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Optimal Liouville theorems for supersolutions
of elliptic equations with the Laplacian

SALOMÓN ALARCÓN, JORGE GARCÍA-MELIÁN AND ALEXANDER QUAAS

Abstract. In this paper we consider the question of nonexistence of positive
supersolutions of the equation �1u = f (u) in exterior domains of RN , where
f is continuous and positive in (0,+1). When N � 3, we find that positive
supersolutions exist if and only if

Z �

0

f (t)

t
2(N�1)
N�2

dt < +1

for some � > 0. A similar condition is found for N = 2: positive supersolutions
exist if and only if Z

1

M
eat f (t)dt < +1

for some a,M > 0. The proofs are extended to consider some more general
operators, which include the Laplacian with gradient terms, the p-Laplacian or
uniformly elliptic fully nonlinear operators with radial symmetry, like the Pucci’s
extremal operatorsM±

�,3, with 3 > � > 0.

Mathematics Subject Classification (2010): 35B53 (primary); 35J61 (sec-
ondary).

1. Introduction and results

It is well-known that nonlinear Liouville theorems play an important role in the
study of some nonlinear partial differential equations of elliptic type. They are
usually employed to obtain a priori bounds for all possible (positive) solutions,
which in turn give existence of such solutions by means of topological arguments.
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One of the most famous theorems of this type is concerned with the model equation

�1u = u p in RN (1.1)

and was proved in the celebrated work [23] (see also [15] for a simplified proof).
It was shown there that (1.1) does not have positive solutions provided that N � 3
and 1 < p < N+2

N�2 (observe that nonexistence for N = 2 follows irrespective of
p because nonconstant positive superharmonic functions cannot exist in R2). This
result has been generalized to deal with some more general nonlinearities than the
power: for instance, in [29] the problem

�1u = f (u) in RN

was analyzed under the assumption that f (t) is a continuous nonlinearity such that
f (t)t�

N+2
N�2 is nonincreasing in (0,+1), and some nonexistence theorems were

obtained. We refer also to [35] for related theorems with the Laplacian replaced
with the p-Laplacian.

On the other hand, it is worth remarking that the critical exponent N+2
N�2 plays

a role only if the equation is posed in the whole RN . If it is considered in exterior
domains ofRN (which amounts to saying inRN

\BR0 for some R0 > 0, where BR0
stands for the ball with radius R0 centered at the origin), it is known that positive
solutions of (1.1) cannot exist in the range 1 < p 

N
N�2 (cf. [10] for a proof, in

the context of the p-Laplacian operator). This condition on p is optimal since for
p > N

N�2 a singular solution of the form u = A|x |�
2
p�1 can be constructed. It

was also realized that actually the exponent N
N�2 is critical with regard to existence

of positive supersolutions, both in RN or in exterior domains (see [22] for the first
proof and [32] for a simplified one).

Numerous works dealt with the question of nonexistence of supersolutions
with some more general nonlinearities and operators. Without being exhaustive
with the references, we mention [1, 2, 4, 5, 7–9, 11–14, 18, 24, 26] and [30] (and
references therein). We refer to the survey [25] for a list of references.

A qualitative step further was given in [4], where the problem

�1u � f (u) in RN
\ BR0 (1.2)

was considered for a general continuous, positive nonlinearity f (although it has
to be remarked that the emphasis there was to deal with a general class of fully
nonlinear operators, instead of the Laplacian). Among other things, it was shown
that if f verifies

lim inf
t!0+

f (t)

t
N

N�2
> 0, (1.3)

then no positive solutions of (1.2) can exist. When N = 2, the problem was also
analyzed in [4], and they showed that if f verifies

lim inf
t!+1

eat f (t) > 0 for every a > 0, (1.4)
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then no solutions of (1.2) can exist. Conditions (1.3) and (1.4) are, at the best of
our knowledge, the best ones obtained so far to ensure the nonexistence of positive
solutions of problem (1.2).

Conversely, it can be easily checked that if N � 3 and f verifies

lim sup
t!0+

f (t)
t p

< +1 (1.5)

for some p > N
N�2 , then positive supersolutions in RN

\ BR0 can be constructed.
When N = 2, if f verifies

lim sup
t!+1

eat f (t) < +1 (1.6)

for some a > 0, then a positive supersolution in R2 \ BR0 can also be constructed.
It is clear that conditions (1.3) and (1.5) on one side and (1.4) and (1.6) on the other
are not exhaustive, so that the question still remains: is there an optimal condition
ensuring the nonexistence of positive solutions of (1.2), both when N � 3 and when
N = 2? This is precisely the question we are addressing in this paper.

Although a more general type of supersolutions can be dealt with, we will be
mainly dealing for simplicity with weak supersolutions u 2 C1(RN

\ BR0), that is,
functions verifying Z

RN
\BR0

rur� �

Z
RN

\BR0
f (u)�

for every non-negative � 2 C1

0 (RN
\ BR0).

We begin by stating our results for the case N � 3.

Theorem 1.1. Let f : (0,1) ! R be continuous and positive and assume N � 3.
Then problem (1.2) admits a positive supersolution if and only if

Z �

0

f (t)

t
2(N�1)
N�2

dt < +1. (1.7)

for some � > 0.

As a byproduct of our proofs it follows that, when (1.7) holds, infinitely many
radially symmetric solutions can be constructed in RN

\ BR for adequately large
R > 0. These solutions verify

lim
x!1

|x |N�2u(x) = �, lim
x!1

|x |N�1
|ru(x)| = (N � 2)�

for small � > 0.
It is worthy of mention that Theorem 1.1 can be applied for the nonlinearity

f (t) = t
N

N�2 (| log t | + 1)� to obtain a nonexistence result when � � �1. Previous
results in the literature could not deal with this nonlinearity when � < 0.
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Also, let us remark that, if f is nondecreasing in (0, �) and (1.7) holds, then the
equation �1u = f (u) admits supersolutions in RN (cf. Remark 4.1 in Section 4).
Thus, roughly speaking, existence of supersolutions inRN is equivalent to existence
of radially symmetric solutions in exterior domains.

Next, let us turn to the case N = 2.

Theorem 1.2. Let f : (0,1) ! R be continuous and positive and assume N = 2.
Then problem (1.2) admits a positive supersolution if and only if there exist M, a >
0 such that Z

1

M
eat f (t)dt < +1. (1.8)

By means of a counterexample, it can be shown that the nonexistence condition in
Theorem 1.2, Z

1

M
eat f (t)dt = +1

for every a,M > 0, is weaker than (1.4) (cf. Remark 4.2 in Section 4).
Let us make a brief comment on the methods we use. Our proofs are based on

a reduction of problem (1.2) to a radial setting: assuming a positive supersolution
of (1.2) exists, we show that there exists a radially symmetric positive solution in
an exterior domain. With a change of variables which involves the fundamental
solution of the Laplacian, the problem is transformed into a sort of initial value
problem for a one-dimensional equation which has a singularity. Then the important
point is to show existence and nonexistence of solutions for this problem under
suitable conditions. We stress that the one-dimensional problem so obtained is not
integrable, since it is nonautonomous. Moreover, it has a singularity, hence to obtain
existence and nonexistence of solutions is not a trivial task.

