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Abstract. In this paper we study Hölder continuity of the pluricomplex Green
function with logarithmic growth at infinity of a smooth generic submanifold of
Cn . In particular we prove that the pluricomplex Green function of any C2-
smooth generic compact submanifold of Cn (without boundary) is Lipschitz con-
tinuous in Cn .
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1. Introduction and statement of the main result

Real m�planes 5 ⇢ Cn, dimR5 = m, m 2 N+, which are not contained in any
proper complex subspace of Cn are important in complex analysis and pluripoten-
tial theory. The C�hull of such plane 5 is equal to all Cn , i.e., 5 + J5 = Cn

(J is the standard complex structure on Cn) and any non-empty open subset of
5 is non-pluripolar in Cn . Such planes are called generic (real) subspaces of
Cn . Correspondingly, a real smooth submanifold M ⇢ Cn is said to be generic
if for each z 2 M , its real tangent space TzM is a generic subspace of Cn , i.e.,
TzM + JTzM = Cn . Such submanifold has real dimension m � n. The case of
minimal dimension dimM = n is the most relevant for our concern. In this case
for each z 2 M , the tangent space TzM does not contain any complex line, i.e.,
TzM \ JTzM = {0} and M is said to be totally real.

Observe that any smooth Jordan curve in C is totally real, hence any product
of n smooth Jordan curves in C is a smooth compact totally real submanifold of
dimension n inCn . Moreover the class of smooth compact totally real submanifolds
of dimension n in Cn is stable under small C2-perturbations.
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Generic submanifolds of Cn play an important role in Complex Analysis and
Pluripotential Theory (see [3, 5, 8, 13, 14, 17]).

In our previous paper [17], we used the method of attached analytic discs to
investigate non plurithinness of generic submanifolds of Cn . We proved in [17],
that subsets of full measure in a generic C2�smooth submanifold are non-plurithin
at any point.

Here we continue our investigations concerning the pluripotential properties
(pluripolarity, pluriregularity) of generic submanifolds in Cn by studying Hölder
continuity of their pluricomplex Green functions.

All these properties can be expressed in terms of the pluricomplex Green func-
tion defined as follows.

Given a (bounded) subset E b Cn , we define its pluricomplex Green function
as follows:

VE (z) := sup
�
u(z) : u 2 L(Cn), u|E  0

 
,

where L(Cn) is the Lelong class of psh functions u in Cn with logarithmic growth
at infinity, i.e., sup{u(z) � log+(z) : z 2 Cn

} < +1 (see [9, 18, 19, 22]).
Our main result is the following.

Main Theorem. Let M ⇢ Cn be a C2-smooth generic compact submanifold with-
out boundary. Then its pluricomplex Green function VM is Lipschitz continuous in
Cn .

This theorem is concerned with compact submanifolds without boundary. In
Section 3, we will consider the more general case of a C2-smooth generic sub-
manifold and prove that its extremal function is Lipschitz near each of its compact
subsets (see Theorem 5.1). In the last section we consider the case of a compact
C2-smooth generic submanifold with boundary and discuss the Hölder continuity
property of its pluricomplex Green function.

From Lipschitz continuity, or more generally the Hölder continuity of the pluri-
complex Green function VE (z) of a compact set E ⇢ Cn , it follows that the compact
set E satisfies the following Markov’s inequality: there exists positive constants
A, r > 0 such that

krP(z)kE  AdrkP(z)kE , z 2 Cn

for any polynomial P of degree d.
This inequality plays an important role in approximation theory, gives sharp

inequalities for polynomials and is useful for constructing continuous extension
operators for smooth functions from subsets ofRn toCn (see [12,25]). On the other
hand, Complex Dynamic gives a lot of examples of compact subsets for which the
pluricomplex Green function VE (z) is Hölder continuous (see [6]).

