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Almost strictly pseudo-convex domains. Examples and applications

ERIC AMAR

Abstract. In this work we introduce a class of smoothly bounded domains �
in Cn with few non strictly pseudo-convex points in @� with respect to a certain
Minkowski dimension. We call them almost strictly pseudo-convex, aspc. For
these domains we prove that a canonical measure associated to a separated se-
quence of points in � which projects on the set of weakly pseudo-convex points
is automatically a geometric Carleson measure. This class of aspc domains con-
tains of course strictly pseudo-convex domains but also pseudo-convex domains
of finite type inC2, domains locally diagonalizable, convex domains of finite type
in Cn, domains with real analytic boundary and domains like |z1|2 + exp{1 �

|z2|�2} < 1, which are not of finite type.
As an application we study interpolating sequences for convex domains of

finite type in Cn . After proving a Carleson-type embedding theorem, we get that
if � is a convex domain of finite type in Cn and if S ⇢ � is a dual bounded
sequence of points in H p(�), if p = 1 then for any q < 1, S is Hq (�)
interpolating with the linear extension property and if p < 1 then S is Hq (�)
interpolating with the linear extension property, provided that q < min(p, 2).

Mathematics Subject Classification (2010): 32A35 (primary); 32A50 (sec-
ondary).
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1. Introduction

The aim of this work is to study a classical problem in harmonic analysis and com-
plex variables, namely the interpolating sequences in some domains in Cn. In order
to do this we shall develop notions and tools well adapted to this aim, and which
may be useful in other areas.

The first notion we shall study is the existence of a good family of polydiscs.
Troughout this work, domain will mean bounded open connected pseudo-

convex set with C1 smooth boundary. The Lebesgue measure on a manifold of
real dimension k will be denoted �k .We also use the notation in formula: A :: B . . .
which means A such that B . . .

Let � be a domain in Cn and a 2 U ⇢ �, where U is a neighborhood
of @� in � such that we have a well defined normal projection ⇡ on @�; we
set ↵ := ⇡(a) and to this point ↵ 2 @�, we associate a multi-index m(↵) =

(1, m2(↵), . . . , mn(↵)), m1  m2  . . .  mm and an orthonormal basis
b(↵) = (L1, . . . , Ln) of Cn such that L1 is in the complex normal at ↵ to @� and
(L2, . . . , Ln) is a basis of the complex tangent space at ↵ to @�. We set m(a) :=

m(⇡(a)), d(a) := d(a, @�).
Now we define a polydisc Qa(�) centered at a of parameter � > 0 such that it

has a radius �d(a) in the L1 direction and radii �d(a)1/m j (a), j = 2, . . . , n along
the L j complex direction. We shall say that we have a “good family”Q of polydiscs
if these polydiscs reflect well the geometry of the domain, i.e. there is a parameter
�0 > 0 such that 8a 2 U , Qa(�0) ⇢ � and M(Q) := sup↵2@�mn(↵) < 1.
For instance if ↵ = ⇡(a) is a point of strict pseudo-convexity then we have that
m2(a) = . . . = mn(a) = 2.

This notion of good family Q of polydiscs is strongly inspired by the work of
Catlin [11].

This good familyQ allows us to define separated sequences of points in �.

Definition 1.1. Let � be a domain in Cn with a good family of polydiscs Q. We
shall say that a sequence of points S ⇢ � is � separated if any two distinct points
in S are center of disjoint polydiscs in the familyQ with parameter �.

Associated to this good family Q we define µ(a) :=

Pn
j=2

1
m j (a) . If S is a

separated sequence of points in �, we define its canonical measure to be

⌫S :=

X
a2S

d(a)1+2µ(a)�a, (1.1)

where �a is the Dirac measure at a. For instance if � is a strictly pseudo-convex
domain, then m(a) = (1, 2, . . . , 2) and ⌫S =

P
a2S d(a)n�a.

We shall see that the sequences of points we are interested in are contained in
the zero set of holomorphic functions.

Let u be a holomorphic function in a domain �, u 2 H(�), set X := u�1(0)
its zero set and 2 := @@̄ ln |u| its associated (1, 1) current of integration. As usual
we have that Tr2(z) is the trace of the associated matrix and we have ( [24, page
55] Tr2(z) = 1 ln |u(z)| .
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We shall define a class of such zero sets which contains the zero sets of Nevan-
linna functions.

Definition 1.2. A holomorphic divisor X in the domain � is in the Blaschke class
if, with 2 its associated (1, 1) current of integration and d(z) := d(z,�c) the
euclidean distance to the boundary,

k2kB :=

Z
�
d(z)Tr2(z) < 1.

We shall need to study sequences of points contained in such sets; let �k be the
Lebesgue measure on manifold of real dimension k. Let � be a domain equipped
with a good familyQ of polydiscs and X a divisor in �.We set for a 2 �, Xa :=

X\Qa(�), X
j
a the projection of Xa on E j := {z 2 Cn

:: z j = 0} in the coordinates
in the basis b(↵) associated to ↵ = ⇡(a), and A j (Xa) := �2n�2(X

j
a). As usual

�2n�2(Xa) is the measure of the regular points in Xa, as defined in [24, Proposition
2.48, page 55].

We get:

Theorem 1.3 (Discretized Blaschke condition). Let u be holomorphic in�, X :=

u�1(0) and 2 := @@̄ ln |u| its current of integration; suppose that 2 is in the
Blaschke class. Let S be a � separated sequence in X with respect to a good family
Q of polydiscs with parameter �0. Then we have

X
a2S

d(a)�2n�2(Xa) 

2
�0

k2kB .

To go further and get the Malliavin discretized condition, with the right control on
the constants, we need to introduce quasi convex domains with respect to the good
family Q, i.e. Q quasi convex domains. This is a class of domains containing
the convex ones and the lineally convex ones and adapted to our aim. They will be
defined precisely by Definition 3.9.

Theorem 1.4 (Discretized Malliavin condition). Let � = {⇢ < 0} be a domain
equipped with a good familyQ of polydiscs with parameter �0 and which isQ quasi
convex. Let 2 be a current in the Blaschke class and S a � separated sequence in
X \ U . Then we have X

a2S

nX
j=2

A j (Xa)  Ck2kB,

where C is a constant depending only on theM(Q) + 1 first order derivatives of ⇢
and on �, �0, and the constant of quasi convexity.



186 ERIC AMAR

Together these two results gives the following:

Theorem 1.5. Let � be a domain equipped with a good family Q of polydiscs
such that � is Q quasi convex; let S be a � separated sequence of points which is
contained in the Blaschke divisor X. Then

�2n�2
X
a2S

d(a)n  � (�)k2kB,

where � (�) depends only on the CM(Q)+1 norm of ⇢, on n and �0, the parameter
of the familyQ, and on the constant of quasi convexity.

We have that 1+ 2µ(a)  n and equality holds for a point a such that ⇡(a) is
a strictly pseudo-convex point, hence in general this is not enough to deal with all
types of sequence in �. So we are lead to introduce a class of domains with “few”
points non strictly pseudo-convex, i.e. few “bad” points. If � is a domain in Cn,
throughout this work W ⇢ @� will denote the set of non strictly pseudo-convex
points of @�.

Let ↵ 2 @� by linear change of variables we can suppose that ↵ = 0 2 @� ⇢

Cn, z1 = 0 is the equation of the complex tangent space. The projection ⇡ locally
near 0 2 @� can be seen as a C1 diffeomorphism ⇡̃ : @� ! T0(@�), ⇡̃ :=

(⇡|T0(@�))
�1.

Definition 1.6. The pseudo-convex domain � in Cn is said to be almost stricly
pseudo-convex, aspc at 0 2 @� if there is a neighbourhood V0 of 0 and a basis
b := {L1, . . . , Ln} of Cn, with L1 a complex normal unit vector, such that, with
(z1, . . . , zn) its associated coordinates, the slices

⇡̃(W \ V0) \ {z1 = 0} \ {z2 = a2} \ . . . \ {zn�1 = an�1}

have homogeneous Minkowki dimension less than 2� �, � > 0.
� is said to be aspc if this is true for all points in @� with the same � > 0.
This means that we need only to find a particular coordinate system z1, . . . , zn

such that the slices of non s.p.c. points along the zn direction of the tangent space
to @� have small Minkowski dimension.

Of course the strictly pseudo-convex domains are aspc because W = ;. The
homogeneous Minkowski dimension is defined precisely in Section 4 and it quanti-
fies the fact that bad points are few.

This class of domains contains a large family of interesting domains such as
strictly pseudo-convex domains, convex domains of finite type, etc., as shown in
Section 5.

And also non finite type domains as {z 2 C2 :: |z1|2 + exp(1� |z2|�2) < 1}.
Usually we think that strictly pseudo-convex points are easier to deal with than

non strictly pseudo-convex ones but for these domains and the properties we are
interested in, this is not the case. In fact we have a good control on what happen for
points projecting on weakly pseudo-convex points.
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Theorem 1.7. Let Q be a good family of polydiscs on a aspc domain � in Cn,
and S be a � separated sequence of points in �. Let W be the set of non strictly
pseudo-convex points on @�. If ⇡(S \U) ⇢ V \W, where V is an open set of @�,
then we have:

X
a2S\U

d(a)1+2µ(a)
= ��2n

X
a2S\U

�2n(Qa(�))  C(�)
�2n�1(V )

�2
, (1.2)

where C(�) depends only on ⇢, n, M(Q), and the constant � in the Minkowski
dimension of W ⇢ @�.

In fact this theorem says that the canonical measure associated to such a se-
quence is a geometric Carleson measure. So, for these domains, it remains to con-
centrate only on points which project on strictly pseudo-convex points on @�. As
an application we get:

Theorem 1.8. Let � be a aspc domain in Cn. Let Q = {Qa(�0)}a2� be a good
family of polydiscs for � and suppose that � is Q quasi convex. Let S a � sepa-
rated sequence of points contained in a divisor X of the Blaschke class of � which
projects on the open set V ⇢ @�. Then we have, with � the Lebesgue measure on
@�, X

a2S
d(a)1+2µ(a)

 � (�)k2XkB + C(�)� (V) < 1.

The interpolating sequences are defined via the Hardy spaces of the domain �.

Definition 1.9. Let � be a domain in Cn defined by the function

⇢ 2 C1(Cn), � := {z 2 Cn
:: ⇢(z) < 0}, 8z 2 @�, @⇢(z) 6= 0.

Let f be a holomorphic function in �, we say that f is in the Hardy class H p(�)
if

k f kpp := sup
✏>0

Z
{⇢(z)=�✏}

| f (z)|p d�✏(z) < 1.

We say that f is in the Nevanlinna classN (�) if

k f kN = sup
✏>0

Z
{⇢(z)=�✏}

log+
| f (z)| d�✏(z) < 1.

Here d�✏ is the Lebesgue measure on the smooth manifold {⇢(z) = �✏} for ✏ small
enough.

These spaces are independent of the choice of the defining function [34].
As we shall see, the study of interpolating sequences is intimately linked to p

Carleson measures.
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Definition 1.10. Let µ be a positive Borel measure on the domain � and p � 1.
We shall say that µ is a p Carleson measure in � if:

9Cp > 0 :: 8 f 2 H p(�),

Z
�

| f |p dµ  C p
pk f k

p
H p .

This means that we have a continuous embedding of H p(�) in L p(µ).

Usually we have only a geometric condition to work with:
Definition 1.11. Let µ be a positive Borel measure on the domain� equipped with
a good family of polydiscsQ.We shall say that µ is a geometric Carleson measure
in � if:

9C > 0 :: 8a 2 �, µ(� \ Qa(2))  C� (@� \ Qa(2)).

So we need a way to go from geometric Carleson measures to p Carleson measures
and this is why we need to restrict to convex domains of finite type. For them we
have a Carleson embedding theorem.

Theorem 1.12. Let � be a convex domain of finite type. If the measure µ is a
geometric Carleson measure we have

8p > 1, 9Cp > 0 :: 8 f 2 H p(�),

Z
�

| f |p dµ  C p
pk f k

p
H p .

Conversely if the positive measure µ is p Carleson for a p 2 [1, 1[, then it is a
geometric Carleson measure, hence it is q Carleson for any q 2]1, 1[.

It remains to see when the canonical measure associated to a separated se-
quence is a geometric Carleson measure. In the unit ball B of Cn this is done by an
easy generalization of a lemma of Garnett: a measure µ is Carleson in the ball B iff
all its images under the automorphisms of B are uniformly bounded measures [5].
In a general domain there is only the identity as automorphism, so we have to over-
come this issue.

We do it by building sub-domains associated to a point a 2 � and which are
equivalent to Carleson windows. This can be done with the right control of the
constants if � is a well balanced domain; this notion will be defined later. Convex
domains, linearly convex domains are well balanced.

The space H2(�) is a subspace of the Hilbert space L2(@�) hence there is an
orthogonal projection S L2(@�) ! H2(�). We shall denote ka(z) the kernel of
this (Szegö) projection, it is a reproducing kernel for H2(�).

Now we have the tools needed to deal with interpolating sequences.
Definition 1.13. We say that the sequence S of points in � is H p(�) interpolat-
ing if

(i) 8a 2 S, ka 2 H p0

(�); (this is always true if p � 2. );
(ii) 8� 2 `p(S), 9 f 2 H p(�) :: 8a 2 S, f (a) = �akkakp0,

with p0 the conjugate exponent of p, i.e. 1
p +

1
p0

= 1.
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We have a weaker notion than interpolation:
Definition 1.14. We shall say that the sequence S of points in� is dual bounded in
H p(�) if there is a bounded sequence of elements in H p(�), {⇢a}a2S ⇢ H p(�)
which dualizes the associated sequence of reproducing kernels, i.e.

(i) 8a 2 S, ka 2 H p0

(�); (this is always true if p � 2. )
(ii) 9C > 0 :: 8a 2 S, k⇢akp  C, 8a, b 2 S, h⇢a, kbi = �a,bkkbkp0 .

Clearly if S is H p(�) interpolating then S is dual bounded in H p(�): just interpo-
late the basic sequence of `p(S). In the unit disc of C the converse is true, here we
have a partial converse of this.

Theorem 1.15. Let � be a convex domain of finite type in Cn and let S ⇢ � be
a dual bounded sequence of points in H p(�), if p = 1 then for any q < 1, S
is Hq(�) interpolating; if p < 1 then S is Hq(�) interpolating, provided that
q < min(p, 2).

Let us give a rough sketch of the proof.
Take a sequence S in the convex domain �; to apply a general result on inter-

polating sequences done in [2] we need the following facts:

• a link between the H p(�) norm of the reproducing kernels ka and the geom-
etry of the boundary of @�, the p regularity of the domain �, which says

9C > 0 :: 8a 2 �, kkak
�p0

p  C� (@� \ Qa(2)),

where p0 is the conjugate exponent of p. We shall see that this is true for
convex domain of finite type.

• Structural hypotheses for the Lebesgue measure on @�. These are reverse
Hölder inequalities for the norms of the reproducing kernels ka. We shall see
that this is also true for convex domain of finite type.

• The fact that the canonical measure associated to S, ⌫S :=

P
a2S d(a)1+2µ(a)�a ,

is q Carleson.

And this is the main difficulty. To achieve this we use the fact that a convex domain
of finite type is almost strictly pseudo-convex, so, withW the set of weakly pseudo-
convex points in @�, we have that the measure ⌫b :=

P
a2S\⇡�1(W ) d(a)1+2µ(a)�a

is already a geometric Carleson measure in � by Theorem 1.7.
It remains to deal with the points which project on the strictly pseudo-convex

points in @�.
By assumption S\{a} is contained in the zero set of ⇢a 2 H p(�) ⇢ N (�). So

we can use Theorem 1.5 to get, because a convex domain is quasi convex, that ⌫ :=P
a2S d(a)n�a is a bounded measure in �. To prove that ⌫ is a geometric Carleson

measure we construct sub-domains �a associated to points a 2 � and which are
comparable to the Carleson windows�\Qa(2).Because we have a precise estimate
of the bound of

P
a2S d(a)n�a in terms of � and of the holomorphic function u,
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whose zero set contains S, we can apply what we have done to the sub-domain �a
and get that

P
b2S\�b

d(b)n�b is bounded by a uniform constant times �2n�1(@�a\
@�) which means that ⌫ :=

P
a2S d(a)n�a is a geometric Carleson measure in �.

Now we use the Carleson embedding Theorem 1.12 to get that the measure
⌫ :=

P
a2S d(a)n�a is a q Carleson measure for any q 2]1,1[.

For “good points”, i.e. those which project on strictly pseudo-convex ones we
have that 1 + 2µ(a) = n, hence gluing with the estimate coming from the aspc
side, we get Theorem 1.15 as an application of the notion of aspc domains.

The general organization is as follow.
In Section 2 we define the good family Q of polydiscs in a domain � and we

give two characterisations of them:

• an analytic one in term of finite linear type;
• a geometric one in term of complex tangentially ellipsoid at every point ↵ 2

@�.

In Section 3 we define precisely the Blaschke class of divisors X in�, the notion of
Q quasi convexity, and we prove the discretized Blaschke and Malliavin conditions.

In Section 4 we introduce the notion of almost strictly pseudo-convex domains
and we use a nice theorem of Ostrowski to get Theorem 1.8.

In Section 5 we prove that domains of finite type in C2, locally diagonalizable
domains, convex domains of finite type, domains with real analytic boundary, are
all aspc domains, together of course with the strictly pseudo-convex domains.

In Section 6 we set the geometric properties we need for convex domain of
finite type and in Section 7 we study Carleson measures in such domains and state
and prove the Carleson embedding Theorem 1.12.

In Section 8 we construct the sub-domain associated to a point a 2 � which
is equivalent to the Carleson window Qa(2) \ � and which allows us to overcome
the lack of automorphisms.

In Section 9 we define the notion of p regularity making a link between the
H p(�) norm of the reproducing kernels and the geometry of @�. Then we prove
Theorem 1.15 via a tour around properties of reproducing kernels.

Finally in the Section 10 we state and prove the facts we need from potential
theory.

ACKNOWLEDGEMENTS. I am deeply grateful to the referee who not only had to
deal with the mathematics in this paper but also gave me a lot of valuable sugges-
tions on the presentation of it. Hence even if the results here are essentially the same
as in the preprint A weak notion of strict pseudo convexity, I have done in 2009, the
presentation is completely rewritten, the statements are precised and the proofs are
detailed.
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2. Good family of polydiscs

In this section we shall study domains with a good family of polydiscs and get some
properties of these domains we shall use later.

Let� be a domain inCn, recall that here this means a bounded open connected
set with a C1 smooth boundary. Let U be a neighbourhood of @� in � such that
the normal projection ⇡ onto @� is a smooth well defined application. For a 2 �
set d(a) := d(a, �c) the distance from a to the boundary of �.

We shall need the notion of a “good” family of polydiscs, directly inspired by
the work of Catlin [11].

Let ↵ 2 @� and let b(↵) = (L1, L2, . . . , Ln) be an orthonormal basis of
Cn such that (L2, . . . , Ln) is a basis of the tangent complex space TC

↵ of @� at ↵;

hence L1 is the complex normal at ↵ to @�.
Let m(↵) = (m1, m2, . . . , mn) 2 Rn be a multi-index at ↵ with m1 =

1, 8 j � 2, m j � 2.
For a 2 U , let ↵ = ⇡(a) 2 @�, b(a) := b(↵), m(a) := m(↵), and � > 0; set

Qa(�) :=

Qn
j=1 �Dj the polydisc such that �Dj is the disc centered at a, parallel

to L j (↵) with radius �⇥d(a)1/m j (↵), j = 1, . . . , n.
This way we have a family of polydiscsQ := {Qa(�)}a2U defined by the fam-

ily of basis {b(↵)}↵2@�, the family of multi-indices {m(↵)}↵2@� and the number �.
It will be useful to extend this family to the whole of �. In order to do so

let (z1, . . . , zn) be the canonical coordinates system in Cn and for a 2 �\U , let
Qa(�) be the polydisc of center a, of sides parallel to the axes and radius �d(a) in
the z1 direction and �d(a)1/2 in the other directions. So the points a 2 �\U have
automatically a “minimal” multi-index m(a) = (1, 2, . . . , 2).

Now we can set
Definition 2.1. We say that Q is a “good family” of polydiscs for � if the m j (a)
are uniformly bounded, i.e. M(Q) := sup j=1,...,n,a2�m j (a) < 1, and if there
exists �0 > 0, called the parameter of the family Q, such that all the polydiscs
{Qa(�0)}a2� ofQ are contained in �. In this case we call m(a) the multi-type at a
of the familyQ.

We notice that, for a good family Q, by definition the multi-type is always
finite. Moreover there is no regularity assumptions on the way that the basis b(↵)
varies with respect to ↵ 2 @�.

We can see easily that there is always good families of polydiscs in a domain�
in Cn for a point ↵ 2 @�, take any orthonormal basis b(↵) = (L1, L2, . . . , Ln),
with L1 a complex normal vector to @�, and the “minimal” multi-type m(↵) =

(1, 2, . . . , 2). Then, because � is of class C2 and relatively compact, we have the
existence of a uniform �0 > 0 such that the familyQ is a good one.

2.1. Examples of domains with a good family of polydiscs

The stricly pseudo-convex domains in Cn they have a good family of polydiscs
associated with the best possible multi-type, the one defined by Catlin [11], which
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is also the “minimal” one in this case:

8a 2 U , m1 = 1, 8 j = 2, . . . , n, m j (a) = 2.

Moreover these polydiscs are associated to the pseudo balls of a structure of spaces
of homogeneous type (Koranyi-Vagi [22], Coifman-Weiss [13]).

The finite type domains in C2 : also here we have the best possible multi-type
and a structure of spaces of homogeneous type. (Nagel-Rosay-Stein-Wainger [31].)

The bounded convex finite type domains in Cn
: again we have the best multi-

type and a structure of spaces of homogeneous type. (McNeal [26].)

2.2. An analytical characterisation by linear finite type

We shall recall precisely the definition of the multi-type [11] and the linear multi-
type (McNeal [25], Yu [36]). We shall take the definitions and the notation from J.
Yu [36].

Let � be a domain in Cn defined by the function ⇢, and let p 2 @� be fixed.
Let 0n be the set of the n -tuples of numbers 3 = (m1, . . . ,mn) with 1 

m j  1 and such that

(i) m1  m2  . . .  mn.
(ii) for all k = 1, . . . , n, either mk = +1 or there are non negative integers

a1, . . . , ak such that ak > 0 and
Pk

j=1 a j/m j = 1.

This condition (ii) is automatically fulfilled in the case all m j are integers.
An element in 0n will be called a weight. The set 0n of weights can be ordered

lexicographically:

3 = (m1, . . . ,mn) < 30

= (m0

1, . . . ,m
0

n)

if there is a k such that 8 j < k, m j = m0

j and mk < m0

k .

Lemma 2.2. The entries m j of a weight m = (m1, . . . ,mn) are rational numbers.
Given M > 0 there is only a finite number of weights m = (m1, . . . ,mn) such that
mn  M. Moreover if m1 = 1 then m2 2 N.

Proof. We have by (ii) that 9a1 2 N ::
a1
m1 = 1 hence m1 = a1 2 N. Again by (ii)

9a1, a2 2 N ::

a1
m1

+

a2
m2

= 1 ) a1  m1  M, a2  m2  M,

hence we have only a finite number of possible m1, a1, a2. For each of such pos-
sibility we have

1
m2

=

1
a2

✓
1�

a1
m1

◆
,

hence only one solution and a rational one.
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So we have only a finite number of solutions for m2 and all are rational num-
bers. We notice that if m1 = 1, then a1 = 0 and m2 = a2 2 N.

Suppose now that m1, . . . ,mk are in finite number, then, as we just seen,
a1, . . . , ak are also in finite number and ak+1  mk+1  M so only a finite number
of ak+1. Now as above for each choice of a1, . . . , ak+1, m1, . . . ,mk we have only
one solution mk+1 for

1
mk+1

=

1
ak+1

✓
1�

a1
m1

� · · · �

ak
mk

◆

which is rational and the lemma is proved by induction.

A weight is said to be distinguished if there exist holomorphic coordinates
z1, . . . , zn, in a neighbourhood of p with p mapped to the origin and such that:

nX
i=1

↵i + �i
mi

< 1 ) @↵@̄�⇢(p) = 0, (2.1)

where @↵
:=

@ |↵|

@z↵11 ...@z↵nn
and @̄�

:=
@ |�|

@ z̄�11 ...@ z̄�nn
.

Definition 2.3. The multi-typeM(@�, p) is the smallest weightM := (m1, . . .
. . . ,mn) in 0n (in lexicographic sense) such thatM � 3 for every distinguished
weight 3.

Because @� is smooth at p, we always have m1 = 1.
We call a weight 3 linearly distinguished if there exists a complex linear

change of variables near p with p mapped to the origin and such that (2.1) holds in
these new coordinates.
Definition 2.4. The linear multi-type L(@�, p) is the smallest weight L :=

(m1, . . . ,mn) such that L � 3 for every linear distinguished weight 3. We shall
say that � is of linear finite type if

9m 2 N :: 8p 2 @�, L(@�, p)  (m, . . . ,m).