This method of proof has the advantage to be easily adapted to more general
elliptic, radially symmetric operators. We consider some possible generalizations,
which include the Laplacian with a gradient term, the p-Laplacian and fully non-
linear uniformly elliptic operators, in Section 5. Just to give a flavor of what is to
be expected there, consider the inequality

�F
�
D2u

�
� f (u) in RN

\ BR0, (1.9)

where F is a fully nonlinear operator which is positively homogeneous, radially
symmetric and uniformly elliptic (cf. Section 5 for precise assumptions). This oper-
ator has two radially symmetric fundamental solutions �±(x), with either
�±(x) = ±|x |�↵ if ↵ > 0 and �±(x) = ⌥|x |�↵ if ↵ < 0 for some ↵ = ↵±(F)
or �±(x) = ⌥ log |x | (if this is the case then we set ↵±(F) = 0). Notice that for
a given operator F there are two unique numbers ↵+(F) and ↵�(F), and therefore
only two fundamental solutions �+ and ��. For simplicity of the presentation, we
will assume for the moment that ↵+(F) > 0.
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Then, problem (1.9) has a positive solution if and only ifZ �

0

f (t)

t
2(↵+(F)+1)

↵+(F)

dt < +1

for some � > 0 when ↵�(F) > 0,Z
1

M
eat f (t)dt < +1

for some M, a > 0 when ↵�(F) = 0, andZ
1

M

f (t)

t
2(↵�(F)+1)

↵�(F)

dt < +1

for some M > 0, when ↵�(F) < 0. These conditions improve in the case of
radially symmetric operators those in [4].

Just as an example, for the case of the Pucci’s minimal operatorM�

�,3 (to be
defined in Section 5) with 3 > �, we have ↵+(M�

�,3) =
3
� (N � 1) � 1 and

↵�(M�

�,3) =
�
3(N � 1) � 1 and if N � 2 then ↵+(M�

�,3) > 0, so the above
mentioned results hold depending on whether �

3(N � 1) � 1 is positive, negative
or zero. The fundamental solutions were introduced in the case of extremal Pucci’s
operators in [18, 27, 28]. For other more general radially symmetric operators see
[20] and for the general case see [6].

The rest of the paper is organized as follows: in Section 2, we will collect
some preliminary properties on problem (1.2) and on its radial solutions. Section
3 is devoted to analyze some existence and nonexistence results for some special
nonautonomous, singular one-dimensional problems, and in Section 4 the proofs
of Theorems 1.1 and 1.2 are performed. In Section 5 we consider some more gen-
eral operators, and finally the Appendix deals with some remarks on the classical
method of sub- and supersolutions.

2. Preliminaries

In this section, we consider some preliminary properties which deal mainly with the
reduction of problem (1.2) to a radial one and with properties of radial solutions. For
a non-negative weak superharmonic function u 2 C1(RN

\ BR0) (that is, verifying
�1u � 0 in RN

\ BR0 in the weak sense), we begin by considering the function

m(R) = inf
|x |=R

u(x) (2.1)

for R > R0. When u is nontrivial, it follows from the maximum principle that m is
strictly positive. The main property we need with regard to this function concerns
its monotonicity. Next lemma is a slight variant of [1, Lemma 1]. We include a
short sketch of the proof for the reader’s convenience.
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Lemma 2.1. Let u 2 C1(RN
\BR0) be a weak superharmonic function inRN

\BR0 .
Then there exists R > R0 such that m(R) is monotone for R > R.

Sketch of the proof. Choose R2 > R1 and apply the maximum principle in the an-
nulus A(R1, R2) = {x 2 RN

: R1 < |x | < R2}. We obtain that infA(R1,R2) u =

min{m(R1),m(R2)}, thus the function min{m(R1),m(R2)} is increasing in R1 and
decreasing in R2. It follows that m(R) cannot have a local minimum, hence the
lemma.

The next step is to show that problem (1.2) can be reduced to a radially sym-
metric one. This is the key in our analysis of problem (1.2).

Lemma 2.2. Assume f is continuous and positive in (0,+1) and there exists a
positive weak solution of

�1u � f (u) in RN
\ BR0 .

Then for some R1 > R0 there exists a C1, positive, radially symmetric function ū
verifying

�1ū = f (ū) in RN
\ BR1

in the weak sense. Moreover, if ū(x) = v(|x |), then v 2 C2(R1,+1), and there
exists R � R1 such that v is monotone for r > R.

Proof. Let m(R) be given by (2.1). According to Lemma 2.1, there exists R1 > R0
such that m(R) is monotone for R > R1.

For R2 > R1 denote A(R1, R2) = {x 2 RN
: R1 < |x | < R2} and consider

the problem 8><
>:

�1v = f (v) in A(R1, R2)
v = m(R1) on |x | = R1
v = m(R2) on |x | = R2.

(2.2)

Now let v(x) = m(R2) if m(R) is nonincreasing, and v = m(R1) if m(R) is
nondecreasing. In either case, v is a subsolution and u � v in A(R1, R2). Thus by
Corollary A.2 in the Appendix we obtain a radially symmetric solution vR2 of (2.2)
verifying v  vR2  u in A(R1, R2).

Next, observe that the inequality vR2  u gives local bounds for the family
{vR2}R2>R1 . Thus it is standard to obtain local C1,↵ bounds in RN

\ BR1 for every
↵ 2 (0, 1) (notice that these bounds hold up to the boundary of @BR1), hence by a
diagonal argument we get a sequence R2,n ! 1 such that vR2,n ! ū in C1(RN

\

BR1) for some ū 2 C1(RN
\ BR1). Passing to the limit in (2.2) we see that ū is a

non-negative radial weak solution to the equation �1ū = f (ū) in RN
\ BR1 with

ū  u. Since the convergence is uniform up to the boundary of @BR1 , ū verifies
ū = m(R1) on |x | = R1, hence ū is nontrivial and according to the strong maximum
principle, ū is strictly positive.
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Finally, if ū(x) = v(|x |), then v 2 C1(R1,+1), and it is a weak solution
of �v00

�
N�1
r v0

= f (v) for r > R1. It follows that v 2 C2(R1,+1), and the
existence of R such that v is monotone for r > R is a consequence of Lemma 2.1.
The proof is concluded.

Since most of our work from now on will be based on the radial solution v, we
finally consider some of its more relevant properties. It turns out that these proper-
ties depend on whether N = 2 or N � 3 (see also a generalization in Lemma 5.5
of Section 5).

Lemma 2.3. Assume f is continuous and positive in (0,+1). Let v 2 C2(R,+1)
be a positive monotone solution of

�v00

�

N � 1
r

v0

= f (v) in r > R. (2.3)

We have:

(a) If N = 2, then v0(r) > 0 and limr!+1 v(r) = +1.
(b) When N � 3, v0(r) < 0 and limr!+1 v(r) = 0.

Proof. First of all, let us prove that v verifies v0 > 0 and limr!+1 v(r) = +1 or
v0 < 0 and limr!+1 v(r) = 0. To see this, observe that, when v is unbounded, we
have by monotonicity limr!+1 v(r) = +1 and v has to be nondecreasing. Thus
assume in what follows that v is bounded and let l = limr!+1 v(r). Our intention
is to show that l = 0, hence we will assume l > 0 and we will reach a contradiction.
Take � < l and for large r introduce the function

H(r) =

v0(r)2

2
+ F(v(r)),

where F(t) =

R t
� f (s)ds. Since v(r) > � for large r , F(v(r)) is well-defined and

positive. Moreover, it is well known that H is nonincreasing. Thus H is positive for
large r and has a non-negative limit. Since F(v(r)) ! F(l), it follows that v0(r)
also has a limit, which has to be zero. Passing to the limit in (2.3) we obtain that
limr!+1 v00(r) = � f (l), this implying that f (l) = 0, contradicting the facts that
l > 0 and f is positive in (0,+1). Thus l = 0, as we wanted to show.

Moreover, by monotonicity, either v0
� 0 or v0

 0 in (R,+1), and if we had
v0

= 0 at some point, then v0 would attain either a minimum or a maximum, hence
v00

= 0 at that point, which is not possible due to f (v) > 0. Hence v0 > 0 in the
first case and v0 < 0 in the second.