More recently an important result of C. T. Dinh, V. A. Nguyen and N. Sibony
shows that the Monge-Ampère measure of a Hölder continuous plurisubharmonic
function is a moderate measure (see [4]). In particular the equilibrium Monge-
Ampère measure µE := (ddcVE )n of a compact subset whose pluricomplex Green
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function VE (z) is Hölder continuous is a moderate measure, which means that it
satisfies the following uniform version of Skoda’s integrability theorem: for any
compact family U of psh functions in a neighborhood of a given ball B ⇢ Cn ,
there exists " > 0 and a constant C > 0 such thatZ

B
e�"udµE  C,8u 2 U .

From this property it follows that the equilibrium measure µE is “well dominated”
by the Monge-Ampère capacity (see [26]), in the sense that for any given ball B ⇢

Cn , there is a constant A > 0 such that for any Borel set S ⇢ B,

µE (S)  A exp
⇣
�AcapB(S)�1/n

⌘
,

where capB(S) is the Monge-Ampère capacity [2].
This property turns out to play an important role in the theory of complex

Monge-Ampère equations as was discovered by S. Kolodziej (see [7, 10]).
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Józef Siciak for his 85th birthday. His remarkable achievement in Pluripotential
Theory and Polynomial Approximation has been a great inspiration for us. We
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discussions on these problems. This work was started during the visit of the two
authors to ICTP (Triste) in June 2012. The authors would like to warmly thank this
Institute for providing excellent conditions for mathematical research, and more
especially Professor Claudio Arezzo for the invitation. They would like to the thank
the referee for his remarks.

2. Definitions and preliminaries

Let us recall the following definitions:
Definition 2.1. 1. We say that a subset P ⇢ Cn is pluripolar if there is a plurisub-
harmonic (psh) function u : u 6⌘ �1 but u|P ⌘ �1.

2. We say that E is pluriregular if its pluricomplex Green function satisfies
V ⇤

E |E = 0, i.e., VE = V ⇤

E on Cn .
Observe that any pluriregular set is non-pluripolar. It is well-known that if E

in non-pluripolar then V ⇤

E 2 L(Cn). Moreover if E is pluriregular compact set then
VE = V ⇤

E is continuous in Cn (see [19]).
On the other hand, we know from ([2]) that if E is non-pluripolar then the

locally bounded psh function V ⇤

E satisfies the following complex Monge-Ampère
equation

(ddcV ⇤

E )n = 0, on Cn
\ E,
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which means that the equilibrium measure of E defined as

µE :=

�
ddcV ⇤

E
�n

is a Borel measure supported in the closed set E .
Here we will introduce the following important notion.

Definition 2.2. We say that a set E is 3↵-pluriregular, ↵ > 0, if for every compact
K ⇢ E there exist a constant A = AK > 0 and a neighborhood O = OK of K
such that

VE (z)  Ad↵(z, K ), 8z 2 O, (2.1)

where d is the Euclidean distance in Cn .
Roughly speaking, this definition means that the pluricomplex Green function

VE of the set E is Hölder continuous near any compact subset K ⇢ E . The fol-
lowing observation, which is essentially due to Z. B locki, shows that if the set E is
compact itself, the definition means that its pluricomplex Green function is Hölder
continuous (see [20]).

Lemma 2.3. If E ⇢ Cn is a 3↵-pluriregular compact set then its pluricomplex
Green function VE is Hölder continous of order ↵ globally in Cn , i.e., for any
z, w 2 Cn , we have

|VE (z) � VE (w)|  A|z � w|
↵.

Proof. Observe that V ⇤

E has a logarithmic growth at infinity. Therefore if E is a
3↵-pluriregular compact set then its pluricomplex Green function VE satisfies (2.1)
for all z 2 Cn , i.e., for some constant A > 0 we have

VE (z)  Ad↵(z, E), 8z 2 Cn. (2.2)

To prove that VE is Hölder continous of order ↵ globally in Cn , fix h 2 Cn such
that |h| < � and observe, that for any z 2 E , d(z + h, E)  �↵ , which implies
by the Hölder condition (2.2) that for any z 2 E , VE (z + h)  A�↵ . Therefore
the function defined by u(z) := VE (z + h) � A�↵ is a plurisubharmonic function
such that u 2 L(Cn) and u  0 on E . By the definition of VE , we conclude that
u  VE (z) for any z 2 Cn , which implies that VE is Hölder continuous.

