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Intrinsic co-local weak derivatives
and Sobolev spaces between manifolds

ALEXANDRA CONVENT AND JEAN VAN SCHAFTINGEN

Abstract. We define the notion of co-locally weakly differentiable maps from a
manifold M to a manifold N . If p � 1 and if the manifolds M and N are endowed
with a Riemannian metric, this allows us to define intrinsically the homogeneous
Sobolev space Ẇ1,p(M, N ). This new definition is equivalent to the definition by
embedding in the Euclidean space and to that of Sobolev map into a metric space.
The co-local weak derivative is an approximate derivative. The co-local weak
differentiability is stable under a suitable weak convergence. The Sobolev spaces
can be endowed with various intrinsic distances that induce the same topology
and for which the space is complete.

Mathematics Subject Classification (2010): 58D15 (primary); 46E35, 46T10,
53C25, 58E20 (secondary).

Introduction

Sobolev spaces between manifolds are a natural tool to study variational problems
for maps between manifolds, arising in geometry [22,45,54] or in non-linear phys-
ical models [8, 15, 37].

A Sobolev space of maps between the manifolds M and N can be defined for
every p 2 [1,1) by [8, 11, 15, 18, 22, 27–30,34,36,37, 46],

Ẇ 1,p(M, N )={u : M ! N : ◆ � u2W 1,1
loc (M, R⌫) and |D(◆ � u)|2L p(M)} (0.1)

where ◆ : N ! R⌫ is an isometric embedding of the target manifold N in the
Euclidean space R⌫ . This definition is always possible, since every Riemannian
manifold is isometrically embedded in a Euclidean space [49, Theorem 2] and [50,
Theorem 3]. Since the embedding ◆ : N ! R⌫ is not unique, this definition could
in principle depend on the choice of the embedding ◆.

This difficulty can be avoided by defining Sobolev spaces into N by using only
the metric structure of N , either by composition with Lipschitz maps, [2, 34, 51]

Received December 20, 2013; accepted October 20, 2014.
Published online March 2016.



98 ALEXANDRA CONVENT AND JEAN VAN SCHAFTINGEN

or by oscillations on balls [40, 43]. These definitions are equivalent to each other
[17,40] and equivalent to the definition by isometric embedding (0.1) [34, Theorem
3.2], [35, Theorem 2.17]. They are all intrinsic but they do not have any notion
of weak derivative; they only provide a notion of Dirichlet integrand |Du| which
might differ from the one given by isometric embedding and might depend on the
integrability exponent p [17]. If the manifold N has a Riemannian structure, then
an approximate derivative has been constructed a posteriori almost everywhere on
M [26]; in contrast with the classical theory of Sobolev spaces between Euclidean
spaces the derivative is a fine property of a function that plays no role in the def-
inition of the Sobolev maps. Several distances have been proposed for spaces of
Sobolev maps between metric spaces, but the spaces are not complete for any of
these distances [17].

The goal of this work is to propose a robust intrinsic definition of Sobolev maps
between manifolds in which the weak derivative plays a central role and to endow
with well-behaved intrinsic metrics the space of Sobolev maps. We shall proceed
in three steps: first we shall define a notion of differentiability and derivative, then
we shall study the integrability of the derivative and finally we shall endow these
spaces with convergence and metrics. Each of these steps will require additional
structure on the manifolds: at the beginning we shall simply use the differentiable
structure of the manifolds, then a Riemannian metric on the manifolds and finally
a Riemannian metric on their tangent bundles. Defining the derivative before the
space gives immediately the independence of the derivative from the Riemannian
metric or the integrability exponent p. The primary role of the derivative in our
approach will be quite handy to define complete intrinsic metrics.

In the first step we define co-locally weakly differentiable maps as maps u :

M ! N for which f � u is weakly differentiable when f 2 C1c (N , R) (Defi-
nition 1.1). The co-local weak derivative is defined as the unique morphism of
bundles Du such that the chain rule D( f � u) = Df � Du holds (Definition 1.2):

T M Du //

D( f �u) ""F
F

F
F

F
F

F
F

T N
Df

✏✏
R.

The co-local weak derivative has the usual non-linear properties of a weak deriva-
tive; the definition extends previous definitions of the derivatives by truncation
[4,9]. The co-local weak derivative is an approximate derivative (Proposition 1.13).
This follows from the Euclidean counterpart. We recover thus without any Rieman-
nian structure the derivative of Focardi and Spadaro [26].

In the second step, we define when M and N are Riemannian manifolds, for
every p 2 [1,1], the homogeneous Sobolev space (Definition 2.1)

Ẇ 1,p(M, N ) =

n
u : M ! N : u is co-locally weakly differentiable

and |Du|g⇤

M⌦gN 2 L p(M)
o
,
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where the Euclidean norm |·|g⇤

M⌦gN is induced by the Riemannian metrics on M
and N . This definition is equivalent to (0.1) when N is isometrically embedded
in R⌫ (Proposition 2.7) — (0.1) is thus a posteriori an intrinsic definition — and
with the definition of Sobolev spaces into metric spaces (Proposition 2.2). Given
a co-locally weakly differentiable map u : M ! N , we characterize the quantity
|Du|g⇤

M⌦gN as the smallest measurable function w : M ! R such that for every
f 2 C1c (N , Rmin(dim(M),dim(N ))),

|D( f � u)|  | f |Lipw almost everywhere in M. (0.2)

This allows us to define a robust Dirichlet integrand; previous definitions with scalar
test function f 2 C1c (N , R) were quite unstable [2,51]. Furthermore the inequality
(0.2) might provide a robust definition of the Dirichlet integrand for Sobolev maps
into metric spaces.

We study weakly convergent sequences in Section 3. This part should be useful
to obtain compactness and lower semi-continuity results in the calculus of variations
for maps between manifolds.

We conclude our work by giving a natural notion of strong convergence and
associated intrinsic distances �̇1,p and �1,p. If the Riemannian manifold N is com-
plete, Sobolev spaces are complete under such distances (Propositions 4.2 – 4.12).
This was not the case for distances proposed by Chiron [17, Proposition 4.9] and
this opens the study of the completion of smooth maps in Sobolev spaces. Our no-
tion of strong convergence is equivalent to existing ones for embedded manifolds
and metric spaces (Subsection 4.2).

1. Co-locally weakly differentiable maps and co-local weak derivative

1.1. Weak differentiability on a differentiable manifold

We assume that M and N are differentiable manifolds of dimensionsm and n which
are Hausdorff and have a countable basis [21, Section 0.5], [38, Section 1.5].