Clearly we have L(@�, p) M(@�, p).
If, for p 2 @� fixed, � is of linear finite type L(@�, p) = (m1, . . . ,mn),

then there is a C -linear change of variables such that [36]:

nX
i=1

↵i + �i
mi

< 1 ) @↵@̄� ⇢̃(0) = 0,

where ⇢̃ is the defining function of � in these new coordinates ⇣ = (⇣1, . . . , ⇣n).
Set m0

n := dmne = mink2N,k�mn k.
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Lemma 2.5. We have

⇢̃(⇣ ) = <⇣1 +

X
2|↵|+|�|m0

n

A↵�⇣↵⇣̄ �
+ o(|⇣ |

m0

n ),

with A↵� 6= 0 only if
Pn

i=1
↵i+�i
mi

� 1.

Proof. We expand ⇢̃ by Taylor formula near 0 up to order m0

n and we compute

@↵@̄� ⇢̃(0) = ↵!�!A↵� .

But if
Pn

i=1
↵i+�i
mi

< 1 then @↵@̄� ⇢̃(0) = 0 because the linear multi-type of � at 0
is m = (1, m2, . . . , mn).

Because j � 2 ) m j � 2, fixing j � 2 and taking ↵ j = 1,↵i = 0 for i 6= j
and �i = 0 for all i we get

nX
i=1

↵i + �i
mi

=

1
m j

< 1

hence 8 j � 2, @⇢̃
@⇣ j

(0) = 0.

Replacing ↵ j by � j we get 8 j � 2, @⇢̃

@⇣̄ j
(0) = 0 hence the complex tangent

plane to @� at 0 is still ⇣1 = 0, and the ⇣ j , j � 2 are coordinates in the complex
tangent space.

So multiplying ⇣1 by a complex constant of modulus 1 if necessary, we have

⇢̃(⇣ ) = <⇣1 +

X
2|↵|+|�|m0

n

A↵�⇣↵⇣̄ �
+ o(|⇣ |

m0

n ),

with
Pn

i=1
↵i+�i
mi

< 1 ) @↵@̄� ⇢̃(0) = 0.

The aim of this subsection is to show:

Theorem 2.6. If � is a domain in Cn of finite linear type, then there is a good
familyQ of polydiscs such that the multi-type associated toQ is precisely the linear
multi-type of �.

Proof. Going back to the previous coordinates, this means that there are complex
directions v1, v2, . . . , vn with v1 the complex normal at p, v2, . . . , vn in the com-
plex tangent space, such that:

nX
i=1

↵i + �i
mi

< 1 ) @↵
v @̄�

v ⇢(p) = 0,
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with now @↵
v :=

@ |↵|

@v
↵1
1 ···@v

↵n
n
and @̄

�
v :=

@ |�|

@ v̄
�1
1 ···@ v̄

�n
n
are the derivatives in the directions

v j .We can suppose that p = 0.
To define the polydiscs we need to have an orthonormal basis at p and we shall

built it with the vectors v j , j = 2, . . . , vn.
We have already that v1 is the complex normal direction, so choose e1 in the

direction v1 and with norm 1. Now we use the Gram-Schmidt orthogonalisation
procedure in the complex tangent plane Span(v2, v3, . . . , vn):

take en parallel to vn and of norm 1;
in Span(en, vn�1) take en�1 of norm 1 and orthogonal to en;

and proceed this way to get an orthonormal basis (e2, . . . , en) of TC
0 (@�) and com-

plete it with e1 to get an orthonormal basis b(p) = (e1, . . . , en) at p (= 0). By this
construction we have, with ⇣ j the coordinates associated to the basis b(p),

⇣1 = z1, ⇣2 = b22z2, . . . , ⇣n = b2nz2 + . . . + bnnzn,

i.e. the matrix of change of coordinates is triangular.
So the lemma gives, still with m0

n := dmne,

⇢̃(⇣ ) = <⇣1 +

X
2|↵|+|�|m0

n

A↵�⇣↵⇣̄ �
+ o(|⇣ |

m0

n ),

with A↵� 6= 0 )

Pn
i=1

↵i+�i
mi

� 1.
Where now the ⇣ j = b j ·z are seen as linear forms on z. Fix t > 0 small enough

so that a := (�t, 0, . . . , 0) 2 U , hence ⇡(a) = 0 = p. Suppose that z 2 Qa(�) the
polydisc based on b(p) with � to be fixed later; this means t = d(a) and

8 j = 1, . . . , n,
��z j �� < �d(a)1/m j .

This implies, because m1 = 1  m2  . . .  mn, that

��⇣ j �� 

jX
k=1

���bkj
��� |zk | 

jX
k=1

���bkj
��� �d(a)1/mk

 �d(a)1/m j

 jX
k=1

���bkj
���
!

= �Bjd(a)1/m j ,

with Bj :=

P j
k=1

���bkj
���. So we get

��⇣↵
��
 �|↵|B|↵|

nY
j=1

d(a)
↵ j
m j ,
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with B := max j=1,...,n
��Bj �� . Replacing ↵ j by � j in the previous proof, we get

��⇣̄ �
��
 �|�|B|�|

nY
j=1

d(a)
� j
m j ,

so

��⇣↵⇣̄ �
��
 �|↵|+|�|B|↵|+|�|

nY
j=1

d(a)
↵ j+� j
m j

= �|↵|+|�|B|↵|+|�|d(a)
Pn

j=1
↵ j+� j
m j .

In the sum, in order to have A↵� 6= 0, we have
Pn

j=1
↵ j+� j
m j

� 1, hence

⇢(z)  <z1 +

X
2|↵|+|�|m0

n

A↵��|↵|+|�|B|↵|+|�|d(a) + o(|z|m
0

n )

 <z1 + �d(a)C + o(|z|m
0

n )

with
C :=

X
2|↵|+|�|m0

n

A↵��(|↵|+|�|�1)B|↵|+|�|.

Moreover we have |z1 � d(a)| < �d(a) so

⇢(z)  �d(a) + �d(a) + �d(a)C + o(|z|m
0

n ) = d(a)(�1+ �(1+ C)) + o(|z|m
0

n ).

The constant C depends on a finite number of derivatives of ⇢ . Because the domain
is of finite linear type 9M(Q) :: 8p 2 @�, mn(p)  M(Q), by the compactness of
@� we have 9D > 0, C = C(p)  D for any p 2 @�. Hence if �0(1+ D)  1/2
we have ⇢(z) < 0 if |z| is small enough to absorb the o(|z|m0

n ). This means that
Qa(�0) ⇢ �.

So we find a �0 > 0 such that, shrinking U if necessary to absorb the o(|z|m0

n ),
we get 8a 2 U , Qa(�0) ⇢ �.

Proposition 2.7. If� is equipped with a good familyQwith multi-type {m(a)}a2�,
then it is of linear multi-type smaller than {(1, dmn(↵)e, . . . , dmn(↵)e)}↵2@�.

Proof. Let ↵ 2 @� and suppose, by rotation and translation, that ↵ = 0, ⇢(z) =

<z1 + 0(=z1; z0) with z0 = (z2, . . . , zn).
We have that for any point a 2 U such that ⇡(a) = ↵, the polydisc Qa(�0) is

contained in �.
This means that, for � < �0, the point A� := (�d(a), �z2, . . . , �z j , . . . , �zn)

with
��z j �� = d(a)1/m j is in �, hence the real segment I := {A�}�2[0,�0] centered at

a is contained in �.
Fix (0, z0) 2 TC

↵ (@�) and set <z1 = ⌫(�z0), � 2 [0, �0[ the graph of @�
over the segment I, i.e. ⌫(�z0) is such that (⌫(�z0), �z0) 2 @�; then we have that
8� 2 [0, �0[, ⌫(�z0) < d(a). (See the following picture, with N the inward normal),
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N

I
a

∂ W

a dz'

n(dz')
Ta(∂ W)

So the distance from the point �z0 2 TC
↵ (@�) to ↵(= 0) is �

qPn
j=2 d(a)2/m j .

Recall that the order of contact of @� with the real direction v at ↵ 2 @� is the
order of vanishing of ⇢(↵ + tv) � ⇢(↵) when t ! 0.

Setting t := �
qPn

j=2 d(a)2/m j , x = d(a) and u =

Pn
j=2 x2/m j we have

dt
dx

= �

Pn
j=2

2
m j
x�1+2/m j

2
p

u
6= 0

and finite for x 6= 0, so by the implicit function theorem we have a smooth function
f (t) such that d(a) = f (t) for d(a) 6= 0.

Now we make the change of variables �z0 = t⇣ 0, still with ⇣ 0
2 TC

↵ (@�), we
have ⌫(�z0) = ⌫(t⇣ 0)  f (t) = d(a); hence the order of contact of @� with the
direction z0 is bigger than the order of contact of f (t) at t = 0. So fix � < �0 and
let d(a) ! 0; because for any a :: ⇡(a) = ↵ we have Qa(�0) ⇢ �, we get

t/�d(a)1/mn(↵)
=

vuut nX
j=2

d(a)2/m j�2/mn

and because d(a)2/m j�2/mn
! 0 if m j < mn, we get

t/�d(a)1/mn(↵)
!

p
l(↵)

where l(↵) is the number of j :: m j = mn, hence 1 < l(↵)  n � 1.
So t '

p

l(↵)�d(a)1/mn(↵)
) f (t) = d(a) ' l(↵)�mn(↵)/2��mn tmn , hence

the order of contact of f (t) at 0 is mn(↵) hence the order of contact of @� in the
real direction z0 is at least mn(↵).

We have proved that for any real direction in TC
↵ (@�) the order of contact of

@� is at least mn(↵).
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Let us make any linear change of variables keeping TC
↵ (@�) and sending ↵ to

0. Let us expand ⇢ in these new coordinates

⇢(w, w̄) =

X
|↵|+|�|=k

A↵,�w↵w̄�
+O

⇣
|w|

k+1
⌘

.

Set w1 = 0, fix ⇣ = (0, ⇣2, . . . , ⇣n) and set w = t⇣ 2 TC
↵ (@�). Then we have

⇢(w, w̄) = tk
X

|↵|+|�|=k
A↵,�⇣↵⇣̄ �

+O
⇣
tk+1

⌘
.

We already know that the order of contact of @� with any real direction of TC
↵ (@�)

is bigger than mn, and this is still true if we change coordinates linearly provided
that we keep TC

↵ (@�). So the order of vanishing of ⇢ along the real line t⇣ is bigger
than mn(↵) hence in order to have A↵,� =

@↵+�⇢
@↵w@� w̄

(0) not all zeros for |↵| +

|�| = k, we need to have k � mn hence k � dmne. This implies
Pn

j=2
↵ j+� j
dmne

�Pn
j=2

↵ j+� j
k = 1.

This means that for this change of variables the weight (1, dmne, . . . , dmne)
is linearly distinguished and hence @� at ↵ is of finite linear type. Moreover
the linear multi-type (1,m0

2, . . . ,m
0

n) of @� at ↵ being smaller than the weight
(1, dmne, . . . , dmne) by definition, we have

8 j = 2, . . . , n, m0

j (↵)  dmn(↵)e.

Theorem 2.6 and Proposition 2.7 give the characterization:
Corollary 2.8. The domain � has a good family Q of polydiscs associated
to {m(↵)}↵2@� iff the linear multi-type of � is smaller than {(1, dmn(↵)e, . . .
. . . , dmn(↵)e)}↵2@�.

2.3. A geometrical characterisation by existence
of inner complex tangential ellipsoids

First we set tools we shall need. Recall the standard notation

8↵=(↵1, . . . ,↵n)2Nn, @↵ f (x, p) :=

@ |↵| f
@↵1x1 · · · @↵n xn

(x, p), x↵
:= x↵1

1 . . . x↵n
n .

Lemma 2.9. Let f (x,p) be a C1(Rn
⇥Rm) function; then there exist C1(Rn

⇥Rm)
functions f↵, for ↵ 2 Nn, such that:

f (x, p) = f (0, p) + . . . +
1
k!

X
|�|=k

x�@� f (0, p) +

1
k!

X
|↵|=k+1

x↵ f↵(x, p).

The f↵ are given explicitly by the formulas:

f↵(x, p) :=

Z 1

0
@↵ f (t x, p)(1� t)kdt .
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Proof. Set, for t 2 R, g(t, p) := f (t x, p). Then, we have

g(k)(t, p) :=

@kg
@tk

(t, p) =

X
|↵|=k

x↵@↵ f (t x, p).

Apply to g the Taylor formula with integral remainder

g(1, p) = g(0, p) + . . . +
g(k)(0, p)

k!
+

1
k!

Z 1

0
g(k+1)(t, p)(1� t)kdt .

We get
f (x, p) = f (0, p) + . . . +

X
|↵|=k

x↵@↵ f (0, p)

+

1
k!

X
|�|=k+1

x�

Z 1

0
@� f (t x, p)(1� t)kdt .

Now set f�(x, p) :=

R 1
0 @� f (t x, p)(1� t)kdt, then, deriving under the integral

sign, we have that f� is C1 in the two variables x, p.

We suppose we are given a family of orthonormal basis and multi-types
{b↵, m(↵)}↵2@�.

First, without loss of generality, we make the assumption that the normal
derivative of ⇢ is 1 at any point ↵ 2 @�, and ⇢ 2 C1(Cn).

Fix ↵ 2 @�; by translation we can suppose ↵ = 0, i.e. with ⇢↵(z) := ⇢(z+↵)
we have ⇢↵(0) = 0.

Now we make the rotation U↵ sending the standard basis of Cn to b↵, i.e.
⇢↵(z) := ⇢(U↵z+ ↵). In these new coordinates, we have that z0 = (z2, . . . , zn) are
the coordinates in the complex tangent space and z1 = x1 + iy1 is the coordinate in
the normal complex plane and x1 is the coordinate in the real normal at ↵ (= 0).

Set h↵(z0) := ⇢↵(0, z0) 2 C1(Cn�1) then ⇢↵(z)�h↵(z0) = 0 if z1 = 0, 8z0 2

Cn�1.
Set

g↵(x1, y1, z0) := �x1 + ⇢↵(z) � h↵(z0) 2 C1(Cn);

we have ⇢↵(z) = x1 + g↵(z1, z0) + h↵(z0). Recall that x1 is the coordinate on the
real normal, so @⇢↵

@x1 (0) = 1 by assumption and, because y1 is a tangent coordinate,
we have @⇢↵

@y1 (0) = 0, so

@g↵

@x1
(0, 0) = �1+

@⇢↵

@x1
(0, 0) = 0,

@g↵

@y1
(0, 0) =

@⇢↵

@y1
(0, 0) = 0.

Lemma 2.10. There is a number R > 0, independent of ↵ 2 @�, such that, after
the change of coordinates above, we have the estimate

8↵ 2 @�, 8z 2 B(0, R), |g↵(z)| 

1
4

|z1|
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and the factorization

g↵(x1, y1, z0) = x1g1(x1, y1, z0) + y1g2(x1, y1, z0),

with 8z 2 B(0, R), j = 1, 2,
��g j (z)�� < 3/10.

Proof. We apply Lemma 2.9 to g := g↵(x1, y1, z0) to order 1 with z0 as the param-
eter p.We get

g(x1, y1, z0) = g(0, 0, z0) + x1
@g
@x1

(0, 0, z0) + y1
@g
@y1

(0, 0, z0)

+ x21g(2,0)(x1, y1, z0) + x1y1g(1,1)(x1, y1, z0) +y21g(0,2)(x1, y1, z0).

Since g(0, 0, z0) = ⇢↵(0, z0) � h↵(z0) = 0, there remain the other terms.
Because

g = g↵ = �x1 + ⇢↵(z) � h↵(z0) = �x1 + ⇢(U↵z + ↵) � ⇢(U↵(0, z0) + ↵)

all its derivatives are controlled by the derivatives of ⇢ in a neighborhood of �̄,
becauseU↵ is a rotation independent of z, so they are controlled uniformly in ↵. So
are the integrals of them, hence the functions g( j,k). Because @g

@x1 (0, 0, 0) = 0, we
have that @g

@x1 (0, 0, z
0) is small when

��z0�� is small and this is uniform with respect
to the point ↵ 2 @�.

The same for @g
@y1 (0, 0, z

0). Moreover the functions g( j,k) are bounded again
uniformly with respect to the point ↵ 2 @�. So finally we can choose R0 > 0 small
enough and independent of the point ↵ 2 @� to get

��z0�� < R0

)

���� @g
@x1

(0, 0, z0)
���� < 1/10,

���� @g
@y1

(0, 0, z0)
���� < 1/10.

Take R00 small enough to have

8z 2 B(0, R00), i, j = 0, 1, 2, |z1|
��g(i, j)(z)

�� < 1/10;

then, with R := min(R0, R00, 1/6) we get

8z 2 B(0, R),
��g(x1, y1, z0)�� 

1
10

(|x1| + |y1| + 3R |z1|) 

|z1|
10

(2+ 3R) 

|z1|
4

.

Now setting

g1(x1, y1, z0) :=

@g
@x1

(0, 0, z0) + x1g(2,0)(x1, y1, z0) + y1g(1,1)(x1, y1, z0)

and
g2(x1, y1, z0) := y1g(0,2)(x1, y1, z0),
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we have
8z 2 B(0, R), |g1(z)| 

3
10

, |g2(z)|  1/10,

and the factorization

g(x1, y1, z0) = g↵(x1, y1, z0) = x1g1(x1, y1, z0) + y1g2(x1, y1, z0).

Lemma 2.11. If � has a good family of polydiscs for ↵ 2 @�, there is a complex
tangentially elliptic domain C = C↵, with aperture 0 > 0 near the point ↵ 2 @�,
of class C2 and such that

- C↵ ⇢ �, near ↵,
- C̄↵ and �̄ meet at ↵,
- 9A > 0, 8a 2 U :: ⇡(a) = ↵, Qa(�) ⇢ C↵ provided that

�2 < min
✓

0,
1

4(n � 1)A
, 1/4

◆
.

Proof. We shall build C.Wemake the change of variables above; then we can write

⇢↵(z) = x1 + g↵(z) + h↵(z0),

where z1= x1+iy1, z0 := (z2, . . . , zn) and g↵ 2C1(Cn), h↵ 2C1(Cn�1), g↵(↵) =

h↵(↵0) = 0. Let

µ(z) := x1 + g↵(z) + A
�
|z2|m2 + . . . + |zn|mn

�
,

with m = m(↵). We fix an aperture 0 > 0 and we shall choose A in order to have
that

C := {µ < 0} \ {|y1| < �0x1}

fills the requirements of the lemma.
This domain C = C↵ is what we shall call a “complex tangentially elliptic

domain with aperture 0 > 0 ”. As the referee remarks this can also be seen as the
classical “approach regions” to the boundary in the strictly pseudo-convex case.

Fix a=(�t, 0, . . . , 0), t 2R, (�t, z0)2 B(0, R) in order to have
��g↵(�t, z0)

�� <
t/4, by Lemma 2.10; consider the slice Sz1 of C↵

8z1 :: (z1, z0) 2 B(0, R),

Sz1 :=

�
z0 := (z2, . . . , zn) : A

�
|z2|m2 + . . . + |zn|mn

�
< �(0 + 2)x1

 
.

Then

z1 = �t ) y1 = 0 )

) S�t :=

�
z0 := (z2, . . . , zn) :: A

�
|z2|m2 + . . . + |zn|mn

�
< (0 + 2)t

 
.
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If z0 2 S�t , then 8 j � 2, A
��z j ��m j < (0 + 2)t )

��z j �� < 1
(A/(0+2))1/m j

t1/m j
=

d(a)1/m j

(A/(0+2))1/m j
.

Hence if A �
0+2

�
mn (↵)
0

then 8 j � 2, (A/(0+2))1/m j �0 � (A/(0+2))1/mn�0 �1
hence

z0 2 S�t ) 8 j = 2, . . . , n,
��z j �� <

d(a)1/m j

(A/(0 + 2))1/m j

 �0d(a)1/m j
) (�t, z0) 2 Qa(�0) ⇢ �.

So if (�t + iy1, z0) 2 C, we have |y1| < 0t and

µ(�t + iy1, z0) = �t + g↵(z) + A
�
|z2|m2 + . . . + |zn|mn

�
< 0

) A
�
|z2|m2 + . . . + |zn|mn

�
< t � g↵(�t + iy1, z0).

But, in the ball B(0, R), we have
��g↵(�t + iy1, z0)

�� <
|y1|
4 +

t
4 , hence

A
�
|z2|m2 + · · · + |zn|mn

�
< t � g↵(�t + iy1, z0) < t + t/4+ |y1| /4 < (0 + 2)t,

then z0 2 S�t+iy1 and (�t + iy1, z0) 2 Qa(�0) ⇢ � ) ⇢↵(�t + iy1, z0) < 0
provided that |y1| < �0t, hence we need to take the aperture 0  �0. To have the
same A for all the boundary points, we take

A =

0 + 2
�
M(Q)
0

with M(Q) = sup
↵2@�

mn(↵),

which is bounded becauseQ is a good family.
With this choice of A, we have that

(�t + iy1, z0) 2 C \ B(0, R) ) (�t + iy1, z0) 2 Qa(�0) ⇢ �

so µ(�t + iy1, z0) < 0 ) ⇢(�t + iy1, z0) < 0, i.e.

µ(z) = �t + g↵(�t + iy1, z0) + A
�
|z2|m2 + . . . + |zn|mn

�
< 0,

hence
A
�
|z2|m2 + · · · + |zn|mn

�
< t � g↵(�t + iy1, z0),

and this implies ⇢↵(z) < 0, i.e.

h↵(z0) < t � g↵(�t + iy1, z0),

so necessarily h↵(z0)  A
�
|z2|m2 + . . . + |zn|mn

�
, because if not suppose there is a

z0 such that
A
�
|z2|m2 + · · · + |zn|mn

�
< h(z0),
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take a t > 0 with

A
�
|z2|m2 + · · · + |zn|mn

�
< t � g(�t, z0) < h(z0),

then the point (�t, z0) belongs to C, because we have y1 = 0 < 0t, but not to �,
which is a contradiction.

Hence we proved

z 2 C↵ \ B(0, R) ) h↵(z0)  A
�
|z2|m2 + · · · + |zn|mn

�
. (2.2)

So over any point of B(↵, R) \ {|y1| < �0x1} we have a domain of class C2,
because m1 = 1 ) m2 2 N by Lemma 2.2 hence

@2 |z2|m2

@z22
=

@2(z̄2z2)m2/2

@z22
=

m2(m2 � 2)
4

|z2|m2�4 z̄22.

If m2 = 2 then @2|w|
m

@w2
= 0 and this term is C2. If m2 � 3 then

@2 |z2|m2

@z22
=

m2(m2 � 2)
4

|z2|m2�4 z̄22

and this is continuous, so again this term is C2.
Now we have m j � m2 for j � 3 hence all the other terms are also C2.
It remains to prove the last item of the lemma.
Take a point a 2 �, ⇡(a) = ↵ then a = (�t, 0, . . . , 0) after the usual change

of variables; fix a � > 0 to be precised later. If (x1 + iy1, z0) 2 Qa(�), then

8 j = 2, . . . , n,
��z j �� < �t1/m j , |x1 + t | < �t ) x1 < �t (1� �), |y1| < �t,

so we already choose �  0 to have |y1| < �0x1, and

A
�
|z2|m2 + · · · + |zn|mn

�
< t A

nX
j=2

�m j ,

hence
µ(x1, y1, z0) = x1 + g(z) + A

�
|z2|m2 + . . . + |zn|mn

�

< �t (1� �) + t A
nX
j=2

�m j
+ |g(z)| .

Because m j � 2, A�m j
 �2A, so

µ(x1, y1, z0) < �t (1� �) + (n � 1)�2t A + |g(z)| .
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But, by Lemma 2.10, the smooth function g(z) is bounded on B(0, R) by 1
4 |z1| ,

and we have |y1| < 0 |x1| so

µ(x1, y1, z0)<�t (1��)+(n�1)�2t A+

t
4
(1+0)= t

✓
� �

3
4

+ (n � 1)�2A +

0

4

◆
,

if we choose 0 < 1, (n � 1)�2A < 1
5 , � < 1

5 and z 2 B(0, R) we get

µ(x1, z0) < t
✓

�

3
4

+

1
5

+

1
5

+

1
4

◆
< 0,

i.e. Qa(�) ⇢ C. It remains to choose � with � < min
⇣
0, 1

2
p

(n�1)A , 1/5
⌘
, 0 <

min(�0, 1) and z 2 B(0, R) to have Qa(�) ⇢ C.
The family {C↵} is determined by {b(↵), m(↵)}↵2@�, the aperture 0 and the

number A.

It would be nice to have an actual ellipsoid domain osculating � at ↵, instead
of a conic domain whose slices parallel to the complex tangent space centered on
the real normal are convex ellipsoids.

But this is not true in general as shown by the following simple example inC2.
Take � = {⇢ < 0} near 0, with:

⇢(z) = x1 + ay21 + b |z2|m + cy1x2,

with m � 3, c > 0. Then there is no way to have that C := {� < 0} ⇢ � near 0
with:

µ(z) = x1 + Ay21 + B |z2|
m

for any choice of A and B.

Just take points y1 =
x2
k , y2 = 0 then z 2 @C ) �x1 = A x22

k2 + Bxm2 and at
this point we have

⇢(z) = (a � A)
x22
k2

+ (b � B)xm2 + c
x22
k

and this is not negative for k big enough and x2 small enough if m � 3.
Now we shall see that we have a converse to Lemma 2.11.