To summarize, either v0 > 0 and v tends to infinity or v0 < 0 and v goes to
zero. Let us see that the first case arises precisely when N = 2 and the second one
when N � 3.

Consider first N = 2 and assume v0 < 0 in (R,+1). Then since rv0(r) is
nonincreasing, we have for an arbitrary r0 > R, v0(r) 

r0v0(r0)
r if r > r0, so that
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v(r)  v(r0) + r0v0(r0) log(r/r0) in (r0,+1), and v(r) ! �1 as r ! +1

follows, which is not possible. Hence v0 > 0 in (R,+1) and limr!+1 v(r) =

+1. This shows part (a).
To prove part (b), let N � 3. Taking into account that r N�1v0(r) is decreasing,

we have

v0(r) 

 
R
r

!N�1

v0(R)

for r > R, and an integration gives

v(r)  v(R) +

RN�1
v0(R)

N � 2

✓
1

RN�2 �

1
r N�2

◆

for r > R. Thus v is bounded, so that v0 < 0 and limr!+1 v(r) = 0. This
concludes the proof.

3. One-dimensional results

In this section, we deal with existence and nonexistence of positive solutions of
some one-dimensional problems, which are the core of our proofs of Theorems
1.1 and 1.2. In this generality, we believe our results are new and they can be of
independent interest. Let us consider first the problem

(
�w00

= s�� f (w) in (0, s0)
w(0) = 0

(3.1)

where � > 2 and f is a given continuous function. We will be dealing with solu-
tions w 2 C2(0, s0) \ C[0, s0).

Theorem 3.1. Let f : (0,1) ! R be continuous and positive. Assume � > 2
and Z �

0

f (t)
t�

dt = +1 (3.2)

for some small � > 0. Then problem (3.1) does not admit positive solutions. Con-
versely, if (3.2) does not hold, then for every � > 0 small enough, (3.1) admits a
positive solution w 2 C1[0, s0) \ C2(0, s0) which verifies

w0(0) = �.

Proof. Assume (3.2) holds and (3.1) admits a positive solution w. First of all,
notice that since w(0) = 0, w00 < 0 and w > 0 in (0, s0), we have w0

� 0 in
some small interval of the form (0, s1). Diminishing s0 a little bit we can always
assume that w0

� 0 in (0, s0). Observe that if we had w0
= 0 at some point,
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then w0 would achieve a minimum, so that w00
= 0 at that point, which is not

possible. Thus w0 > 0 in (0, s0). On the other hand, the mean value theorem gives
w(s) = w0(⇠)s � w0(s)s where ⇠ is some point in the interval (0, s). Hence

0 < w0(s) 

w(s)
s

in (0, s0). (3.3)

Since w0 is decreasing, it follows that w(s) � C0s for some C0 > 0 and every
s 2 (0, s0). Multiplying the equation in (3.1) by w0 and integrating in (s, s0) we
obtain

w0(s)2 � 2
Z s0

s

f (w(t))
w(t)�

✓
w(t)
t

◆�

w0(t)dt (3.4)

for every s 2 (0, s0). Hence

w0(s)2 � 2C�
0

Z s0

s

f (w(t))
w(t)�

w0(t)dt = 2C�
0

Z w(s0)

w(s)

f (⌧ )

⌧�
d⌧.

In particular, since w(0) = 0, (3.2) implies lims!0w0(s) = +1. Diminishing s0
again if necessary, we can always assume that w0(s) � 1 in (0, s0).

Next, let us iterate the use of (3.4). Since w(s)/s � 1 in (0, s0), we obtain

w0(s)2 � 2
Z w(s0)

w(s)

f (⌧ )

⌧�
d⌧ =: H(w(s)) in (0, s0).

Taking this inequality again in (3.4) with the aid of (3.3) we have

w0(s)2 � 2
Z s0

s

f (w(t))
w(t)�

H(w(t))
�
2 w0(t)dt = 2

Z w(s0)

w(s)

f (⌧ )

⌧�
H(⌧ )

�
2 d⌧

= �

Z w(s0)

w(s)
H 0(⌧ )H(⌧ )

�
2 d⌧ =

H(w(s))
�
2+1

�
2 + 1

,

where we have used H(w(s0)) = 0. Iterating this procedure we obtain two se-
quences {ak}1k=1 and {bk}1k=1 given by a1 = 1, ak =

��
2
�
ak�1 + 1, b1 = 1,

bk = b
�
2
k�1ak such that

w0(s)2 �

H(w(s))ak
bk

in (0, s0) for every k. (3.5)

It is not hard to see that

ak =

k�1X
j=0

⇣�

2

⌘ j
=

��
2
�k

� 1
�
2 � 1

,
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and we directly obtain ⇣�

2

⌘k�1
 ak  C1

⇣�

2

⌘k�1
(3.6)

for some positive constant C1. It follows in particular from (3.6) that bk 

C1b
�
2
k�1

��
2
�k�1 for k � 1. Iterating this inequality from k = 1 we obtain

bk  C
Pk�1

j=0(
�
2 )

j

1

⇣�

2

⌘Pk�1
j=0(k� j)( �

2 )
j

, (3.7)

for k � 1. To calculate the sum in the last exponent, we just notice that it is an
arithmetic-geometric sum, so that

k�1X
j=0

(k � j)
⇣�

2

⌘ j
=

��
2
�k

� 1
�
2 � 1

✓
1+

1
�
2 � 1

◆
�

k
�
2 � 1

. (3.8)

It follows from (3.7) and (3.8) that

bk  C( �
2 )

k�1

2 (3.9)
for some C2 > 1.

Now take � 2 (0, s0) such that H(w(s)) > 2C2 in (0, �). Taking (3.6) and
(3.9) into (3.5) we see that

w0(s)2 � 2(
�
2 )

k�1
in (0, �) for every k.

Letting k ! +1, we arrive at a contradiction, which shows that there are no
positive solutions of (3.1) when condition (3.2) holds.

Next, assume that (3.2) does not hold. Fix � > 0 and denote z�(s) = �s. In
the Banach space X = {z 2 C1[0, s0] : z(0) = 0} equipped with the standard C1
norm |z|C1 = max{|z|1, |z0|1}, consider the set B = {z 2 X : |z � z�|C1 

�
2 },

which is closed and convex. Define the operator

T z(s) = �s �

Z s

0

Z t

0
⌧�� f (z(⌧ )) d⌧ dt, s 2 [0, s0].

We claim that T is well-defined, maps B in B and is compact. To show the first two
assertions, notice that z 

3�
2 s, z

0
�

�
2 in [0, s0] for every z 2 B, so that

|(T z)0(s) � �| 

Z s

0
⌧�� f (z(⌧ ))d⌧ =

Z s

0

f (z(⌧ ))

z(⌧ )�

✓
z(⌧ )

⌧

◆� z0(⌧ )

z0(⌧ )
d⌧

 3� 21�� ���1
Z s

0

f (z(⌧ ))

z(⌧ )�
z0(⌧ )d⌧

= 3� 21�� ���1
Z z(s)

0

f (t)
t�

dt

 3� 21�� ���1
Z 3�

2 s

0

f (t)
t�

dt 

�

2

(3.10)
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in [0, s0], taking � small enough. It also follows if � is small that |T z(s)� z�| 
�
2 .

Hence T is well defined and T (B) ⇢ B.
In addition, T is a compact operator. Indeed, let {wn}

1

n=1 be an arbitrary se-
quence and denote zn = Twn . By (3.10), {z0n}1n=1 is uniformly bounded in [0, s0],
so that {zn} is equicontinuous and uniformly bounded, hence precompact. Pass-
ing to a subsequence, which we still denote {zn}1n=1, we have zn ! z uniformly
in [0, s0], for some z 2 C[0, s0]. Let us prove that z 2 C1[0, s0] and z0n ! z0
uniformly in [0, s0].