We recall various definitions of local measure-theoretical notions on a man-
ifold. A set E ⇢ M is negligible if for every x 2 M there exists a local chart
 : V ✓ M ! Rm – that is  : V ✓ M !  (V ) ✓ Rm is a diffeomorphism –
such that x 2 V and the set  (E \ V ) ⇢ Rm is negligible. A map u : M ! N
is measurable if for every x 2 M there exists a local chart  : V ✓ M ! Rm

such that x 2 V and the map u �  �1 is measurable [38, Section 3.1], [20, Section
3]. A function u : M ! R is locally integrable if for every x 2 M there exists
a local chart  : V ✓ M ! Rm such that x 2 V and u �  �1 is integrable on
 (V ) [39, Section 6.3]. Similarly, a locally integrable map u : M ! R is weakly
differentiable if for every x 2 M there exists a local chart  : V ✓ M ! Rm such
that x 2 V and the map u �  �1 is weakly differentiable. All these notions are
independent on any particular metric or measure on the manifold M .

A Radon measure µ on M is absolutely continuous if for every x 2 M there
exists a local chart  : V ✓ M ! Rm such that x 2 V and the image measure
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 ⇤(µ) defined by  ⇤(µ)(A) = µ( �1(A)) is absolutely continuous with respect
to the Lebesgue measure. The measure µ is positive if for every x 2 M there exists
a local chart  : V ✓ M ! Rm such that x 2 V and the Lebesgue measure on
 (V ) is absolutely continuous with respect to  ⇤(µ)(A) = µ( �1(A)) [42, Defi-
nition 5.1.1]. Every absolutely continuous measure on M is absolutely continuous
with respect to every positive measure. A set E ⇢ M is negligible if and only if
µ(E) = 0 for every positive absolutely continuous Radon measure µ. A measur-
able function u : M ! R is locally integrable if and only if there exists a positive
absolutely continuous Radon measure µ such that

R
M |u| dµ < 1.

We first define the notion of co-locally weakly differentiable map.
Definition 1.1. A map u : M ! N is co-locally weakly differentiable if u is mea-
surable and for every f 2 C1c (N , R), f � u is weakly differentiable.

When N = R, Definition 1.1 is related to the space GBV (M, R) of functions
of generalized bounded variation introduced by L. Ambrosio and E. De Giorgi [4],
[5, Definition 4.26] and to the space T 1,1loc (M) of Sobolev functions by truncations
from M toR [9]. Any function in T 1,1loc (M) is co-locally weakly differentiable. The
converse is false as it can be observed by taking a function u 2 C1(R\ {0}, R) such
that limt <

!0 u(t) = �1 and limt >
!0 u(t) = +1.

When N = Rn and n � 2, co-locally weakly differentiable functions are
closely related to functions of generalized bounded variation [5, Definition 4.26].
Indeed, if f 2 C1(Rn, R), then supp(Df ) is compact if and only if f is constant
outside a compact set.

Finally, if u : Rm
! Rn is weakly differentiable, then u is co-locally weakly

differentiable. The converse is false: for example, the function u : Rm
! R defined

for every x 2 Rm
\ {0} by u(x) = |x |�↵ is not weakly differentiable for any

↵ > m � 1, but is co-locally weakly differentiable for every ↵ 2 R.
In order to define the co-local weak derivative, we denote by (T M,⇡M ,M)

the tangent bundle over M , that is,

T M =

[
x2M

{x} ⇥ TxM,

⇡M : T M ! M is the natural projection and for every x 2 M , the fiber ⇡�1
M ({x})

is isomorphic to Rm ; a map � : T M ! T N is a bundle morphism that covers
u : M ! N if

T M � //

⇡M
✏✏

T N
⇡N

✏✏
M u

// N

commutes, that is, ⇡N��=u�⇡M, and for every x2M ,�(x) :⇡�1
M ({x})!⇡�1

N ({u(x)})
is linear. The space of all bundle morphisms is denoted by Hom(T M, T N ). In
particular, if u : M ! N is a differentiable map, then Du : T M ! T N is a bundle



INTRINSIC SOBOLEV SPACES BETWEEN MANIFOLDS 101

morphism that covers u. By a direct covering argument, if u : M ! R is weakly
differentiable, then there exists a bundle morphism Du : T M ! R such that for
every local chart  : V ✓ M ! Rm ,

D(u �  �1) = Du � D �1

almost everywhere on  (V ). We have now all the ingredients to define the co-local
weak derivative.
Definition 1.2. Let u : M ! N be a co-locally weakly differentiable map. A map
Du : T M ! T N is a co-local weak derivative of u if Du is a measurable bundle
morphism that covers u and for every f 2 C1c (N , R),

D( f � u) = Df � Du

almost everywhere in M .
Consequently, if Du is a co-local weak derivative of u, for almost every

x 2 M , Du(x) 2 L(TxM,Tu(x)N ) and for each e 2 TxM , D( f � u)(x)[e] =

Df (u(x))[Du(x)[e]].
We first observe that this notion extends the notion of classical differentiability:

Proposition 1.3 (Equivalence of classical and co-local weak derivatives). Let
u 2 C(M, N ). Then u has a continuous co-local weak derivative if and only if
u 2 C1(M, N ). Moreover, the co-local weak derivative and the classical derivative
coincide almost everywhere.

Proof. Since for every f 2 C1c (N , R), f � u is weakly differentiable, we can apply
the equivalence of classical and weak derivatives (Du Bois-Reymond lemma) [58,
Theorem 6.1.4] [44, Theorem 6.10] and local charts on M to obtain that f � u 2

C1(M, R). Since f is arbitrary, the map u is continuously differentiable.

Definition 1.4. A bundle morphism � : T M ! T N that covers u : M ! N is
bilocally integrable on A ✓ M if there exist local charts  : V ✓ M ! Rm ,
' : U ✓ N ! Rn such that if L ⇢ V and K ⇢ U are compact, then the function
D' � �|V � D( �1) is integrable on  (A \ L \ u�1(K )).

If µ is a positive absolutely continuous measure on M , the morphism � is
bilocally integrable if and only if there exists a continuous norm |·| on T ⇤M ⌦ T N
such that

R
M |�| dµ < 1.

The main result of the current section is that co-locally weakly differentiable
maps have a co-local weak derivative.

Proposition 1.5 (Existence and uniqueness of the co-local weak derivative).
If the map u : M ! N is co-locally weakly differentiable, then u has a unique
co-local weak derivative Du : T M ! T N . Moreover, the bundle morphism Du
is bilocally integrable and for every f 2 C1(N , R) for which f � u : M ! R is
weakly differentiable,

D( f � u) = Df � Du almost everywhere in M .
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This result was already known when N = R for functions of generalized bounded
variation [5, Theorem 4.34] and for Sobolev functions by truncations [9, Lemma
2.1]; as remarked there, the co-local weak derivative need not be locally integrable.