Lemma 2.12. If a domain � contains a family of complex tangentially elliptic do-
mains {C↵}↵2@� based on {b(↵), m(↵)}↵2@�, aperture 0 > 0, 0 < 1, and number
A, then � possesses a good family of polydiscs still based on {b(↵), m(↵)}↵2@�

and with parameter �0 = min
⇣
0, 1

2
p

(n�1)A , 1/5
⌘
.
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Proof. This is a remake of the proof of the last item in Lemma 2.11.
Again we make the canonical change of variables associated to the basis b↵;

we have
⇢↵(z) = x1 + g↵(z) + h↵(z0),

where z1 = x1 + iy1, z0 := (z2, . . . , zn) and g = g↵ 2 C1(Cn), h = h↵ 2

C1(Cn�1), g(↵) = h(↵0) = 0.
Let a = (�t, 0, . . . , 0) and fix a � > 0 to be precised later; if (x1 + iy1, z0) 2

Qa(�) then

8 j = 2, . . . , n,
��z j �� < �t1/m j , |x1 + t | < �t ) x1 < �t (1� �), |y1| < �t,

so we already choose �  0 and

A
�
|z2|m2 + · · · + |zn|mn

�
< t A

nX
j=2

�m j ,

hence
µ(x1, y1, z0) = x1 + g(z) + t A

�
|z2|m2 + . . . + |zn|mn

�

< �t (1� �) + t A
nX
j=2

�m j
+ |g(z)| .

We get, because m j � 2, A�m j
 �2A,

µ(x1, y1, z0) < �t (1� �) + (n � 1)�2A + |g(z)| .

But, by Lemma 2.10, the smooth function g(z) is bounded on B(0, R) by 1
4 |z1| ,

with R > 0 independent of ↵. So as in the proof of the last item in Lemma 2.11, if
0 < 1, � < 1

5 , �2(n � 1)A < 1
5 , we have Qa(�) ⇢ C.

It remains to choose 0 < 1, � with � < min
⇣
0, 1

2
p

(n�1)A , 1/5
⌘
, which is

independent of ↵, and z 2 B(0, R) to have Qa(�) ⇢ C.
This means that

(z1, z0) 2 B(0, R) \ Qa(�) ) (z1, z0) 2 C.

For d(a) < 1
2 R

M(Q)


1
2 R

mn(↵), because we can always choose R  1, with
M(Q)= sup↵2@�mn(↵)<1, then Qa(�0)⇢ B(↵, R) hence in this case Qa(�0)⇢
C ⇢ �.

Together these lemmas proved:

Theorem 2.13. Let � be a domain in Cn; there is a good family of polydiscs in
� with multi-type {b(↵), m(↵)}↵2@� iff there is a family of complex tangentially
ellipsoids {C↵}↵2@� with parameters {b(↵), m(↵)}↵2@� such that 8↵ 2 @�, C↵ \

B(↵, R) ⇢ � \ B(↵, R), where R is given by Lemma 2.10.
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3. Divisors of the Blaschke class

Let u be a holomorphic function in a domain �, set X := u�1(0) its zero set and
2 := @@̄ ln |u| its associated (1, 1) current of integration. We shall define a class of
such zero sets containing the zero sets of Nevanlinna functions.

Definition 3.1. A holomorphic divisor X in the domain � is in the Blaschke class
if, with 2 its associated (1, 1) current of integration,

k2kB :=

Z
�
d(z)Tr2(z) < 1.

Let S be a separated sequence of points in � contained in the zero set X in the
Blaschke class of �. The aim of this section is to show that the measure ⌫ :=P

a2S d(a)n�a is finite.
We shall need the easy lemma:

Lemma 3.2. Let Q = {Qa(�), a 2 �} be a good family of polydiscs for � with
parameter �0 and � < �0. Then we have

8a 2 �, 8z 2 Qa(�), d(a) 

1
�0 � �

d(z, @�).

Proof. We have by definition Qa(�0) ⇢ �, hence 8z 2 Qa(�), d(z,�c) �

d(z, Qa(�0)c), but because m j (a) � m1(a) = 1, d(a)  d(a)1/m j (a) by the con-
struction of the polydisc Qa(�) we have

8z 2 Qa(�), d(z, @�) � d(z, Qa(�0)
c)

� min
j=1,...,n

(�0 � �)d(a)1/m j (a)
� (�0 � �)d(a).

3.1. The discretized Blaschke condition

Let u 2 H(�), i.e. u is holomorphic in�, and let X := u�1(0); put2 := @@̄ ln |u|
the (1, 1) current associated to X. Recall that 1 ln |u(z)| = Tr2, the trace of 2,
and 2 is a positive current, hence its trace controls all its coefficients.

We have, for any open set V ⇢ �, the equality (see for instance [24, page 55])
Z
V
Tr2 = �2n�2(X \ V). (3.1)

Let E j := {z 2 Cn
:: z j = 0}, this is the subspace orthogonal to the z j complex

plane. Let � be a domain equipped with a good family Q of polydiscs and X a
divisor in �.We set for a 2 �, Xa := X \ Qa(�), X

j
a the projection of Xa on E j

and A j (Xa) := �2n�2(X
j
a).
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We have the discretized Blaschke condition:
Theorem 3.3 (Discretized Blaschke condition). Let u be holomorphic in�, X :=

u�1(0) and 2 := @@̄ ln |u| its current of integration; suppose that 2 is in the
Blaschke class. Let S be a � separated sequence in X with respect to a good family
Q of polydiscs with parameter �0. Then we have, provided that � < �0/2,

X
a2S

d(a)�2n�2(Xa) 

2
�0

k2kB . (3.2)

Proof. Let a 2 S; then by Lemma 3.2 we have 8z 2 Qa(�), d(z) � �0 � � �

�0
2 d(a). Now

X
a2S

Z
Qa(�)

d(z)Tr2 

Z
�
d(z)Tr2 = k2kB,

because S is � separated, hence the polydiscs Qa(�) are disjoint. Then

k2kB �

�0
2

X
a2S

d(a)
Z
Qa(�)

Tr2 =

�0
2

X
a2S

d(a)�2n�2(Xa).

3.2. The discretized Malliavin condition

Let us set � := i
Pn

j=1 dz j ^ dz̄ j , we have that @� = @̄� = 0 and � is a positive
(1, 1) form. We shall follow the proof by H. Skoda [33, page 277].

Set � := � ^(n�2) and apply Stokes formula to ⇢2 ^ @̄⇢ ^ �

0 =

Z
@�

⇢2 ^ @̄⇢ ^ � =

Z
�

2 ^ @⇢ ^ @̄⇢ ^ � �

Z
�

⇢2 ^ @@̄⇢ ^ �,

because 2 and � are closed. Hence����
Z

�
2 ^ @⇢ ^ @̄⇢ ^ �

���� =

����
Z

�
⇢2 ^ @@̄⇢

^
�

���� 

��@@̄⇢ ^ �
��

1

Z
�

(�⇢)Tr2



��@@̄⇢
��

1
k@⇢k

1
k�k

1

Z
�
d(z, @�)Tr2



��@@̄⇢
��

1
k@⇢k

1
k�k

1
k2kB < 1,

because the trace of2 controls all its coefficients and (�⇢(z))  k@⇢k
1
d(z, @�).

The norm k�k
1
is a constant depending only on the dimension n, hence

we can set C(⇢) :=

��@@̄⇢
��

1
k@⇢k

1
k�k

1
which depends only on the first two

derivatives of the defining function ⇢ .
Hence we proved

Lemma 3.4. We have the estimate:����
Z

�
2 ^ @⇢ ^ @̄⇢ ^ �

����  C(⇢)k2kB .

Set m0

n := dmne.
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Lemma 3.5. If a real smooth function h(z) verifies

|h(z)| 

nX
j=1

��z j ��m j

with m j � 2 and
��z j ��m j

 d(a), then @h ^ @̄h = d(a)0(z), where 0(z) is a
positive bounded (1, 1) form with its sup norm controlled by the m0

n + 1 derivatives
of h.

Proof. We shall use Lemma 2.9, this time using complex variables notation, for the
function h with no parameter; there are smooth functions f↵,�(z, z̄) for |↵|+ |�| =

m0

n such that

h(z) =

m0

n�1X
k=0

X
↵,�,|↵|+|�|=k

a↵,� z↵ z̄� +

X
↵,�,|↵|+|�|=m0

n

f↵,�(z, z̄)z↵ z̄�

with z↵ := z↵11 · · · z↵nn and the same for z̄� . Consider the path t 2 [0, ✏] ! z j (t) :=

⇣ j t1/m j then

z↵ = ⇣↵t� (↵),

with � (↵) =

Pn
j=1

↵ j
m j

, hence

h(z(t)) =

X
↵,�,|↵|+|�|<m0

n

a↵,�⇣↵⇣̄ � t� (↵)+� (�)

+

X
↵,�,|↵|+|�|=m0

n

f↵,�(z(t), z̄(t))⇣↵⇣̄ � t� (↵)+� (�).

We also have
nX
j=1

��z j ��m j
= t

nX
j=1

��⇣ j ��m j

hence let s = � (↵) + � (�), then for |↵| + |�| = m0

n we have

1 =

nX
j=1

↵ j

m0

n
+

nX
j=1

� j

m0

n


nX
j=1

↵ j

m j
+

nX
j=1

� j

m j
= s,

because m j  mn  m0

n.
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The function s = � (↵) + � (�) can take only a finite number of values, say
s1 < . . . < sk, then because |h(z(t))|  t

Pn
j=1

��⇣ j ��m j , if s1 < 1,������
X

↵,�,� (↵)+� (�)=s1

a↵,�⇣↵⇣̄ �

������  t1�s1
nX
j=1

��⇣ j ��m j

+

skX
s=s2

t s�s1

������
X

↵,�, � (↵)+� (�)=s
a↵,�⇣↵⇣̄ �

������
+

X
↵,�,|↵|+|�|=m0

n

�� f↵,�(z(t))
��
|⇣ |

|↵|+|�| t� (↵)+� (�)�s1 .

In the last sum we have � (↵)+� (�) � 1 because |↵|+|�| = m0

n and the functions
f↵,� are bounded. Letting t ! 0, we getX

↵,�, � (↵)+� (�)=s1

a↵,�⇣↵⇣̄ �
= 0.

We can repeat the same computation for s2, . . . , s j provided that s j < 1, and we
get X

↵,�, � (↵)+� (�)<1
a↵,�⇣↵⇣̄ �

= 0.

So in the expansion of h it remains only ↵,� such that � (↵) + � (�) � 1.
Now we compute

@z↵ =

nX
j=1

↵ j z↵/z j dz j = z↵
nX
j=1

↵ j

z j
dz j .

And

@̄ z̄� =

nX
j=1

� j z̄�/z̄ j d z̄ j = z̄�
nX
j=1

� j

z̄ j
d z̄ j .

Set !(z,↵) :=

Pn
j=1

↵ j
z j dz j , we have

@h =

X
↵,�,1� (↵)+� (�)<m0

n

a↵,� z↵ z̄�!(z,↵) +

X
↵,�,|↵|+|�|=m0

n

f↵,�(z, z̄)z↵ z̄�!(z,↵)

+

X
↵,�,|↵|+|�|=m0

n

z↵ z̄�@ f↵,�(z, z̄).

and

@̄h =

X
↵,�,� (↵)+� (�)�1

a↵,� z↵ z̄�!̄(z,�) +

X
↵,�,|↵|+|�|=m0

n

f↵,�(z, z̄)z↵ z̄�!̄(z,�)

+

X
↵,�,|↵|+|�|=m0

n

z↵ z̄� @̄ f↵,�(z, z̄).
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So we have as the generic term for @h ^ @̄h

Adz j ^ dz̄k := z↵+↵0

z̄�+� 0 dz j
z j

^

dz̄k
z̄k

hence
|A| = |z1|↵1+�1+↵0

1+� 0

1 . . . |zn|↵n+�n+↵0

n+� 0

n
��z j ���1 |zk |�1

with |zl |ml
 d(a) we get

|A|  d(a)� (↵)+� (�)+� (↵0)+� (� 0)d(a)�1/m j d(a)�1/mk
 d(a),

because

� (↵) + � (�) + � (↵0) + � (� 0) � 2 and m j � 2,mk � 2.

The special terms are of the forms

Bdz j ^ dz̄k := f↵,�(z)z↵+↵0

z̄�+� 0 dz j
z j

^

dz̄k
z̄k

and, by the same argument, they verify

|B| 

�� f↵,�

��
1
d(a);

or
Cdz j ^ dz̄k :=

@ f↵,�

@z j
z↵+↵0

z̄�+� 0

dz j ^

dz̄k
z̄k

and they verify a fortiori |C| 

��@ f↵,�

��
1
d(a); or

Ddz j ^ dz̄k := f↵,�(z) f↵0,� 0(z)z↵+↵0

z̄�+� 0 dz j
z j

^

dz̄k
z̄k

and they verify |D| 

�� f↵,� f↵0,� 0

��
1
d(a); or

Edz j ^ dz̄k :=

@ f↵,�

@z j
@ f↵0,� 0

@z j
z↵+↵0

z̄�+� 0

dz j ^ dz̄k

and they verify |E | 

��@ f↵,� @̄ f↵0,� 0

��
1
d(a); or

Fdz j ^ dz̄k :=

@ f↵,�

@z j
f↵,�(z)z↵+↵0

z̄�+� 0

dz j ^

dz̄k
z̄k

and they verify |F | 

�� f↵0,� 0@ f↵,�

��
1
d(a); and the conjugates of these expressions

are also bounded. All the bounds are controlled by the m0

n + 1 derivatives of h and
we have a finite set of such smooth coefficients so

@h ^ @̄h = d(a)0(z),

where 0(z) is a positive bounded (1, 1) form controlled by the m0

n + 1 derivatives
of h.
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We shall evaluate the integral
R
Qa(�)

2 ^ @⇢ ^ @̄⇢ ^ �, and we start first with
the following function µ, defining a complex tangential ellipsoid C as in the previ-
ous section, Lemmas 2.9, 2.10, but here we choose twice the previous one to ease
the computations,

µ(z) := 2x1 + 2x1g1(z) + 2y1g2(z) + 2A(|z2|m2 + . . . + |zn|mn ).

We have, with a = (a1, 0, . . . , 0), a1 < 0,

@µ(z) =

✓
1+ g1(z) � ig2(z) + 2x1

@g1
@z1

+ 2y1
@g2
@z1

◆
dz1

+ 2x1
X
j�2

@g1
@z j

(z)dz j + 2y1
X
j�2

@g2
@z j

(z)dz j

+ A
⇣
m2 |z2|m2�2 z̄2dz2 + . . . + mn |z2|mn�2 z̄ndzn

⌘

and

@̄µ(z) =

✓
1+ g1(z) + ig2(z) + 2x1

@g1
@ z̄1

+ 2y1
@g2
@ z̄1

◆
dz̄1 + 2x1

X
j�2

@g1
@z j

d z̄ j

+ 2y1
X
j�2

@g2
@z j

d z̄ j +A
⇣
m2 |z2|m2�2 z2dz̄2 + . . . + mn |zn|mn�2 zndz̄n

⌘
,

because
@ |w|

m

@w
= @w((w̄w)m/2) =

m
2

(w̄w)m/2�1w̄ =

m
2

|w|
m�2

⇥w̄.

Lemma 3.6. We have

8z 2 Qa(�), @µ ^ @̄µ = B(z)dz1 ^ dz̄1 +

nX
j=2

C j (z)
��z j ��m j�1 dz1 ^ dz̄ j

+

nX
j=2

Dj (z)
��z j ��m j�1 dz j ^ dz̄1 + d(a)0(z),

where B,C j , Dj are bounded with bounds depending only on the the C1 norms of
g1, g2 and 0 is a (1, 1) form with bounded coefficients depending only on the the
C1 norms of g1, g2.
Proof. Because 8z 2 Qa(�) we have |z1|  �d(a) ) |x1|  �d(a), |y1|  �d(a)
and 8 j � 2,

��z j ��  �d(a)1/m j , so the terms in @µ ^ @̄µ containing @g1
@z j or

@g2
@z j or

@g1
@ z̄ j or

@g2
@ z̄ j can be put in 0. For the terms in

A2
X

j,k=1,...,n
m jmk

��z j ��m j�2
|zk |mk�2 z̄ j zkdz j ^ dz̄k
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we have

8 j, k � 2,
��z j ��m j�1

|zk |mk�1
 �2d(a)

m j�1
m j

+

mk�1
mk

;

suppose that m j � mk, then

m j � 1
m j

+

mk � 1
mk

�

m j � 1+ mk � 1
m j

�

m j

m j
= 1,

because 8k � 1, mk � 2. Hence they also can be put in 0. It remains

B(z)dz1 ^ dz̄1 with B(z) := (1+ g1)2 + g22,

nX
j=2

C j (z)
��z j ��m j�2 z j dz1 ^ dz̄ j with C j (z) := (1+ g1(z) � ig2(z))Am j ,

and
nX
j=2

Dj (z)
��z j ��m j�2 z̄ j dz j ^ dz̄1 with Dj (z) := (1+ g1(z) + ig2(z))Am j .

Clearly the bounds on those terms and in 0 depend only on the C1 norms of
g1, g2.

Lemma 3.7. Let 2 be a positive (1, 1) current and F(z j ) a function; then for all
⌘ > 0 we have

2
��2 ^ F(z j )dz1 ^ dz̄ j ^ �

��
 ⌘2^dz1^dz̄1^�+

1
⌘
2^

��F(z j )
��2 dz j ^dz̄ j ^�.

Proof. By Cauchy-Schwarz, because 2 ^ � is positive, we get
��2 ^ dz1^F(z j )dz̄ j^�

��2
 |2^dz1^dz̄1^�|

��2 ^ F(z j )dz j^ F̄(z j )dz̄ j^�
��

hence, because 2ab  ⌘a2 +
1
⌘b
2,

2
��2^dz1^F(z j )dz̄ j^�

��
⌘2^dz1^dz̄1^� +

1
⌘
2^

��F(z j )
��2 dz j^dz̄ j^�.

Let us go back to the general case. Fix a 2 �, ↵ = ⇡(a),we know by Lemma 2.11
that there is a complex tangential ellipsoid C = C↵ with exponents {m j (↵)} meet-
ing @� at ↵ and contained in �. Moreover we have, after the canonical change of
variables of Lemma 2.10, and multiplying by 2 the functions to make the following
computations slightly easier,

⇢(z) = 2x1+2x1g1(z)+2y1g2(z)+h↵(z0) = 2x1+2x1g1(z)+2y1g2(z)+⇢(0, z0),
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as the defining function for � and

µ(z) := 2x1 + 2x1g1(z) + 2y1g2(z) + 2A(|z2|m2 + . . . + |zn|mn ), |y1| < �0x1,

as the defining functions for C↵. We notice that the functions g j in µ are the same
as the functions g j in ⇢ and depend only on ⇢ . In particular the C1 norms of the g j
are controlled by the C2 norm of ⇢ hence they are uniformly bounded with respect
to ↵.

Lemma 3.8. We have, with 2 a positive (1, 1) current,Z
Qa(�)

2 ^ dz1 ^ dz̄1 ^ �  5
Z
Qa(�)

2 ^ @µ ^ @̄µ ^ � + 0d(a)
Z
Qa(�)

Tr2.

with the constant 0 depending only on the C2 norm of ⇢, on n and �0.

Proof. Using Lemma 3.6, we get

2 ^ @µ ^ @̄µ ^ � � B(z)2 ^ dz1 ^ dz̄1 ^ �

=

nX
j=2

C j (z)
��z j ��m j�2 z̄ j2 ^ dz1 ^ dz̄ j ^ �

+

nX
j=2

Dj (z)
��z j ��m j�2 z j2 ^ dz j ^ dz̄1 ^ � + d(a)2 ^ 0 ^ �.

Hence

B(z)2 ^ dz1 ^ dz̄1 ^ � = 2 ^ @µ ^ @̄µ ^ � �U � d(a)2 ^ 0 ^ �,

with

U :=

nX
j=2

C j (z)
��z j ��m j�2 z̄ j2 ^ dz1 ^ dz̄ j ^ �

+

nX
j=2

Dj (z)
��z j ��m j�2 z j2 ^ dz j ^ dz̄1 ^ �

By Lemma 3.7 we get, with ⌘ > 0 to be fixed later,

2
���C j (z)

��z j ��m j�12^dz1^dz̄ j^�
��� ⌘2 ^ dz1 ^ dz̄1 ^ �

+

1
⌘

��C j
��2 ��z j ��2m j�22 ^ dz j ^ dz̄ j ^ �.

But for z 2 Qa(�) we have
��z j ��2m j�2



��z j ��m j�2 �d(a) because
��z j ��m j

 �d(a)
hence

2
���C j (z)

��z j ��m j�12^dz1^dz̄ j^�
���⌘2^dz1^dz̄1^�

+

1
⌘

��C j
��2 ��z j ��m j�2 �d(a)2^dz j^dz̄ j^�.
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Set C 0

j := 2
��C j

��2 ��z j ��m j�2 whose bound depend on the C1 norm of the g j we get
�����
nX
j=2

C j (z)
��z j ��m j�2 z̄ j2^dz1^dz̄ j^�

����� 

1
2
(n � 1)⌘2 ^ dz1 ^ dz̄1 ^ �

+

�

⌘
d(a)

nX
j=2

C 0

j2^dz j^dz̄ j^�.

Doing exactly the same proof, with D0

j := 2
��Dj

��2 ��z j ��m j�2 we get

�����
nX
j=2

Dj (z)
��z j ��m j�2 z j2 ^ dz j^dz̄1^�

����� 

1
2
(n � 1)⌘2 ^ dz1 ^ dz̄1 ^ �

+

�

⌘
d(a)

nX
j=2

D0

j2^dz j^dz̄ j^�.

So we get

|U |  (n � 1)⌘2 ^ dz1 ^ dz̄1 ^ � +

�

⌘
d(a)

nX
j=2

(C 0

j + D0

j )2 ^ dz j ^ dz̄ j ^ �.

Now we choose ⌘ :=
1

4(n�1) and we get, because 2 ^ @µ ^ @̄µ ^ � and B(z)2 ^

dz1 ^ dz̄1 ^ � are positive,

B(z)2 ^ dz1 ^ dz̄1 ^ �  2 ^ @µ ^ @̄µ ^ � + |U | + d(a) |2 ^ 0 ^ �| .

Hence

B(z)2 ^ dz1 ^ dz̄1 ^ �  2 ^ @µ ^ @̄µ ^ � +

1
4
2 ^ dz1 ^ dz̄1 ^ �

+ d(a)(4(n � 1)�(a)
��2 ^ 00

^ �
��
+ |2 ^ 0 ^ �|).

with

00

:=

nX
j=2

C 0

j dz j ^ dz̄ j +

nX
j=2

D0

j dz j ^ dz̄ j .

Finally
✓
B(z) �

1
4

◆
2^dz1^dz̄1^� 2^@µ^@̄µ^�

+ d(a)
⇣
4(n � 1)�(a)

��2^00

^�
��
+ |2^0^�|

⌘
.
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Recall that B(z) = (1 + g1(z))2 + g2(z)2 � 0 and we know by Lemma 2.10
that 8z 2 B(0, R), |g1(z)| 

3
10 hence, provided that Qa(�) ⇢ B(0, R), i.e.

d(a) < R1/M(Q), with M(Q) = sup↵2@�mn(↵) < 1 becauseQ is a good family,

(1+ g1(z))2 + g2(z)2 � 1/4 �

✓
7
10

◆2
�

1
4

=

24
100

.

So dividing by B(z) �
1
4 we get

2 ^ dz1 ^ dz̄1 ^ �  52 ^ @µ ^ @̄µ ^ �

+ 5d(a)
�
4(n � 1)�(a)

��2 ^ 00

^ �
��
+ 5 |2 ^ 0 ^ �|

�
.

Integrating, we get the lemma because the trace of 2 controls all its coeffi-
cients.

We shall need the following definition.
Definition 3.9. The domain�, equipped with a good familyQ, will be said quasi
convex at a 2 � if, with ↵ = ⇡(a), m = m(↵), taking the coordinates associated
to the basis b(↵), centered at ↵, we have with ⇢↵ a defining function for �,

8z 2 Qa(2) :: ⇢↵(0, z0) < 0, �⇢↵(0, z0)  � (|z2|m2 + · · · + |zn|mn ).

The domain will be said quasi convex if � is quasi convex at a for all a 2 U \ �
with the same constant � .

A convex � or a lineally convex � are quasi convex because for them � \

TC
↵ (@�) = ; hence ⇢(0, z0) � 0.
We have 2 =

Pn
i, j=12i j dzi ^ @ z̄ j and

2 ^ dz1 ^ dz̄1 ^ � =

nX
i, j=2

2i j dzi ^ @ z̄ j ^ dz1 ^ dz̄1 ^ �.

In the integral
R
Qa(�)

2 ^ dz1 ^ dz̄1 ^ �, it remains precisely the sum of the �2n�1
areas of the projections of Xa on the E j , j � 2, see [24, Proposition 2.48, page
55]. So recall that for a 2 �, Xa := X \ Qa(�), X

j
a the projection of Xa on E j is

denoted X j
a and A j (Xa) := �2n�2(X

j
a); we getZ

Qa(�)
2 ^ dz1 ^ dz̄1 ^ � =

nX
j=2

A j (Xa).