Observe that |z00n(s)| = s�� f (wn(s)) is uniformly bounded in compacts of
(0, s0]. Hence by means of Arzelá-Ascoli’s theorem and a diagonal argument we
may assume that also z0n ! z̄ uniformly in compacts of (0, s0] for some z̄ 2

C(0, s0]. It follows that z 2 C1(0, s0] and z̄ = z0. But the convergence is actually
uniform in [0, s0] (where we define z0(0) = �). To see this, let " > 0. By (3.10):

��z0n(s) � �
��
 3� 21�� ���1

Z 3�
2 s

0

f (t)
t�

dt,

and the same is true for z(s) by passing to the limit. Hence

��z0n(s) � z(s)
��
 3� 22�� ���1

Z 3�
2 �

0

f (t)
t�

dt  "

provided s 2 [0, �] for � < s0 small enough. Since z0n ! z0 uniformly in [�, s0],
we also have |z0n(s) � z0(s)|  " if n is large enough. Thus z0n ! z0 uniformly in
[0, s0], that is, zn ! z in X and T is a compact operator.

We finally remark that the continuity of T follows by using essentially the same
argument, so that we may apply Schauder’s fixed point theorem, to obtain that T
has a fixed point w 2 B, which is a solution of (3.1) verifying w0(0) = �, w > 0 in
(0, s0]. This concludes the proof.

Remark 3.2. It is important to stress that, for the slightly more general problem
(

�w00
= a(s) f (w) in (0, s0)

w(0) = 0

where a(s) is continuous in (0, s0), solutions can be constructed as long as
Z �

0
sa(s)ds < +1 (3.11)

and f (0+) := lim supt!0 f (t) < +1. This can be easily seen since for every
� > 0 the function w(s) = �s is a subsolution, while

w(s) = � + A
Z s

0

Z s

t
a(⌧ )d⌧dt
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(which is well-defined by (3.11) and Fubini’s theorem) is a supersolution provided
A > f (0+) and s0 is chosen small enough. In particular, problem (3.1) with � < 2
always has solutions, irrespective of the growth of f at zero (as long as f (0+) is
finite). The case � = 2 is subtler and things are slightly different (see the proof of
Theorem 5.1 in Section 5).

We turn now to consider our second problem, which arises in the analysis of
problem (1.2) in the case N = 2 (Theorem 1.2). Namely,

8<
:

�w00
= e2s f (w)in (s0,+1)

lim
s!+1

w(s) = +1.
(3.12)

The hypotheses in Theorem 3.3 below do not seem so straightforward to check as
in Theorem 3.1, but they are also necessary and sufficient.

Theorem 3.3. Let f : (0,+1) ! R be continuous and positive. Assume there
exists M > 0 such that

Z
1

M
eat f (t)dt = +1 for every a > 0. (3.13)

Then problem (3.1) does not admit positive solutions. Conversely, if (3.13) does not
hold, then for every sufficiently large positive �, (3.12) admits a positive solution
verifying

�

2
s  w(s) 

3�
2
s, s > s0.

Proof. Assume (3.12) has a positive solution w, defined in [s0,+1). Since w00 <
0, the functionw0 is decreasing. If we hadw0(s1)  0 for some s1 > s0, thenw0 < 0
in (s1,+1). Taking s2 > s1 we would have w(s)  w(s2) + w0(s2)(s � s2) for
s > s2, thus implying w(s) ! �1 as s ! +1, which is against the assumption
that w is positive in [s0,+1). Thus w0 > 0 in (s0,+1). It also follows that
w(s)  Cs in [s0,+1) for some positive constant C . Multiplying the equation by
w0 and integrating in (s0, s), for some s > s0, we arrive at

w0(s0)2 � 2
Z s

s0
e2t f (w(t))w0(t)dt � 2

Z s

s0
e
2
C w(t) f (w(t))w0(t)dt

� 2
Z w(s)

w(s0)
e
2
C ⌧ f (⌧ )d⌧,

and letting s ! +1 we obtain a contradiction with hypothesis (3.13). Thus no
positive solutions of (3.12) can exist.

The second part of the proof is similar to that of Theorem 3.1.
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Assume
Z

1

M
eat f (t)dt < 1 for some M, a > 0. Consider the Banach space

eX = {z 2 C1[s0,+1) : kzk < +1}, where

kzk = max

(
sup

[s0,+1)

|z(s)|
s

, sup
[s0,+1)

��z0(s)��
)

,

and the set eB = {z 2
eX : kz � z�k 

�
2 }, where z�(s) = �s and � > 0 is fixed.

Define the operator

T z(s) = �s �

Z s

s0

Z t

s0
e2⌧ f (z(⌧ ))d⌧dt, s 2 [s0,+1).

Let us prove that T is well-defined, maps eB into eB and is compact, provided we
choose � large enough. Observe that z(s) �

�
2 s, z

0(s) �
�
2 in [s0,+1) for every

z 2
eB. Then if � �

4
a :

|(T z)0(s) � �| =

Z s

s0
e2⌧ f (z(⌧ ))

z0(⌧ )

z0(⌧ )
d⌧ 

2
�

Z s

s0
e
4
� z(⌧ ) f (z(⌧ ))z0(⌧ )d⌧

=

2
�

Z z(s)

z(s0)
e
4
� t f (t)dt 

2
�

Z z(s)

z(s0)
eat f (t)dt



2
�

Z
1

�
2 s0

eat f (t)dt 

�

2
,

(3.14)

if � is chosen large enough. Moreover:
����T z(s)s

� �

���� 

1
s

Z s

s0

Z t

s0
e2⌧ f (z(⌧ ))d⌧dt 

�

2
s � s0
s



�

2
,

for every s > s0, hence T is well-defined and T (eB) ⇢
eB.

To see that T is compact, take a sequence {zn}1n=1 ⇢
eB and let wn = T zn .

Notice that, by Arzelá-Ascoli’s theorem and a diagonal argument, we may assume
that zn ! z uniformly in compacts of [s0,+1), where z 2 C[s0,1). It follows
easily that w0

n ! w̄ uniformly in compacts of [s0,+1), where

w̄(s) = � �

Z s

s0
e2⌧ f (z(⌧ ))d⌧, s � s0.

But this convergence is also uniform in [s0,+1). Indeed, observe that, if we fix
s1 > s0 take s > s1, and argue as in (3.14) we arrive at

|w0

n(s) � w0

n(s1)| =

Z s

s1
e2⌧ f (zn(⌧ ))d⌧ 

2
�

Z zn(s)

�
2 s1

eat f (t)dt,
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and a similar equality holds with wn and zn replaced by w̄ and z, by passing to the
limit. Hence

��w0

n(s) � w̄(s)
��


��w0

n(s1) � w̄(s1)
��
+

4
�

Z
1

�
2 s1

eat f (t)dt

for every s > s1. Next take " > 0. Choosing s1 large enough we have the last
integral less than "

2 . Taking n large enough we also have |w0

n(s1) � w̄(s1)| 
"
2 ,

hence |w0

n(s) � w̄(s)|  " if s > s1. Since this inequality also holds in [s0, s1] for
large enough n, we obtain that w0

n ! w̄ uniformly in [s0,+1).
Let w(s) = � +

R s
s0 w̄(t)dt . Then w0

n ! w0 uniformly in [s0,+1). Hence

|wn(s) � w(s)|
s



1
s

Z s

s0
|w0

n(t) � w(t)|dt ! 0

uniformly in [s0,+1), as n ! +1. This shows that T is compact in eB. The
continuity of T is shown in a similar manner.