The important geometric tool for proving Proposition 1.5 is the existence of
extended local charts. This construction is reminiscent of the patch mappings to the
sphere ' 2 C1(N , Sn) [50, page 60].

Lemma 1.6 (Extended local charts). For every y 2 N , there exist an open subset
U ✓ N such that y 2 U , and maps ' 2 C1(N , Rn) and '⇤

2 C1(Rn, N ) such that

(i) the set supp' is compact,
(ii) the set {x 2 Rn

: '⇤(x) 6= '⇤('(y))} is compact,
(iii) the map '|U is a diffeomorphism onto its image '(U),
(iv) '⇤

� ' = id in U .

Proof. By definition of differentiable manifold, there exists a local chart  : V ✓

N !  (V ) ✓ Rn around y 2 N . Without loss of generality, we assume that
 (y) = 0. Since the set  (V ) ✓ Rn is open, there exists r > 0 such that B2r ✓

 (V ). We choose a map ✓ 2 C1c (Rn, R) such that 0  ✓  1 on Rn , ✓ = 1 on Br
and supp(✓) ⇢ B2r . We take the set U = ( |V )�1(Br ) and the maps ' : N ! Rn

defined for every z 2 N by

'(z) =

(
✓( (z)) (z) if z 2 ( |V )�1(B2r ),
0 otherwise

and '⇤
: Rn

! N defined for every x 2 Rn by '⇤(x) = ( |V )�1(✓(x) x).

We begin by proving a local counterpart of Proposition 1.5.

Lemma 1.7. If u : M ! N is a co-locally weakly differentiable map and y 2 N ,
then there exist an open subset U ✓ N such that y 2 U and a unique measurable
bundle morphism DUu : ⇡�1

M (u�1(U)) ! T N such that for every f 2 C1(N , R)
for which f � u : M ! R is weakly differentiable,

D( f � u) = Df � DUu almost everywhere on u�1(U).

Moreover, DUu is bilocally integrable on u�1(U).

Proof. Let U ✓ N , ' 2 C1(N , Rn) and '⇤
2 C1(Rn, N ) be the extended local

charts given by Lemma 1.6. Since u is co-locally weakly differentiable, the map
' � u : M ! Rn is weakly differentiable. Since for every x 2 u�1(U), the linear
map between tangent spaces D'(u(x)) : Tu(x)N ! Rn is invertible, the map DUu
is uniquely defined for almost every x 2 u�1(U) by

DUu(x) = (D'(u(x))�1 � (D(' � u)(x)).
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If f 2 C1(N , R) and f � u : M ! R is weakly differentiable, since '⇤(Rn) is
compact and f �'⇤

2 C1(Rn, R), the chain rule for weakly differentiable functions
implies (see for example [58, Theorem 6.1.13], [23, Theorem 4.2.4 (ii)]) that f �

'⇤
� ' � u is weakly differentiable and

D( f � '⇤

� ' � u) = D( f � '⇤) � D(' � u) = D( f � '⇤) � D' � DUu.

Since f � u = f � '⇤
� ' � u on u�1(U) and D( f � '⇤) � D' = Df on U , we

have [58, Corollary 6.1.14], [23, Theorem 4.2.4 (iv)], [44, Theorem 6.19] almost
everywhere on u�1(U)

D( f � u) = D( f � '⇤) � D' � DUu = Df � DUu.

Proof of Proposition 1.5. Let (Ui )i2I be an open cover of N by sets given by Lem-
ma 1.7. Since the manifold N has a countable basis, we can assume that I is at most
countable [48, Theorem 3.30]. Let DUi u and DUi\Uj u be the derivatives given by
Lemma 1.7. By uniqueness, DUi\Uj u = DUi u = DUj u almost everywhere on
u�1(Ui \Uj ). Since

S
i2I u�1(Ui ) = M and I is countable, the bundle morphism

Du : T M ! T N can be defined uniquely almost everywhere by

Du = DUi u almost everywhere on u
�1(Ui ).

1.2. Properties of the co-local weak derivative

The co-local weak derivative retains some properties of weak derivatives.

Proposition 1.8 (Chain rule). Let Ñ be a differentiable manifold. If the maps
u : M ! N and f 2 C1(N , Ñ ) are such that u and f � u are co-locally weakly
differentiable, then

D( f � u) = Df � Du almost everywhere in M.

Proof. For every ' 2 C1c (Ñ , R), ' � f 2 C1(N , R) and ' � f is weakly differen-
tiable. Therefore, by Proposition 1.5 and the classical chain rule,

D' � D( f � u) = D(' � f � u) = D
�
(' � f ) � u

�
= D(' � f ) � Du

= D' � (Df � Du).

Proposition 1.9. Let ◆ : N ! Ñ be an embedding and let u : M ! N be a map.
If ◆ � u is co-locally weakly differentiable, then u is co-locally weakly differentiable
and Du is the unique bundle morphism such that

D(◆ � u) = D◆ � Du

almost everywhere on M . If moreover ◆(N ) is closed, then the converse holds.
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Proof. Since ◆ is an embedding, ◆(N ) has a tubular neighborhood in N : there exist a
vector bundle (E,⇡N , N ) and an embedding ◆̃ : E ! Ñ such that ◆̃|N = ◆ and ◆̃(E)

is open in Ñ [38, Theorem 4.5.2]. In particular, ◆ � ⇡N � ◆̃�1 is a retraction of the
tubular neighborhood ◆̃(E) on ◆(N ). Let f 2 C1c (N , R). We choose ⌘ 2 C1c (Ñ , R)

such that ⌘ = 1 on ◆(supp f ) and supp ⌘ ⇢ ◆̃(E) and define f̃ = ( f � ⇡N � ◆̃�1)⌘ :

Ñ ! R. Since supp ⌘ ⇢ ◆̃(E), the function f̃ is well-defined, f̃ 2 C1c (Ñ , R) and
f̃ � ◆ = f on N . In particular, f � u = f̃ � ◆ � u is weakly differentiable.

Conversely, if ◆(N ) is closed, then for every ' 2 C1c (Ñ , R), ' � ◆ 2 C1c (N , R)
and ◆ � u is thus co-locally weakly differentiable.

By the Whitney embedding theorem [57], there always exists an embedding
◆ : N ! R⌫

= R2n+1 such that ◆(N ) is closed [1, Theorem 2.6], [20, Theorem 5].
Proposition 1.9 gives thus an equivalent definition of co-local weak differentiabil-
ity; the drawback of this alternate approach to co-local weak differentiability is its
dependence on the Whitney embedding theorem for differentiable manifolds.

Since differentiable manifolds do not have in general any algebraic structure
and since the co-locally weakly differentiable functions between Euclidean spaces
do not form a vector space [5, 9], the co-local weak derivative does not have any
algebraic properties of sum or product. There is however still a property of the
Cartesian product of maps.