3. Analytic discs attached to generic manifolds

3.1. Construction of attached analytic discs

Let U := {⇣ 2 C : |⇣ | < 1} be the open unit disc and T := @U the unit circle. An
analytic disc of Cn is a continuous function f : U �! Cn , which is holomorphic
on U. Let M ⇢ Cn be a given subset of Cn and � ⇢ U a given connected subset
of the closed disc U. We say that the analytic disc f is attached to M along � if
f (� ) ⇢ M .
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If f : U �! Cn is an analytic disc and F is a holomorphic function on a
neighboorhood D of f (U), then F � f is a holomorphic function on the unit discU.
If u is a plurisubharmonic function on D, then u� f is a subharmonic function onU.
Therefore analytic discs enable us to reduce multidimentional complex problems to
corresponding one dimensional complex problems.

In the proof of our theorem, we need a smooth family of analytic discs. We
will use Bishop’s equation for construct such a family (see [1, 13]). Let M be a
totally real submanifold of dimension n given locally by the following equation

M :=

�
z = x + iy 2 B ⇥ Rn

: y = h (x)
 
,

where B ⇢ Rn is a ball of center 0 and h : B ! Rn a smooth map, such that

h (0) = 0 and Dh (0) = 0.

Let v (⌧ ) : T ! R+ a C1 function on the unit circle T such that

v|
{ei✓ : ✓2(0,⇡)} = 0 and v|

{ei✓ : ✓2(⇡,2⇡)} > 0.

Assume that there exists a continuous mapping X : T ! Rn which is a solution of
the following Bishop’s equation

X (⌧ ) = c � = (h � X + tv) (⌧ ) , ⌧ 2 T, (3.1)

where (c, t) 2 Q = Qc⇥Qt ⇢ Rn
⇥Rn is a fixed parameter and = is the harmonic

conjugate operator defined by the Schwarz integral formula

= (X) (⇣ ) =

1
2⇡

Z
T

X (⌧ ) Im
ei⌧ + ⇣

ei⌧ � ⇣
d⌧ , ⇣ = rei✓ , (3.2)

normalized by the condition
=X (0) = 0.

We will consider the unique harmonic extension X (⇣ ) of the mapping X to the unit
disc U. Then the following mapping

8 (c, t, ⇣ ) : = X (c, t, ⇣ ) + i
⇥
h⇤ (c, t, ⇣ ) + tv (⇣ )

⇤
= c + i

�
h⇤ (c, t, ⇣ ) + tv (⇣ ) + i=

⇥
h⇤ (c, t, ⇣ ) + tv (⇣ )

⇤ (3.3)

provides a family of analytic discs 8 (c, t, ⇣ ) : U ! Cn such that

8 (c, t) 2 Q , 8 ⌧ 2 � , 8 (c, t, ⌧ ) 2 M. (3.4)

Here X (c, t, ⇣ ) , h⇤ (c, t, ⇣ ) and v (⇣ ) are harmonic extensions of X (c, t, ⌧ ) ,
h � X (c, t, ⌧ ) and v (⌧ ) to the unit disc U respectively.

We need a smooth family of discs 8 (c, t, ⇣ ). Many constructions of analytic
discs attached to generic manifolds along a part of the circle have been given by
many different authors, depending on the smoothness properties of the manifold
(see [3, 13, 14]). The most general and sharp result was proved by B. Coupet [3]:
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Theorem 3.1 ([3]). Let p > 2n + 1, q � 1 be integers and h 2 Cq(B). Then there
exist a constant �0 > 0, independent of h and p, such that for arbitrary Cq -smooth
mapping k(c, t, ⌧ ) : R2n+1 ! Rn, with compact support and kkkWq,p  �0, the
equation

u = �=(h � u) + k (3.5)
has a unique solution u 2 Wq,p(T ⇥ R2n).

Moreover, the harmonic extensions of u and h � u to the unit disc U belong to
Cq(U ⇥ R2n).

