denoting by [1] the class (1)⇤[I(D)M ], we have that

v⌘⇤ [K⌘]vir =

 Y
j2M

c j

!
· ev⇤1,2[1] \ [K1,2]vir.

But [1] =

Q
j2M

⇣P
� j2F � j ⇥ ◆⇤�_j

⌘
.We thus obtain:

Corollary 5.19.

v⌘⇤ [K⌘]vir =

Y
j2M

0
@c j X

� j2F
ev j41

⇤� j ⇥ ev j42
⇤◆⇤�_j

1
A \ [K1,2]vir;

combining with Lemma 5.15, with a slight abuse of notation we have

(v⌘ � u⌘)⇤ [K⌘]vir

= r(⌘) ·

Y
j2M

0
@c j X

� j2F
ev j41

⇤� j ⇥ ev j42
⇤◆⇤�_j

1
A \ [K41 ⇥K42]vir

5.10. End of proof

The stack K⌘ carries two universal families of contracted curves: a disconnected
family C 0

! K⌘ pulled back from C1tC2 ! K41 ⇥K42 inducing evaluations ev0

i
with coarse curve C 0

! K⌘ having sections s0i ; and a connected family C⌘ ! K⌘
coming from C ! K inducing evaluations evi , with coarse curve having sections
si . These families differ only where they meet the splitting divisor. In particular the
pullback of the classes  i of the sheaves s⇤i !C/K coincides with that of the class
 0

i corresponding to s
0⇤

i !C2tC2/K41⇥K42 , and similarly for the pullbacks of �i via
evaluation maps. We compute:

*Y
i2N

⌧mi (�i )

+W0
0

=

X
⌘2�

r(⌘)
|M|!

deg

 
(s � t⌘)⇤

 Y
i2N

 
mi
i · ev⇤

i �i

!
\ [K⌘]vir

!

(by the projection formula and Lemma 5.13)

=

X
⌘

r(⌘)
|M|!

deg

 
(u � v⌘)

⇤

 Y
i2N

 0mi
i · ev0⇤

i �i

!
\ [K⌘]vir

!
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(by the discussion above)

=

X
⌘2�

r(⌘)
|M|!

Q
j2M c j
r(⌘)

deg

  Y
i2N

 0mi
i · ev0⇤

i �i

!

·

Y
j2M

0
@c j X

� j2F
ev j ⇤41� j ⇥ ev j ⇤42 ◆

⇤�_j

1
A \ [K41]vir ⇥ [K42]vir

1
A

(by the projection formula and Corollary 5.19)

=

X
⌘2�

Q
j c j

|M|!

X
� j2F8 j2M

(�1)✏
*Y
i2N1

⌧mi (�i )

����
Y
j2M

� j

+(X1,D)

41

·

*Y
i2N2

⌧mi (�i )

����
Y
j2M

�̃_j

+(X2,D)

42

as required.

A. Pairs and nodes

A.1. Smooth and locally smooth pairs

A smooth pair is a pair (X, D) where X is a smooth algebraic stack and D is a
smooth divisor. A locally smooth pair is obtained if we only require X to be smooth
near the smooth divisor D. We sometimes call X the ambient scheme/stack and D
the boundary divisor.

Let A := [A1/Gm] – this notation will be kept throughout the paper. A mor-
phism f : X ! A is equivalent to the data (L , s) of a line bundle L on X with a
section s, as explained in [5]. The morphism f is dominant if and only if the section
s is nonzero; in particular, every pair (X, D) with X an algebraic stack and D an
effective Cartier divisor defines such a dominant morphism. The pair is smooth (re-
spectively locally smooth) if and only if the morphism toA is smooth (respectively
smooth over the divisor BGm = [0/Gm]).

A morphism of locally smooth pairs � : (X, D) ! (X 0, D0) is a morphism
� : X ! X 0 such that ��1(D0)red ⇢ D. If D0 is empty, every morphism X ! X 0

defines a morphism of pairs (X, D) ! (X 0,;).
A family of locally smooth pairs over a base stack S is the datum of a flat

morphism X ! S and an S-flat closed substack D ⇢ X such that for every point
s 2 S the fiber (Xs, Ds) is a locally smooth pair.
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Given two families (X, D) and (X 0, D0) of locally smooth pairs over the same
base S, a log morphism is a morphism � : X ! X 0 such that

(1) for every s 2 S, �s : (Xs, Ds) ! (X 0

s, D0

s) is a morphism of locally smooth
pairs;

(2) the morphism �⇤�X 0 !�X induces a morphism �⇤(�X 0(log D0))!�X (log D).