Proposition 1.10 (Product of manifolds). Let N1, N2 be two differentiable mani-
folds. If u1 : M ! N1 and u2 : M ! N2 are co-locally weakly differentiable, then
the map u = (u1, u2) : M ! N1 ⇥ N2 is co-locally weakly differentiable and

Du = (Du1, Du2) almost everywhere in M.

The uniqueness property can be refined for maps that coincide on a set of positive
measure:

Proposition 1.11 (Locality of derivatives). If the maps u, v : M ! N are co-
locally weakly differentiable, then Du = Dv almost everywhere on the set {x 2

M : u(x) = v(x)}.

Proof. Let A = {x 2 M : u(x) = v(x)}. Let U ✓ N and ' 2 C1(N , Rn)
be the extended local chart given by Lemma 1.6 and let  : V ✓ M ! Rm be
a local chart. Since ' � u �  �1 and ' � v �  �1 are weakly differentiable and
' � u �  �1

= ' � v �  �1 on  (A \ V ), D(' � u �  �1) = D(' � v �  �1)
almost everywhere on  (A \ V ). By definition of the co-local weak derivative,
D'�Du�D �1

= D'�Dv�D �1 almost everywhere on (A\V ). Since D' is
invertible on u�1(U), Du = Dv almost everywhere on A\V \ u�1(U)\ v�1(U).
Taking open countable covers (Ui )i2I of N and (Vj ) j2J of M , we conclude that
Du = Dv almost everywhere on A.
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1.3. Approximate differentiability

We study the relationship between the co-local weak derivative and the approximate
derivative. For a map between differentiable manifolds, we generalize the classical
definition of approximate derivative of maps between vector spaces [23, Definition
6.1], [24, 3.1.2].

Definition 1.12. Let u : M ! N and x 2 M . The linear map ⇠ : TxM ! Tu(x)N is
an approximate derivative of u at x if there exist local charts  : V !  (V ) ✓ Rm

with x 2 V and V ✓ M open, and ' : U ! '(U) ✓ Rn with u(x) 2 U and
U ✓ N open such that for every " > 0,

lim
⇢!0

⇢�mLm
�
 ({y 2 V : u(y) 2 U

|'(u(y)) � '(u(x)) � (D'(u(x)) � ⇠ �

�
D (x)

�
�1

)[ (y) �  (x)]|
> "| (y) �  (x)|}) \ B⇢( (x))

�
= 0.

The approximate derivative is unique and it is sufficient to establish its existence for
one pair of diffeomorphisms.

If M and N are endowed with Riemannian metrics gM and gN respectively, it is
natural to take for ' and  the exponential coordinates and to use the Riemannian
distances dN and dM and measure µM ; the approximate differentiability can be
observed to be equivalent to requiring for every " > 0,

lim
⇢!0

⇢�mµM
�
{y 2 BM⇢ (x) : dN (u(x), expu(x)(⇠(exp�1

x (y))) > "dM(x, y)}
�

= 0;

we recover thus in this particular case the definition of Focardi and Spadaro for
maps from the Euclidean space to a Riemannian manifold [26, Definition 0.3].

Sobolev maps into Riemannian manifolds are known to have such an approxi-
mate derivative [26, Corollary 1.3]. This property is also satisfied for Sobolev maps
into other non-flat targets for which a notion of weak derivative is not yet avail-
able [25, proposition 2.2], [19, Lemma 1.4].

Proposition 1.13. (Approximate differentiability of co-locally weakly differen-
tiable maps). If u : M ! N is co-locally weakly differentiable, then for almost
every x 2 M , the co-local weak derivative Du(x) is the approximate derivative of
u at x .

Proof. Let  : V ✓ M ! Rm be a local chart around x 2 M . Let U ✓ N and
' 2 C1(N , Rn) be the extended local chart given by Lemma 1.6. Since u is co-
locally weakly differentiable, ' � u �  �1

:  (V ) ! Rn is weakly differentiable
and D(' � u �  �1) = D' � Du � D �1 on  (V ). Since weakly differentiable
maps between vector spaces are approximately differentiable [23, Theorem 6.1.4],
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' � u �  �1 is approximately differentiable almost everywhere on  (V ), that is,

lim
⇢!0

⇢�mLm
�
 ({y 2 V :

|'(u(y)) � '(u(x)) � (D'(u(x)) � Du(x) �

�
D (x)

�
�1

)[ (y) �  (x)]|
> "| (y) �  (x)|}) \ B⇢( (x))

�
= 0.

Next, we note that since u is measurable, almost every x 2 M is a Lebesgue point
of u. Since the set U is open, for almost every x 2 u�1(U) \ V ,

lim
⇢!0

⇢�mLm
�
 ({y 2 V : u(y) 62 U}) \ B⇢( (x))

�
= 0.

Therefore we have for almost every x 2 u�1(U) \ V ,

lim
⇢!0

⇢�mLm
�
 ({y 2 V : u(y) 2 U

|'|U (u(y)) � '|U (u(x)) � (D'(u(x)) � Du(x) �

�
D (x)

�
�1

)[ (y) �  (x)]|
> "| (y) �  (x)|}) \ B⇢( (x))

�
= 0,

that is, Du(x) is the approximate derivative of u for almost every x 2 u�1(U) \ V .
The conclusion follows by a countable covering argument.

2. Sobolev maps between Riemannian manifolds

Preliminaries We assume now that (M, gM) and (N , gN ) are Riemannian mani-
folds. In particular the metrics on vectors of T M and T N induce a metric g⇤

M ⌦ gN
on T ⇤M ⌦ T N . This metric can be computed for every ⇠ 2 T ⇤

x M ⌦ TyN =

L(TxM, TyN ) by

(g⇤

M ⌦ gN )(⇠, ⇠) =

mX
i=1

gN
�
⇠(ei ), ⇠(ei )

�
,

where (ei )1im is an orthonormal basis in ⇡�1
M ({x}) with respect to the Rieman-

nian metric gM .
We are now in a position to define the Sobolev spaces.

Definition 2.1. Let p 2 [1,1). A map u : M ! N belongs to the Sobolev space
Ẇ 1,p(M, N ) if u is co-locally weakly differentiable and |Du|g⇤

M⌦gN 2 L p(M).
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Characterization of the norm of the derivative We characterize the quantity
|Du|g⇤

M⌦gN that appears in the definition of Sobolev spaces. We recall that the oper-
ator norm is defined for every ⇠2T ⇤

x M⌦TyN=L(TxM,TyN )=Hom(T M,T N )x,y
by

|⇠ |L = sup
�
|⇠(e)|gN : e 2 TxM, |e|gM  1

 
;

the Lipschitz semi-norm of f : N ! Rk is defined by

| f |Lip = sup
⇢

| f (y) � f (z)|
dN (y, z)

: y, z 2 N and y 6= z
�

,

where dN is the distance on N induced by the Riemannian metric gN . For every
k � 1, we denote by gk the standard Euclidean metric on Rk .