Let now h 2 Cq(B). Observe that Bishop’s equation (3.1) is a particular case
of the equation (3.5). Therefore, from the theorem of Coupet and Sobolev’s em-
bedding theorem Wq,p

⇢ Cq�1, it follows that for a small enough neighborhood
Q 3 0, (c, t) 2 Q, the Bishop equation (3.1) has unique solution X (⌧, c, t) :

X, h � X 2 Cq�1(U ⇥ Q)\Cq(U ⇥ Q). Note that the operator = : Wq,p
! Wq,p

is continuous.
Therefore, for a C2�smooth generic submanifold M ⇢ Cn , we obtain a

smooth family of discs (3.3), attached to M , such that

k=Xk1  A kXk1 , k=h � Xk1  A kh � Xk1 ,

where A is a constant and k·k1 is the C1-norm in ⌧ 2 T .

3.2. Harmonic measure of boundary set of the unit disc

For arbitrary � ⇢ T we put @(� , U)– class of functionsn
u(⇣ ) : u 2 sh(U) \ C(U), u|U < 0, u|�  �1

o
,

and set
!(⇣, � , U) = sup{u(z) : u 2 @}, ⇣ 2 U.

Then (negative of) the upper semi-continuous regularization !⇤(⇣, � , U) is called
the harmonic measure of � with respect to U at the point ⇣ . The function !⇤ is the
unique solution of the Dirichlet problem:

1!⇤

= 0, !⇤

|T = ��� ,

where �� is the characteristic function of � . By Poisson formula

!⇤(⇣, � , U) = �

1
2⇡

Z
T

�� (⌧ )Re
ei⌧ + ⇣

ei⌧ � ⇣
d⌧ , ⇣ = rei✓ .

For � = {ei' : 0  '  ⇡} the harmonic measure !⇤ can be expressed as follows.

!⇤(⇣, � , U) =

1
⇡
arg i

1� ⇣

1+ ⇣
� 1. (3.6)
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Let us define the sector at the point 1 = ei ·0 2 U as follows

�0,↵ = [

�
l \ U : l 3 1, ⇡/2  arg l  ⇡/2+ ↵

 
,

where l stands for a real line passing through the point 1 and 0  ↵  ⇡/2 is fixed.
The sector �a,↵ at the point eia 2 U can define in the same way. From (3.6) it
follows clearly that

!⇤(⇣, � , U)  �1+ ↵/⇡, 8⇣ 2 �0,↵. (3.7)

A sector �a,↵ at the point eia is said to be admissible if �a,↵ \ @U ⇢ � . From the
last fact, we deduce the following statement.

Lemma 3.2. Let � = arc[eia, eib] ⇢ T, 0  a < b  2⇡ be an arbitrary arc
on T, and let �a,↵ be an admissible sector at the point eia . Then !⇤(⇣, � , U) is
31-continuous in U [ T \ {eia, eib}, !⇤

|� � ⌘ �1, !⇤
|T\� ⌘ 0 and !⇤ satisfies

(3.7) in �a,↵ .

Here � � denote the interior of the arc � .We note that if �0 b � is an arc with
non-empty interior, then there exist ↵ = ↵(�0, � ) > 0 such that �⌧,↵ is admissible
for every ⌧ 2 �0.

4. Transversality of attached discs to a generic manifold

It is clear that the family of analytic discs constructed above

8(c, t, ⇣ ) = X (c, t, ⇣ ) + i(h⇤(c, t, ⇣ ) + tv(⇣ )),

for (c, t) 2 Q = Qc ⇥ Qt , ⇣ 2
¯U, satisfies the following properties:

X (c, t, ⌧ ) = c � = (h � X (c, t, ⌧ ) + tv(⌧ )) , (c, t) 2 Q, ⌧ 2 @U. (4.1)

h
⇤

(c, t, ⌧ ) = h � X (c, t, ⌧ ), (c, t) 2 Q, ⌧ 2 @U (4.2)

X (c, 0, ⇣ ) ⌘ c, h⇤

(c, 0, ⇣ ) ⌘ h(c) so that
8(c, 0, ⇣ ) ⌘ c + ih(c) 2 M, c 2 Qc

(4.3)

X (c, t, 0) =

1
2⇡

Z
T
X (c, t, ⌧ )d⌧ ⌘ c, (c, t) 2 Q. (4.4)

kXk  O(kck + ktk), kD⌧ Xk  O(ktk). (4.5)

Here and below k·k is the Euclidean norm.
The following geometric transversality property will be crucial for the proof of

our main theorem.