Thus we may apply Schauder’s fixed point theorem to obtain that T has a fixed
point w in eB, which is a solution of (3.12) verifying �

2 s  w(s) 
3�
2 s, hence it is

positive in [s0,+1). This concludes the proof.

Remark 3.4. It can be shown by entirely similar methods that the problem
8<
:

�w00
= s� f (w) in (s0,+1)

lim
s!+1

w(s) = +1,
(3.15)

with � > 0, admits a positive solution if and only if
Z

1

M
t� f (t)dt < 1

for some M > 0.

4. Proof of Theorems 1.1 and 1.2

In the present section, we are performing the proof of our main theorems. As we
have already remarked in the Introduction, the equation (1.2) is first reduced to a
radial one, which is turned into a one-dimensional problem, so that the results in
Section 3 can be used.

Proof of Theorem 1.1. Assume there exists a supersolution of�1u = f (u) inRN
\

BR0 and condition (1.7) does not hold. According to Lemma 2.2, there exists a
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radial solution ū of the same equation. Setting ū(x) = v(r), with r = |x |, we
obtain that v is monotone for r greater than some R > 0 and

�v00

�

N � 1
r

v0

= f (v) in (R,+1) (4.1)

Lemma 2.3 also gives v0 < 0, limr!+1 v(r) = 0.
We next introduce the change of variables s =

1
(N�2)r N�2 , w(s) = v(r). Then

it is not hard to see that w is a positive solution of:
(

�w00
= as�� f (w) in (0, s0)

w(0) = 0,
(4.2)

for some a > 0 and some small positive s0, where � =
2(N�1)
N�2 > 2. We obtain

an immediate contradiction with Theorem 3.1. Thus no positive supersolutions can
exist in this case.

Reciprocally, assume condition (1.7) holds. By Theorem 3.1, for every posi-
tive, small enough �, there exists a positive solutionw of (4.2) withw0(0) = �. This
solution gives rise to a solution v of (4.1) verifying r N�1v0(r) ! �� as r ! +1,
thus (N�2)r N�2v(r) ! � as r ! +1. Hence there exist infinitely many positive
radially symmetric solutions of the equation �1u = f (u) in RN

\ BR0 , as was to
be seen. This concludes the proof.

Remark 4.1. When f is nondecreasing in (0, �) for some small �, it can also be
shown that condition (1.7) implies the existence of a positive supersolution in RN .
Indeed, if f is nondecreasing for small values then (1.7) implies limt!0+ t1��f (t)!
0, where � =

2(N�1)
N�2 . In particular, the solution of (4.2) verifies s|w

00(s)| =

s1�� f (w(s))  Cw(s)1�� f (w(s)) ! 0. Thus (N � 2)sw00
+ (N � 1)w0 > 0 for

small s (since w0(0) = � > 0). This implies in turn that v00(r) � 0 for r � R0 and
R0 suitable large.

Now let z(r) = v
⇣q

r2 + R20
⌘
, r � 0. It is easily checked that z0(0) = 0,

while

�z00 �
N � 1
r

z0 = �v00
r2

r2 + R20
� v0

R20�
r2 + R20

� 3
2

� (N � 1)
v0q

r2 + R20

� �v00

� (N � 1)
v0q

r2 + R20
� f (v) = f (z)

(observe that v is evaluated at
q
r2 + R20). Then z(|x |) is a supersolution of the

equation in RN .
The proof of our second theorem is much the same as that of Theorem 1.1. The

only major difference is that Theorem 3.3 is used instead of Theorem 3.1.
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Proof of Theorem 1.2. Assume N = 2, condition (1.8) does not hold, and there
exists a positive supersolution of (1.2). According to Lemmas 2.2 and 2.3, there
exists a solution v of the equation

�v00

�

1
r
v0

= f (v) in (R,+1)

verifying v0 > 0, limr!+1 v(r) = +1. The change of variables s = log r ,
v(r) = w(s) leads to the problem

(
�w00

= e2s f (w) in (s0,+1)

w(+1) = +1,
(4.3)

and we arrive at a contradiction with Theorem 3.3.
Conversely, if condition (1.8) holds, then by Theorem 3.3 problem (4.3) ad-

mits infinitely many positive solutions. Thus problem (1.2) admits infinitely many
positive radial solutions. It is worth mentioning that these radial solutions can never
be extended to be supersolutions in R2, due to the Liouville property.

Remark 4.2. It is interesting to remark that the contrary of condition (1.8) is
weaker than the condition found in [4], namely lim infs!+1 eas f (s) > 0 for every
a > 0. Let us see it by means of an example.

Choose ' 2 C0(�1, 1) with 0 < '  1, '(0) = 1. Define the sequence
{bn}1n=1 by bn =

1
n if n is even and bn = 1 if n is odd, and let

h(s) =

1X
n=2

bn'(2(s � n)),

and f (s) = exp(�sh(s)), s > 1. Observe that h(n) = bn for n 2 N, so that, if
a 2 (0, 1), we have

lim
k!+1

ea(2k+1) f (2k + 1) = lim
k!+1

e(a�1)(2k+1) = 0,

so that the condition in [4] does not hold. Let us show that
R

1

1 eas f (s)ds = +1

for every a > 0. Indeed, take an arbitrary a > 0. Then
Z

1

1
eas f (s)ds =

Z
1

1
e(a�

P
1

n=2 bn'(2(s�n)))sds

�

1X
n=2

Z n+ 1
2

n� 1
2

e(a�bn'(2(s�n)))sds �

1X
n=2

Z n+ 1
2

n� 1
2

e(a�bn)sds

�

1X
k=k0

Z 2k+ 1
2

2k� 1
2

e(a�b2k)sds
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for every integer k0 > 1. Choosing k0 large enough so that b2k < a
2 if k � k0, we

obtain Z
1

1
eas f (s)ds �

1X
k=k0

e
a
2

⇣
2k� 1

2

⌘
= +1

as was to be shown.

5. Some more general problems

Our main results can be extended to some more general equations with similar
proofs. We consider just a few possibilities and give only the main points in the
proofs.
Problems with weights

Problem (1.2) can also be dealt with when a weight function of power type appears
in front of the nonlinearity, namely:

�1u � �|x |↵ f (u) in RN
\ BR0, (5.1)

where ↵ 2 R and f is, as before, continuous and positive in (0,+1). The appear-
ance of the parameter � 2 R in (5.1) will become clear in the statement correspond-
ing to the “critical” case ↵ = �2. For simplicity, we only state the case N � 3, but
the case N = 2 could be easily treated as well.

Theorem 5.1. Assume N � 3. Let f : (0,+1) ! R be continuous and positive.
Then

(a) If ↵ < �2 and lim supt!0+ f (t) < +1, problem (5.1) has a positive super-
solution.

(b) If ↵ = �2 and f is nondecreasing in (0, �] for some small �, we have:

• When lim supt!0+
f (t)
t = +1, problem (5.1) does not have positive su-

persolutions for any � > 0.
• If 0 < lim supt!0+

f (t)
t < +1, there exists �0 > 0 such that for 0 <

� < �0 problem (5.1) admits a positive supersolution, while no positive
supersolutions exist for � > �0.

• If limt!0+
f (t)
t = 0, then there exist supersolutions of (5.1) for every � >

0.