Proposition 2.2. Let k � min(m, n). Let u : M ! N , w : M ! R be measurable
maps. The following statements are equivalent.

(i) u is co-locally weakly differentiable and |Du|g⇤

M⌦gN  w almost everywhere
in M ,

(ii) for every f 2 C1c (N , Rk), f �u is weakly differentiable and almost everywhere
in M

|D( f � u)|g⇤

M⌦gk  |Df (u)|Lw,

(iii) for every f 2 C1c (N , Rk), f �u is weakly differentiable and almost everywhere
in M

|D( f � u)|g⇤

M⌦gk  | f |Lipw.

If moreover w 2 L1loc(M), then for every f 2 Lip(N , Rk), f � u is weakly differen-
tiable and almost everywhere in M

|D( f � u)|g⇤

M⌦gk  | f |Lipw.

Since the first assertion is independent of k, there is also equivalence between these
statements for every k � min(m, n).

Proposition 2.2 implies in particular that if p 2 [1,1) and M is an open
bounded subset of Rm , Definition 2.1 is equivalent to the notion of Sobolev spaces
into metric spaces [51, Theorem 5.1] and with the classical homogeneous Sobolev
space when N = Rn (see also [9, Lemma 2.1]).

In order to prove Proposition 2.2, we shall use an approximation property of
Lipschitz maps on manifolds.

Lemma 2.3 (Approximation of Lipschitz maps). Let f 2 Lip(N , Rk). There ex-
ists a sequence ( f`)`2N of maps in C1c (N , Rk) that converges uniformly over com-
pact subsets of N and such that

lim sup
`!1

| f`|Lip  | f |Lip.
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Sketch of the proof. Given y 2 N and ✓ 2 C1c ([0,1), R) such that ✓ = 1 on [0, 1],
we define for every ` 2 N⇤,

✓`(z) = ✓
⇣
`2
p
dN (y, z)

⌘
,

and observe that ✓` 2 C1c (N , R),

|D✓`|L 

��✓ 0

��
L1

`2
,

and (✓`)`2N⇤
converges to 1 uniformly over compact subsets of N .

We also define T` : Rk
! Rk for ` 2 N⇤ and x 2 Rk by

T`(x) =

(
x if |x |  `,

`x/|x | if |x | > `.

For every ` 2 N⇤, T` is nonexpansive and bounded by ` and the sequence (T`)`2N⇤

converges uniformly to the identity over compact subsets.
If we define f̃` = ✓` · (T` � f ), we observe for every ` 2 N⇤ that f̃` 2

Lip(N , Rk), that

| f̃`|Lip  | f |Lip +

��✓ 0

��
L1

`
,

and that the support of f̃` is compact; the sequence ( f̃`)`2N⇤
converges uniformly

over compact subsets.
Hence the conclusion follows by approximating uniformly f̃` by differentiable

functions with a control on the Lipschitz norm [31, Lemma 8], [6].

We shall also rely on a refined version of the extended local charts of Lemma 1.6.

Lemma 2.4 (Almost isometric extended local charts). For every y 2 N and ev-
ery " > 0, there exist an open subset U ✓ N such that y 2 U , and maps
' 2 C1(N , Rn) and '⇤

2 C1(Rn, N ) such that

(i) the set supp' is compact,
(ii) the set {x 2 Rn

: '⇤(x) 6= '⇤('(y))} is compact,
(iii) the map '|U is a diffeomorphism onto its image '(U),
(iv) '⇤

� ' = id in U ,
(v) for every z 2 N ,

|D'(z)|L  1+ " and |D'⇤('(z))|L  1+ ".

The difference with Lemma 1.6 lies in the control (v) on the operator norms of D'
and D'⇤.
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Proof of Lemma 2.4. Since N is a differentiable manifold, there exists a local chart
 : V ✓ N ! Rn around y 2 N . Up to an affine transformation on Rn , we can
assume that  (y) = 0 and D (y) 2 L(TyN , Rn) is an isometry.

By continuity of D , there exists � > 0 such that if z 2 N and dN (y, z)  �,
then

|D (z)|L  1+ " and
��D( |V )�1( (z))

��
L  1+ ".

We choose r > 0 such that B3r ✓  (B�(y)). We take a map ✓ 2 C1c (Rn, Rn) such
that ✓ = id on Br , supp(✓) ⇢ B3r and supx2Rn |D✓(x)|L  1. We finally define
' = ✓ �  , '⇤

= ( |V )�1 � ✓ and U = ( |V )�1(Br ) and we conclude as in the
proof of Lemma 1.6.

We shall also use the following lemma to compute Euclidean norms of maps.

Lemma 2.5 (Reduction of the Euclidean norm of operators). Let x 2 M and let
⇠ 2 L(TxM, Rn) be a linear map. If k � min(m, n), then

|⇠ |g⇤

M⌦gn = sup
�
|⇢ � ⇠ |g⇤

M⌦gk : ⇢ 2 L(Rn, Rk) and |⇢|L  1
 
.

Proof. On the one hand, if ⇢ 2 L(Rn, Rk) and |⇢|L  1, then |⇢ � ⇠ |g⇤

M⌦gk 

|⇢|L|⇠ |g⇤

M⌦gn  |⇠ |g⇤

M⌦gn . On the other hand, since dim(Im(⇠))  min(m, n)  k,
one can choose ⇢ 2 L(Rn, Rk) such that ⇢ is an isometry on Im(⇠) and conse-
quently |⇢|L  1 and |⇢ � ⇠ |g⇤

M⌦gk = |⇠ |g⇤

M⌦gn .

Proof of Proposition 2.2. Let us prove that (i) implies (ii). For every f2C1c (N ,Rk),
since u is co-locally weakly differentiable, f �u is weakly differentiable. By Propo-
sition 1.5, D( f � u) = Df � Du almost everywhere in M , and so

|D( f � u)|g⇤

M⌦gk  |Df (u)|L|Du|g⇤

M⌦gN  |Df (u)|Lw.

Since for every f 2 C1c (N , Rk) and for every y 2 N , |Df (y)|L  | f |Lip, the
assertion (ii) implies directly (iii).

In order to prove that (iii) implies (i) we first note that the map u is co-
locally weakly differentiable, and, by Proposition 1.5, has a unique co-local weak
derivative Du 2 Hom(T M, T N ). Secondly, let U ✓ N , ' 2 C1(N , Rn) and
'⇤

2 C1(Rn, N ) be given by Lemma 2.4 for y 2 N and " > 0. Since u = '⇤
�'�u

on u�1(U), by Proposition 1.11, Du = D('⇤
�'�u) almost everywhere on u�1(U).