Lemma 4.1. Let �0 b � be an arc with non-empty interior. Then for small enough
Q the attached discs 8(c, t, ⇣ ), t 6= 0, for ⇣ ! ⌧ 2 �0 meet M transversally.
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Proof. For the normal derivative D!n at the points ⌧ 2 �0 we have

ImD!n 8(c, t, ⌧ ) = D!n h
⇤(c, t, ⌧ ) + t D!n �(⌧ )

and ���ImD!n 8(c, t, ⌧ )
��� � ktkb � O(")ktk = ktk(b � O(")),

where

b := inf
�0

���D!n v (⌧ )
��� > 0 and " = sup {kck + ktk : c 2 Qc, t 2 Qt } .

It follows, that for O(") < b
2���ImD!n 8(c, t, ⌧ )

��� � ktkb/2 8⌧ 2 �0, (4.6)

i.e., the discs 8(c, t, ⇣ ) meet M for ⇣ ! ⌧ 2 �0 transversally.

Corollary 4.2. Let Q0
= {ktk = � } ⇢ Qt , where � > 0. Then there exist a

neighborhood � 0
� �0 and a constant C > 0 such that

d C(⇣, �0)  CdCn [8(c, t, ⇣ ),M] (4.7)
dCn [8(c, t, ⇣ ),8(c, t, �0)]  CdCn [8(c, t, ⇣ ),M],

8 ⇣ 2 � = U \ �0, t 2 Q0, c 2 Qc. Here d C and dCn are Euclidean distances on
C and Cn , respectively.

Proof. The statement clearly follows from (4.6), because for every fixed t0 2 Q0,
c0 2 Qc we can write (4.7), which then will be true in some neighborhoods Bc 3

c0, Bt 3 t0.

Lemma 4.3. For every�0
� �0 and for every Q0

t = {ktk = � } ⇢ Qt , � > 0 small
enough the closed set W = {8(c, t, ⇣ ) 2 Cn

: c 2 Qc, t 2 Q0

t , ⇣ 2 � = U \ �0
}

contains the point 0 2 M in its interior in Cn , i.e., 0 2 Ẇ .

Proof. By (4.3) X (c, t, ⇣ ) ⌘ c if t = 0. Since X is smooth, then for small enough
fixed t0 and for arbitrary fixed ⌧ 0 2 �0 the image X (c, t0, ⌧ 0) : c 2 Qc contains
0 2 Rn. It follows, that 0 2 W.Moreover, Ẇ 6= ; and if for some kt0k  �, ⇣ 0 2

U
x
�
c, t0, ⇣ 0

�
2

1
2
Qc, then c 2 Qc (4.8)

Now we assume by contradiction that 0 2 @W. Then Cn
\W is open and contains 0

on its boundary. It is clear that near 0 there exists a point p0 = (x0, y0) 2 @Ẇ \ M
such that x0 2

1
2Qc and p0 = 8(c0, t0, ⇣ 0) for some c0 2 Qc, kt0k = �, ⇣ 0 2

�0
\U.
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For simplicity we may assume that t0 = (0, . . . , 0, � ) and set 0c = (c1, . . . , cn�1) ,
0t = (t1, . . . , tn�1). From (4.8) it follows also that c 2 Qc.

We consider the transformation

S
�
0c, 0t, ⇣

�
= 8

⇣
0c, c0n,

0t, t0n , ⇣
⌘

:
0Q ⇥ U �! Cn, (4.9)

where 0Q := {z 2 Q : cn = c0n, tn = t0n } ⇢ R2n�2.
Then S

�
0c0,0 t0, ⇣ 0

�
= p0 and its Jacobian is given by

J (0c,0 t, ⇣ ) = Ĵ (c, t, ⇣ )|cn=c0n,tn=t0n ,

where

Ĵ (c, t, ⇣ ) =

@X1
@c1 . . .