Note that:

(a) the first condition implies the second if S is reduced, but not in general;
(b) assume that S is connected, and that D has connected components Di such that

Di \ Ds is also connected for every i and every s 2 S (this is true, e.g., if S is
simply connected). Then � : X ! X 0 is a log morphism if and only if there
exist nonegative integers ci such that �⇤D0

=

P
ci Di .

Locally smooth pairs and their morphisms are classical special cases of logarithmic
structures in the sense of [33].

A.2. Transversality for nodal singularities and pairs

A morphism of locally smooth pairs (C,6) ! (X, D) is transversal to the bound-
ary divisor (or just transversal) if the scheme-theoretic inverse image of D is smooth
(and hence a union of connected components of 6).

Let X be a complex algebraic stack; we say that it has nodal codimension one
singularities – or just nodal singularities for brevity – if it is locally isomorphic in
the f.p.p.f. topology to {xy = 0} ⇥ An; in particular its singular locus D is smooth.
Let ⌫ : X̃ ! X be the normalization and D̃ = ⌫�1(D). Then (X̃ , D̃) is a smooth
pair, and D̃ ! D is an étale double cover.
Definition A.1. A morphism between nodal algebraic stacks f : C ! X is called
transversal to the singular locus if

(1) the induced morphism C̃ ! X̃ defines a morphism of locally smooth pairs
which is transversal to the boundary divisor;

(2) for every point p 2 f �1(D) its two inverse images in C̃ map to different points
of D̃ via f̃ .

This means that we have smooth charts C̃ ! C and X̃ ! X , lifting C̃ ! X̃ of
C ! X and smooth morphisms C̃ ! {xy = 0} and X̃ ! {xy = 0} making the
following diagram commutative

C̃ //

##HH
HH

HH
HH

HH X̃

{{vvv
vv

vv
vv

v

{xy = 0},

so on the charts C̃ and X̃ the coordinates x, y with xy = 0 are the same.
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Suppose now (C,6) ! S and (X, D) ! S are flat families of locally smooth
pairs with at most nodal singularities and f : C ! X a map. The following is
evident:

Lemma A.2. The locus Str ⇢ S where the fibers are transversal is open.

A.3. First-order smoothability of nodal singularities

If X is a stack with codimension-1 singular locus D, we say that X is first-order
smoothable if the line bundle Ext1(�X ,OX ) on D is trivial. If X is the union of two
smooth components X1 and X2 meeting transversally along D, then it is first-order
smoothable if and only if ND/X1 ⌦ ND/X2 is isomorphic to OD . Note that if there
is a one-parameter smoothing of X with smooth total space then X is first-order
smoothable, while the converse is in general not true.

B. Stack constructions

B.1. Using 2-stacks to define stacks

Occasionally we define a 2-groupoid X by giving objects, 1-morphisms and 2-
morphisms, and then we show that every 1-morphism in X is rigid (i.e., it has
only the identity as 2-automorphism); equivalently, for any two objects X and Y
of X, the groupoid Mor(X,Y ) is equivalent to a set. In this case we say that the
2-groupoid X is 1-rigid. We can then consider the associated groupoid X[1], where
objects are unchanged, and morphisms are isomorphism classes of 1-morphisms of
the given 2-groupoid X. Since X is 1-rigid, it is equivalent to X[1] (in the appropri-
ate lax sense). We might as well replace X, which may arise naturally but is likely
to intimidate us with its dæmonic 2-arrows, by the more friendly, yet equivalent,
groupoid X[1].

We will use this particularly in the definition of algebraic stacks. In particular
if X is a stack then stacks with a representable morphism to X form a 1-rigid 2-
groupoid, see [7, Lemma 3.3.3]; also, the 2-groupoid of stacks with a dense open
algebraic space and isomorphisms as 1-morphisms is also 1-rigid, see [11, Lemma
4.2.3, page 42]. Both cases are generalized using the following lemma.

Lemma B.1. Let X be a stack with separated diagonal, and U a scheme-theoretic
dense open substack. Let � : idX ! idX be a 2-morphism such that �|U is the
identity of idU . Then � is the identity 2-morphism.