(c) If ↵ > �2, problem (5.1) has a positive supersolution if and only if
Z �

0

f (t)

t
↵+2(N�1)

N�2
dt < 1 (5.2)

for some � > 0.
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Sketch of proof. Assume there exists a positive supersolution u. Then there exists a
radial solution v, which is decreasing and vanishes at infinity. With the change of
variables v(r) = w(s), where s =

1
(N�2)r N�2 , we obtain a solution of

(
�w00

= s�� f (w) in (0, s0)
w(0) = 0

(5.3)

with � =
↵+2(N�1)

N�2 and s0 sufficiently small. When ↵ > �2, it follows that � > 2,
so that solutions of (5.3) exist if and only if (5.2) holds, by Theorem 3.1. If ↵ < �2,
we obtain � < 2, and problem (5.3) always has a positive solution, irrespective of
f , provided lim supt!0+ f (t) < +1 (cf. Remark 3.2 in Section 3).

Thus only the case ↵ = �2, that is, � = 2, remains to be proved. With regard
to existence, assume lim supt!0+

f (t)
t < +1. Then there exists K > 0 such that

f (t)  Kt if t is small enough. The function w̄(s) = s↵ is a supersolution of (5.3)
when �  1/4K , provided ↵ is chosen to satisfy ↵(1� ↵) = �K , since

�w̄00(s) = ↵(1� ↵)s�2w̄(s) = �Ks�2w̄(s) � s�2 f (w̄(s)).

If limt!0+
f (t)
t = 0, for every � > 0 we can take � such that ��  1/4, and since

f (t)  �t if t is small enough, the function w̄ will be again a supersolution.
Now, for the nonexistence results, observe that (cf. (3.3) in the proof of Theo-

rem 3.1) w(s)/s is decreasing, hence r N�2v(r) is increasing. The rest of the proof
does not take into account any more problem (5.3) and deals only with the radial
solution v(r). It is essentially different from the previous ones, and relies in an
argument borrowed from [18] (see also [21]).

Choose a test function � 2 C1

0 (1, 4) with 0  �  1 and � = 1 in (2, 3). For
R > R0 introduce the function

z(r) = v(r) � v(2R)�
⇣ r
R

⌘
, r > R0.

Observe that z = v > 0 if R0 < r < R or r > 4R, and z(2R) = 0. In particular,
z achieves a nonpositive minimum at some point R < r0 < 4R. Hence z0(r0) = 0,
z00(r0) � 0. This implies

�r�2
0 f (v(r0)) = �v00(r0) �

N � 1
r0

v0(r0)



v(2R)

R2

✓
��00

⇣r0
R

⌘
�

(N � 1)R
r0

�0

⇣r0
R

⌘◆

 C
v(2R)

R2
,

where C is a constant which does not depend on R nor on v. Since v is decreas-
ing for large r , R < r0 < 4R and f is nondecreasing for small values, we obtain
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� f (v(4R))  Cv(2R) for large R. By the monotonicity of RN�2v(R), we also
have v(2R)  2N�1v(4R), hence, after replacing 2R by r , we obtain for all suffi-
ciently large r :

�
f (v(r))
v(r)

 C,

whereC does not depend on r nor on v. Letting r ! 1, we arrive at a contradiction
with existence if lim supt!0+

f (t)
t = +1. Otherwise we obtain

� lim sup
t!0+

f (t)
t

 C,

and when the lim sup is positive, there are no positive solutions when � is large
enough. Since there are supersolutions for small � we can define �0 to be the
supremum of the values of � for which there exists a positive supersolution. It
clearly follows that there exist positive supersolutions for � < �0, while there are
no supersolutions for � > �0.

Gradient terms

When the Laplacian is perturbed with a gradient term – but keeping the homogene-
ity – a similar analysis can be performed. As an example, consider the problem:

�1u + |ru| � � f (u) in RN
\ BR0 (5.4)

where f is as before. This problem was analyzed in [2] in the special case f (t) =

t p, p > 0. Our results for problem (5.4) are as follows:

Theorem 5.2. Assume N � 2. Let f : [0,+1) ! R be continuous and positive
in (0,+1), and there exists � > 0 such that f is nondecreasing in (0, �). Then

(a) When lim supt!0+
f (t)
t = +1, problem (5.4) does not have positive bounded

supersolutions for any � > 0.
(b) If 0 < lim supt!0+

f (t)
t < +1, there exists �0 > 0 such that for 0 < � <

�0 problem (5.4) admits a positive bounded supersolution, while no positive
bounded supersolutions exist for � > �0.

(c) If limt!0+
f (t)
t = 0, then there exist positive bounded supersolutions of (5.4)

for every � > 0.

Sketch of proof. Assuming a positive bounded supersolution exists, and arguing as
in Lemma 2.2, we obtain a radial solution v verifying �(r N�1v0)0 + r N�1

|v0
| =

r N�1 f (v), r > R and v(+1) = 0. Performing the change of variables v(r) =

w(s), where s = �(r) and

�(r) =

Z
1

r

1
sN�1 e

�sds
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the radial problem reduces to
8><
>:

�w00

=

1
�0(��1(s))2

f (w) in (0, s0)

w(0) = 0
(5.5)

for some small positive s0. Now observe that �(r) ⇠ r1�Ne�r as r ! 1

(l’Hôpital’s rule), this implying that (��1(s))1�Ne���1(s)
⇠ s as s ! 0. Thus

��0
�
��1(s)

�
=

�
��1(s)

�1�Ne���1(s)
⇠ s as s ! 0.

Hence solutions of (5.5) also verify
8><
>:

�w00

�

C
s2
f (w) in (0, ")

w(0) = 0

for some C > 0 (as close to one as we desire). The further change of variables
w(s) = z(t), where t = s

1
2�N , shows that z̄(x) = z(|t |) verifies

�1z̄ � C|x |�2 f (z̄) in RN
\ BR0

for some R0 > 0 large enough. Thus Theorem 5.1 can be used to give the nonexis-
tence results in parts (a) and (b). The existence results are exactly as in the proof of
Theorem 5.1.

Remarks 5.3. (a) Let us mention in passing that the Liouville property is not valid
in R2 for this operator. That is, there exist positive functions verifying �1u +

|ru| � 0 in R2.

(b) Solutions which are not bounded can also be dealt with, following a slightly
different approach. In this case, the radial solution v verifies v(+1) = +1, and
the change of variables v(r) = w(s) with s =

e�(r) and

e�(r) =

Z r

1

es

sN�1 ds

followed by w(s) = z(t), with t = s
1

2�N , leads to the problem

�1z̄ � C|x |�2 f (z̄) in BR0 \ {0},

where z̄(x) = z(|x |). The proof concludes essentially as that of Theorem 5.1.
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(c) The related problem with a minus sign in front of the gradient can also be ana-
lyzed in a similar way.

Uniformly elliptic fully nonlinear operators

The linearity of the Laplacian is not an essential point in any of our proofs. There-
fore, it is to be expected that they can be extended to cover problems containing
nonlinear operators. Let us consider the fully nonlinear equation

�F
�
D2u

�
� f (u) in RN

\ BR0 (5.6)

where F : SN ! R is continuous and positively homogeneous of degree one.
Here, SN denotes the set of all symmetric N ⇥ N real matrices. On one hand, we
assume that F satisfies the uniform ellipticity condition

M�

�,3(P)  F(M + P) � F(M) M+

�,3(P) (5.7)

for all M, P 2 SN , and some 3 � � > 0, whereM±

�,3 are the extremal Pucci’s
operators, given by

M+

�,3(P) = �
X

µ2� (P)
µ<0

µ + 3
X

µ2� (P)
µ>0

µ

and
M�

�,3(P) = 3
X

µ2� (P)
µ<0

µ + �
X

µ2� (P)
µ>0

µ

respectively, and � (P) denotes the spectrum of the matrix P . On the other hand,
we also assume that F has radial symmetry as in [19], that is,

8<
:
F
✓
p
r
I +

⇣
m �

p
r

⌘ x ⌦ x
r2

◆
depends on x

only through |x | for m, p 2 R,

(5.8)

where, as usual, r = |x | and⌦ denotes tensorial product. It is known, by the results
of [6], that F has two radially symmetric fundamental solutions �±(x), with either
�±(x) = ±|x |�↵ if ↵ > 0 and �±(x) = ⌥|x |�↵ if ↵ < 0 for some ↵ = ↵±(F)
or �±(x) = ⌥ log |x | (if this is the case then we set ↵±(F) = 0). Notice that for
a given operator F there are two unique numbers a+(F) and ↵�(F), and therefore
only two fundamental solutions �+ and ��.