So by Lemma 3.8 we have
nX
j=2

A j (Xa) =

Z
Qa(�)

2 ^ dz1 ^ dz̄1 ^ �

 5
Z
Qa(�)

2 ^ @µ ^ @̄µ ^ � + 0d(a)
Z
Qa(�)

Tr2.
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Hence, because if z 2 Qa(�), by Lemma 3.2, d(a) 
1

�0��d(z), then

nX
j=2

A j (Xa)  5
Z
Qa(�)

2 ^ @µ ^ @̄µ ^ � +

0

�0 � �

Z
Qa(�)

d(z)Tr2.

At this point we shall use equation (2.2) which says, (recall we multiply by 2 the
defining function ⇢ of the domain and the defining function µ of the cone)

8z 2 C↵ \ B(0, R), ⇢(0; z0)  2A
�
|z2|m2 + . . . + |zn|mn

�
.

So either ⇢(0; z0) � 0, then we have

0  ⇢(0; z0)  2A
�
|z2|m2 + . . . + |zn|mn

�
,

or ⇢(0, z0) < 0, then we use that � is m(↵) quasi convex at ↵ to get

�⇢(0, z0)  �
�
|z2|m2 + . . . + |zn|mn

�
.

In any case we can apply Lemma 3.5 with z0 instead of z to

h(z0) := µ � ⇢ = 2A
�
|z2|m2 + . . . + |zn|mn

�
� ⇢(0; z0),

to get
@h(z0) ^ @̄h(z0) = d(a)0(z0),

with the sup norm of 0 controlled by the mn(a) + 1 derivatives of h.
So we have µ = ⇢ + h, with @h ^ @̄h = d(a)0(z0), hence

2 ^ @µ ^ @̄µ ^ � = 2 ^ @⇢ ^ @̄⇢ ^ � + 2 ^ @h ^ @̄h ^ �

+ 2 ^ @⇢ ^ @̄µ ^ � + 2 ^ @h ^ @̄⇢ ^ �,

by Cauchy-Schwartz, because 2 ^ � is positive, we get
��2 ^ @h ^ @̄⇢ ^ �

��2


��2 ^ @⇢ ^ @̄⇢ ^ �
�� ��2 ^ @h ^ @̄h ^ �

��
hence, because 2ab  a2 + b2,

2
��2 ^ @h ^ @̄⇢ ^ �

��
 2 ^ @⇢ ^ @̄⇢ ^ � + 2 ^ @h ^ @̄h ^ �

and
2 ^ @µ ^ @̄µ ^ �  22 ^ @⇢ ^ @̄⇢ ^ � + 22 ^ @h ^ @̄h ^ �.

Finally

2 ^ @µ ^ @̄µ ^ �  22 ^ @⇢ ^ @̄⇢ ^ � + 2d(a)2 ^ 0(z0) ^ �.
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So we have, with 00
=

1
�0�� supz2Qa(�)(0(z0), � ), still controlled by the mn(a) + 1

derivatives of h,Z
Qa(�)

2 ^ @µ ^ @̄µ ^ � 

Z
Qa(�)

2 ^ @⇢ ^ @̄⇢ ^ � + 00

Z
Qa(�)

d(z)Tr2.

Hence
nX
j=2

A j (Xa)  5
Z
Qa(�)

2 ^ @⇢ ^ @̄⇢ ^ � + 500

Z
Qa(�)

d(z)Tr2.

By use of Lemma 3.4 and setting S0
:= S \ U , we have, because the polydiscs

Qa(�), a 2 S0 are disjoint

X
a2S0

nX
j=2

A j (Xa)  Ck2XkB(�), (3.3)

where C = 5C(⇢) + 500 . Notice that the constant C does not depend on ↵
and depends only on the derivatives of ⇢ up to order M(Q) + 1, with M(Q) =

supa2�mn(a) < 1, becauseQ is a good family.
So we proved the discretized Malliavin condition:

Theorem 3.10 (Discretized Malliavin condition). Let � be a domain in Cn

equipped with a good family Q of polydiscs with parameter �0, and which is Q
quasi convex. Let 2 be a current in the Blaschke class and S a � separated se-
quence in X \ U with respect to the familyQ. Then we have

X
a2S

nX
j=2

A j (Xa)  Ck2kB, (3.4)

where C is a constant depending only on the derivatives of ⇢ up to order M(Q)+1,
on �, �0 and on the constant of quasi convexity.

3.3. A geometrical lemma

Let � be a domain in Cn. Let a 2 U , ↵ = ⇡(a) and Qa(�) the polydisc of a good
familyQ associated to �.

LetDn be the unit polydisc inCn, and let8a be the bi-holomorphic application
from Dn onto Qa(�)

8z = (z1, . . . , zn) 2 Dn, 1  j  n, Z j = a j + �d(a)1/m j (a)z j L j .

If X is the zero set of a holomorphic function in � with a 2 X, we can lift Xa :=

X \ Qa(�) in Dn by 8�1
a . Set Ya := 8�1

a (Xa), and recall that the multi-type is
such that m1 = 1 and mn is always bounded, mn(a)  M(Q).We have:
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Lemma 3.11.

(i) �2n�2(Xa) =

Pn
j=1 A j (Xa);

(ii) 8 j=1, . . . , n, A j (Xa)=�2n�2d(a)2µ j (a)A j (Ya), with µ j (a)=
P

k 6= j
1

mk(a) ;
(iii) with m1 < m2  . . .  mn,

n � 1
M(Q)

 µ1(a)  µ2(a)  . . .  µn(a)  n/2;

µ1(a) =

nX
k=2

1
mk(a)



n � 1
2

;

(iv) cn  �2n�2(Ya).

Proof. The (i) is classical ([24, Proposition 2.48, p 55]).
The application8a sends Ek = {zk = 0} in Fk := { the orthogonal to Lk axis}

and the jacobian of this restriction at the point a, Jk8, is Jk8 = �n�1d(a)µk(a).
Because the application is holomorphic, we get that the jacobian for the change of
real variables is

|Jk |2 = �2n�2d(a)2µk(a),
which gives the (ii).

For the (iii) we notice that

2  j, k  n, mk(a) � 2 )

1
mk(a)



1
2

)

X
k 6= j, 2kn

1
mk(a)



n � 2
2

.

Hence if 2  j  n, µ j (a) =

P
k 6= j,2kn

1
mk(a) + 1  n/2; if j = 1, µ1(a) 

n�1
2  n/2. Hence (iii).
The (iv) is the Wirtinger inequality [19], adapted from the ball to the polycube

as follows: Ya \ B(0, 1) ⇢ Ya hence by Wirtinger inequality we get

cn  �2n�2 (Ya \ B(0, 1))  �2n�2(Ya),

so the lemma is proved.

3.4. The result

Theorem 3.12. Let � be a domain in Cn equipped with a good family Q of poly-
discs and which isQ quasi convex. Let S be a � separated sequence of points which
is contained in the Blaschke divisor X. Then

�2n�2
X
a2S

d(a)n  � (�)k2XkB,

where � (�) depends only on the derivatives of ⇢ up to order M(Q) + 1, on n and
�0, the parameter of the familyQ, and on the constant of quasi convexity.
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Proof. We have by Lemma 3.11

8 j = 2, . . . , n, A j (Xa) = �2n�2d(a)2µ j (a)A j (Ya),

but for j � 2, 2µ j (a)  n, hence

8 j = 2, . . . , n, A j (Xa) � �2n�2d(a)n A j (Ya).

For j = 1 we have 1+ 2µ1(a)  n, by Lemma 3.11, (iii), hence

A1(Xa) � �2n�2d(a)n A1(Ya).

Then Theorem 3.10 gives

Ck2XkB �

X
a2S

nX
j=2

A j (Xa) � �2n�2
X
a2S

d(a)n
nX
j=2

A j (Xa).

And the Blaschke condition gives

2
�0

k2kB �

X
a2S

d(a)Area(Xa)

�

X
a2S

d(a)A1(Xa) � �2n�2
X
a2S

d(a)1+2µ1(a)A1(Ya),

hence
2
�0

k2kB � �2n�2
X
a2S

d(a)n A1(Ya).

So

�2n�2
X
a2S

d(a)n
 
A1(Ya) +

X
j�2

A j (Ya)

!
 (C +

2
�0

)k2XkB .

Now with A1(Ya) +

P
j�2 A j (Ya) � cn by Wirtinger inequality, we get the

theorem.

We already have defined in the introduction (1.1) the canonical measure asso-
ciated to a sequence S

⌫S :=

X
a2S\U

d(a)1+2µ(a)�a

with µ(a) :=

Pn
j=2

1
m j (a) .

The theorem says that the measure
P

a2S\U d(a)n�a is bounded which is
weaker than the fact the measure ⌫S is bounded, unless S is a separated sequence
projecting on points of strict pseudo-convexity, because there we have 1+2µ(a) =

n. In the next section we shall introduce domains for which we can control the right
measure ⌫S.
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4. Almost strictly pseudo-convex domains

We shall introduce a family of domains � with “few” non strictly pseudo-convex
points on @�.

This family will be big enough to contain interesting cases, as convex domains
of finite type for instance and will allow us to manage these “bad” points.

4.1. Minkowski dimension

4.1.1. Definitions and first properties

Lemma 4.1. Let f be a function Lipschitz ↵ > 0, ↵  1, on the closed interval
I = [0, h] of R. Then the graph

G := {(x, y) :: x 2 I, y = f (x)} ⇢ R2

of f can be covered by Nr (h)  Chr↵�2 disjoint discs D(a, r) centered at a 2 G
and of radius r, provided that r  h.

Proof. This is corollary in [18, 11.2, page 147]. The proof is as follows. Let 0 <
r < 1 and m the least integer greater than or equal to h/r. We have by proposition
in [18, 11.1, page 146]:

r�1
m�1X
j=0

R f ( jr, ( j + 1)r)  Nr (h)  2m + r�1
m�1X
j=0

R f ( jr, ( j + 1)r), (4.1)

with R f (t1, t2) := supt1<t,u<t2 | f (t) � f (u)| . Because f is Lipschitz ↵ we have
R f (t1, t2)  C |t1 � t2|↵ hence R f ( jr, ( j + 1)r)  Cr↵. Putting this in (4.1) we
get

Nr (h)  2m + mCr↵�1.

But provided that m > 0, i.e. h � r, we have m  2h/r so

Nr (h)  4
h
r

+ 2Chr↵�2
 C 0hr↵�2.

We shall define an homogeneous Minkowski dimension. Denote #A the number of
points in the set A.

Definition 4.2. Let W ⇢ R2 be a bounded set and ↵ > 0; let D(a, h) be a disc
centered at a and of radius h; let Rr (W \ D(a, h)) be a covering of W \ D(a, h)
by discs of radius r; we shall say that W has homogeneous Minkowski dimension ↵
if:

9C > 0, 8a 2 W, 8h > 0, 8r > 0, r  h,
9Rr (W \ D(a, h)) :: #Rr (W \ D(a, h))  max(1,Chr�↵).
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The number C will be called the constant of W with respect to the homogeneous
Minkowski dimension ↵.

Clearly if W has homogeneous Minkowski dimension ↵ with constant C then
it has upper Minkowski dimension ↵ (see [18]), but the converse is false as can
be seen with the canonical example of W = {0, 1, 1/2, 1/3, . . . , 1/n, . . .} which
has Minkowski dimension 1/2 but it is not homogeneous, i.e. W \ D(0, h) has no
covering with the property above for any h > 0.

On the other hand, Lemma 4.1 gives examples of such sets.
The following result is a corollary of a nice theorem of Ostrowski [32].

Corollary 4.3. Let P(y) be a monic polynomial of degree d in the real variable y
whose coefficients are C1 functions of x 2 R. Then the graph of the zero set of P
has homogeneous Minkowski dimension less than 2�

1
d .

Proof. By a theorem of Ostrowski [32] we have that locally the roots y of the equa-
tion

P(y) = yd + a1yd�1
+ . . . + ad = 0,

are Lipschitz 1
d functions of the coefficients a j . Composing with the C1 function

x ! a(x) := {a j (x), j = 1, . . . , d},

we get that the roots yk(x), k  d, are still Lipschitz 1
d and we can apply

Lemma 4.1 to the graph of each root. Because there is at most d such graphs,
the corollary is proved.

4.1.2. Domains in Cn

Let D(⇢) be the disc in C of center 0 and radius ⇢ and denote �2n the Lebesgue
measure in Cn

= R2n.We have the lemma:

Lemma 4.4. Let W ⇢ D := D(d)⇥D(R)n�2⇥D(h) ⇢ Cn and ↵ > 0 such that
the homogeneous Minkowski dimension of

W \ {z1 = a1, . . . , zn�1 = an�1}

is 2�↵ for all a0
= (a1, . . . , an�1) 2 D(d)⇥D(R)n�2. Let S ⇢ W and let another

orthonormal basis b = {L1, .., Ln} with w = (w1, . . . , wn) as coordinates; let Pa
be a polydisc with respect to the basis b(a) centered on a 2 S, b(a) varying with
a 2 S, Pa with fixed radii (r, l2r . . . , lnr), and such that these polydiscs are
disjoint. Let l = max j=2,...,n l j . Then

9C ::

X
a2S

�2n(Pa)  Chd2R2(n�2)l↵r↵
= Ch�1�2n(D)l↵r↵.
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Proof. Denote by C the canonical basis of Cn with the z j as coordinates.
First set C(b, lr) a polycube, i.e. a polydisc with all its radii are equal, with

respect to the canonical basis C in D, centered at b and of radii (lr, . . . , lr). Any
polydisc Pa with a in C(b, lr) is contained in the “double” polycube C(b, 2(2)nlr),
the 2n because of the “angle” between the two bases; hence the measure of the
union of all those polydiscs Pa is bounded by the measure of C(b, 2n+1lr). These
polydiscs being disjoint we get

X
a2S\C(b, lr)

�2n(Pa)  �2n(C(b, 2n+1lr)) = 22n+1⇡nl2nr2n.

Each polydisc verifies �2n(Pa) = ⇡nl22 . . . l2nr2n, hence the number of points NC of
S in C(b, lr) can be estimated by:

NC  22n+1⇡nl2nr2n/⇡nl22 · · · l2nr
2n

= 22n+1
l2n

l22 · · · l2n
.

Let b0
= (b1, . . . , bn�1) be fixed, then the set C((b0, bn), lr) \ {z0 = b0

} ⇢ D(h)
is a disc centered at bn 2 D(h) and of radius lr. The homogeneous Minkowski
assumption gives that there is a subfamily of these discs which covers S whose
number nB of elements verifies

nB  Ch(lr)↵�2.

Define the slice of depth lr to be B(b0, lr) :=

S
bn2D(h) C((b0, bn), lr); then the

number NB of points of S in this slice verifies

NB  nB⇥NC  Ch(lr)↵�2
⇥22n+1

l2n

l22 . . . l2n
.

The number of such slices, when b0 varies, is bounded by d2R2(n�2)
(lr)2(n�1) , hence the total

number N of points in S can be estimated by:

N 

NBd2R2(n�2)

l2(n�1)r2(n�1)
 22n+1d2R2(n�2)Chl↵r↵ 1

l22 · · · l2nr2n
.

So the total measure of the polydiscs Pa is

A :=

X
a2S

�2n(Pa) = N⇥⇡nl22 · · · ln2r
2n

 22n+1⇡nd2R2(n�2)Chl↵r↵

= C 0h�1�2n(D)l↵r↵,

with C 0
= 22n+1⇡nC which depends only on C, the Minkowski constant ofW.
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4.2. Almost strictly pseudo-convex domains

Let W be the set of weakly pseudo-convex points of @�, i.e. W is the zero set of
the determinant of the Levi form L of @�. Let ⇡ be the normal projection from �
onto @�, defined in a neighbourhood U of @� in �.

Let ↵ 2 @�; by linear change of variables we can suppose that ↵ = 0 2 @� ⇢

Cn, z1 = 0 is the equation of the complex tangent space. The projection ⇡ locally
near 0 2 @� gives a C1 diffeomorphism ⇡̃ @� ! T0(@�), ⇡̃ := (⇡|T0(@�))

�1.

Definition 4.5. The pseudo-convex domain � in Cn is said to be almost stricly
pseudo-convex, aspc, at 0 if there is a neighbourhood V0 of 0, a positive number �,
and a basis b := {L1, . . . , Ln} of Cn, still with L1 a complex normal unit vector,
such that the slices in the associated coordinates for the basis b,

⇡̃(W \ V0) \ {z1 = 0} \ {z2 = a2} \ . . . \ {zn�1 = an�1}

have homogeneous Minkowki dimension less than 2� �, � > 0.
� is said to be aspc if this is true for all points in @� with the same � > 0 and

the same underlying constant.
The basis b is in general different from the basis b(↵) used in the definition of

the good familyQ.
Of course the strictly pseudo-convex domains are aspc because W = ;.

4.3. Sequences projecting on weak pseudo-convex points

We still shall use the notation:

8a 2U ,↵ := ⇡(a), m(a) :=m(↵) = (m1(↵), . . . ,mn(↵)) is the multi-type of a
point;
W is the set of non strictly pseudo-convex points on @�;

8a 2 U , µ(a) :=

Pn
j=2

1
m j (a) is the weight exponent.

Theorem 4.6. Let Q be a good family of polydiscs on a aspc domain � in Cn,
and S be a � separated sequence of points in �. If ⇡(S \ U) ⇢ V \W, where V is
an open set of @�, then we have:X

a2S\U
d(a)1+2µ(a)

= ��2n
X

a2S\U
�2n(Qa(�))  C(�)�2n�1(V ), (4.2)

where C(�) depends only on ⇢, n, the good family Q and the constant � in the
Minkowski dimension of W ⇢ @�.

Proof. The polydisc Qa(�) has radius � := �d(a) in the normal direction and in its
conjugate and has radii ⇣

�d(a)1/m2(a), . . . , �d(a)1/mn(a)
⌘
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in the complex tangent directions. Let us denote L2, . . . , Ln the complex tangent
directions in the basis b(↵) associated to ⇡(a)with multi-type (m2(a), . . . ,mn(a)).

Now fix ⇣ 2 W ⇢ @� and let V⇣ := B(⇣, ✏) \ @� be a neighbourhood of ⇣ in
@� such that ⇡̃ is a diffeomorphism from V⇣ on a neighbourhood of ⇣ on the (real)
tangent space T⇣ . One can choose the radius of the euclidean ball B(⇣, ✏), ✏ > 0 to
be fixed independently of ⇣, because @� is of class C2 and compact.

Because � is aspc, we know that there is a basis b = {v1, . . . , vn} of Cn such
that v1 = L1 is still in the complex normal space, and a complex direction in the
complex tangent space at ⇣, say vn, along which W is of homogeneous Minkowski
dimension 2 � �, � > 0. I.e. these two basis are different in the complex tangent
space only.

Let S ⇢ � :: ⇡(S) ⇢ W be the � separated given sequence. First we shall
prove the theorem with V = V⇣ and then complete it.

The proof will follow from several reductions.

4.3.1. Reduction to a layer parallel to the complex tangent space

As usual we suppose that ⇣ = 0, <z1 = 0 is the tangent space T0(@�).
By use of the C1 diffeomorphism ⇡̃, we can suppose that @� ' T0(@�) in

a ball B(0, ✏) with a uniform ✏ > 0 which depends only on � via its defining
function ⇢ .

Consider the polydisc, in the basis b, P0(R,h,d) :=D(d)⇥D(R)n�2⇥D(h)⇢
B(0, ✏) where D(r) is a disc centered at 0 and of radius r.We can manage it to have
✏/2

p

n  d  h and still P0(R, h, d) ⇢ B(0, ✏).
In this ball B(0, ✏) we consider � as a half space T0(@�)⇥]0, ✏] by use of the

diffeomorphism ⇡̃ .
From now on we shall restrict everything to P0(R, h, d), which means, in par-

ticular, that z 2 P0(R, h, d) ) |z1|  d.
Let C� ⇢ P0(R, h, d) be a layer parallel to T0(@�) at a distance �  d from

the boundary, i.e.

a = (a1, . . . , an) 2 C� () <a1 ' d(a) 2 [(1� �)� , (1+ �)� ],

with � the separating constant.
Now let S� := S \ C� \ P0(R, h, d).

4.3.2. Reduction to a fixed multi-type

There is only a finite set of possible multi-types for the points of S because we have
a good family of polydiscs and the multi-type is uniformly bounded by Lemma 2.2.
Hence it is enough to show the inequality (4.2) for the points a 2 S with a fixed
multi-type, m(a) = (1, m2, . . . , mn ). Of course the axes of the polydisc Qa(�) are
dependent on a.

We can apply Lemma 4.4 to the sequence S� ; because m2  . . .  mn, we
set:

r := � 1/m2, l := �
1
mn �

1
m2 .
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The lemma gives:
X
a2S�

�2n(Qa)  ChR2(n�2)d2l�r�
= ChR2(n�2)d2� �/mn .

The measure of the trace of P0(R, h, d) on the real tangent space T0(@�) is

�2n�1(P0(R, h, d) \ T0(@�)) = R2(n�2)h2d,

because the disc D(d) is in the complex normal.
So we get

X
a2S�

�2n(Qa)  ChR2(n�2)d2� �/mn

= C
d
h

� �/mn�2n�1(P0(R, h, d) \ T0(@�)).

(4.3)

4.3.3. Adding the layers

Because the sequence is separated, the layers can be ordered this way �k =⌫k�0, k2

N, where �0  d is the farthest point from the boundary and ⌫ =
1��
1+� < 1.

We have to add them and, because of inequality (4.3), we get

X
k2N

X
a2S�k

�2n(Qa)  C
d
h

�2n�1(P0(R, h, d) \ T0(@�))
X
k2N

�
�/mn
k .

But �k = ⌫k�0, k 2 N, so

X
k2N

�
�/mn
k = �

�/mn
0

X
k2N

⌫k�/mn
=

�
�/mn
0

1� ⌫�/mn


d�/mn

1� ⌫�/mn
.

Hence we get

X
k2N

X
a2S�k

�2n(Qa)  C 0
d1+�/mn

h
�2n�1(P0(R, h, d) \ T0(@�)), (4.4)

with C 0
:= C 1

1�⌫�/mn .

4.3.4. Adding for all the multi-types

Because we have a good family of polydiscs the multi-type is bounded, hence 8a 2

�, mn(a)  M(Q), so we have that, for any multi-type,

C 0

:= C
1

1� ⌫�/mn
 C

1
1� ⌫�/M(Q)

=: D,
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hence the inequality (4.4) implies

X
k2N

X
a2S�k

�2n(Qa)  D
d1+�/mn

h
�2n�1(P0(R, h, d) \ T0(@�)). (4.5)

Since d  h we have d1+�/mn
h  d�/mn .

Recall that �2n�1(Qa(�)) = ��2nd(a)1+2µ(a), then we get
X
k2N

X
a2S�k

d(a)1+2µ(a)
 D2n��2nd�/mn�2n�1 (P0(R, h, d) \ T0(@�)) .

Now set V0 := P0(R, h, d) \ T0(@�), d  h; the number of possible multi-types
being finite, we have a finite sum of finite numbers so

P
a2S d(a)1+2µ(a) is finite,

for S \ U \ {d(a)  d} ⇢ ⇡�1(V0), with constant C(�)�2n�1(V0), where C(�)
depends only on the defining function ⇢ of �, the Minkowski constants of W and
of the good familyQ.

Now let V be an open set in @�; because @� is a bounded smooth manifold in
R2n we can cover it by a finite number of sets {V⇣ }⇣2R “almost” disjoint, i.e. such
that

• the union
S

⇣2R
V⇣ covers @�;

• any point of @� belongs to at most N of the V⇣ .

This gives
V ⇢

[
⇣2R

V⇣ \ V .

Hence
�2n�1(V ) 

X
⇣2R

�2n�1(V⇣ \ V ).

On the other hand we just proved, shrinking U to U \ {d(a)  d} if necessary,
X

a2S\U\⇡�1(V⇣ \V )

d(a)1+2µ(a)
 C(�)�2n�1(V⇣ ),

so X
a2S\U\⇡�1(V )

d(a)1+2µ(a)


X
⇣2R

X
a2S\⇡�1(V⇣ \V )

d(a)1+2µ(a)

 C(�)
X
⇣2R

�2n�1(V⇣ )

 CN⇥�2n�1(V ),

the last inequality because any point of V is covered at most N times.
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Remark 4.7. In fact this theorem says that the measure

µS :=

X
a2S\U

d(a)1+2µ(a)�a

associated to the a separated sequence S of points projecting on the weakly pseudo-
convex points in @� is a geometric Carleson measure, as we shall see later.

4.4. Sequence of points in a Blaschke divisor

We shall glue the previous result with the one we got in Theorem 3.12 to have the
control of the canonical measure ⌫S associated to a separated sequence S.

Theorem 4.8. Let � be a aspc domain in Cn equipped with a good family Q of
polydiscs and which isQ quasi convex. Let S a � separated sequence of points con-
tained in a divisor X of the Blaschke class of�, with2 as its current of integration,
which projects on the open set V ⇢ @�. Then we have

X
a2S

d(a)1+2µ(a)
 � (�)k2kB + C(�)�2n�1(V) < 1,

where d(a) is the distance from a to the boundary of � and µ(a) :=

Pn
j=2

1
m j (a) ,

with (1, m2(a), . . . ,mn(a)) is the multi-type associated to the familyQ.
Moreover the constants C(�), � (�), depend only on the CM(Q)+1 norm of the

defining function ⇢, n, � and �0 the parameter of the good familyQ, the Minkowski
constants of the aspc domain � and the constant of quasi convexity.