Proof. The fact that the diagonal is separated implies that the natural projection ⇡ :

I (X) ! X is separated. The automorphisms of idX are the sections of I (X) ! X .
Since we assumed that this section is the identity on a scheme-theoretically dense
substack, it coincides with the identity on X .
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Let p : X ! Y be a morphism of stacks, and assume that there is a scheme-
theoretic dense open substack U of X such that p|U : U ! p(U) is an isomor-
phism. Let g : Y ! Y be an isomorphism. A lifting of g to X is a pair ( f,↵)
such that f : X ! X is an isomorphism and ↵ : p � f ! g � p a 2-morphism. A
morphism of liftings is a 2-morphism � : f ! f 0 such that � and ↵0 induce ↵.

Lemma B.2. The groupoid of liftings of g is rigid, i.e., equivalent to a set.

Proof. Let ( f,↵) and ( f 0,↵0) be two liftings of g to X . We want to show that a
2-morphism � : f ! f 0 such that � and ↵0 induce ↵ is unique if it exists. Let
� and � 0 be two such two-morphisms, and let � := ��1

� � 0
: f ! f . Then

�|U : fU ! fU is the identity 2-morphism. Let �̄ : idX ! idX be the composition
of � with the identity of f �1; then �̄|U is also the identity 2-morphism of idU .
Therefore �̄ must be the identity 2-morphism by Lemma B.1, and hence � must be
the identity 2-morphism, hence � = � 0.

Convention B.3. In this case, we will refer to the liftings of g as a set, meaning the
set of equivalence classes of the corresponding groupoid.

B.2. Inertia stacks of various flavors

B.2.1. The inertia stack

Let X be an algebraic stack. Its inertia stack I(X) is the stack whose objects over
a scheme S are pairs (x, g) with x 2 X (S) and g 2 Aut(x). Arrows are given by
pullback diagrams.

The inertia stack can be identified as I(X) = X ⇥X⇥X X , with both ar-
rows given by the diagonal. Since the diagonal is representable, the morphism
I(X) ! X given by the first projection is representable. This is simply the forget-
ful morphism which sends an object (x, g) to x .

Let BZ be the classifying prestack of Z. Then we have a canonical isomor-
phism of prestacks I(X) ' Hom(BZ, X). This in particular implies that forming
the inertia stack is compatible with fiber products: given a fiber product of algebraic
stacks X = X1 ⇥Z X2 we have I(X ) = I(X1) ⇥I(Z) I(X2) (an observation due
to Tom Bridgeland).

B.2.2. Inertia of Deligne-Mumford stacks

Suppose now X is a Deligne-Mumford stack, and let r be a positive integer such
that the exponent of any automorphism group in X divides r . In this case we
have I(X) = Hom(B(Z/rZ), X). The stack I(X) has an evident decomposi-
tion I(X) = td|rId(X), where Id(X) is the stack of (x, g) with g of order d.
Then Id(X) = Homrep(B(Z/dZ), X), the substack of representable morphisms,
see [7, Definition 3.2.1].
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B.2.3. Rigidified inertia

The automorphism group of an object (x, g) of Id(X) has the subgroup Z/dZ '

hgi sitting in its center. We can therefore rigidify by removing this subgroup and
obtain the rigidified stack Id(X) = Id(X)[](Z/dZ). It is canonically isomorphic
to the stack whose objects over S are G ! X , where G is a gerbe banded by Z/dZ
and G ! X is representable. The rigidified inertia stack is I(X) = td|rId(X).
The morphism I(X ) ! I(X) is the universal gerbe, with universal representable
morphism I(X) ! X . We stress that the data of the band is important - without
it we would get a different tack, a rigidification of the stack of cyclic subgroups
(without choice of generator) of inertia.

B.2.4. Cyclotomic inertia and rigidified inertia

In the theory of twisted stable maps, a cyclotomic twist of these stacks arises nat-
urally. Since in this paper we work over C, it is safe to choose the generator
exp(2⇡ i/d) of µd , so the distinction is not crucial. Let us mention the appropriate
identification of stacks: we have I(X) ' Hom(Bµr , X), the cyclotomic inertia
stack; Id(X) ' Homrep(Bµd , X); and Id(X) ' Id(X)[](µd) is canonically iso-
morphic to the stack whose objects over S are G ! X , where G is a gerbe banded
by µd and G ! X is representable. The stack I(X) = td|rId(X) is then identified
as the rigidified cyclotomic inertia stack, see [7, Section 3.4].