@Xn�1
@c1

@Y1
@c1 . . .

@Yn�1
@c1

@Xn
@c1

@Yn
@c1

...
. . .

...
...

. . .
...

...
...

@X1
@cn�1 . . .

@Xn�1
@cn�1

@Y1
@cn�1 . . .

@Yn�1
@cn�1

@Xn
@cn�1

@Yn
@cn�1

@X1
@t1 . . .

@Xn�1
@t1

@Y1
@t1 . . .

@Yn�1
@t1

@Xn
@t1

@Yn
@t1

...
. . .

...
...

. . .
...

...
...

@X1
@tn�1 . . .

@Xn�1
@tn�1

@Y1
@tn�1 . . .

@Yn�1
@tn�1

@Xn
@tn�1

@Yn
@tn�1

@X1
@⇣ 0

. . .
@Xn�1

@⇣ 0

@Y1
@⇣ 0

. . .
@Yn�1
@⇣ 0

@Xn
@⇣ 0

@Yn
@⇣ 0

@X1
@⇣ 00

. . .
@Xn�1
@⇣ 00

@Y1
@⇣ 00

. . .
@Yn�1
@⇣ 00

@Xn
@⇣ 00

@Yn
@⇣ 00

.

Here ⇣ = ⇣ 0
+ i⇣ 00 and Yk(c, t, ⇣ ) = h⇤

k � X (c, t, ⇣ ) + tkv (⇣ ) , k = 1, . . . , n.
The determinant J , is composed by 9 block matrices Di j , i, j = 1, 2, 3.
We will show that J (0c0,0 t0, ⇣ 0) 6= 0, which will imply that the operator S is

a local diffeomorphism in a neighborhood of the point
⇣

0c0, 0t0, ⇣ 0
⌘
.

Indeed, by (4.3) X (c, 0, ⇣ ) ⌘ c , h⇤ (c, 0, ⇣ ) ⌘ h (c) and then
����D11 D12D21 D22

����
(c,0,⇣ )

= D11 · D22 = vn�1 (⇣ )

and ����D11 D12D21 D22

����
(c,t,⇣ )

= vn�1 (⇣ ) + O (") , (4.10)
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where we recall that " = sup {kck + ktk : c 2 Qc, t 2 Qt } . Note also that

D33 =

������
@Xn
@⇣ 0

@Yn
@⇣ 0

@Xn
@⇣ 00

@Yn
@⇣ 00

������ =

���� dd⇣
(Xn + iYn)

����
2
.

Now consider the right hand side near the arc � . It is clear that for every s > 0,
there is an open set �̃ � �0 such that���� dd⇣

(Xn + iYn)(c, t, ⇣ )

����
2

� |D⌧ Xn(c, t, ⌧ )|2 � s,8⇣ 2 U \ �̃, ⌧ 2 �0. (4.11)

We calculate D⌧ X (c, t, ⌧ ), for (c, t) 2 Q, ⌧ 2 T,

D⌧ X (c, t, ⌧ ) = �D⌧=h � X (c, t, ⌧ ) � t D⌧=v (⌧ ) . (4.12)

Since, D⌧=v (⌧ ) = D!n v (⌧ ), where D!n is the normal derivative
!n , then (4.12)

implies
D⌧ X (c, t, ⌧ ) + t D!n v (⌧ ) = =D⌧h � X (c, t, ⌧ ) .

For k-coordinate of vector X (⌧ ) = X (c, t, ⌧ ) we have���D⌧ Xk (c, t, ⌧ ) + tk D!n v (⌧ )
��� = k=D⌧hk � X (c, t, ⌧ )k

 const kD⌧hk � X (c, t, ⌧ )k
 O (") kD⌧ X (c, t, ⌧ )k .

(4.13)

Therefore,���tk D!n v (⌧ )
��� � O (") ktk  |D⌧ Xk (c, t, ⌧ )|



���tk D!n v (⌧ )
��� + O (") ktk , 1k  n, ⌧ 2T .