Proof. Let BS be the set of (bad) points in the sequence S, i.e. which project on
the weakly pseudo-convex points in V ⇢ @�; let GS be the set of (good) points in
the sequence S, i.e. which project on the strictly pseudo-convex points in V ⇢ @�;

then S = BS [ GS and we have by Theorem 3.12
X
a2GS

d(a)n 

X
a2S

d(a)n . k2kB )

X
a2GS

d(a)1+2µ(a)
 � (�)k2kB,

because, for these points we have m1 = 1, m2 = 2, . . . , mn = 2, hence n =

1+ 2µ(a). By Theorem 4.6 we have
X
a2BS

d(a)1+2µ(a)
 C(�)�2n�1(V) < 1,

so adding these two inequalities, we get
X
a2S

d(a)1+2µ(a)
 � (�)k2XkB + C(�)�2n�1(V) < 1.
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5. Examples of almost strongly pseudo-convex domains

An example of aspc domain not of finite type is the following

|z1|2 + exp(1� |z2|�2) < 1,

because the setW of its weakly pseudo-convex points is the circle |z1| = 1, z2 = 0,
hence it has Minkowski dimension 1.

The other examples are mainly based on the following theorem.
Let � be a domain in Cn and L its Levi form. Set D := detL; then the set W

of points of weak pseudo-convexity is W := {z 2 @� :: D(z) = 0}.

Theorem 5.1. Let� be a domain inCn of finite linear type, andD the determinant
of its Levi form. Suppose that:

8↵ 2 @�, 9v 2 TC
↵ (@�) :: 9k 2 N,

@kD
@vk

(↵) 6= 0,

then � is aspc and can be equipped with a family of polydiscs whose multi-type is
the given linear multi-type.

Proof. The fact that there is a good family of polydiscs associated to the linear type
is given by Theorem 2.6.

It remains to verify the condition on the smallness of the set W of weakly
pseudo-convex points.

Let ↵ 2 @�, we may suppose that ↵ = 0 and that the complex normal is the
z1 axis.

Because � fullfills the hypothesis of the theorem, there is a j :: 1 < j 

n, a real direction, for instance the y j axis, with z j = x j + iy j , and an integer
m, such that, with ˜D being the restriction of D to the z j complex plane via the
diffeomorphism ⇡, ˜D := D � ⇡

@m ˜D
@ymj

(0) =

@mD
@ymj

(0) 6= 0.

The differentiable preparation theorem of Malgrange gives that there is a polyno-
mial with C1 coefficients,

P(x j , y j ) = ymj +

mX
k=1

ak(x j )ym�k
j

and a C1 function Q(x j , y j ), Q(0) 6= 0 such that

˜D(x j , y j ) = Q(x j , y j )P(x j , y j ).
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Hence the zero set of ˜D is the same as the one of P and we know, by Corollary 4.3,
that the homogeneous Minkowski dimension of it is less than of equal to 2�

1
m .

Because D and ˜D are C1 functions, @m ˜D
@ymj

6= 0 in a neighbourhood of 0 with
the same number m, hence we have that the homogeneous Minkowski dimension
of { ˜D = 0} is less that of equal to 2�

1
m in all the slices parallel to the z j axis in a

neighbourhood of 0, and we are done.

A natural question, asked by the referee, is: Is the condition 8↵ 2 @�, 9v 2

TC
↵ (@�) :: 9k 2 N, @kD

@vk
(↵) 6= 0 actually necessary ?

I have no answer to it, but we shall see that for convex domains this condition
is a consequence of the linear finite type of �.

We shall need the definition.
Definition 5.2. Let f be a function defined on an open set V ⇢ Rn, f 2 C1(V) ;

we shall say that f is flat at a 2 V if 8↵ 2 Nn, @ |↵| f
@x↵1
1 ...@x↵n

n
(a) = 0.

5.1. Pseudo-convex domains of finite type in C2

Lemma 5.3. Let f (z) be a real valued smooth function of z 2 D, the unit disc in
C; if 1 f is flat at 0 then for any m 2 N there is a harmonic function h in D such
that f � h = O(|z|m) at the origin.

Proof. Take the Taylor expansion of f at 0:

f (x + iy) =

m+2X
k,l=0

akl xk yl +O(|z|m+3).

We get the expansion of 1 f near 0:

1 f (x + iy)=
mX

k=2,l=0
k(k � 1)akl xk�2yl+

mX
k=0,l=2

l(l � 1)akl xk yl�2+O
⇣
|z|m+1

⌘
.

Hence

1 f (x+iy)=
mX

k,l=0

⇥
(k + 1)(k + 2)ak+2,l+(l + 1)(l + 2)ak,l+2

⇤
xk yl+O

⇣
|z|m+1

⌘
.

But1 f flat at 0 means that [(k+1)(k+2)ak+2,l + (l+1)(l+2)ak,l+2] = 0, hence
setting

h :=

m+2X
k,l=0

akl xk yl ,
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we have that

1h(x + iy) =

mX
k,l=0

[(k + 1)(k + 2)ak+2,l + (l + 1)(l + 2)ak,l+2]xk yl = 0

because all the coefficients are zero. So we get that h is harmonic and f � h =

O(|z|m+3).

Theorem 5.4. Let � be a domain of finite type in C2; then � is aspc.

For the proof of this theorem we shall use the following lemma.

Lemma 5.5. Let h be a real valued harmonic function in a disc D(0, R) ⇢ C;

then h cannot have isolated zeroes.

Proof. Suppose that h(0) = 0, h 62 0, then by the mean formula we have for any
0  r < R,

0 = h(0) =

1
2⇡

Z 2⇡

0
h(rei✓ )d✓ .

But h being real valued on the circleC(r) := {|z| = r}, h cannot be always positive
or always negative, hence it must change sign on C(r) so it must be zero at least
twice, because h is continuous. This is true for any 0 < r < R, hence the lemma is
proved.

Proof of Theorem 5.4. Let � ⇢ C2 be defined near the origin by

⇢(z) = <z1 + f (=z1, z2).

We have that

⇢(z) = <z1 + f (0, z2) + ( f (=z1, z2) � f (0, z2)).

Suppose that D := 1 f (0, z2) is flat at 0; then by Lemma 5.3 for any m 2 N there
is h(z2) harmonic near z2 = 0 and such that

f (0, z2) = h(z2) +O(|z2|m).

There is a conjugate h̃ to h such that u := h + i h̃ is holomorphic in z2 near 0 and
h̃(0) = 0 ) u(0) = 0.We have f (=z1, z2) � f (0, z2) = =z1⇥g(=z1, z2), with g
smooth as we seen in Lemma 2.9; hence we have

⇢(z) = <z1 + h(z2) + =z1⇥g(=z1, z2) +O(|z2|m).

Let X := {z1 = �u(z2)} be this holomorphic variety. By Lemma 5.5 there is a
sequence Z := {wn}n2N ⇢ {z1 = 0} such that h̃(wn) = 0 and wn ! 0.
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Now take a point an = (a1n, wn) 2 X ) <a1n = �h(wn), =a1n = �h̃(wn).

We have that =a1n = �h̃(wn) = 0 hence

⇢(an) = <a1n + h(wn) +O(|z2|m) = �h(wn) + h(wn) +O(|wn|
m) = O(|wn|

m),

because =z1⇥g(=z1, z2) = 0 on an.
Hence the distance from @� to the holomorphic variety X is O(|z2|m) near 0

along the sequence Z going to 0, so the type of @� is bigger than m at 0.
This being true for any m 2 N we have a contradiction with the fact that � is

of finite type in D’Angelo sense [15].
Hence 1 f (0, z2) is not flat at 0 and we can apply directly Theorem 5.1 to get

that � is aspc.

5.2. Locally diagonalizable domains

In this context, the domains with a locally diagonalizable Levi form where intro-
duced by C. Fefferman, J. Kohn and M. Machedon [12] in order to obtain Hölder
estimates for the @̄b operator.

Recall that� locally diagonalizable means that there is a neighbourhood V↵ ⇢

@� of ↵ 2 @� and (L1, . . . , Ln) a basis of Cn depending smoothly on ⇣ 2 V↵ and
diagonalizing the Levi form L.

We shall need the following lemma.

Lemma 5.6. Let � be a domain locally diagonalizable in Cn and of finite linear
type. Then the determinant of its Levi form is not flat on the complex tangent space
of @�.

Proof. Let ↵ 2 @�, then there is a neighbourhood V↵ of ↵ and (L1, . . . , Ln) a
basis of Cn depending smoothly on z 2 V↵, and diagonalizing the Levi form L,
with L1 the complex normal direction, so we have, restricting L to the complex
tangent space:

L(z) =

0
B@

�2 0 · · · 0
...

...
...

...
0 · · · 0 �n

1
CA.

Hence D := detL = �2 · · · �n. Now suppose that, for any complex direction
L j , j = 2, . . . , n, at ↵, there is a real direction v j , v j 2 L j , such that 9k =

k j 2 N,
@k� j
@vkj

(↵) 6= 0, then with k := (k2, . . . , kn) :

@ |k|D
@v

k2
2 · · · @v

kn
n

(↵) 6= 0,
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and D is not flat at ↵. Hence if D is flat at ↵, we must have

9L j , 8v j 2 L j , 8k 2 N,
@k� j

@vkj
(↵) = 0.

Now this j is fixed and we slice �

� j := {z2 = . . . = z j�1 = z j+1 = . . . = 0} \ �.

We are exactly in the situation of a domain in C2 and we can use the proof of
Theorem 5.4 to get a contradiction with the fact that ⇢ has a finite order of contact
with a real direction in L j because � is of finite linear type.

Hence we proved
Theorem 5.7. Let � be a domain locally diagonalizable in Cn and of finite linear
type. Then � is aspc.

5.3. Convex domains

Theorem 5.8. Let � be convex in a neighborhood of 0 2 Rn+1. Suppose that
the tangent space at 0 is xn+1 = 0 and @� = {xn+1 = f (x1, . . . , xn)}, with f
convex. If the determinant of the Hessian of f is flat at 0 then f is flat in a direction
x = (x1, . . . , xn) 2 Rn of the tangent space at 0.
Proof. If f is not flat in any direction, we can find ↵ > 0 and m 2 N such that
f (x) � ↵ |x |2m in a ball B(0, R) ⇢ Rn. Let us consider the functions

h(x) :=

↵

2
|x |2m , g(x) :=

↵

2
|x |2m + ✏ |x |2 + �,

with ✏ > 0 and � > 0. Denote H f the Hessian of the function f.
Because det H f is flat at 0, there is a ball B(0, r) ⇢ Rn such that:

8x 2 B(0, r), det H f (x)  det Hh(x)

8✏ > 0, 8� > 0, det Hh < det Hg. (5.1)
We choose ✏ and � so small that there is a real t such that

r > t >

 
2
� + ✏r2

↵

!1/2m

then
↵

2
t2m > ✏t2 + � ) ↵t2m >

↵

2
t2m + ✏t2 + �,

hence,
8x :: |x | = t, f (x) � ↵ |x |2m > g(x). (5.2)

On the other hand, because g(0) = � > f (0) = 0, and f and g are continuous, we
get

9s > 0, s < t :: 8x, |x | < s, f (x) < g(x).
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The maximum principle for the Monge-Ampère operator says [6]:

Lemma 5.9. Let v be a convex function (i.e. Hv � 0 ) defined in a bounded open
set V and a regular function ⇢ such that

detHv(x) > detH⇢(x), v  ⇢

on @V . Then v  ⇢ on V .

Because det Hg > det H f in B(0, r) by (5.1) and g < f on @B(0, t) by (5.2),
we can apply this principle, i.e. g  f everywhere in B(0, t) which is a contradic-
tion in the ball B(0, s). Hence f has to be flat in some direction.

Corollary 5.10. Let � be a convex domain in a neighbourhood of 0 2 @� ⇢ Rn.
If @� is flat in no direction of its tangent space at 0, then the determinant of the
Hessian of � is not flat at 0.

Proof. If not we have a contradiction with Theorem 5.8.

Let us see now the case of a convex domain of finite type in Cn.We shall need
the following lemma.

Lemma 5.11. Let � be a convex domain of finite type in Cn then for any complex
line L in the tangent complex space at 0 2 @� there is at most one real direction v
in L such that @� is flat in this direction at 0.

Proof. We can choose ⇢(z) = <z1� f (=z1, z2, . . . , zn) as defining function for�
with f a positive real valued convex function and with the zn axis Ln as the given
L . (The complex normal direction is L1 as usual.)

Suppose there are two such directions v1, v2 in Ln; this means

8k 2 N,
@k⇢

@vkj
(0) = 0, j = 1, 2.

The vector v1 can be seen as a point a1 in the complex plane Pn = {z1 = z2 = ··· =

zn�1 = 0} and also v2 corresponds to the point a2 2 Pn. Let t 2 [0, 1], at := ta1+

(1� t)a2 2 Pn, because f is convex this implies that 0  f (at )  t f (a1) + (1�

t) f (a2) and this means that the order of contact in the direction v = tv1+ (1� t)v2
is bigger than the minimum of the order of contact in the directions v1 and v2, hence

8k 2 N,
@k⇢

@vk
(0) = 0, j = 1, 2,

with v = tv1 + (1� t)v2. This being true for any t 2 [0, 1] we have that f is flat in
the sector of Pn between v1 and v2, but f being C1 this implies that f is flat at 0.

By a result of Boas and Straube [9] we have that for a convex domain the
multi-type or the order of contact with real lines is the same; the multi-type of @�
being finite, this means that there is a real direction in L which is not flat, hence a
contradiction which gives the lemma.
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Corollary 5.12. Let� be a convex domain of finite type inCn near 0 2 @�. There
is a complex line L in the tangent complex space at 0 and a real vector v 2 CL ,
such that the determinant of the Levi form of a defining function for � near 0 is not
flat in the direction v.

Proof. Let L2, . . . , Ln be an orthonormal basis of TC
0 (@�). Because � is of finite

type, we know by Lemma 5.11 that in any complex direction L j , 2  j  n, there
is at most one real direction in which @� is flat; we can always take that direction to
be the y j axis without changing the ambiant complex structure. If such a direction
does not exist we still take the y j axis in the following.

We set E to be the subspace E := {y2 = · · · = yn = 0} \ {z1 = 0}.
We write the defining function as usual

⇢(z) = <z1 � f (=z1, z2, . . . , zn),

hence the domain � \ E has defining function

⇢̃(x) := � f (0, x2, . . . , xn).

Let L(z1, . . . , zn) := @@̄⇢(z) be the Levi form of �, we have

@@̄ f (x, 0) = �L(x, 0) =

(
@2 f

@x j@xk
(x, 0)

)
j,k=2,...,n

= H f̃ (x) (5.3)

with f̃ (x2, . . . , xn) := f (0, x), and the new convex set �1 := � \ E still verifies
the conditions of Corollary 5.10: ˜D(x) := det H f̃ (x) is not flat because we get rid
of the flat directions. Hence there is a real vector v in the tangent space at 0 for @�1
such that ˜D is not flat in the direction v. This means

9k 2 N ::

@k ˜D
@vk

(0) 6= 0;

but, using (5.3), we get
@kD
@vk

(0) =

@k ˜D
@vk

(0) 6= 0.

Theorem 5.13. Let � be a convex domain of finite type in Cn
; then � is aspc.

Proof. By use of Corollary 5.12, it remains to apply Theorem 5.1.
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5.4. Domains with real analytic boundary

Lemma 5.14. Let � be a bounded domain with real analytic boundary. Then � is
of finite linear type.

Proof. Take a point ↵ 2 @� and suppose that a real line through ↵ has a contact
of infinite order with @�, then, using Lojasiewicz [35] we get that the line, which
is real analytic, and @� are regularly situated, hence the line must be contained in
@�. But this cannot happen because @� is bounded.

In fact we have a better result because we know, by the work of K. Diederich
and J. E. Fornaess [16], that � is of finite type.

The function D = detL is also real analytic, hence if D is flat at a point
↵ 2 @�. This means in particular that 8v 2 T↵(@�), 8k 2 N, @kD

@vk
(↵) = 0,

hence D is identically zero on @�. This says that all the points of @� are non
stricly pseudo-convex points. But this is impossible because @� is compact, hence
contains at least a strictly pseudo-convex point, because of the following simple and
well known lemma [23]:

Lemma 5.15. Let � be a bounded domain in Rn, with a smooth boundary of class
C3. Then @� contains a point of strict convexity.

Now let ↵ 2 @� and suppose thatD is flat in all the complex tangent directions
of TC

↵ (@�). Then, because @� is of finite type, we can recover the derivatives in
the “missing direction”, namely the real direction conjugate to the normal one, by
brackets of derivatives in the complex tangent directions.

Hence we have that D is also flat in the direction conjugate to the normal one,
but this would imply thatD is flat at the point ↵, and this is forbidden by the lemma.
So we can apply Theorem 5.1 to conclude:

Theorem 5.16. Let � be a domain in Cn with real analytic boundary, then � is
aspc and of finite linear type.

6. Convex domains of finite type

McNeal [26], introduced tools for studying the geometry of convex domains of
finite type: a family of polydiscs and a related pseudo-distance which are well
suited to these domains.

These tools were used and a little bit modified by different authors: McNeal
and Stein [29], J. Bruna, P. Charpentier and Y. Dupain [10], K. Diederich and E.
Mazzilli [17], A. Cumenge [14] and also T. Hefer [20], among others.

We start first with notation and definitions taken from Hefer [20] in order for
the reader to follow easily the citations we use. This means that the polydiscs in the
family seem different but we shall show, in Section 7, that they are the same than
the ones defined in Section 2.
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Let r be a defining function for �, � := {z 2 Cn
:: r(z) < 0}, where � is a

convex domain of finite type.
Hefer uses the ✏ distance in the direction v:

⌧ (⇣, v, ✏) := sup{c |r(⇣ + �v) � r(⇣ )|  ✏, 8� 2 C :: |�|  c}, (6.1)

and builds two ✏ extremal bases (introduced in [10]), a variant of the original one
of McNeal [26], which are equivalent, from which we keep one:

b✏(⇣ ) = (v1(⇣, ✏), . . . , vn(⇣, ✏)),

and the ✏ distance in the direction vk :

8k = 1, . . . , n, ⌧k(⇣, ✏) := ⌧ (⇣, vk, ✏).

This allows him to define a family of polydiscs

8t>0, t P✏(⇣ ) :=

(
z=⇣ +

nX
k=1

wkvk(⇣, ✏)2Cn
:: 8k=1, . . . , n, |wk |< t⌧k(⇣, ✏)

)
,

(6.2)
and the pseudo-distance d(z, ⇣ ) := inf{✏ :: z 2 P✏(⇣ )} associated to it. See the
nice introduction in [20] to see why this definition is relevant.

From his theorem of [20, 1.7] I just keep the “geometrical” part.
Theorem 6.1. Let � ⇢ Cn be a smooth convex domain of finite type and let
(m1, . . . , mn) be its multi-type.

If U is a sufficiently small compact neighborhood of @� , if ⇣ 2 U and if
(m1(⇣ ), . . . , mn(⇣ )) is the multi-type of @�⇣ := {z 2 Cn

:: r(z) = r(⇣ )} at the
point ⇣, then there are constants c,C > 0 depending only on U (and on the fixed
defining function r of � ) such that

c✏1/m j (⇣ )
 ⌧ j (⇣, ✏)  C✏1/m j (⇣ ). (6.3)

Hence we have a family of polydiscs

P := {P✏(⇣ )}⇣2U,✏>0 (6.4)

which is equivalent to the family used by McNeal and Stein [29].
We shall extract from [20, proposition 2.7] the following facts we shall need

later.
8t > 0, 9ct , 9Ct depending only on t such that

8⇣ 2 U , Pct ✏(⇣ ) ⇢ t P✏(⇣ ) ⇢ PCt ✏(⇣ ). (6.5)

There are constants C1 > 1, c2 < 1 and c3 > 0, independant of ⇣ and ✏, such that

8⇣ 2 U ,8✏ > 0,
1
2
P✏(⇣ ) ⇢ C1P✏/2(⇣ );

8✏ > 0, 8t < c2✏, 8⇣, C1Pt (⇣ ) ⇢ P✏(⇣ );

8⇣ 2 �, c3P|r(⇣ )|(⇣ ) ⇢ �. (6.6)
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There is a constant C3 independent of z, ⇣ 2 U , and independent of s > 0 such
that

Ps(z) \ Ps(⇣ ) 6= ; ) Ps(z) ⇢ C3Ps(⇣ ). (6.7)

This implies, with �2n(P) the euclidean volume of P,

1
C2n3

�2n(Ps(⇣ ))  �2n(Ps(z))  C2n3 �2n(Ps(⇣ )).

But �2n(Ps(⇣ )) = ⌧1(⇣, s)2
Qn

j=2 ⌧ j (⇣, s)2 and ⌧1(⇣, s) ' s, so we have

Ps(z) \ Ps(⇣ ) 6= ; )

nY
j=2

⌧ j (⇣, s)2 '

nY
j=2

⌧ j (z, s)2. (6.8)

If ⇡(z) is the projection of z to @�, then we have the estimate

d(z, ⇡(z)) ' |r(z)| ; z 2 P✏(⇣ ) ) d(z, ⇣ )  ✏; z /2 P✏(⇣ ) ) d(z, ⇣ ) & ✏;

and
d(z, ⇣ )  ✏ ) z 2 Pt (⇣ )

for all t & ✏ and d(z, ⇣ ) � ✏ ) z /2 Pt (⇣ ) for all t . ✏.

6.1. Szegö and Poisson-Szegö kernels

We shall continue with notions introduced by McNeal and Stein [29]; we modify
slightly the previous notation: 8x, y 2 @�, ⇢(x, y) := d(x, y) is the pseudo-
distance which, proved by McNeal [25], gives a structure of space of homogeneous
type to @�.

The “distance” in �̄, ⇢⇤(z, w) is defined by:

⇢⇤(z, w) := |r(z)| + |r(w)| + ⇢(⇡(z), ⇡(w)),

where ⇡ is the normal projection on the boundary @� of �, well defined in U ,
(shrinking U if necessary).

We have, still following McNeal and Stein [29]:

• the pseudo-balls on @� are defined by

8↵ 2 @�, B(↵, ✏) := P✏(↵) \ @�;

• the “tents” are defined in U \ �̄, where U is a sufficiently small compact neigh-
borhood of @� defined in Theorem 6.1, by 8a 2 U \ �̄, Ta( ✏) = P✏(a) \ �̄.
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We shall also need this notation:

8z 2 �, 8w 2 �̄, T (z, w)

is the smallest “tent” containing the two points z and w. The ✏ underlying this tent
is equivalent to ⇢⇤(z, w) as done in [29].

Let S(z, w) be the Szegö kernel of �, i.e. the kernel associated to the orthog-
onal projection from L2(@�) onto the Hardy space H2(�).

We have ([29, page 521]):

8(z, w) 2 �⇥�\1, |S(z, w)| .
�

�2n(T (z, w))
, � := ⇢⇤(z, w).

Keeping z 2 � and pushing w to @�, we still have

8(z, y) 2 �⇥@�, |S(z, y)| .
�

�2n(T (z, y))
, � := ⇢⇤(z, y). (6.9)

We also have the following estimates ([29, page 525])

�2n�1(B(x, ✏)) ' ✏
nY
j=2

⌧ j (x, ✏)2;

�2n(Tz( ✏)) ' ✏2
nY
j=2

⌧ j (x, ✏)2 ' ✏�2n�1(B(x, ✏)).
(6.10)

We have, by its very definition (6.1), that 8k 2 N, ⌧ j (x, 2k✏) � ⌧ j (x, ✏), hence
using (6.10)

8k 2 N, �2n�1(B(x, 2k✏)) & 2k�2n�1(B(x, ✏)). (6.11)

Let z 2 �, x = ⇡(z) 2 @� be fixed and cover @� by annuli

Ck :=B(x, 2k�)\B(x, 2k�1�), k�1 and C0 :=B(x, �) with �=⇢⇤(z, z)=2 |r(z)| .

Lemma 6.2. With z 2 �, x = ⇡(z) 2 @�, � := ⇢⇤(z, z) = 2 |r(z)| , we have:

8z 2 �,8y 2 @�, |S(z, y)| .
1

�2n�1(B(x, �/2))
11B(x,�)(y)

+

X
k2N

1
�2n�1(B(x, 2k�))

11Ck (y).
(6.12)

Proof. This is a well known technique of harmonic analysis (we already used it
in [4] for the same goal, for instance).
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By inequality (6.9) we get, with y 2 @� \ Ck, hence ⇢(x, y)  2k�,

|S(z, y)| .
⇢⇤(z, y)

�2n(T (z, y))
=

|r(z)| + ⇢(x, y)
�2n(T (z, y))



(1+ 2k)�
�2n(T (z, y))

.

So
|S(z, y)| .

�

�2n(T (z, y))
11B(x,�)(y) +

X
k�1

(1+ 2k)�
�2n(T (z, y))

11Ck (y).

If y 2 Ck, k � 1, we have �2n(T (z, y)) & �2n(Tz( 2k�1�)) and for y 2 B(x, �)
we have

�2n(T (z, y)) & �2n(Tz(|r(z)|)) = �2n(Tz(�/2)),
so

|S(z, y)| .
�

�2n(Tz(�/2))
11B(x,�)(y) +

X
k�1

(1+ 2k)�
�2n(Tz(2k�))

11Ck (y).