B.3. Deformations and obstructions for Artin stacks

A key technical tool for deformation theory is the cotangent complex of a mor-
phism: we refer the reader to [53] for the correct definition of cotangent complex
L f for a morphism f : X ! Y of Artin stacks and for the relevant results in de-
formation theory, see also [13]. Note that in [53] Olsson’s cotangent complex L f is
actually not defined as an object in the derived category: its right truncations ⌧�nL f
are for n 2 Z, and L f is defined as an object of a filtered category. This issue is
removed in [37, 2.2.ix], specifically the equivalence at the end of page 119 between
the appropriate derived categories of quasi-coherent sheaves on the stack and on a
symplicial resolution.

In particular, to any morphism of Artin stacks f : X ! Y we can after all
associate its cotangent complex L f 2 D1

coh(X). This is functorial, in the sense that
for any composable morphisms of Artin stacks f : X ! Y and g : Y ! Z , there
is a distinguished triangle in D�(X):

f ⇤Lg ! Lg� f ! L f
+1
! .

The morphism f is étale if and only if L f = 0; it is smooth if and only if its
cotangent complex L f is perfect of perfect amplitude contained in [0, 1].

Recall that f is said to be of Deligne-Mumford type if for any morphism
S ! Y with S a Deligne-Mumford stack, the stack X ⇥Y S is also Deligne-
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Mumford. Then f is Deligne-Mumford type if and only if h1(L f ) is the zero sheaf,
or equivalently if L f 2 D0(X).

For any stack X we write LX for LX!Spec k ; the complex LX is perfect of
perfect amplitude in [�1, 0] if and only if X is a Deligne-Mumford stack with l.c.i.
singularities.

If f : X ! Y is a morphism of Deligne-Mumford type, an obstruction theory
for f is a morphism � : E ! L f in D0(X) such that h0(�) is an isomorphism,
and h�1(�) is surjective. We say that it is a perfect obstruction theory if E is a
perfect complex, of perfect amplitude contained in [�1, 0] (i.e., locally isomorphic
to a morphism E�1

! E0 of locally free sheaves).
We define the cotangent complex of a locally smooth pair (X, D) to be LX/A

(where X ! A is the morphism associated to the pair, see Section A.1); we some-
times denote it by LX (log D). Note that if (X, D) is a smooth pair with X a scheme,
or, more generally, a smooth DM stack, thenLX (log D) is concentrated in degree zero
and isomorphic to the classically defined locally free sheaf �X (log D). It is easy to
see that a morphism of locally smooth pairs induces a morphism of log cotangent
complexes, which has the usual deformation-theoretic properties (see [50]).

C. Stacks of maps and their obstruction theory

C.1. Stacks of maps

We define a relative obstruction theory on certain algebraic stacks parametrizing
stable maps. This includes the obstruction theories needed in the singular and in the
relative case, see Section C.2; in fact, a common generalization is possible.

Convention C.1. In this section, we will fix an algebraic stack T , and a family
of locally smooth pairs (W, D) ! T such that W ! T is of Deligne-Mumford
type (note that the case D = ; is possible, in which case we are just assuming
W ! T to be flat). Fix nonnegative integers g, n and a curve class � in the fibers
of W ! T . Fix n-tuples e of positive integers ei and c of nonnegative integers ci
such that

P
ci · ei�1 = � · D. In particular if D = ;, we must have ci = 0. We

combine the data under the shorthand notation 0 = (g, n, e, c,�)

Definition C.2. Let eK0((W, D)/T ) be the stack of representable maps f from
a twisted prestable n-pointed curve (C,6) to fibers of (W, D) ! T such that
f ⇤D =

P
ci6i and such that 6i is twisted with index ei . If D is empty, we writeeK0(W/T ).

Remark C.3. The condition on f ⇤D can be rephrased as saying that we consider
the stack of log morphisms; see Section A.1 for details.

Convention C.4. We will write just eK for eK0((W, D)/T ) within this section.

Lemma C.5. The stack eK is an algebraic stack in the sense of Artin.
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Proof. We first do the case D = ;. Consider the stack of twisted curves M :=

Mtw
g,n and its universal family C ! M. Over M ⇥ T we have two families,

C0
:= C ⇥ T ! M ⇥ T and W 0

:= M ⇥ W ! M ⇥ T . We first prove that
HomrepM⇥T (C0,W 0) is algebraic. By [51], the pullback of eK to a scheme by any ar-
row S ! M⇥T is an algebraic stack in the sense of Artin. AlsoeK is a stack, since
this property is tested over a base scheme. By [10, Lemma C.5], the stack eK is an
algebraic stack, as required.