(4.14)

The second part of (4.14) implies

kD⌧ X (c, t, ⌧ )k  C ktk , (c, t, ⌧ ) 2 Q ⇥ T, C � constant. (4.15)

As in Lemma 4.1 if b = inf
�0

���D!n v (⌧ )
��� > 0 and O(") < b

2 , then the first part of
(4.14) implies

|D⌧ Xk(c, t, ⌧ )| � |tk |b � ktkb/2, (4.16)
for ⌧ 2 � , 1  k  n.

By (4.10) and (4.11) it follows that

��J (0c,0 t, ⇣ )
��

= |D11| · |D22| ·

���� dd⇣
(xn + iyn)(0c,0 t, ⇣ )

����
2
+ O(")

�

h
vn�1(⇣ ) + O(")

i
·

h
|tnb/2|2 � s

i
+ O("),

for all (0c,0 t, ⇣ ) 2
0Q ⇥

⇥
U \ �0

⇤
, because kt0k = |t0n |.
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We can take �̃ \ �0 instead of � and observe that all functions O(·) do not
depend on ⇣. Therefore if we take ", s small enough, then

��J (0c0,0 t0, ⇣ 0)�� > 0.
Since the plane {tn = t0n } is tangent to the sphere ktk = � at the point t0, the

Jacobian of the restriction S̆ = 8
⇣

0c, c0n,
p

|t1|2 + ... + |tn�1|2, ⇣
⌘
also is not zero

at the point (0c0,0 t0, ⇣ 0). In particular, the operator

S̆ : U1 ⇥U2 ⇥U3 ! U(p)

is a homeomorphism, where U1 ⇢ Rn�1
� a neighborhood of the point 0c0, U2 ⇢

Q0

t� a neighborhood of t0 2 Q0

t and U3 = {|⇣ � ⇣0| < � 0
} ⇢ �, � 0 > 0, is a

neighborhood of ⇣0. It follows that the open set U(p) ⇢ W, that is contradiction to
p 2 @W.

5. Proof of the main theorem

First we observe that from the results of Edigarian-Wiegerinck [5] and the authors
[17], it follows that M ⇢ Cn is a pluriregular set. Indeed, it was proved in [17]
that a set of full measure in a generic manifold M is not thin. Since the set P =

{z 2 M : V ⇤

M(z) > 0}, where V ⇤

M(z) is Green function, is pluripolar by Bedford
and Taylor [2], it has zero-measure (see [3, 14]) and then the set M \ P is not thin.
Therefore V ⇤

M ⌘ 0 on M , i.e., M is pluriregular. Note that in [5] non-thinness of
M \ P was proved for C1-smooth manifold M and for a pluripolar set P ⇢ M ,
which implies that an arbitrary C1-smooth generic manifold is pluriregular.

Our main theorem will be a consequence of the following result, thanks to
Lemma 2.3.

Theorem 5.1. Any C2-smooth generic submanifold M ⇢ Cn is 31-pluriregular.

Proof. We first reduce to the case of a totally real submanifold. Fix a point, say
z0 = 0 2 M . Changing holomorphic coordinates in Cn , we can assume that the
tangent space T0M , which by definition does not contain any complex hyperplane,
can be written as

T0M = {z = x + iy 2 Cn
: y1 = · · · = y2n�m = 0}.

Hence for a small neighborhood G = G1 ⇥ G2 of the origin with

G1 = {(x, y00) = (x, y2n�m+1, ..., yn) 2 Rn
⇥ Rm�n

: |x |  �, |y00

| < �},

G2 = {y0

= (y1, · · · , y2n�m) 2 R2n�m : |y0

| < �},

we can represent M as a graph

M \ G = {z 2 G : y0

= h(x, y00)},

where h is C2-smooth mapping from G1 into G2.
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Observe that for each small enough y00

0 the intersection M \ 5{y00

0 } of M with
the plane 5{y00

0 } := {z 2 Cn
: y00

= y00

0 } is an n�dimensional generic manifold.
Moreover, since the Green function is monotonic, i.e., V (z, E1) � V (z, E2) for
E1 ⇢ E2, it is enough to prove the theorem in the case when M is generic of
dimension n, hence totally real of dimension n.