Now by the equivalences (6.10) we have �2n(Tz(h)) ' h�2n�1(B(x, h)), so we get

|S(z,y)| .
�

��2n�1(B(x,�/2))
11B(x,�)(y)+

X
k�1

(1+ 2k)�
�(1+ 2k)�2n�1(B(x,Nk�))

11Ck (y),

hence
|S(z, y)| .

11B(x,�)(y)
�2n�1(B(x, �/2))

+

X
k�1

11Ck (y)
�2n�1(B(x, 2k�1�))

.

Lemma 6.3. We have, with z 2 �, x = ⇡(z) 2 @�, � := ⇢⇤(z, z) = 2 |r(z)| ,

kS(z, ·)kp .
1

�2n�1(B(x, �))1/p0
,

where p0 is the conjugate exponent of p.

Proof. Lemma 6.2 gives us

|S(z, y)| .
11B(x,�)(y)

�2n�1(B(x, �/2))
+

X
k�1

11Ck (y)
�2n�1(B(x, 2k�1�))

,

hence integrating on @�, we get

kS(z, ·)kpp .
�2n�1(B(x, �))

�2n�1(B(x, �/2))p
+

X
k�1

�2n�1(Ck)
�2n�1(B(x, 2k�1�))p

.

From Ck ⇢ B(x, 2k�), we get �2n�1(Ck)  �2n�1(B(x, 2k�)), hence

kS(z, ·)kpp .
�2n�1(B(x, �))

�2n�1(B(x, �/2))p
+

X
k�1

1
�2n�1(B(x, 2k�1�))p�1

.
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Because these pseudo-balls are associated to a space of homogeneous type, there is
a constant K such that �2n�1(B(x, 2h))  K�2n�1(B(x, h)). Using also inequal-
ity (6.11) we get, with t = �/2 = |r(z)|

kS(z, ·)kpp .
1

�2n�1(B(x, t))p�1
+

X
k�1

1
2(p�1)k

1
�2n�1(B(x, t))p�1

.
1

�2n�1(B(x, t))p�1

 
1+

X
k�1

1
2(p�1)k

!
.

1
�2n�1(B(x, t))p�1

.

for p > 1, we get the estimate:

kS(z, ·)kpp . �2n�1(B(x, t))1�p
) kS(z, ·)kp .

1
�2n�1(B(x, �))1/p0

.

Now let K�(z, w) be the Bergman kernel of �, i.e. the kernel associated to the
orthogonal projection L2(�) ! A2(�), where A2 is the Bergman space of square
summable holomorphic functions in �.

We have a lower bound ([26, Theorem 3.4]):

K�(a, a) &
nY
j=1

⌧ j (a, �)�2 '

1
��2n�1(B(↵, �))

, (6.13)

here with � = |r(a)| and a in a neighbourhood Vp of the point p 2 @� and ↵ =

⇡(a).We also have an upper bound ([26, Theorem 5.2]:

K�(a, z) .
nY
j=1

⌧ j (a, �)�2 '

1
�2n(T (z, a))

, (6.14)

always in a neighbourhood of uniform size of p 2 @�, and here with

� = |r(a)| + |r(z)| + ⇢(⇡(a), ⇡(z)) = ⇢⇤(a, z).

So, with ↵ 2 @� fixed, ⇡(a) = ↵, and V a neighbourhood of ↵ valid for these two
estimates, we have:

Lemma 6.4. We have, with ↵ = ⇡(a), � = |r(a)| ,

kK�(a, ·)kpH p .
1

� p�2n�1(B(↵, �))p�1

and
kS(a, ·)kH p(�) �

1
�2n�1(B(↵, �))1/p0

. (6.15)
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Proof. From the inequality (6.14) and using the annuli

Ck := B(x, 2k�)\B(x, 2k�1�), k � 1, C0 = B(x, �),

we already used in the proof of Lemma 6.2 we get, exactly as before, with x =

⇡(z), and � = 2 |r(z)| ,

|K�(z, w)| .
11B(x,�)(w)

��2n�1(B(x, �/2))
+

X
k�1

11Ck (w)

2k�1��2n�1(B(x, 2k�1�))
.

Hence, with ↵ = ⇡(a),
Z
V\{r(z)=��/2}

|K�(a, z)|p d� (z) .
�2n�1(B(↵, �))

� p�2n�1(B(↵, �/2))p

+

X
k�1

�2n�1(Ck)
2p(k�1)� p�2n�1(B(↵, 2k�)p

.

Hence, again as before,
Z
V\{r(z)=��/2}

|K�(a, z)|p d�2n�1(z) 

1
� p�2n�1(B(↵, �))p�1

.

Ouside of V, K�(a, ·) is bounded because by [28, page 178]:

|K�(a, z)| .
1

�2n(T (a, z))
,

and if z /2 V then 1 . �2n(T (a, z)) uniformly in a 2 �.
Hence

kK�(a, ·)kpH p =

Z
U\{r(z)=��/2}

|K�(a, z)|p d� (z)

+

Z
(@�\U)\{r(z)=��/2}

|K�(a, z)|p d� (z)

.
1

� p�2n�1(B(↵, �))p�1
+ c .

1
� p�2n�1(B(↵, �))p�1

,

because c is uniformly bounded, hence

kK�(a, ·)kpH p .
1

� p�2n�1(B(↵, �))p�1
,

which proves the first part of the lemma.
Notice that even if K� is linked to Bergman space, we have an estimate of its

Hardy H p(�) norm.
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Using the lower bound (6.13) and the previous inequality, we get

K�(a, a)
kK�(a, ·)kH p0 (�)

�

1
��2n�1(B(↵, �))

⇥��2n�1(B(↵, �))1/p�

1
�2n�1(B(↵, �))1/p0

.

Hence, because

kS(a, ·)kH p = sup{| f (a)| = |h f, S(a, ·)i| :: f 2 H p0

(�), k f kp0 = 1}

we get

kS(a, ·)kH p(�) �

1
�2n�1(B(↵, �))1/p0

(6.16)

by the choice of f (z) :=
K�(a,z)

kK�(a,·)k
H p0

.

Recall that the Poisson-Szegö kernel is

8z 2 �, y 2 @�, P(z, y) :=

|S(z, y)|2

kS(z, ·)k2H2
=

|S(z, y)|2

S(z, z)
.

We have that this kernel reproduces the holomorphic functions:

8 f 2 A(�),

Z
@�

f (y)P(z, y) d� (y) =

1
S(z, z)

h f S(z, ·), S(z, ·)i = f (z),

because of the reproducing property of the Szegö kernel. The kernel P(z, y) is
positive and has a L1(@�, d�2n�1) norm equal to one.

Also recall the Hardy-Littlewood kernel

8x, y 2 @�, P0t (x, y) :=

1
�2n�1(B(x, t))

11B(x,t)(y).

We have

Lemma 6.5. The Poisson-Szegö kernel P(z, y) is dominated by the Hardy-Little-
wood one: this means precisely that we have, with x = ⇡(z), t = |r(z)| ,

8z 2 �, 8y 2 @�, P(z, y) . P02t (x, y) +

X
k2N

1
2k+1

P02k+1t (x, y).

Proof. Using (6.12) we get, still with x = ⇡(z), t = |r(z)| ,

|S(z, y)|2 .
11B(x,2t)(y)

�2n�1(B(x, t))2
+

X
k�1

11Ck (y)
�2n�1(B(x, 2kt))2

.
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Because Ck ⇢ B(x, 2k+1t) we have 11Ck  11Bk , with Bk := B(x, 2k+1t), hence
setting

8x, y 2 @�, P0t (x, y) :=

1
�2n�1(B(x, t))

11B(x,t)(y),

the Hardy-Littlewood kernel, we have

|S(z, y)|2 .
1

�2n�1(B(x, t))
P02t (x, y) +

X
k�1

1
�2n�1(B(x, 2kt))

P02k t (x, y).

But by (6.11) we have �2n�1(B(x, 2kt)) & 2k�2n�1(B(x, t)), hence

|S(z, y)|2 .
1

�2n�1(B(x, t))

 
P02t (x, y) +

X
k�1

1
2k
P02k t (x, y)

!
.

By (6.16) we have, with p = 2,

kS(a, ·)k2H2 = S(a, a) �

1
�2n�1(B(↵, 2t))

,

Hence we get for the Poisson-Szegö kernel, still with t = |r(z)| , x = ⇡(z),

P(z, y) . P02t (x, y) +

X
k�1

1
2k
P02k t (x, y).

Combining the previous results we have:

Theorem 6.6. Let � be a convex domain of finite type in Cn, then, with S(z, y)
its Szegö kernel we have, setting

x = ⇡(z), t = |r(z)| , C0 := B(x, t), 8k � 1, Ck := B(x, 2kt)\B(x, 2k�1t),

• 8z2�,8y2@�, |S(z,y)|. 1
�2n�1(B(x,t))11B(x, 2t)(y)+

P
k�1

1
�2n�1(B(x,2k t))11Ck (y);

• kS(z, ·)kH p(�) '
1

�2n�1(B(x,t))1/p0
.

And with P0t (x, y) the Hardy-Littlewood kernel and P(z, y) the Poisson-Szegö ker-
nel

• P(z, y) . P02t (x, y) +

P
k�1

1
2k P

0
2k t (x, y).
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7. Carleson measures

7.1. Harmonic analysis

We start by a “copy and paste” from [4], where we introduced the notion of Carleson
measures of order ↵.

Let (X, ⇢, d� ) be a homogeneous type space [13]. Denote B(x, t) := {y 2

X :: ⇢(x, y) < t} the pseudo-ball centered at x and of radius t > 0.
We define the Carleson windows (or “tents”) on R+

⇥X in the following way:
let A be an open set in X, then

W (A) := {(t, x) 2 R+

⇥X :: B(x, t) ⇢ A}.

We set W (A) instead of T (A) to differentiate notation from the case of the
convex domains of finite type we seen in the previous section.
Definition 7.1. We say that the mesure µ on R+

⇥X is a homogeneous geometric
Carleson measure of order ↵ if, for any open set A ⇢ X,

|µ| (W (A))  C� (A)↵.

The usual homogeneous geometric Carleson measures are those with ↵ = 1.
We shall abbreviate homogeneous geometric Carleson measure by h.g. Car-

leson measure.
In the case ↵ = 1 it is enough to test on the sets A = B(x, t) because the

pseudo-balls generate all open sets in a homogeneous type space [13]. In the case
↵ = 1 we shall speak simply of h.g. Carleson measure.

The action of a kernel Pt on a function f will be denoted Pt f, precisely

Pt f (y) :=

Z
X
Pt (x, y) f (x)d� (x).

Now we have the abstract Carleson embedding theorem.

Theorem 7.2. If the kernel Pt is dominated by the Hardy-Littlewood kernel, and if
µ is an h.g. Carleson measure on R+

⇥X, we have

8 f 2 L p(X, � ),

Z
X⇥R+

|Pt f (x)|p d |µ| (x, t) . k f kpL p(� ).

Proof. This is quite well known and implicitly contained in Hörmander [21, Theo-
rem 2.4]. But I shall give a proof taken from [4] where the same notation as here is
used and which uses h.g. Carleson measures of order ↵.

Let V 0 the space of finite measure on R+
⇥X, V 1 the space of h.g. Carleson

ones and, with ↵ := 1� 1/p, W↵
:= (V 0, V 1)(↵,p) the intermediate class by the

real interpolating method. We proved in [4, Proposition 1, page 30] that

w 2 W↵
() 9µ 2 V 1, 9h 2 L p(µ) :: dw = h dµ. (7.1)

Moreover the norm of w in W↵ is equivalent to the norm of h in L p(µ).
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Because Pt , being dominated by the Hardy-Littlewood kernel, verifies the
(H1) hypothesis of [4, Theorem 2, page 27], we have that

8w 2 W↵, 8g 2 L p
0

(� ),

Z
R+

⇥X
|Pt g(x)| d |w| (t, x)  CwkgkL p0 (� ). (7.2)

Now let µ be a geometric Carleson measure and f 2 L p0

(X, � ); we want to prove
that Pt f (x) 2 L p0

(µ). Let h 2 L p(µ) and set dw := h dµ then w 2 W↵ by (7.1).
We have by (7.2)Z

R+
⇥X

|Pt f (x)| d |w| (t, x) =

Z
R+

⇥X
|Pt f (x)| |h| d |µ| (t, x)

 CkhkL p(µ)k f kL p0 (� );

but this being true for all functions h in L p(µ), we have that Pt f (x) 2 L p0

(µ) and
the theorem is proved by exchanging p0 and p.

7.2. Carleson measures in convex domain of finite type

Now to define the geometric Carleson measures in our domains we have 2 possibil-
ities for a positive Borel measure on �

• 9C > 0 :: 8a 2 �, ✏ := 2 |r(a)| , µ(Ta(✏))  C� (@� \ P✏(a)),

with P✏(a) 2 P is the family defined in (6.4).

• 9C > 0 :: 8a 2 �, ↵ = ⇡(a), µ(� \ W (B(↵, |r(a)|))  C� (B(↵, |r(a)|)),

where B(↵, |r(a)|) is the pseudo-ball on @� of center ↵ and radius |r(a)| , and
W (B(↵, |r(a)|)) is the Carleson window defined in the previous subsection. For
this section we set � = �2n�1.

We shall show that they are equivalent. We have that

8a 2 U \ �, ✏ := |r(a)| , B(↵, ✏) := @� \ P✏(↵),

by definition of the family P. Then we want to show:

Lemma 7.3. There is a constant � , independent of a, such that

W (B(↵, |r(a)|)) ⇢ Ta( � |r(a)|).

Proof. We have, by definition of the Carleson window:

z 2 W (B(↵, |r(a)|)) () B(x, |r(z)|) ⇢ B(↵, |r(a)|),

where x = ⇡(z). This implies, because @� is a space of homogeneous type, that
we have |r(z)|  c |r(a)| , with a uniform constant c � 1.
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But with � := |r(z)| , P�(z) \ B(x, �) 6= ; hence with ✏ = |r(a)| ,

P�(z) \ B(↵, ✏) 6= ; ) P�(z) \ P✏(↵) 6= ;.

Let s = max(�, ✏) then

P�(z) \ P✏(↵) 6= ; ) Ps(z) \ Ps(↵) 6= ; ) Ps(z) ⇢ C3Ps(↵)

by (6.7).
But if s = � then s  c✏ and if s = ✏ then again s  c✏ because c � 1; so in

any case s  c✏ and this implies

P�(z) ⇢ Ps(z) ⇢ C3Ps(↵) ⇢ C4P✏(↵) ⇢ P� ✏(↵),

by (6.5) with t = C4, � = Ct .
And again because P✏(a) \ B(↵, ✏) 6= ;, we get P� ✏(↵) ⇢ P� ✏(a) by (6.7)

and (6.5) ; and finally P�(z) ⇢ P� ✏(a). Cutting with � we get

z 2 P�(z) \ � ⇢ P� ✏(a) \ � = Ta( � |r(a)|).

We shall use the following definition for geometric Carleson measure in a convex
domain of finite type to continue with the same notation.
Definition 7.4. Let µ be a positive Borel measure on the bounded convex domain
of finite type �.We shall say that µ is a geometric Carleson measure in � if:

9C > 0 :: 8a 2 �, ✏ = 2 |r(a)| , µ(Ta(✏))  C� (@� \ P✏(a)).

7.3. Carleson embedding

We are in position to prove a Carleson embedding theorem for convex domains of
finite type.

To prove it we shall need the lemma:

Lemma 7.5. Let a 2 �, ↵ = ⇡(a), � = |r(a)|; there is a uniform constant � > 0
such that

8z 2 � P�(a), |K�(z, a)| �

c
��2n�1(B(↵, �))

. (7.3)

Proof. We have the lower bound (6.13) of the Bergman kernel

K�(a, a) &
nY
j=1

⌧ j (a, �)�2 '

1
��2n�1(B(↵, �))

,

the last equivalence by equations (6.13) and (6.14) and a upper bound of its deriva-
tives ([26, Theorem 5.2], and [27])

��@µ
z @̄⌫

a K�(z, a)
��
 Cµ⌫

nY
j=1

⌧ j (a, �)�2�µ j�⌫ j , (7.4)

with � = ⇢⇤(a, z).
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Set for t 2 [0, 1], f (t) := K�(a+ t (z�a), a), then f being complex valued,
we have f (t) = ( f1 + i f2).

Apply the mean value theorem:

9t1, t22 [0, 1] :: f (1)� f (0)=( f 0

1(t1)+i f
0

2(t2)) ) | f (1)� f (0)|2 sup
t2[0,1]

�� f 0(t)
��.

Hence

|K�(z, a) � K�(a, a)|  2 sup
t2[0,1]

�����
nX
j=1

(z j � a j )
@K�(a + t (z � a), a)

@⇣ j

�����
.

nX
j=1

��z j � a j
��

⌧ j (a, �)

nY
k=1

⌧k(a, �)�2,

by inequality (7.4); so

|K�(z, a) � K�(a, a)| .
1

��2n�1(B(↵,�))

nX
j=1

��z j � a j
��

⌧ j (a, �)
,

by equations (6.13) and (6.14).
Now choose z such that

��z j � a j
��

 � ⌧ j (a, �) ) � . � and the homoge-
neous nature of � gives that ⌧ j (a, �) ' ⌧ j (a, �) hence

|K�(z, a) � K�(a, a)| .
1

��2n � 1(B(↵, �))

nX
j=1

��z j � a j
��

⌧ j (a, �)
.

n�
��2n�1(B(↵, �))

.

Take � uniformly small enough to compensate the constant in the last inequality
above to get

|K�(z, a) � K�(a, a)| 

1
2
⇥

1
��2n�1(B(↵, �))

,

this means that, for z in the polydisc � P�(a), we have |K�(z, a)| �
c

��2n�1(B(↵,�)) ,

the positive constants c, � being uniform.

We shall need the definition.
Definition 7.6. Let µ be a positive Borel measure on the domain � and p � 1.We
shall say that µ is a p Carleson measure in � if:

9Cp > 0, 8 f 2 H p(�),

Z
�

| f |p dµ  C p
pk f k

p
H p .

This means that we have a continuous embedding of H p(�) in L p(µ).
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Now we have:
Theorem 7.7. If the measure µ is a geometric Carleson measure we have

8p > 1, 9Cp > 0, 8 f 2 H p(�),

Z
�

| f |p dµ  C p
pk f k

p
H p .

Conversely if the positive measure µ is p Carleson for a p 2 [1, 1[, then it is a
geometric Carleson measure, hence it is q Carleson for any q 2]1, 1[.

Proof. We apply Theorem 7.2 to the Poisson-Szegö kernel P(z, y) which is dom-
inated by the Hardy-Littlewood kernel. Because a function in A(�), the algebra
of holomorphic function in � continuous up to @�, is reproduced by P(z, y) and
because this algebra is dense in H p(�), the first part of the theorem is proved.

Suppose now that µ is p Carleson for a p 2 [1, 1[, then we have

9C > 0, 8a 2 �,

Z
�

|K�(z, a)|p dµ(z)  CkK�(·, a)kpH p ,

with K�(z, a) the Bergman kernel at a. Using the inequality (7.3) of the lemma,
we get

8a 2 �,

Z
�\� P�(a)

✓
1

�� (B(↵, �))

◆p
dµ(z) 

Z
�

|K�(z, a)|p dµ(z)

 CkK�(·, a)kpH p ,

hence

8a 2 �,

✓
1

�� (B(↵, �))

◆p
µ(� \ � P�(a))  CkK�(·, a)kpH p .

We can use the estimate of kK�(·, a)kH p done in lemma (6.4)

kK�(·, a)kpH p .
1

� p� (B(↵, �))p�1
,

to get

8a 2 �,

✓
1

�� (B(↵, �))

◆p
µ(� \ � P�(a))  C

1
� p� (B(↵, �))p�1

,

hence
8a 2 �, µ(� \ � P�(a))  C� (B(↵, �)).

Still by homogeneity we have � P�(a) � Pc�(↵) and

B(↵, �) ⇢ CB(↵, c�) ) � (B(↵, �))  C 0� (B(↵, c�)),

so
8a 2 �, µ(� \ Pc�(↵))  CC 0� (B(↵, c�)),

and the measure µ is a geometric Carleson measure, hence it is a q Carleson mea-
sure by the first part of the theorem.
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If � is a convex domain of finite type, with the family P of polydiscs of Mc-
Neal, we define a related familyQ of polydiscs:

8a 2 U\@�, 8t > 0, ✏ := |r(a)| , Qa(t) := t P✏(a),

where t P✏(a) si the dilated polydisc as defined in (6.2).

Lemma 7.8. The familyQ := {Qa(t), t > 0, a 2 U} is a good family of polydiscs
in �.

Proof. By (6.6) ((3) of Proposition 2.7 in [20]), we get that 9�0 > 0, such that

a 2 � \ U ) �0P|r(a)|(a) ⇢ �;

because d(a) := d(a,�c) ' |r(a)| , the constants being independent of a 2 �, we
have with

Qa(t) := t P✏(a), t = �0, ✏ = |r(a)| ' d(a),

that
a 2 � \ U ) Qa(�0) ⇢ �,

which means precisely that the family Q = {Qa(t)}a2U\�, t>0 is a good family of
polydiscs in the sense of Section 1. Moreover the Hefer’s Theorem 6.1 gives that
the size of the sides of Qa(t) are precisely equivalent to

|r(a)|1/m j
' d(a)1/m j ,

which means that the multi-type for this family in the sense of Definition 2.1 is
precisely m j (a), j = 2, . . . , n.

So we can give a general definition for geometric Carleson measures equivalent
to the one we gave in the case of convex domains of finite type.
Definition 7.9. Let µ be a positive Borel measure on the domain � equipped with
a good family of polydiscsQ.We shall say that µ is a geometric Carleson measure
in � if:

9C > 0 :: 8a 2 �, µ(� \ Qa(2))  C� (@� \ Qa(2)).

8. Construction of balanced sub-domains

In the unit ball of Cn a measure whose images by all automorphisms of the ball
is uniformly bounded is a geometric Carleson measure, and this is a fact we used
for instance in [3]. Unfortunately in a general domain, even convex ones or strictly
pseudo-convex ones, there is just the identity as automorphism, so we have to over-
come this issue.

The aim now is to build a sub-domain �a associated to a point a 2 � near the
boundary such that the restriction to it of the measure we want to study is bounded
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by the right bound. If the domain�a is equivalent to a Carleson window, as defined
at the beginning of Section 7, then it will work.

The main difficulty here is to get bounds independent of a 2 �.We shall start
with convex domains and define later a more general kind of domains for which our
methods work.

Let � be a C1 smooth convex domain in Cn, a 2 �. By translation and
rotation we can suppose that a = 0, ↵ = ⇡(a) = (d(a), 0, . . . ., 0) and the defining
function ⇢ = d(a) + <z1 + 0(z), with 0(z) = O(|z|2). Let Ea, E 0

a be smooth
complex ellipsoids centered at a = 0

Ea :=

(
z 2 Cn

::

nX
j=1

��z j ��2
d(a)2/m j

< 4n

)
, E 0

a :=

(
z 2 Cn

::

nX
j=1

��z j ��2
d(a)2/m j

< 5n

)
.

Consider the convex domain E 0

a\� and smooth it to get a smoothly bounded convex
domain �a such that Ea \ � ⇢ �a ⇢ E 0

a \ �. This can be done as in [1, page
129]. Suppose that ↵ = ⇡(a) = 0 and, as usual, ⇢(z) = <z1 + f (=z1, z0), with
z0 = (z2, . . . , zn). Then there is a function S(x, y), convex and C1(R2) such that
a defining function ⇢a for �a is given by ⇢a := S(2 |=z1|2 +

��z0��2 , ⇢); hence
any Ck norm of ⇢a is controlled by the Ck norm of the defining function ⇢ of �,
i.e. 8k 2 N, k⇢akCk  Ckk⇢kCk . Moreover we have that the outward normal
derivative @⇢

@⌘ is uniformly bounded below because of the compactness of @� and
we have also @⇢a

@⌘ � � @⇢
@⌘ > 0 independently of a, by the construction of �a.

We shall need this last fact when we shall apply Theorem 10.11 to interpolating
sequences in Section 9; see Remark 10.12.

Let S be the unit sphere in Cn and because �a is convex it is starlike with
respect to a (= 0), @�a admits a spherical parametrization, i.e. there is a function
R(⇣ ) 2 C1(S), R(⇣ ) > 0, such that:

@�a = {z 2 Cn
:: 9⇣ 2 S, z = R(⇣ )⇣ }.

Let ⇣ 2 S and define D⇣ to be the complex plane slice through ⇣

D⇣ := {t R(ei✓ ⇣ )ei✓ ⇣, ✓ 2 [0, 2⇡], t 2 [0, 1[}.

We shall use the notation

8⇣ 2 S, d⇣ (0) = inf
✓2[0,2⇡]

R(ei✓ ⇣ ); d⇣ max(0) = sup
✓2[0,2⇡]

R(ei✓ ⇣ ).

Lemma 8.1. We have

Qa(2) \ � ⇢ �a ⇢ Qa(
p

5n).

and

8⇣ 2 @�, d⇣ max(0) 

p

5n
�0

d⇣ (0).
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Proof. z 2 Qa(2) \ � ) 8 j = 1, . . . , n,
��z j �� < 2d(a)1/m j

)

nP
j=1

|z j |
2

d(a)2/m j
<4n )

z 2 Ea \ � ⇢ �a. If z 2 �a ⇢ E 0

a then

nX
j=1

��z j ��2
d(a)2/m j

< 5n ) 8 j = 1, . . . , n,
��z j �� <

p

5nd(a)1/m j
) z 2 Qa(

p

5n),

and the first assertion follows.
Let us see that a is “in the middle” of the slices D⇣ .