If D is nonempty, leteK0 be the stack obtained by assuming D empty. The stackeK is obtained by first passing to the open substack where f ⇤D is a divisor on C , and
then to the closed substack where the two divisors

P
ci6i and f ⇤D coincide.

Notation C.6. Let us now denote by K ⇢
eK the maximal open substack of eK such

that the morphism K ! T is of Deligne-Mumford type. We will reserve the nota-
tion K for the substack which is Deligne-Mumford in the absolute sense.

C.1.1. Base change

The construction ofeK andK behaves well under base change in the following sense.
Assume that (W, D) ! T satisfies the assumption in Convention C.1. Let aT :

T 0
! T be any morphism, and write W 0

:= W ⇥T T 0 and D0
:= D ⇥T T 0.

Let � 0 be the homology class in the fibers of W 0
! T 0 induced by �, let 00 be

obtained by replacing � by � 0 in 0, and aW : W 0
! W the natural morphism.

Then (W 0, D0) ! T 0 satisfies the same assumptions, and there is a natural cartesian
diagram

eK00((W 0, D0)/T 0)
aeK //

✏✏

eK0((W, D)/T )

✏✏
T 0

aT
// T

where aeK is given by mapping an object (C,6, f 0) to ((C,6, aW � f ). Since the
property of being of DM type is stable under base change, one gets an analogous
cartesian diagram by replacing eK by K .
C.1.2. Change of family

Assume that we are given a proper morphism ✓ : W1 ! W and a closed substack
D1 ⇢ W1 such that

(1) the composite morphism (W1, D1) ! T satisfies the assumption in Convention
C.1;

(2) one has ✓�1(D) = D1 as a closed subscheme, and ✓ |D1 : D1 ! D is an
isomorphism.

Let �1 be a class in the fibers ofW1 ! T , and � = ✓⇤�1, and 01,0 the correspond-
ing discrete data. If �1 = 0, assume moreover that 2g � 2+ n > 0. Then there is a



ORBIFOLD TECHNIQUES IN DEGENERATION FORMULAS 575

natural induced proper morphism of T -stacks

eK01((W1, D1)/T ) !
eK0((W, D)/T )

defined by (C,6, f ) 7! (C,6, ✓ � f )stab. This follows by applying [11, Corol-
lary 9.1.3], where we replace the base scheme S by T using [10, Lemma C.5].

C.2. Obstruction theory on stacks of maps

For simplicity we now restrict to the open substack Kt
⇢ K parametrizing maps

which are transversal to the boundary divisor in the sense of Subsection A.2. One
can avoid this simplifying assumption using logarithmic structures, but we will not
need this generality in this paper.

The aim of this section is to define a relative obstruction theory for Kt
! T ,

and to give conditions so that it is perfect in [�1, 0]. The construction works foreKt instead of Kt if we allow obstruction theories for morphisms which are not of
Deligne-Mumford type using the work [48], requiring EeKt/T ! LeKt/T to also be
an isomorphism in degree +1.

Consider the structure commutative diagram

C
f

((QQQQQQQQQQQQQQQQ

p

⇠⇠0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

  B
BB

BB
BB

B

WK

✏✏

u
// W

✏✏
K // T

where C ! Kt is the universal curve, f is the universal map and 6 := [6i is the
union of the marked gerbes. Also denote 60

= 6r f �1D. Since we are assuming
the maps are transversal to D, deforming f : (C,6) ! (W, D) is equivalent to
deforming f : (C,60) ! W , which is in turn equivalent to deforming the diagonal
map f̄ : (C,60) ! WKtw .

Let L⇤ be the cotangent complex to the morphism f̄ : (C,60) ! WKt):
it is canonically isomorphic in the derived category to the cone of the canonical
morphism of cotangent complexes

f ⇤LW/T �! LC(log60)/K

induced by the structure morphisms u⇤LW/T ! LWKt/Kt – which is an isomor-
phism since W ! T is flat – and f̄ ⇤LWKt/Kt ! LC(log60)/Kt. See [53, Theorem
8.1].

By the same argument, the object L⇤ is also isomorphic to the cone of the
morphism

p⇤LKt/T �! LC(log60)/W
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and therefore there is a natural morphism

L⇤[�1] �! p⇤LK/T .