It is to be noted that ↵±(F) > �1 always holds (see [6]). Then a similar
procedure as before gives us the next result:
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Theorem 5.4. Assume F : SN ! R is continuous, positively homogenous of
degree one, and verifies (5.7) and (5.8). Then
I. Assume ↵+(F) > 0.

(a) If ↵�(F) > 0, problem (5.6) admits a positive supersolution if and only if
Z �

0

f (t)

t
2(↵+(F)+1)

↵(F)

dt < +1

for some � > 0.
(b) If ↵�(F) = 0, problem (5.6) admits a positive supersolution if and only if

Z
1

M
eat f (t)dt < +1

for some M, a > 0.
(c) If ↵�(F) < 0, problem (5.6) admits a positive supersolution if and only if

Z
1

M
t�

2(↵�(F)+1)
↵�(F) f (t)dt < +1

for some M > 0.

II. Assume ↵+(F)  0.

(a) If ↵�(F) > 0, problem (5.6) does not admit positive supersolutions.
The other possibilities (b) and (c) are exactly as in Case I.

Proof. We remark that all solutions and supersolutions have to be considered in the
viscosity sense, but we are not giving precise details here. If there exists a positive
supersolution u, by arguing as in the proof of Lemma 2.2, there exists a radial
solution v verifying:

�F
✓✓

v00(r)
r2

�

v0(r)
r3

◆
x ⌦ x +

v0(r)
r

I
◆

= f (v),

where I is the N ⇥ N identity matrix.
Moreover, notice that Lemma 2.1 holds since only comparison is needed so

either v0
� 0 or v0

 0 in (R,+1), and if we had v0
= 0 at some point, then v0

would attain either a minimum or a maximum, hence v00
= 0 at that point, which

is not possible due to f (v) > 0. Hence v0 > 0 in the first case and v0 < 0 in the
second. Now we will see that if v0 > 0 then limr!+1 v(r) = +1. In fact if v is
bounded then we can argue as in Theorem 5.1: choose a test function � 2 C1

0 (1, 4)
with 0  �  1 and � = 1 in (2, 3). For R > R0 introduce the function

z(r) = v(r) � v(2R)�
⇣ r
R

⌘
, r > R0.
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Since z = v > 0 if R0 < r < R or r > 4R and z(2R) = 0, z achieves a nonpositive
minimum at some point r0(R) 2 (R, 4R). This implies

f (v(r0(R)))  C
v(2R)

R2
,

where C is a constant which does not depend on R nor on v. Since v is bounded
f (v(r0(R))) ! 0 as R!1 thus v(r0(R)) ! 0 as R ! 1which contradicts v0 >
0. Observe that in the case v0 < 0 with the same argument we get limr!+1 v(r) =

0.
The next result is a generalization of Lemma 2.3.

Lemma 5.5.

(a) If ↵+(F)  0, then limr!+1 v(r) = +1.
(b) If ↵�(F)  0, then limr!+1 v(r) = +1.
(c) If ↵�(F) > 0, then limr!+1 v(r) = 0.

Proof. (a) Suppose by contradiction that limr!+1 v(r) = 0, hence v0 < 0. We
define w(r) = c�+(r) + d where c and d are taken to have w(R̄) = v(R̄) and
w0(R̄) > v0(R̄). Observe that since v0(R̄) < 0, it is possible to choose c > 0.
Then, since limr!+1 w(r) = �1, there exists R⇤ such that v(R⇤) = w(R⇤).
This contradicts the comparison principle.
(b) Take R1 > R̄ and for r 2 (R1, R̄) define

w(r) =

v(R̄)(��(r) � ��(R1)) + v(R1)(��(R̄) � ��(r))
��(R̄) � ��(R1)

.

It is to be noted that �F(D2w) = 0, while w(R1) = v(R1), w(R̄) = v(R̄).
Then by comparison v � w in (R̄, R1). Now we can let R1 ! +1 noticing that
��(R1) ! 1 to get v � v(R̄) in (R̄,1). This shows that limr!+1 v(r) = +1.
(c) The proof is similar to that of part (a) and therefore will be omitted.

Observe that parts (a) and (c) of the lemma immediately prove case II (a). To
deal with the other cases in the proof, we make the change of variables s = �(r)
(where in case (a) we take � = �+ and in cases (b) and (c) � = ��), v(r) = w(s)
to arrive at

�F

 
�0(r)2

r2
w00x ⌦ x + w0

✓
�00(r)
r2

�

�0(r)
r3

◆
x ⌦ x +

�0(r)
r

I
�!

= f (v).

Now notice that by (5.7) we have

F

 
�0(r)2

r2
w00x ⌦ x + w0

✓
�00(r)
r2

�

�0(r)
r3

◆
x ⌦ x +

�0(r)
r

I
�!

� F
✓

w0

✓
�00(r)
r2

�

�0(r)
r3

◆
x ⌦ x +

�0(r)
r

I
�◆

+M�

�,3

 
�0(r)2

r2
w00x ⌦ x

!
.
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Next observe that w0
= v0�0, so that by Lemma 5.5 and the definition of � we get

w0 > 0. Hence

F

 
�0(r)2

r2
w00x ⌦ x + w0

✓
�00(r)
r2

�

�0(r)
r3

◆
x ⌦ x +

�0(r)
r

I
�!

�M�

�,3

 
�0(r)2

r2
w00x ⌦ x

!
=

�0(r)2

r2
M�

�,3

�
w00x ⌦ x

�
,

since F is positively homogeneous. It follows that w verifies the inequality
�

�0(r)2
r2 M

�

�,3

�
w00x ⌦ x

�
� f (w) in an interval of the form (0, s0) in case (a) or

(s0,+1) in cases (b) and (c). If we hadw00
�0 at some point thenM�

�,3

�
w00x⌦x

�
=

�r2w00, which leads to ���0(r)2w00
� f (w) > 0, impossible. Then w00 < 0 at ev-

ery point andM�

�,3

�
w00x ⌦ x

�
= 3r2w00. Thus w verifies

�w00

�

1
3�0

�
��1(s)

�2 f (w),

in an interval of the form (0, s0) (with w(0) = 0) or (s0,+1) (with w(+1) =

+1). Taking into account that �0(��1(s)) = s
↵+(F)+1
↵+(F) in case (a), �0(��1(s))

= e�s in case (b) and �0(��1(s)) = s
↵�(F)+1
↵�(F) in case (c), it follows that w is a

(viscosity) supersolution of the equation

�w00

= a(s) f (w), (5.9)

where a(s) = 3�1s�
2(↵+(F)+1)

↵+(F) , s 2 (0, s0) in case (a), a(s) = 3�1e2s , s 2

(s0,+1) in case (b) and a(s) = 3�1s�
2(↵�(F)+1)

↵�(F) , s 2 (s0,+1) in case (c).
We observe that w = �s is a subsolution of (A) in either case and w � w for

sufficiently small �. By means of the method of sub- and supersolutions, we obtain
a (viscosity) solution z of (A), which by bootstrapping verifies z 2 C2(0, s0) \

C[0, s0] or z 2 C2(s0,+1) \ C[s0,+1). Thus all nonexistence results follow
from Theorems 3.1 and 3.3 and Remark 3.4.