By Lemma 2.4, almost everywhere on u�1(U)

|Du|g⇤

M⌦gN  |D'⇤('(u))|L|D(' � u)|g⇤

M⌦gn  (1+ ")|D(' � u)|g⇤

M⌦gn . (2.1)

If ⇢ 2 L(Rn, Rk) and |⇢|L  1, by assumption, |D(⇢�'�u)|g⇤

M⌦gk  Lip(⇢�')w
almost everywhere in M . Since dN is a geodesic distance, in view of Lemma 2.4,
Lip(') = supz2N |D'(z)|L  1+ ". Hence, we have almost everywhere in M

|⇢ � D(' � u)|g⇤

M⌦gk = |D(⇢ � ' � u)|g⇤

M⌦gk  (1+ ")w.
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Since the set of nonexpansive linear maps is separable, we deduce from Lemma 2.5
that

|D(' � u)|g⇤

M⌦gn  (1+ ")w

almost everywhere in M . By inequality (2.1), we conclude that

|Du|g⇤

M⌦gN  (1+ ")2w

almost everywhere on u�1(U). We conclude by countable covering of N .
We now prove the last assertion. Let f 2 Lip(N , Rk). By the approxima-

tion Lemma 2.3, there exists a sequence ( f`)`2N in C1c (N , Rk) such that ( f`)`2N
converges uniformly to f over compact subsets and lim supl!1

| f`|Lip  | f |Lip.
Since the sequence (D( f` � u))`2N is bounded and uniformly integrable and since
( f` � u)`2N converges almost everywhere to f � u, in view of the weak compact-
ness criterion in L1(M) [12, Corollary 4.7.19], [14, Theorem 4.30], the sequence
(D( f`�u))`2N converges weakly to D( f �u) in L1loc(M) and f �u 2 W 1,1

loc (M, Rk).
Moreover, for every v 2 C1c (M, T M ⌦ Rk),���

Z
M

hD( f � u), vi

��� = lim
`!1

���
Z
M

hD( f` � u), vi

���
 lim inf

`!1

| f`|Lip
Z
M

|v|g⇤

M⌦gkw  | f |Lip
Z
M

|v|g⇤

M⌦gkw,

therefore |D( f � u)|g⇤

M⌦gk  | f |Lipw almost everywhere in M .

Thanks to Proposition 2.2, we can consider the composition of a Lipschitz map
from a manifold into an other with a map of homogeneous Sobolev space.

Proposition 2.6 (Chain rule in Sobolev spaces). Let (Ñ , gÑ ) be a Riemannian
manifold. Let u 2 Ẇ 1,p(M, N ) and let f 2 Lip(M, Ñ ). Then f �u 2 Ẇ 1,p(M, Ñ )
and

|D( f � u)|g⇤

M⌦gÑ  | f |Lip|Du|g⇤

M⌦gN almost everywhere in M.

This generalizes a well-known property ([14, Proposition 9.5], [44, Theorem 6.16],
[58, Proposition 6.1.13]); the corresponding chain rule is more delicate [3].

We also obtain a characterization of Sobolev spaces by embeddings.

Proposition 2.7. Let ◆ : N ! Ñ be an isometric embedding. For every u : M !

N , u 2 Ẇ 1,p(M, N ) if and only if ◆ � u 2 Ẇ 1,p(M, Ñ ).
In contrast with Proposition 1.9, the equivalence does not require ◆(N ) to be

closed.

Proof of Proposition 2.7. If u 2 Ẇ 1,p(M, N ), then by the chain rule (Proposi-
tion 2.6), ◆ � u 2 Ẇ 1,p(M, Ñ ). Conversely, if ◆ � u 2 Ẇ 1,p(M, Ñ ), then ◆ � u
is co-locally weakly differentiable. By the weakly differentiable embedding prop-
erty (Proposition 1.9), u is co-locally weakly differentiable. By the chain rule
(Proposition 1.8), D(◆ � u) = D◆ � Du, and since the embedding ◆ is isometric,
|Du|g⇤

M⌦gN = |D(◆ � u)|g⇤

M⌦gÑ .
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In particular our intrinsic definition is equivalent to the definition given by any
embedding of N in a Euclidean space; such an embedding is always possible by the
Nash embedding theorem [49,50].

3. Weak compactness and closure property

3.1. Weak compactness

A classical technique in the calculus of variations is to extract from a minimizing
sequence a subsequence that converges almost everywhere.

To cover a rich spectrum of functional settings, we first give a compactness
result independently of the Riemannian manifold or Sobolev space setting. Such a
result should rely on a boundedness assumption on the derivatives and on the values
of the mappings.

For the boundedness of the derivatives, we shall use the following assumption.

Definition 3.1. A sequence (�`)`2N of bundle morphisms from T M to T N that
covers a sequence (u`)`2N of maps from M to N is bilocally L1–bounded if for
every x 2 M and every y 2 N , there exist local charts  : V ✓ M ! Rm and
' : U ✓ N ! Rn such that x 2 V , y 2 U and

sup
`2N

Z
 (V\u�1

` (U))
|D' � �` � D( �1)|g⇤

m⌦gn < 1.

Equivalently, the sequence (�`)`2N is bilocally L1–bounded if there exist a positive
measure µ on M and a continuous norm |·| on the vector bundle T ⇤M ⌦ T N such
that

sup
`2N

Z
M

|�`| dµ < 1.

The boundedness of the values is expressed in the next condition.

Definition 3.2. A sequence (u`)`2N of maps from M to N is locally compact in
measure if for every x 2 M there exists a local chart  : V ✓ M ! Rm such that
x 2 V and for every " > 0 there exists a compact set K ✓ N such that for every
` 2 N,

Lm
�
 (u�1

` (N \ K ))
�

 ".

If N is compact, then this condition is trivially satisfied. In general, a sequence
(u`)`2N of maps from M to N is locally compact in measure if and only if there
exist a positive measure µ on N , y 2 N and a continuous distance d on N such that

lim
r!1

sup
`2N

µ
�
u�1
` (N \ Bdr (y))

�
= 0.
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Proposition 3.3 (Compactness in measure). Let (u`)`2N be a sequence of co-lo-
cally weakly differentiable maps from M to N . If the sequence (Du`)`2N is bilocally
L1–bounded and the sequence (u`)`2N is locally compact in measure, then there
exist a measurable map u : M ! N and a subsequence (u`k )k2N that converges to
u almost everywhere in M .