Choose ✓ such that d⇣ (0) = R(ei✓ ⇣ ), then the real segment from 0 to
R(ei✓ ⇣ )ei✓ ⇣ 2 @�a cross the boundary of Qa(�0) at a point t R(ei✓ ⇣ )ei✓ ⇣ with
0 < t  1 because Qa(�0) ⇢ �a.

But if z = (z1, . . . , zn) 2 @Qa(�0) then 9 j ::

��z j �� = �0d(a)1/m j , so we have
here

9 j :: t R(ei✓ ⇣ )
��⇣ j �� = �0d(a)1/m j

and because 0 < t  1 we get

�0d(a)1/m j
 R(ei✓ ⇣ )

��⇣ j �� = d⇣ (0)
��⇣ j �� .

On the other hand, because �a ⇢ Qa(
p

5n) which is a polydisc with sides parallel
to the axes, we have

8k = 1, . . . , n, 8' 2 [0, 2⇡], R(ei'⇣ ) |⇣k | 

p

5nd(a)1/mk

) d⇣ max(0) |⇣k | 

p

5nd(a)1/mk
;

in particular for ' = ✓ and k = j we get

�0d(a)1/m j
 d⇣ (0)

��⇣ j ��  d⇣ max(0)
��⇣ j �� 

p

5nd(a)1/m j .

This implies 1
|⇣ j |



d⇣ (0)
�0d(a)1/m j

and d⇣ max(0) 

p

5nd(a)1/m j

|⇣ j |


p

5n
�0
d⇣ (0).

Let D be a bounded convex domain in C; take a biggest disc contained in D, say
D(0, r) with 0 2 D being its center and D(0, R) the smallest disc containing D
with the same center 0.

Now parametrize the boundary @D of the convex D by polar coordinates
s(✓)ei✓ and set � :=

R
r .

Lemma 8.2. Let D be a convex domain in C, 0 2 D with the previous notation;
let s0 be the derivative of s, then we have

����s
0

s

���� 

q
� 2 � 1.
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Proof. We have that D(0, r) ⇢ D ⇢ D(0, R). Let z 2 @D such that tan V is
minimal, where V is the angle between (0, z) and the tangent at z to @D. Take the
segment tangent T from z to t on the circle @D(0, r); because D is convex we have
T ⇢ D and the points w 2 @D near z are such that the angle between (w, z) and
(0, z) is bigger than the angle ↵ between (t, z) and (0, z), hence the angle V is
bigger than ↵.

t W
Z V

0

a

Now we have that |sin↵| =
r
|z| �

r
R , hence |tan↵| �

1
p

� 2�1
, where � :=

R
r .

So, because
��� s0s

��� =
1

|tan V |
, we have

����s
0

s

���� =

1
|tan V |



q
� 2 � 1.

We shall apply this lemma to the slices D⇣ of �a.

Recall thatU⇣ (✓) = R(ei✓ ⇣ ) is precisely the polar coordinates parametrization
of @D⇣ in the coordinates of C⇣ and d⇣ (0) is the distance from a(= 0) to @D⇣ ,
hence here we have r = d⇣ (0), R = d⇣ max(0).

We shall say that �a is � balanced with respect to a (Definition 10.6) if 8⇣ 2

S, d⇣ max(a)  � d⇣ (a) and
���U 0

⇣ (✓)
���  � d⇣ max(a); with this we have

Lemma 8.3. Because�a is such that all its slices D⇣ = �a\{z :: z = a+�⇣, � 2

C} are convex we have that �a is � balanced with � =

p

5n
�0

.

Proof. By Lemma 8.2 with s(✓) := U⇣ (✓), we have
�����
U 0

⇣

U⇣

����� 

q
� 2 � 1  � )

��U 0

⇣

��
 �

��U⇣

��
 � d⇣ max(0).

Now using Lemma 8.1 � =
R
r hence we have that �a is � balanced with � =

p

5n
�0

.

All we have done works as soon as the domain � verifies the following defini-
tion.
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Definition 8.4. A smoothly Cm, m � 2 bounded domain � with a good family
of polydiscs is well balanced if 9R > 2, 9✏ > 0, 9� > 0 :: 8a 2 �, d(a) <
✏, 9�a � balanced such that Qa(2) \ � ⇢ �a ⇢ Qa(R).

And we have the theorem

Theorem 8.5. If � is a smoothly Cm, m � 2, bounded convex domain in Cn, with
a good family of polydiscs then � is well balanced.

Proof. This is Lemma 8.3.

Theorem 8.6. If � is well balanced, then for any a 2 �, d(a) < ✏, there is a �
balanced sub-domain �a :: Qa(2) \ � ⇢ �a ⇢ Qa(R) with the property

8u2N (�a), ln |u(a)|=0 then, with 2 :=@@̄ ln |u| ,
Z

�a

d(z)Tr2CkukN (�a),

where the constant depends only on � and not on a.

Proof. We apply Theorem 10.11 to �a, then we have that
Z

�a

d(z)Tr2  CkukN (�a),

where the constant C depends only on �.

Remark 8.7. If � is locally biholomorphic to a well balanced domain, then we
have an analogous result by constructing the �a via the biholomorphism. Pre-
cisely let p 2 @� and 8 a biholomorphism of � \ B(p, R) on a well balanced
domain �0

\ 8(B(p, R)). Then we build the sub-domains �0

8(a) and consider
�a := 8�1(�0

8(a)). Because8 is biholomorphic in a neighborhood of �̄\B(p, R)

we get easily that Theorem 8.6 is still valid.
In particular if � is strictly pseudo-convex, then it works.

9. Interpolating and dual bounded sequences in H p(�)

Let � be a domain in Cn equipped with a good family of polydiscs. We shall study
interpolating sequences in� and generalise previous results we got for the unit ball
to convex domains of finite type.

9.1. Reproducing kernels

Let S(z, ⇣ ) be the Szegö kernel of �, i.e. the kernel of the orthogonal projection
from L2(@�) onto H2(�).
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To any point a 2 � we associate the vector ka(·) := S(·, a) = S̄(a, ·) 2

H2(�). This is a reproducing kernel for a because

8 f 2 H2(�), f (a) =

Z
@�

f (⇣ )S(a, ⇣ )d� (⇣ )

by the definition of the Szegö kernel, but
Z

@�
f (⇣ )S(a, ⇣ )d� (⇣ ) =

Z
@�

f (⇣ )k̄a(⇣ )d� (⇣ ) = h f, kai,

by the definition of ka.
Definition 9.1. We say that the sequence S of points in � is H p(�) interpolating
if

(i) 8a 2 S, ka 2 H p0

(�); (this is always true if p � 2. )
(ii) 8� 2 `p(S), 9 f 2 H p(�) :: 8a 2 S, f (a) = �akkakp0,

with p0 the conjugate exponent of p, i.e. 1
p +

1
p0

= 1.

A weaker notion is:
Definition 9.2. We shall say that the sequence S of points in � is dual bounded in
H p(�) if there is a bounded sequence of elements in H p(�), {⇢a}a2S ⇢ H p(�)
which dualizes the associated sequence of reproducing kernels, i.e.

(i) 8a 2 S, ka 2 H p0

(�); (this is always true if p � 2. )
(ii) 9C > 0 :: 8a 2 S, k⇢akp  C, 8a, b 2 S, h⇢a, kbi = �a,bkkbkp0 .

Clearly if S is H p(�) interpolating then S is dual bounded in H p(�), just interpo-
late the basic sequence of `p(S).
Definition 9.3. We say that S has the linear extension property if S is H p(�) in-
terpolating and if moreover there is a bounded linear operator E : `p(S) ! H p(�)
making the interpolation, i.e.

9C > 0, 8� 2 `p(S), 8a 2 S, E(�)(a) = �akkakp0

and
kE(�)kH p(�)  Ck�kp.

9.2. The p regularity

Let us introduce a link between the H p norm of the reproducing kernels and the
geometry of the boundary of �, with respect to the good familyQ.
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Definition 9.4. We shall say that � is p regular with respect to the familyQ if:

9C > 0 :: 8a 2 �, kkak
�p0

p  C� (@� \ Qa(2)),

where p0 is the conjugate exponent of p. Here we use the convention that if ka /2

H p(�), then kkakp = +1 ) kkak
�p0

p = 0, so the inequality is true in this case.

Lemma 9.5. If � is a convex domain of finite type in Cn, then � is p regular for
any p > 1.

Proof. Theorem 6.6 gives

kkakH p(�) = kS(a, ·)kH p(�)

'

1
�2n�1(B(↵, d(a)))1/p0

'

1
�2n�1(@� \ Qa(2))1/p0

,

which, by the Definition 9.4 of p regularity, implies the p regularity of �.

Proposition 9.6. Let� be a convex domain of finite type inCn, a 2 � and�a the
sub-domain associated to a. The measure d�2n�1|@�a\@� is a geometric Carleson
measure in �.

To prove this proposition we shall use the following lemmas.

Lemma 9.7. Let U be an open set in Rk and V a graph in Rk+1 over U, i.e.

V :=

�
(x, y) 2 Rk+1

:: y = f (x), x = (x1, . . . , xk) 2 U
 
,

with f of class C1(U). Then �k(V ) � �k(U).

Proof. We shall use the formula for the Lebesgue measure for such a graph given
in [7, page 203, formula 6.4.1.1]: let (U, g) be a parametrization of V, then we have
that:

g⇤! =

s
det

✓
@g
@xi

|

@g
@x j

◆
dx1 ^ . . . ^ dxk,

where M :=

⇣
@g
@xi |

@g
@x j

⌘
is the matrix of the scalar product of the vectors @g

@xi and
@g
@x j .

Here we have that g(x) = (x1, . . . , xk, f (x)) hence

@g
@x j

= (0, . . . , 0, 1, 0, . . . , 0, f 0

j (x)),

with the 1 at the j th position and f 0

j :=
@ f
@x j . So we get⌧

@g
@xi

,
@g
@x j

�
= f 0

i f
0

j if i 6= j and
⌧

@g
@x j

,
@g
@x j

�
= 1+

⇣
f 0

j

⌘2
if i = j.
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Hence the matrix M can be written M = I + FFt where F is the column vector
F := ( f 0

1, . . . , f
0

k), and F
t is the transpose line matrix.

Clearly the matrix FFt is positive, because for any vector v = (v1, . . . , vk)
we have

vt FFtv = (vt F)(Ftv) =

 
kX
j=1

f 0

jv j

!2
.

The eigenvalues � j of FFt are all 0 but one because FFtv = 0 as soon asPk
j=1 f 0

jv j = 0 which is a hyperplane and hence the only non zero eigenvalue,
�k, is such that �k = TrFFt =

Pk
j=1 ( f 0

j )
2 because the sum of the eigenvalues is

the trace of the matrix.
Now we have that the eigenvalues of M are 1 + � j , hence the determinant of

M is their product, so

detM = 1+ �k = 1+

kX
j=1

( f 0

j )
2

� 1.

The case k = 2 was already done in [7, page 204], and here we provide the gener-
alisation.

Now we have

�k(V ) =

Z
U

p

detMdx1 · · · dxk �

Z
U
dx1 · · · dxk = �k(U).

Remark 9.8. In fact this lemma just says that the measure of the orthogonal projec-
tion U of V on Rk has a Lebesgue measure smaller than the measure of V . I.e., the
orthogonal projection is contracting for the Lebesgue measure, which seems quite
natural.

Lemma 9.9. Let b 2 �, � = ⇡(b) and T�(@�) be the real tangent space to @�
at �. Let Fb := T�(@�) + d(b)n�, where n� is the outward real normal at � to
@� and Bb := Fb \ Q̄b(2), the “bottom” of Qb(2); a sufficient condition to have
⇡(� \ Qb(2)) ⇢ ⇡(@� \ Qb(2)) is that � \ Bb = ;.

As a consequence if � is convex then ⇡(� \ Qb(2)) ⇢ ⇡(@� \ Qb(2)).

Proof. Suppose that � \ Bb = ; and take z 2 �, take ⇣ = ⇡b(z) where ⇡b is the
orthogonal projection on Fb; then we have ⇣ 2 Bb hence ⇣ /2 � so ⇢(⇣ ) � 0.On the
other hand z 2 � ) ⇢(z) < 0, hence ⇢ being continuous on the real segment [z, ⇣ ],
there is a w 2]z, ⇣ ] such that ⇢(w) = 0, so w 2 @�. Now T�(@�) and Fb being
parallel the segment [z, ⇣ ] is orthogonal to T�(@�) hence ⇡(z) = T�(@�)\[z, ⇣ ] =

⇡(w). Hence, because ⇡(w) 2 ⇡(@�) we have ⇡(� \ Qb(2)) ⇢ ⇡(@� \ Qb(2)).
If � is convex then it lies on the same side of T�(@�) hence we have

� \ Bb = ;.
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Proof of the Proposition 9.6. We have to see that

9C > 0 :: 8b 2 �, �2n�1(@�a \ Qb(2))  C�2n�1(@� \ Qb(2)).

Of course we take b such that (@�a\@�) \ Qb(2) 6= ; and take the convex hull E
of (@�a\@�) \ Qb(2); because the domain Qb(2) is convex, E ⇢ Qb(2) hence,
by [30, Corollary 7.2.9, page 82], we have that

�2n�1(@E)  �2n�1(@Qb(2));

but, because �a ⇢ � is convex,

(@�a\@�) \ Qb(2) ⇢ @E ) �2n�1((@�a\@�) \ Qb(2))  �2n�1(@E).

We have

@Qb(2)) =

n[
j=1

(@Dj (b, d(b)1/m j (b))
nY

k 6= j,k=1
Dk(b, d(b)1/mk(b))),

where Dj (b, r j ) is the disc of center b in the direction L j given by the basis of the
good family at the point ⇡(b). So

�2n�1(@Qb(2)) =

nX
j=1
2⇡d(b)1/m j (b)

nY
k 6= j,k=1

⇡d(b)2/mk(b)

 2⇡n
nX
j=1

d(b)2µ(b)+2�1/m j (b)

because 2µ(b) =

Pn
k=2

2
mk

; but 8 j = 1, . . . , n, 2� 1/m j � 1 and we can restrict
ourself to b such that d(b)  1 because we need to test only with the b near the
boundary. Hence

�2n�1(@Qb(2))  2⇡nnd(b)1+2µ(b).

So far we have

�2n�1((@�a\@�) \ Qb(2))  �2n�1(@E)  �2n�1(@Qb(2))
 2⇡nnd(b)1+2µ(b).

(9.1)

To get d(b)1+2µ(b) . �2n�1(@� \ Qb(2)) we shall use Lemma 9.7. Set k =

2n � 1, U = Qb(2) \ T�(@�) where � = ⇡(b) 2 @� and V = @� \ Qb(2). For
b uniformly near @�, V is a graph over U 0

:= ⇡(V ) ⇢ U, with ⇡ the orthogo-
nal projection on the real tangent space T�(@�), and we have by Lemma 9.7 that
�2n�1(V ) � �2n�1(U 0) so it remains to estimate �2n�1(U 0).

Recall that, by the definition of a good family, we have Qb(�0) ⇢ � hence
⇡(Qb(�0)) ⇢ ⇡(� \ Qb(2)).
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We apply Lemma 9.9 to � convex to get ⇡(Qb(�0)) ⇢ ⇡(V ) = U 0. So

�2n�1(U 0) � �2n�1(⇡(Qb(�0))).

Because the basis for Qb is the basis at � = ⇡(b) and T�(@�) is the real tangent
space, the only missing direction is the real normal at �, hence we have

�2n�1(⇡(Qb(�0)) = �0d(b)⇥
nY
j=2

�20d(b)2/m j (b)
= �2n+10 d(b)1+2µ(b).

Finally we get

�2n+10 d(b)1+2µ(b)
 �2n�1(V ) = �2n�1(@� \ Qb(2))

and by (9.1)
�2n�1((@�a\@�) \ Qb(2))  2⇡nnd(b)1+2µ(b)

hence
�2n�1((@�a\@�) \ Qb(2)) 

2⇡n

�2n+10
n�2n�1(@� \ Qb(2)),

which says precisely that the measure d�2n�1|@�a\@� is a geometric Carleson mea-
sure in �.

In order to continue we shall need the easy remark:
Remark 9.10. For any smoothly bounded domain � we have the inequality

8 f 2 H p(�), k f kN (�) 
p0
p

�2n�1(@�)k f kH p(�).

Proof. We have ln+
| f |  | f | , so, with �✏ the �2n�1 Lebesgue measure on the

manifold r(z) = �✏,

k f kN (�) := sup
✏>0

Z
r(z)=�✏

ln+
| f (z)| d�✏(z)  sup

✏>0

Z
r(z)=�✏

| f (z)| d�✏(z),

hence k f kN (�)  k f kH1(�). But � (@�) being finite, we have k f kH1(�) 

p0
p

�2n�1(@�)k f kH p(�).

Proposition 9.11. If S is a H p dual bounded sequence in a convex domain of finite
type, then S is separated.

Proof. The hypothesis on the sequence S implies that

9C > 0, 9⇢a 2 H p(�) :: k⇢akp  C, h⇢a, kbi = 0, |h⇢a, kai| & kkakp0;

then

kka � kbkp0 �

�����
*

⇢a
k⇢akp

, ka � kb

+����� �

1
C

|h⇢a, kai| & kkakp0 . (9.2)
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Now for ✏ > 0 we get the existence of � such that, if we suppose that b 2 Qa(t)
for a t < � ,

|h⇢a, ka � kbi|  Ckka � kbkp0  C✏kkakp0

and a contradiction with (9.2) if we choose ✏ small enough.

Theorem 9.12. Let � be a convex domain of finite type in Cn. If the sequence of
points S ⇢ � is dual bounded in H p(�), then the measure ⌫ :=

P
a2S d(a)n�a is

a geometric Carleson measure in �.

Proof. We have to show that

8a 2 �, ⌫(� \ Qa(2)) =

X
b2S\Qa(2)

d(b)n  C�2n�1(@� \ Qa(2)).

Dual boundedness means that we have a sequence {⇢a}a2S ⇢ H p(�) such that

8a, b 2 S, ⇢a(b) = �abkkakp0, k⇢akp  C.

This implies that

8a 2 S, k⇢a/⇢a(a)kH p(�)  Ckkak�1
p0

.

In the case of the unit ball [5] we used the automorphisms and a classical lemma by
Garnett to pass from bounded measures to geometric Carleson ones. Here of course
we have to overcome the lack of automorphisms.

Because S is dual bounded it is a separated sequence of points in �. Consider
the sub-domain �a associated to the point a, built in Section 8 and the sequence
Sa := S \ �a ⇢ �a.

Let a 2 S and u := ⇢a/⇢a(a); we have u 2 H p(�) by hypothesis. We
notice that S\{a} ⇢ u�1(0), and that u(a) = 1, so we get by Theorem 3.12, with
X = u�1(0) \ �a and 2 its (1, 1) current of integration,

X
c2Sa

d(c)n  0(�a)k2kB,

where 0(�a) depends on the CM(Q)+1 norm of the defining function of �a which,
by construction of �a , is controlled by the CM(Q)+1 norm of the defining function
of �.

Now because � is convex of finite type, �a is
p

5n
�0

balanced by Lemma 8.3
with respect to a, hence by Theorem10.11 we get k2kB  CkukN (�a), the con-
stant C depending only on � and not on a. So

X
c2Sa

d(c)n  C0kukN (�a),

and again the constants are independent of a.
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By the Remark 9.10 we get
X
c2Sa

d(c)n  C0kukN (�a)  C0 p0
p

�2n�1(@�a)kukH p(�a).

Set C(�) := C0 which depends only on �, we get
X
c2Sa

d(c)n  C(�) p0
p

�2n�1(@�a)kukH p(�a).

The measure d�|@�a\@� is a geometric Carleson measure in� by Lemma 9.6 hence
by the embedding Carleson Theorem 7.7 we have

u 2 H p(�a) and kukH p(�a)  CkukH p(�),

with the constant C independent of a.
Hence

8a 2 S,
X
c2Sa

d(c)n  C(�) p0
p

�2n�1(@�a)kukH p(�a).

The dual boundedness then gives, because u := ⇢a/⇢a(a),

8a 2 S, kukH p(�) . kkak�1
p0

,

hence
8a 2 S,

X
c2Sa

d(c)n  C(�)kukH p(�)  C(�)kkak�1
p0

,

where the (new) constant C(�) is still independent of a.
Finally the p regularity of � gives

kkak�1
p0

. (�2n�1(@� \ Qa(2))1/p,

hence
8a 2 S,

X
c2Sa

d(c)n  C(�)(�2n�1(@�a))
1/p0

kkak�1
p0

 C(�)�2n�1(@� \ Qa(2)),
(9.3)

because we have that �2n�1(@�a) ' �2n�1(@� \ Qa(2)), still with the constant
independent of a.

So we have proved the correct inequality for a point a 2 S. It remains to have
it for any point in �.

Fix b 2 �; take a point a1 2 S\Qb(2) such that d(a1) := d(a1, @�) is as big
as possible. Now set E1 := Qb(2)\Qa1(2) and take a point a2 2 S \ E1 such that
d(a2) := d(a2, @�) is as big as possible; set E2 := E1\Qa2(2) and take a point
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a3 2 S \ E2 such that d(a3) := d(a3, @�) is as big as possible etc. In this way we
have a sequence G := {a j } of points in Qb(2) \ S with d(a j ) decreasing.

Moreover we have

S \ Qb(2) =

1[
j=1

S \ Qaj (2).

For any j = 1, . . . we have, by 9.3X
c2Sa j

d(c)n .
��ka j���1

p0
 C(�)�2n�1(@� \ Qaj (2)).

Now define Pa(�) := Qa(�) \ Ta(@�), where Ta(@�) is the parallel hyperplane
to the tangent to @� at ↵ passing through a. We have that if a 2 � \ U then
�2n�1(Pa(�)) ' �2n�1(⇡(Pa(�))), where the constants behind the sign ' are inde-
pendent of a, because the projection ⇡ is a diffeomorphism from Pa(�) onto its im-
age in @�. Its jacobian J is still a smooth function, hence we have that C = kJk

1

is uniformly bounded by the compactness of @�, and so is
��J�1��

1
.

Because the sets Qaj (�) are disjoint we get that
• ⇡(Paj (�)) are disjoint and �2n�1(Paj (�)) ' �2n�1(⇡(Paj (�))),

• �2n�1(Paj (2)) '

⇣
2
�

⌘2n�1
�2n�1(Paj (�)).

So

�2n�1(Paj (2)) '

✓
2
�

◆2n�1
�2n�1(⇡(Paj (�))).

We want to estimate
X
c2Sb

d(c)n =

1X
j=1

X
c2Sa j

d(c)n .
1X
j=1

�2n�1(@� \ Qaj (2)),

but
1X
j=1

�2n�1(⇡(Paj (�)))  �2n�1(@� \ Qb(2)),

because the ⇡(Paj (�)) are disjoint and contained in @� \ Qb(2) and
1X
j=1

�2n�1(⇡(Paj (�))) &
1X
j=1

�2n�1(Paj (�)))

&
1X
j=1

�2n�1(Paj (2))) &
1X
j=1

�2n�1(@� \ Qaj (2)).

So X
c2Sb

d(c)n .
1X
j=1

�2n�1(@� \ Qaj (2)) .
1X
j=1

�2n�1(⇡(Paj (�)))

. �2n�1(@� \ Qb(2)).
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Theorem 9.13. Let � be a convex domain of finite type in Cn. If the sequence
of points S ⇢ � is dual bounded in H p(�), then the canonical measure ⌫ :=P

a2S d(a)1+2µ(a)�a is a geometric Carleson measure in �.

Proof. We take advantage of the fact that a convex domain of finite type is aspc to
separate the sequence S in two parts S = BS [ GS. For the bad points we need not
the hypothesis of dual boundedness because Theorem 4.6 gives

X
c2BS\Qa(2)

d(c)1+2µ(c)
 C(�)

�2n�1(@� \ Qa(2))
�2

,

which is true for any a 2 �, and this is precisely the definition of a geometric
Carleson measure, so we get that the measure ⌫b :=

P
a2BS d(a)1+2µ(a)�a is a

geometric Carleson measure.
We have ⌫g :=

P
a2GS

d(a)1+2µ(a)�a  µ :=

P
a2S d(a)n�a, and µ is a

geometric Carleson measure by Theorem 9.12. So adding ⌫b and ⌫g we get that ⌫
is a geometric Carleson measure.

9.3. Interpolating sequences

We shall need the definition
Definition 9.14. The sequence S is a q Carleson sequence if

9D > 0, 8� 2 `q(S),

�����
X
a2S

�a
ka

kkakq

�����
q

 Dk�k`q (S).

In [2], we proved by duality that if the canonical measure ⌫ :=

P
a2S d(a)1+2µ(a)�a

is a q 0 Carleson measure and if kkak
�q 0

q ' d(a)1+2µ(a) then S is a q Carleson
sequence. We shall do it again in this setting.

Lemma 9.15. If � is a convex domain of finite type in Cn and if S ⇢ � is a dual
bounded sequence of points in H p(�), then S is a q Carleson sequence for any
q 2]1, 1[.