The sufficiency of the three conditions in the different cases can be seen by
taking into account that the problem

�w00

=

1
��0

�
��1(s)

�2 f (w)

has a positive solution with either of the conditions w(0) = 0 or w(+1) = +1,
verifying w0 > 0, thanks to the results in Section 3.
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Taking again � as above in the three different cases we have

F

 
�0(r)2

r2
w00x ⌦ x + w0

✓
�00(r)
r2

�

�0(r)
r3

◆
x ⌦ x +

�0(r)
r

I
�!

M+

�,3

 
�0(r)2

r2
w00x ⌦ x

!
= ��0

�
��1(s)

�2
w00

= � f (w)

and u(x)=v(|x |) is a radially symmetric supersolution of the equation�F(D2u) =

f (u) in RN
\ BR0 for suitably large R0.

p-Laplacian operator

Elliptic problems which are not uniformly elliptic can also be considered with our
approach. As a prototype, for the p-Laplacian version of problem (1.2), namely

�1pu � f (u) in RN
\ BR0, (5.10)

where 1pu = div(|ru|p�2ru), p > 1, we have the following results, depending
on whether p < N , p = N or p > N .

Theorem 5.6. Let f : [0,1) ! R, be continuous and positive in (0,1) and
p < N . Then problem (5.10) admits a positive weak supersolution if and only if

Z �

0

f (t)

t
p(N�1)
N�p

dt < +1

for some � > 0.

Theorem 5.7. Let f : [0,1) ! R, be continuous and positive in (0,1) and
p = N . Then problem (5.10) admits a positive weak supersolution if and only if
there exist M, a > 0 such that

Z
1

M
eat f (t)dt < 1.

Theorem 5.8. Let f : [0,1) ! R, be continuous and positive in (0,1) and
p > N . Then problem (5.10) admits a positive weak supersolution if and only if
there exists M > 0 such thatZ

1

M
t
p(N�1)
p�N f (t)dt < 1.

As in the previous proofs, the basic ingredient is the existence of a fundamental
solution, which takes the form �(x) = |x |

p�N
p�1 if p 6= N and �(x) = log |x | when

p = N . Then the relevant point is an adaptation of Theorems 3.1 and 3.3 and
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Remark 3.4 for the corresponding one-dimensional problems obtained after setting
s = �(r) in the radial version of (5.10):

(
�

�
|w0

|
p�2w0

�
0

= s�� f (w) in (0, s0)
w(0) = 0

where � > p, 8<
:

�

���w0

��p�2w0

�
0

= eps f (w) in (s0,1)

lim
s!+1

w(s) = +1

and 8<
:

�

���w0

��p�2w0

�
0

= s� f (w) in (s0,+1)

lim
s!+1

w(s) = +1,

with � > 0.

A. Appendix

In this appendix, we collect some results on the method of sub- and supersolutions
which are instrumental in our proofs, since we could not find a pertinent reference
for some of them (especially for those concerning radial symmetry). We only con-
sider the model problem:

(
�1u = f (x, u) in �

u = g on @�,
(A.1)

where � is a smooth bounded domain and f : � ⇥ R ! R, g : @� ! R are
continuous. But with similar techniques, some more general problems can also be
dealt with. For instance, the fully nonlinear equation

(
�F

�
D2u

�
= f (x, u) in �

u = g on @�.

Most proofs are essentially the same (the existence part can be obtained from The-
orem 1.1 of [17] or from the use of Schauder’s fixed point theorem together with a
truncation argument as in [31]). For the p-Laplacian version of (A.1), namely

(
�1pu = f (x, u) in �

u = g on @�,

similar results hold (cf. [34] for the standard method of sub- and supersolutions).
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We say that u 2 H1(�) \ C(�) is a (weak) subsolution of (A.1) if u  g on
@� and Z

�
rur� 

Z
�
f (x, u)�

for every � 2 C1

0 (�), � � 0. Supersolutions are defined by reversing the above
inequalities. It is well-known that the maximum of two subsolutions is again a
subsolution, while the minimum of two supersolutions is also a supersolution.

When problem (A.1) admits a subsolution u and a supersolution ū with u  ū
in � and the function f is locally Lipschitz continuous or locally Hölder continu-
ous with respect to the second variable, a weak solution u of (A.1) can be obtained
by means of a monotone iteration (cf. [33] or [3]). This method gives further infor-
mation, since it provides in addition with a minimal and a maximal solution in the
order interval [u, ū].

A remarkable fact is that the existence of a minimal and a maximal solution can
be always ensured even if the solutions are not obtained by means of a monotone
iteration. This is the case in our present situation since f is assumed to be merely
continuous.

Theorem A.1. Assume f : �⇥R ! R and g : @� ! R are continuous, and that
there exist a subsolution u and a supersolution u of (A.1) with u  u in �. Then
there exist a minimal and a maximal weak solution of (A.1) in the order interval
[u, u].

Proof. The existence of a weak solution in the interval [u, u] for continuous nonlin-
earities (and even more general operators) is well-known (see for instance [16, 34]
or [36] for a variational proof). Thus we are only proving that there exists a max-
imal weak solution (of course the existence of a minimal weak solution follows
similarly). This proof is taken from [31].

Define

A = sup
⇢Z

�
u : u 2 [u, u] is a solution of (A.1)

�
.

Then A is clearly well defined. By its definition, there exists a sequence of weak so-
lutions {un}1n=1 ⇢ [u, u] such that

R
� un ! A. Since {un} is a uniformly bounded

sequence, we obtain in a standard way that it is bounded in H1(�), thus by pass-
ing to a subsequence, we may assume un ! u weakly in H1(�) and strongly in
L1(�), where u 2 [u, u] is a weak solution of (A.1) with of course

R
� u = A. We

claim that u is the maximal weak solution.
For this aim, let v 2 [u, u] be an arbitrary weak solution. Sincew = max{v, u}

is a subsolution with w  u, there exists a weak solution z 2 [w, u]. But then
u  w  z and

A =

Z
�
u 

Z
�
z  A,

by the definition of A. It follows that u = z � w � v, as was to be proved.
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An important consequence of Theorem A.1 is that, when � is rotationally in-
variant, f = f (|x |, u), g = g(|x |) and both u and ū are radially symmetric, then
the minimal and the maximal weak solutions umin and umax are also radially sym-
metric. This holds because if R is a rotation the umin(Rx) is again a solution in the
order interval [u, ū], hence umin(Rx) � umin(x), which shows the radial symmetry
of umin. When f is locally Hölder continuous, thanks to the monotone iteration, it
suffices that u is radially symmetric to obtain that umin also is. But this property is
valid in general without assuming the extra amount of regularity on f .

Corollary A.2. Under the same hypotheses as in Theorem A.1, assume in addition
that f = f (|x |, u), g = g(|x |) and� is rotationally invariant. If u (respectively u)
is radially symmetric then so is the minimal (respectively maximal) weak solution.

Proof. Assume u is radially symmetric, and let umin denote the minimal weak so-
lution. If R denotes a rotation, then umin(Rx) is also a weak solution of (A.1). It
follows that

u(x) = min{umin(Rx), u(x)}

is a supersolution, which verifies, by the radial symmetry of u, u � u. By Theo-
rem A.1 there exists a weak solution w in the order interval [u, u] ⇢ [u, u]. Thus
w � umin. But on the other hand w(x)  umin(Rx), so that umin(x)  umin(Rx).
Since R is an arbitrary rotation, it follows that umin is radially symmetric.
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[1] S. ALARCÓN, J. GARCÍA-MELIÁN and A. QUAAS, Nonexistence of positive supersolu-
tions to some nonlinear elliptic equations, J. Math. Pures Appl. 99 (2013), 618–634.
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