Proof. Let
�
(Ui ,'i )

�
i2I be a family of extended local charts satisfying the conclu-

sion of Lemma 1.6 such that
S

i2I Ui = N and I is countable. Assume that
�
⌘i
�
i2I

is a C1–partition of the unity subordinate to the covering
�
Ui

�
i2I . We observe that

in view of Lemma 1.6, the set Ūi is compact and hence ⌘i 2 C1c (N , R).
By assumption and by definition of the co-locally weakly differentiability, for

every i 2 I , the sequence (('i � u`, ⌘i � u`))`2N is bounded in W 1,1
loc (M, Rn+1).

By the classical Rellich–Kondrashov compactness theorem [44, Theorem 8.9], [14,
Theorem 9.16], [58, Theorem 6.4.6] and a diagonal argument, there exist a sub-
sequence (u`k )k2N and a negligible set E ⇢ M such that the sequence (('i �

u`k (x), ⌘i � u`k (x)))k2N converges in Rn+1 for every x 2 M \ E and every i 2 I .
We define the set

F =

�
x 2 M \ E : for every i 2 I , lim

k!1

⌘i (u`k (x)) = 0
 
.

For every compact set K ✓ N , we observe that

F ✓

[
j2N

1\
k= j

u�1
`k

(N \ K ).

Since the sequence (u`)`2N is compact in measure, for every x 2 M , there is a local
chart  : V ✓ M ! Rm such that x 2 V and for every " > 0 there exists a
compact set K ✓ N such that for every k 2 N,

Lm
�
 (u�1

`k
(N \ K ))

�
 ".

Therefore,
Lm( (F \ V ))  ".

Since " > 0 is arbitrary and M can be covered by countably many such charts, we
conclude that the set F is negligible.

We conclude by showing that (u`k )k2N converges everywhere in M \ (E [ F).
For every x 2 M \ (E [ F), by definition of the set F , there exists i 2 I such that
limk!1 ⌘i (u`k (x)) > 0. This implies that for k 2 N, large enough, u`k (x) 2 Ui .
Since 'i is a diffeomorphism on Ui and since the sequence ('i (u`k (x)))k2N con-
verges, we define u(x) = 'i

�1
|Ui

�
limk!1 'i (u`k (x))

�
and we conclude that

(u`k (x))k2N converges to u(x).

In particular, we have a Rellich–Kondrashov type compactness theorem.
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Proposition 3.4 (Rellich–Kondrashov for Sobolev maps). Let (u`)`2N be a se-
quence of co-locally weakly differentiable maps from M to N , v : M ! N be
measurable. If (N , d) is complete, if there exist p 2 [1,1) such that

sup
`2N

Z
M

|Du`|
p
g⇤

M⌦gN < 1

and q 2 [1,1) such that

sup
`2N

Z
M
d(u`, v)q < 1,

then there is a subsequence (u`k )k2N that converges to u : M ! N almost every-
where in M .

Proof. Since the metric space (N , d) is complete, for every y 2 N and r 2 R, the
closed ball B̄Nr (y) is compact. In particular the sequence (u`)`2N is locally compact
in measure.

On the other hand, the sequence (Du`) is bilocally L1–bounded, and therefore
by Proposition 3.3, there exist a measurable map u : M ! N and a subsequence
(u`k )k2N that converges to u almost everywhere in M .

3.2. Closure property

In order to study the lower semi-continuity properties of functionals, it is interesting
to have some sufficient conditions for a limit of co-locally weakly differentiable
maps to be also co-locally weakly differentiable. Such a condition will be useful in
the study of stronger notion of convergence.

We shall consider sequences of maps converging in measure.
Definition 3.5. A sequence (u`)`2N of maps from M to N converges locally in
measure to a map u : M ! N if for every x 2 M there exists a local chart
 : V ✓ M ! Rm such that x 2 V and for every open set U ✓ N ,

lim
`!1

Lm
⇣
 

⇣⇣
u�1(U) \ V

⌘
\ u�1

` (U)
⌘⌘

= 0.

If d is a continuous distance on N and if µ is an absolutely continuous positive
finite measure on M , then the sequence (u`)`2N converges to u locally in measure
if and only if for every " > 0,

lim
`!1

µ
�
{x 2 M : d(u`(x), u(x)) > "}

�
= 0.

This definition is consistent with the definition of convergence in measure of maps
into a metric space [53, Définition 5.6.17], which depends only on the topology of
the space [53, Théorème 5.6.21].
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Since the topologies of M and of N have a countable basis, it suffices to check
the condition for a countable set of charts  : V ✓ M ! Rm and a countable
collection of open sets U ✓ N . Hence, the convergence in measure for maps
between manifolds induces a metrizable topology. Such a metric is given by

�(u, v) =

Z
M

d(u, v)

1+ d(u, v)
dµ. (3.1)

Any Cauchy sequence with respect to � has a subsequence which is Cauchy almost
everywhere [12, Exercise 4.7.60], [53, Théorème 5.8.31]. Thus the space of mea-
surable maps from M to N endowed with � is complete if and only if the space
(N , d) is complete.

The definition and the remarks apply directly to a sequence (�`)`2N of bundle
morphisms between T M and T N viewed as maps from M to T ⇤M ⌦ T N .

A sufficient condition for co-locally weakly differentiability is a uniform inte-
grability assumption.
Definition 3.6. A sequence (�`)`2N of bundle morphisms from T M to T N that
covers a sequence (u`)`2N of maps from M to N is bilocally uniformly integrable
if for every x 2 M and every y 2 N , there exist local charts  : V ✓ M ! Rm

and ' : U ✓ N ! Rn such that for every " > 0 there exists � > 0 such that if
W ✓  (V ), Lm(W )  � and ` 2 N, then

Z
W\ (u�1

` (U))
|D' � �` � D( �1)|g⇤

m⌦gn  ".

Equivalently, the sequence (�`)`2N is bilocally uniformly integrable if there exist a
positive absolutely continuous measure µ on M and a continuous norm |·| on the
vector bundle T ⇤M ⌦ T N such that for every " > 0 there exists � > 0 such that if
V ✓ M , µ(V )  � and ` 2 N, then

Z
V
|�`|  ".

Proposition 3.7 (Closure property). Let (u`)`2N be a sequence of co-locally
weakly differentiable maps from M to N . If the sequence (u`)`2N converges to
u : M ! N locally in measure and if the sequence (Du`)`2N is bilocally uniformly
integrable, then the map u is co-locally weakly differentiable, and for every map
f 2 C1c (N , R), every local chart  : V ✓ M ! Rm and every test function
v 2 C1c ( (V ), Rm),

lim
`!1

Z
 (V )

hD( f � u` �  �1), vi =

Z
 (V )

hD( f � u �  �1), vi.

If moreover the sequence (Du`)`2N converges to a bundle morphism � : T M !

T N locally in measure, then Du = �.
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In particular, under the additional condition of bilocally uniform integrability
of the sequence of co-local weak derivatives, the map given by Proposition 3.3 is
co-locally weakly differentiable.