Proof. Because the Szegö projection is bounded on L p(@�) for 1 < p < 1 ([29,
Theorem 5.1]) we have that the dual of H p(�) is H p0

(�), with p0 the conjugate
exponent of p. Hence we can evaluate the norm this way

�����
X
a2S

�a
ka

kkakq

�����
q

' sup
f 2Hq0

(�), k f kq01

�����
X
a2S

�a
f (a)

kkakq

�����

. k�k`q (S) sup
f 2Hq0

(�), k f kq01

�����
X
a2S

| f (a)|q
0

kkak
q 0

q

�����
1/q 0

,
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by Hölder. But

kkakp = kS(·, a)kH p '

1
�2n�1(B(↵, d(a)))1/p0

by Theorem 6.6 and we have, by (6.10), �2n�1(B(↵, ✏)) ' ✏
Qn

j=2 ⌧ j (↵, ✏)2 and
by (6.3) in Hefer’s Theorem 6.1, we have ⌧ j (⇣, ✏) ' ✏1/m j (⇣ ), hence,

� (B(↵, ✏)) ' ✏
nY
j=2

⌧ j (↵, ✏)2 ' ✏1+2µ(↵), µ(↵) :=

nX
j=2

1
m j (↵)

.

We shall apply this with ↵ = ⇡(a), ✏ = d(a) and, because P✏(a) \ P✏(↵) 6= ;, we
have by (6.8)

nY
j=2

⌧ j (a, d(a))2 '

nY
j=2

⌧ j (↵, d(a))2 ) d(a)2µ(a)
' d(a)2µ(↵).

Putting this in kkakq we get

kkak�1
q ' d(a)

1+2µ(↵)
q0

) kkak
�q 0

q ' d(a)1+2µ(↵)
' d(a)1+2µ(a).

Hence

8 f 2 Hq 0

(�),
X
a2S

| f (a)|q
0

kkak
q 0

q
'

X
a2S

d(a)1+2µ(a)
| f (a)|q

0

.

But Theorem 9.13 gives that the measure ⌫ :=

P
a2S d(a)1+2µ(a)�a is a geometric

Carleson measure. We apply the embedding Carleson Theorem 7.7 to ⌫ to get

8q 0 > 1, 9Cq 0 > 0, 8 f 2 Hq 0

(�),

Z
�

| f |q
0

d⌫  Cq 0

q 0
k f kq

0

Hq0

(�)
,

explicitly

8 f 2 Hq 0

(�),
X
a2S

|d(a)|1+2µ(a)
| f (a)|q

0

 Cq 0

q 0
k f kq

0

Hq0

(�)
,

hence X
a2S

| f (a)|q
0

kkak
q 0

q
. k f kq

0

Hq0

(�)
.
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9.4. Structural hypotheses

We get easily the structural hypotheses [2] for the domain �.

Corollary 9.16. If � is a convex domain of finite type in Cn, then the structural
hypotheses SH(q) and SH(p, s) are true for the Lebesgue measure �2n�1 on @�,
i.e. 8q 2]1,1[,

SH(q) : kkakqkkakq 0 . kkak22,

and, for 8p, s 2 [1,1], 1
s =

1
p +

1
q ,

SH(p, s) : kkaks0 . kkakp0kkakq 0 .

Proof. Theorem 6.6 gives again

kkakH p(�) = kS(a, ·)kH p(�) '

1
�2n�1(B(↵, d(a)))1/p0

hence, just replacing,

kkakqkkakq 0 ' kkak22, kkaks0 ' kkakp0kkakq 0 .

Now we are in position to prove Theorem 1.15:

Theorem 9.17. If � is a convex domain of finite type in Cn and if S ⇢ � is a
dual bounded sequence of points in H p(�), if p = 1 then for any q < 1, S is
Hq(�) interpolating with the linear extension property; if p < 1 then S is Hq(�)
interpolating with the linear extension property, provided that q < min(p, 2).

Proof. We shall apply the main theorem from [2]: we state it in the special case of
a domain � ⇢ Cn and of the uniform algebra A(�) of holomorphic functions in
�, continuous up to @�

Theorem 9.18. Let � be a domain in Cn with � the Lebesgue measure on @�; if
we have, with 1

s =
1
p +

1
q , that the measure � verifies the structural hypotheses

SH(q), SH(p, s);

• S is dual bounded in H p(�);

• S is a q Carleson sequence;

then S is Hs(�) interpolating and has the linear extension property, provided that
either p = 1 or p  2.

All the requirements of Theorem 9.18 are by now verified so we have that for
any q < p, S is Hq(�) interpolating with the linear extension property, provided
that p = 1 or p  2. So if p = 1 or p  2, the theorem is proved.



ASPC DOMAINS 265

If 2  p < 1, then S dual bounded in H p(�) means 9{⇢a}a2S ⇢ H p(�)
with:

9C > 0 :: 8a 2 S, k⇢akp  C, 8a, b 2 S, h⇢a, kbi = �a,bkkbkp0 .

Let s ::
1
2 =

1
p +

1
s then we set

8a 2 S, ⇢̃a := ⇢a⇥
ka

kkaks
) k⇢̃ak2  C

and, by the reproducing property of ka
⌧
⇢̃a,

ka
kkak2

�
= ⇢a(a)⇥

ka(a)
kkaks

⇥

1
kkak2

,

but ka(a) = kkak22, and ⇢a(a) = kkakp0 by definition, hence
⌧
⇢̃a,

ka
kkak2

�
=

kkakp0⇥kkak2
kkaks

.

The structural hypotheses, by Corollary 9.16, gives

SH(s) : kkakskkaks0 . kkak22

and

8p, s 2 [1,1],
1
s

=

1
p

+

1
q

, SH(p, s) : kkaks0 . kkakp0kkakq 0,

hence here, with the correct values of p, s

kkak2 . kkakp0kkaks0  kkakp0⇥

kkak22
kkaks

,

the last inequality by SH(s), hence

1 .
kkakp0kkak2

kkaks
=

⌧
⇢̃a,

ka
kkak2

�
.

So we have that S is dual bounded in H2(�) and by Theorem 9.18 we have that if
8q < 2 then S is Hq(�) interpolating with the linear extension property.

Remark 9.19. The slight improvement from Theorem 9.18 done here relies only
on the structural hypotheses, so it is in fact true in the abstract setting of uniform
algebras.
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10. Potential

Let us recall quickly how Green formula gives us the Blaschke condition [33]:

ln |u(p)| =

Z
@�
ln |u(⇣ )| P(p, ⇣ ) d� (⇣ ) +

Z
�

1 ln |u(z)|G(p, z) dm(z),

where p 2 �, G(p, z) is the Green kernel of � with pole at p and P(p, ⇣ ) is the
Poisson kernel of � still with pole at p.

Let p 2 � fixed such that u(p) 6= 0 and we suppose u normalized to have

u(p) = 1 ) ln |u(p)| = 0. (10.1)

Taking the positive Green function (minus the usual one) we have G � 0, 0 

P(p, ⇣ )  kP(p, ·)k
1

, and we get
Z

�
1 ln |u(z)|G(p, z) dm(z)=

Z
@�
ln+

|u| P(p, ⇣ ) d� �

Z
@�
ln�

|u| P(p, ⇣ ) d� ,

Z
�

1 ln |u(z)|G(p, z) dm(z) 

Z
@�
ln+

|u(⇣ )| P(p, ⇣ ) d�

 kP(p, ·)k
1

Z
@�
ln+

|u(⇣ )| d� (⇣ )

 kP(p, ·)k
1

kukN .

But 1 ln |u(z)| = Tr2, the trace of 2, so
Z

�
G(p, z)Tr2(z)dm(z)  kP(p, ·)k

1

Z
@�
ln+

|u(⇣ )| d� (⇣ ). (10.2)

We have the known estimates ([8, Proposition 2.1]):

Proposition 10.1. Let � := {x 2 RN
:: ⇢(x) < 0} be a bounded domain of class

C2 in RN , defined by the function ⇢ and a 2 � then there are constants c, c1, c2,
depending only on the regularity of ⇢ up to second order, such that, with P the
Poisson kernel of �, with d(x) the distance from x to @�,

8(x, ⇣ ) 2 �⇥@�, c1
d(x)

|⇣ � x |N
 P(x, ⇣ )  c2

d(x)
|⇣ � x |N

.

For the Green function G(x, z) of � we have,

8(x, z) 2 �⇥�, G(x, z) � c
d(z)d(x)
|z � x |N

.
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Using Proposition 10.1 we get

Theorem 10.2. Let � := {z 2 Cn
:: ⇢(x) < 0} be a bounded domain of class C2

in Cn
; let G(p, z) be the positive Green function (minus the usual one) with pole

p 2 � and u be a holomorphic function in � such that u(p) = 1, then we have

Z
�
d(z)Tr2(z)dm(z)  C

R2n

r2n

Z
@�
ln+

|u(⇣ )| d� (⇣ )

where r is the radius of the biggest ball B(p, r) centered at p and contained in �
and R is the radius of the smallest ball B(p, R) centered at p and containing �.
The constant C depends only on the regularity of ⇢ up to second order.

Proof. We have by Proposition 10.1, kP(p, ·)k
1

 c2d(p)�2n+1 and G(p, z) �

c d(z)d(p)
|z�p|2n

and, because d(p) = r and |z � p|  R, we get kP(p, ·)k
1



c2r�2n+1, G(p, z) � c d(z)r
R2n so, putting this in (10.2), we get

c
r
R2n

Z
�
d(z)Tr2(z)dm(z) 

c2
r2n�1

Z
@�
ln+

|u(⇣ )| d� (⇣ ),

which gives the theorem with C :=
c2
c .

Setting kukN (�) :=

R
@� ln

+
|u(⇣ )| d� (⇣ ), the Nevanlinna norm of u, this

proves that the zero set of a function in the Nevanlinna class verifies the Blaschke
condition.

Unfortunately the domains �a we are interested in have not the euclidean ball
property that R

r  � with a � independent of a; in fact they have it but for complex
planes slices of �a with r, R depending on the slices but still with R

r  � , �
independent of the slice, i.e. they have this type of property but for “ellipsoid”
instead of balls. This is why the proofs are a little bit more involved.

10.1. Complex potential theory

In this section we shall use the notation dm := d�2n for the Lebesgue measure in
Cn and d� for d�2n�1.

Let � be a domain in Cn
= R2n, and u 2 N (�) a holomorphic function in

the Nevanlinna class of �.With 2 := 1 ln |u| and ⇢ be a defining function for �,
we have the lemma, application of the Green formula,

Lemma 10.3. We have, with ⌘ the outward normal to @�,

Z
�

(�⇢)Tr2dm =

Z
@�
ln |u|

@⇢

@⌘
d� �

Z
�
ln |u|1⇢dm.
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Proof. We have, by the Green formula,
Z

�
⇢1vdm �

Z
�

v1⇢dm =

Z
@�

⇢
@v

@⌘
d� �

Z
@�

v
@⇢

@⌘
d� ;

but ⇢ = 0 on @� and changing sign, we get
Z

�
(�⇢)1vdm = �

Z
�

v1⇢dm +

Z
@�

v
@⇢

@⌘
d� .

Now setting v = ln |u| and approximating ln |u| by smooth functions as usual, we
get the lemma.

The aim is to prove, under some circumstances, that we have
Z

�
(�⇢)Tr2  C

Z
@�
ln+

|u| d� ,

with a good control on C.

Definition 10.4. Let S be the unit sphere in Cn and � a domain in Cn, 0 2 �. We
shall say that � si C1 starlike relatively to 0 if @� admits a spherical parametriza-
tion, i.e. there is a function R(⇣ ) 2 C1(S), R(⇣ ) > 0, such that:

@� = {z 2 Cn
:: 9⇣ 2 S, z = R(⇣ )⇣ }.

This implies that � = {z = t R(⇣ )⇣, ⇣ 2 S, t 2 [0, 1[}.
Let ⇣ 2 S and define @�⇣ to be the complex plane slice through ⇣

@�⇣ := {R(ei✓ ⇣ )ei✓ ⇣, ✓ 2 [0, 2⇡]}.

The Lebesgue measure d�@�⇣ (⌘), ⌘ = R(ei✓ ⇣ )ei✓ ⇣, on @�⇣ and d✓ on [0, 2⇡] are
related by

d�@�⇣ (⌘) =

r���U 0

⇣ (✓)
���2 +U⇣ (✓)2d✓,

where U⇣ (✓) := R(ei✓ ⇣ ). Of course if ⌘ = ei'⇣ then @�⌘ = @�⇣ and the measure
is the same.

We set
���U 0

⇣

���
1

:= sup ✓2[0,2⇡]

���U 0

⇣ (✓)
��� .We shall use the notation

8⇣ 2 S, d⇣ (0) = inf
✓2[0,2⇡]

R(ei✓ ⇣ ); d⇣ max(0) = sup
✓2[0,2⇡]

R(ei✓ ⇣ ).
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Now we have.

Lemma 10.5. Let S be the unit sphere of Cn and � a domain in Cn, 0 2 � such
� is C1 starlike with respect to 0. Then
Z

�
f (z)dm(z) = cn

1
2⇡

Z 1

0

 Z
S

 Z
@�⇣

f (t⌘)J⇣ (⌘)t2n�1d�⇣ (⌘)

!
d�S(⇣ )

!
dt,

with d⇣ (0)2nr���U 0

⇣

���2
1

+d⇣ max(0)2
 J⇣ (⌘) 

d⇣ max(0)2n
d⇣ (0) .

Proof. Integrating in spherical coordinates we get, with cn = 2nvn/sn where vn is
the volume of the unit ball in Cn, sn the area of the unit sphere in Cn,

I :=

Z
�
f (z)dm(z) = cn

Z
S
{

Z R(⇣ )

0
r2n�1 f (r⇣ )dr}d�2n�1(⇣ ).

Set t =
r

R(⇣ ) ) dr = R(⇣ )dt and

8⇣ 2 S,

Z R(⇣ )

0
r2n�1 f (r⇣ )dr =

Z 1

0
R(⇣ )2n f (t R(⇣ )⇣ )t2n�1dt,

I = cn
1
2⇡

Z
S⇥[0,1]⇥[0,2⇡]

R(ei✓ ⇣ )2n f (t R(ei✓ ⇣ )ei✓ ⇣ )t2n�1dtd✓d�2n�1(⇣ ).

Now we fix ⇣ 2 S; we get
Z

[0,1]⇥[0,2⇡]

R(ei✓ ⇣ )2n f (t R(ei✓ ⇣ )ei✓ ⇣ )t2n�1dtd✓ .

Set ⇣ 2 S, 8✓ 2 [0, 2⇡], ⌘ = R(ei✓ ⇣ )ei✓ ⇣ 2 @�⇣ and U⇣ (✓) := R(ei✓ ⇣ ) then we
have

@�⇣ = {U⇣ (✓)ei✓ ⇣, ✓ 2 [0, 2⇡]}

and

d�@�⇣ (⌘) =

r���U 0

⇣ (✓)
���2 +U⇣ (✓)2d✓,

so Z
[0,2⇡]

R(ei✓ ⇣ )2n f (t R(ei✓ ⇣ )ei✓ ⇣ )d✓ =

Z
@�⇣

f (t⌘)J⇣ (⌘)d�⇣ (⌘),

where J⇣ (⌘) =
R(⌘)2n

D⇣ (⌘) and D⇣ (⌘) =

r���U 0

⇣ (✓)
���2 +U⇣ (✓)2, expressed in ⌘ coordi-

nates.
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So we have

I = cn
1
2⇡

Z 1

0

 Z
S

 Z
@�⇣

f (t⌘)J⇣ (⌘)t2n�1d�⇣ (⌘)

!
d�S(⇣ )

!
dt .

Notice that in @�⇣ we have

d⇣ (0)  R(⌘)  d⇣ max(0) ; d⇣ (0)  D⇣ (⌘) 

r���U 0

⇣

���2
1

+ d⇣ max(0)2

hence
d⇣ (0)2nr���U 0

⇣

���2
1

+ d⇣ max(0)2
 J⇣ (⌘) 

d⇣ max(0)2n

d⇣ (0)
.

Definition 10.6. The domain � ⇢ Cn is said to be � balanced relatively to 0 if:
• � is C1 starlike with respect to 0,
• all its slices @�⇣ through the origin verify

8⇣ 2 S, d⇣ max(0)  � d⇣ (0);
��U 0

⇣

��
1

 � d⇣ max(0).

Set for any function v, v+(z) := max(v(z), 0) ; v�(z) := �max(�v(z), 0).
Then we have the lemmas.

Lemma 10.7. Suppose that v is a subharmonic function in a � balanced domain
D in C, such that v(0) = 0. ThenZ

@D
v�(z)d� (z)  � 2

c2
c1

Z
@D

v+(z)d� (z).

Proof. Because v is subharmonic we have

0=v(0)
Z

@D
P(0,⇣ )v(⇣ )d� (⇣ )=

Z
@D
P(0,⇣ )v+(⇣ )d� (⇣ )�

Z
@D
P(0,⇣ )v�(⇣ )d� (⇣ ),

where P(0, ⇣ ) is the Poisson kernel of D for 0 2 D. SoZ
@D

P(0, ⇣ )v�(⇣ )d� (⇣ ) 

Z
@D

P(0, ⇣ )v+(⇣ )d� (⇣ ).

Now we use the estimates in Proposition 10.1 c1d(0)
dmax(0)2


c1d(0)
|⇣ |
2  P(0, ⇣ ) 

c2
|⇣ |



c2
d(0) to get

c1d(0)
dmax(0)2

Z
@D

v�(⇣ )d� (⇣ ) 

c2
d(0)

Z
@D

v+(⇣ )d� (⇣ ),

henceZ
@D

v�(⇣ )d� (⇣ ) 

c2dmax(0)2

c1d(0)2

Z
@D

v+(⇣ )d� (⇣ )  � 2
c2
c1

Z
@D

v+(⇣ )d� (⇣ ).
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Lemma 10.8. Let � ⇢ Cn be a � balanced domain and let v be a pluri subhar-
monic function in � such that v(0) = 0, then

Z
�

|v(z)| dm(z) 

✓
1+ 2� 2n+3

c2
c1

◆Z
�

v+(z)dm(z).

Proof. We shall use the decomposition of Lemma 10.5

Z
�

v�(z)dm(z) = cn
1
2⇡

Z 1

0

 Z
S

 Z
@�⇣

v�(t⌘)J⇣ (⌘)t2n�1d�⇣ (⌘)

!
d�S(⇣ )

!
dt .

But still by Lemma 10.5 we have J⇣ (⌘) 

d⇣ max(0)2n
d⇣ (0) hence

Z
@�⇣

v�(t⌘)J⇣ (⌘)d�⇣ (⌘) 

d⇣ max(0)2n

d⇣ (0)

Z
@�⇣

v�(t⌘)d�⇣ (⌘).

Doing the same we get
Z

@�⇣

v+(t⌘)J⇣ (⌘)d�⇣ (⌘) �

d⇣ (0)2nr���U 0

⇣

���2
1

+ d⇣ max(0)2

Z
@�⇣

v+(t⌘)d�⇣ (⌘).

Set

A :=

d⇣ max(0)2n

d⇣ (0)
; B :=

d⇣ (0)2nr���U 0

⇣

���2
1

+ d⇣ max(0)2

then Z
@�⇣

v�(t⌘)J⇣ (⌘)d�⇣ (⌘)  A
Z

@�⇣

v�(t⌘)d�⇣ (⌘)

and Z
@�⇣

v+(t⌘)J⇣ (⌘)d�⇣ (⌘) � B
Z

@�⇣

v+(t⌘)d�⇣ (⌘).

But Lemma 10.8 gives, because v being pluri subharmonic in � is subharmonic
in �⇣ , Z

@�⇣

v�(t⌘)d�⇣ (⌘)  � 2
c2
c1

Z
@�⇣

v+(t⌘)d�⇣ (⌘),

soZ
@�⇣

v�(t⌘)J⇣ (⌘)d�⇣ (⌘)  A
Z

@�⇣

v�(t⌘)d�⇣ (⌘)  A� 2
c2
c1

Z
@�⇣

v+(t⌘)d�⇣ (⌘),
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hence continuing
Z

@�⇣

v�(t⌘)J⇣ (⌘)d�⇣ (⌘)  A� 2
c2
c1

Z
@�⇣

v+(t⌘)d�⇣ (⌘)



Ac2
Bc1

� 2
Z

@�⇣

v+(t⌘)J⇣ (⌘)d�⇣ (⌘).

So Z
@�⇣

v�(t⌘)J⇣ (⌘)d�⇣ (⌘) 

Ac2
Bc1

� 2
Z

@�⇣

v+(t⌘)J⇣ (⌘)d�⇣ (⌘).

Now we notice that

A
B

=

d⇣ max(0)2n
r���U 0

⇣

���2
1

+ d⇣ max(0)2

d⇣ (0)2n+1

 � 2n+1

vuuut1+

���U 0

⇣

���2
1

d⇣ max(0)2
 � 2n+1

q
� 2 + 1.

Multiplying by t2n�1 and integrating on S⇥[0, 1] give
Z

�
v�(z)dm(z)  2� 2n+3

c2
c1

Z
�

v+(z)dm(z);

but |v(z)| = v+(z) + v�(z) hence
Z

�
|v(z)| dm(z) 

✓
1+ 2� 2n+3

c2
c1

◆Z
�

v+(z)dm(z).

Lemma 10.9. Let � be a domain in Cn of class C2. If v is a positive subharmonic
function in �, thenZ

�
v(z)dm(z)  2c2diam(�)

Z
@�

v(⇣ )d� (⇣ ).

Proof. Let P(z, ⇣ ) the Poisson kernel we have, by Proposition 10.1,

8(z, ⇣ ) 2 �⇥@�, c1
d(z)

|⇣ � z|2n
 P(z, ⇣ )  c2

d(z)
|⇣ � z|2n

,

so, because d(x)  |⇣ � x |, we get

8(z, ⇣ ) 2 �⇥@�, P(z, ⇣ )  c2
1

|⇣ � z|2n�1
.
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Hence

8⇣ 2 @�,

Z
�
P(z, ⇣ )dm(z)  c2

Z
�

dm(z)
|⇣ � z|2n�1

 c2
Z
B(0, diam(�))

dm(z)
|⇣ � z|2n�1

 2c2diam(�).

Because v is subharmonic we have

v(z) 

Z
@�

P(z, ⇣ )v(⇣ )d� (⇣ ),

so, by Fubini-Tonnelli, everything being positive,
Z

�
v(z)dm(z) 

Z
�⇥@�

P(z, ⇣ )v(⇣ )dm(z)d� (⇣ )

 2c2diam(�)

Z
@�

v(⇣ )d� (⇣ ).

Proposition 10.10. Let � be a domain in Cn of class C2, � balanced relatively to
0 2 �; if v is pluri subharmonic in � and v(0) = 0 then

Z
�

|v(z)| dm(z)  2c2diam(�)

✓
2� 2n+3

c2
c1

+ 1
◆Z

@�
v+(⇣ )d� (⇣ ).

Proof. We apply successively Lemma 10.8 and Lemma 10.9, which can be done
because v+ is still pluri subharmonic in �.

Theorem 10.11. Let � be a domain in Cn of class C2, � balanced relatively to
0 2 �; if u is holomorphic in � and |u(0)| = 1 then, with X := u�1(0),

k2XkB :=

Z
�
d(z)Tr2  C

Z
@�
ln+

|u| d� (⇣ ) =: CkukN (�),

with a constant C depending only on the constant � and the derivatives of ⇢ up to
order 2.

Proof. By Lemma 10.3 we have
Z

�
(�⇢)Tr2 =

Z
@�
ln |u|

@⇢

@⌘
d� �

Z
�
ln |u|1⇢dm.

The function ln |u| is pluri subharmonic in � hence we can apply to it Proposi-
tion 10.10:Z

�
|ln |u(z)|| dm(z)  2c2diam(�)

✓
2� 2n+3

c2
c1

+ 1
◆Z

@�
ln+

|u(⇣ )| d� (⇣ ).
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so we get, because 0 < @⇢
@⌘ ,

Z
�

(�⇢)Tr2 =

Z
@�
ln |u|

@⇢

@⌘
d� �

Z
�
ln |u|1⇢dm



����@⇢

@⌘

����
1

Z
@�
ln+

|u| d� + k1⇢k
1

Z
�

|ln |u(z)|| dm(z)

 A
Z

@�
ln+

|u(⇣ )| d� (⇣ ),

with A :=

��� @⇢
@⌘

���
1

+ k1⇢k
1

(2c2diam(�)(2� 2n+3 c2c1 + 1)).

But @⇢
@⌘ (z)d(z) ' (�⇢(z)) so, with M :=

��� 1
@⇢/@⌘

���
1

, we get

Z
�
d(z)Tr2  M

Z
�

(�⇢)Tr2.

This proves the theorem with C = MA, a constant depending only on � and the
derivatives of ⇢ up to order 2.

Remark 10.12. This theorem will be applied to the domains �a built in Section 8
and for these domains the derivatives of the defining function ⇢a are controlled
by the derivatives of the global function ⇢; also the derivative @⇢a

@⌘ is bounded
below uniformly independently of a by @⇢

@⌘ so the constant C of Theorem 10.11 is
independent of a.
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zéros de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), 225–299.
[34] E. STEIN, “Boundary Behaviour of Holomorphic Functions of Several Variables”, Mathe-

matical Notes, Princeton University Press, 1972.



276 ERIC AMAR
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