In this case, we show the local Hölder pluriregularity of M , using previous
results from Section 4. Fix a point p 2 M , a ball B(p) = Bx ⇥ By ⇢ Cn centered
at the point p such that Mp := M \ B(p) is the graph of a C2-smooth function.
Then by Corollary 4.2, for arbitrary fixed small � > 0 there exist a neighborhood
�0

� �0 and a constant C > 0, depending on the point p, such that the inequalities
(4.7) hold. By Lemma 4.3 O(p) 3 p, where O(p) = W 0 is the interior of the set
W = W (p,�0, � ), constructed in Lemma 4.3.

Fix a point z0 2 O(p) \ M and a disc 8(c, t, ⇣ ) : 8(c0, t0, ⇣ 0) = z0, with
c0 2 Qc, t0 2 Q0

t , ⇣
0

2 U\�0. Then the function VMp �8(c0, t0, ⇣ ) 2 sh(U) and
VMp � 8|� ⌘ 0. Let C 00

= max
B(p)

VMp (z) < 1. By the theorem of two constants we

have
VMp � 8(c0, t0, ⇣ )  C 00

[!⇤(⇣, � , U) + 1], ⇣ 2 U. (5.1)

Therefore the first part of Lemma 3.2 and (4.7) yields the inequality

VMp (z
0) = VMp � 8(c0, t0, ⇣ 0)  C 00

h
!⇤(⇣ 0, � , U) + 1)

i
 C 0C 00dC(⇣ 0, �0)  CpdCn (z0,Mp),

(5.2)

for all z0 2 O(p), where Cp := CC 0C 00 depends on the fixed point p 2 M and on
the corresponding family of analytic discs, attached to M locally, in a neighborhood
of p.

Now given a compact set K ⇢ M we can apply the previous estimate to each
point of K . Then by compactness we can find a finite number of points p1, . . . , pk
of K , a finite number of balls balls B(p1), . . . , B(pk) and a finite numbers of open
sets O(p1), . . . , O(pk) such that

VMp (z)  CpdCn (z,Mp),

for any z 2 O(p) and p = p1, . . . , pk . Now observe that O = [1ikO(pi ) is a
neighborhood of K and shrinking a little bit the open sets Op we can assume that
for any p = pi and z 2 Op , dCn (z,Mp)  d(z,M). Since VM  VMp , it follows
that VM(z)  AdCn (z, K ), for any z 2 O .

6. Open problems

Let D ⇢ M a domain with C1-smooth boundary @D. Lemma 4.2 states that a
neighborhood of the generic manifold locally consists in the interior Ẇ of the set
W = {8(c, t, ⇣ ) : c 2 Qc, t 2 Q0

t , ⇣ 2 � = U \ �0
}. It seems clear, at least
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intuitively, that if here, instead of �, we take its part �a,↵, ↵ > 0 (see Lemma
3.2), then we should see that Ẇ contains some wedge

�
z 2 Cn

: dCn (z,M) < C↵ · dCn (z, @D)
 
,

where C↵ > 0 is a constant. If this is true then we could prove: arbitrary close C1-
domain D in C2-smooth generic manifold is pluriregular, i.e., the Green function
V ⇤(z, D) is continuous in Cn. The proof easily follows by the well-known criteria
of pluriregularity (see [Sa80]) and by the following lemma.

Lemma 6.1. If f (�) is a C1-smooth function on [0, 1] ⇢ R, then for every " > 0
there exist a polynomial p(�) such that

|p(�) � f (�)|  "�, � 2 [0, 1].

The authors do not know any proof of the following:
Conjecture 6.2. Let D ⇢ M be a bounded domain in M with smooth boundary.
Then D ⇢ Cn is 31/2 -pluriregular, i.e., its pluricomplex Green function V (z, D)
is Hölder continuous of order 1/2 in Cn .

We note that if M is real analytic generic manifold then the conjecture is true.
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parabolique et applications, Math. Scand. 69 (1991), 89–126.

[25] A. ZERIAHI, Inegalités de Markov et développement en série de polynômes orthogonaux
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