The morphism p is proper. It is also l.c.i., therefore Gorenstein, and its dualizing
complex !p is a line bundle positioned in degree �1. By [43] the functor Rp⇤ :

D(C) ! D(K) has a right adjoint p! which is isomorphic to the functor F 7!

Lp⇤(F) ⌦ !p.
We denote by EK/T the object Rp⇤(L⇤ ⌦ !p); there is a natural morphism

EK/T ! LK/T induced by adjunction from the morphism L⇤[�1] ! p⇤LK/T de-
fined above. Note that we have a canonical isomorphism EK/T ' (Rp⇤L_

⇤)_[�1].

Lemma C.7.

(1) The morphism EK/T ! LK/T is an obstruction theory.
(2) Its formation commutes with base change on T in the sense of Remark C.1.1.

Proof. We first give a proof in the case where 6 = ;.

(1) we use the criterion in [14, Lemma 4.5]; see also page 85 there for the relative
case – a detailed proof is available in [5]. The result then follows from [30,
Theorem III 2.1.7];

(2) given a morphism � : K0
! K with C 0

! K0 the pullback of C ! K, we
have a canonical isomorphism L�⇤EK/T ' EK0/T , such that the composite
morphism L�⇤EK/T ! L�⇤LK/T ! LK0/T coincides with the composition
L�⇤EK/T ! EK0/T ! LK0/T . In particular, given a morphism  : T 0

! T
we can pull back the entire diagram. Denote by � : K0

! K the pullback
via �. Again we have an isomorphism L�⇤EK/T ' EK0/T ' EK0/T 0 , and the
compatibility above lifts to LK0/T 0 .

For the general case, we remark that the above proof remains valid by replacing the
cotangent complex of C by the cotangent complex with logarithmic poles along 6.
Treatment of this can be found in [38, 55]. This also follows from [30, Chapter III,
Subsections 2.3 and Section 4] by using the cotangent complex of the topos 60C ,
or by using the morphism C ! A associated to 60.

C.3. Perfect amplitude

Definition C.8. Let t be a geometric point of T , Wt the fiber of W over t . We say
that a prestable map f : (C,6i ) ! Wt (i.e., a point in K) is nondegenerate if
no irreducible component of C maps to the singular locus of Wt . An irreducible
component which does map to the singular locus of Wt is callled degenerate.
Remark C.9. The points corresponding to nondegenerate maps form an open sub-
stack Knd of K, which commutes with base change in the sense of Remark C.1.1.

Lemma C.10. Assume that the morphism W ! T is l.c.i.
(1) The obstruction theory EKt/T is perfect in [�2, 0];
(2) It is perfect in [�1, 0] over the open substack Kt

nd .
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Proof. (1) Since W ! T and C ! K are l.c.i., both LW/T and LC(log60)/K are
perfect in [�1, 0]. Therefore L⇤ is perfect in [�2, 0]; hence L⇤ ⌦ !⇡ [�1] is also
perfect in [�2, 0], and since p is proper and flat of relative dimension 1, one has that
EKt/T = Rp⇤(L⇤ ⌦ !p[�1]) is perfect in [�2, 1]. Since EKt/T is an obstruction
theory, it has vanishing h1, hence it is perfect in [�2, 0].

(2) It is enough to prove that, for each point x 2 Kt
nd , h

�2(x⇤EKt
nd/T

) = 0. As-
sume the point x corresponds to a prestable map f : (C,6) ! W . We want to
show that Ext2(L⇤|C ,OC) = 0; by the local-to-global spectral sequence of Ext,
we reduce to showing that H1(C, h1((L⇤|C)_)) = 0. Remark that L⇤|C is the
mapping cone of the morphism f ⇤LW/T ! LC(log6). Note that the support of
h1((L⇤|C)_) is contained in the locus of points in C which map to the singular lo-
cus of W ! T (i.e., the support of h1(( f ⇤LW/T )_)) which by assumption is zero-
dimensional.

Remark C.11. In fact, in this subsection we could replace the moduli stack of
twisted prestable curves with any other moduli stack of d-dimensional proper
Deligne-Mumford locally smooth pairs; Lemma C.7 would still hold, and Lem-
ma C.10 would hold with [�2, 0] (respectively [�1, 0]) replaced by [�(d + 1), 0]
(respectively [�d, 0]).
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