Proof of Proposition 3.7. Following classical argument [58, Theorem 6.1.7], given
a local chart  : V ✓ M ! Rm and f 2 C1c (N , R), we define the linear functional
Ff, on C1c ( (V ), Rm) for every test function v 2 C1c ( (V ), Rm) by

hFf, , vi = �

Z
 (V )

( f � u �  �1) div v.

Let K ⇢  (V ) be compact. Since the sequence ( f � u` �  �1)`2N converges to
f � u �  �1 in L1(K ), if supp v ⇢ K ,

|hFf, , vi| =

���
Z
K
( f � u �  �1) div v

��� = lim
`!1

���
Z
K
( f � u` �  �1) div v

���
= lim
`!1

���
Z
K
hD( f � u` �  �1), vi

���  kvkL1 lim inf
`!1

Z
K
| f |Lip|Du`|.

Therefore Ff, is represented by a vector-valued Radon measure µ f, on  (V ):

hFf, , vi =

Z
 (V )

v dµ f, .

We observe that for every open set W ✓  (V ),

|µ f, |(W )  lim inf
`!1

Z
W

|D( f � u` �  �1)|g⇤

m⌦g1 .

By the uniform integrability assumption, we conclude that the measure |µ f, | is
absolutely continuous with respect to the Lebesgue measure on every compact
set K ⇢  (V ). The measure µ f, can thus be represented by a vector-field in
L1loc( (V )). In particular the map f � u �  �1 is weakly differentiable and

lim
`!1

Z
 (V )

hD( f � u` �  �1), vi =

Z
 (V )

hD( f � u �  �1), vi.

Finally, if (Du`)`2N converges to a bundle morphism � : T M ! T N locally in
measure, then the sequence (Df � Du` � D �1)`2N converges to Df � � � D �1

in measure on  (V ). Since the sequence (Df � Du` � D �1)`2N is uniformly
integrable on every compact set K ⇢  (V ), we conclude that [12, Theorem 4.5.4]

lim
`!1

Z
 (V )

hD( f � u` �  �1), vi =

Z
 (V )

hDf � � � D �1, vi.

Since f 2 C1c (N , R), the chart  : V ! Rm and v 2 C1c ( (V ), Rm) are arbitrary,
Du = �.
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In the particular case of bounded sequences in Sobolev spaces, we have the
following closure property, which will play an important role in the completeness
of Sobolev spaces.

Proposition 3.8 (Weak closure property for Sobolev maps). Let p � 1 and let
(u`)`2N be a sequence of co-locally weakly differentiable maps from M to N . As-
sume that the sequence (u`)`2N converges to u : M ! N locally in measure, that

lim inf
`!1

Z
M

|Du`|
p
g⇤

M⌦gN < 1,

and, if p = 1, that the sequence (Du`)`2N is bilocally uniformly integrable. Then
u 2 Ẇ 1,p(M, N ), Z

M
|Du|pg⇤

M⌦gN  lim inf
`!1

Z
M

|Du`|
p
g⇤

M⌦gN ,

and for every f 2 C1c (N , R) and every section v : M ! T M , such that |v|gM 2

L p/(p�1)(M),
lim
`!1

Z
M

hD( f � u`), vi =

Z
M

hD( f � u), vi.

If moreover the sequence (Du`)`2N converges to a bundle morphism � : T M !

T N locally in measure, then Du = �.

The Euclidean counterpart of this property is well-known [58, Theorem 6.1.7].
The uniform integrability assumption is essential for p = 1: otherwise the closure
property fails already for classical Sobolev maps between Euclidean spaces.

Proof of Proposition 3.8. By the boundedness and bilocally uniform integrability
assumptions, the sequence of bundle morphisms (Du`)`2N is bilocally uniformly
integrable. Proposition 3.7 applies and it remains to prove that |Du|g⇤

M⌦gN 2

L p(M). By the boundedness and bilocally uniform integrability assumptions, up
to a subsequence, the sequence of functions (|Du`|g⇤

M⌦gN )`2N converges weakly to
some w 2 L p(M). For every f 2 C1c (N , Rk) with k = min(m, n) and ` 2 N, we
have

|D( f � u`)|g⇤

M⌦gk  | f |Lip|Du`|g⇤

M⌦gN .

Hence, for every v 2 C1c (M, T M ⌦ Rk),

�

Z
M

h f � u`, div vi =

Z
M

hD( f � u`), vi 

Z
M

|D( f � u`)|g⇤

M⌦gk |v|g⇤

M⌦gk

 | f |Lip
Z
M

|Du`|g⇤

M⌦gN |v|g⇤

M⌦gk

and thus passing to the limit,

�

Z
M

h f � u, div vi  | f |Lip
Z
M

|v|g⇤

M⌦gkw.
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Since the map u is co-locally weakly differentiable, we deduce thatZ
M

hD( f � u), vi  | f |Lip
Z
M

|v|g⇤

M⌦gkw.

Since v 2 C1c (M, T M ⌦ Rk) is arbitrary we conclude that

|D( f � u)|g⇤

M⌦gk  | f |Lipw

almost everywhere in M . By the characterization of the norm of the derivative of
Proposition 2.2, |Du|g⇤

M⌦gN  w almost everywhere in M and thus by lower semi-
continuity of the norm under weak convergence [14, Proposition 3.5], [44, Theorem
2.11], [58, Theorem 5.4.6]Z

M
|Du|pg⇤

M⌦gN 

Z
M

w p
 lim inf

`!1

Z
M

|Du`|
p
g⇤

M⌦gN .

4. Strong convergence in Sobolev spaces

In order to characterize eventually Ẇ 1,p(M, N ) as a completion of smooth maps in
some cases, as it has been done for Sobolev spaces defined in embedded manifolds
[11,33,36], it is essential to have a metric for which this space is complete.

4.1. Definition and properties

We first define a natural notion of convergence in homogeneous Sobolev spaces.
Definition 4.1. Let p 2 [1,1). The sequence (u`)`2N in Ẇ 1,p(M, N ) converges
strongly to u 2 Ẇ 1,p(M, N ) in Ẇ 1,p(M, N ) if (Du`)`2N converges to Du locally
in measure and (|Du`|g⇤

M⌦gN )`2N converges to |Du|g⇤

M⌦gN in L p(M).
In order to define a distance that gives this convergence, we recall the definition

of the Sasaki metric GS on T ⇤M ⌦ T N when M and N are of class C2 [52] (see
also [21, Chapter 3, Exercise 2]): for every ⌫ 2 T (T ⇤M ⌦ T N ),

GS(⌫) = (gM ⌦ gN )(D⇡M⇥N (⌫)) + (g⇤

M ⌦ gN )(KT ⇤M⌦T N (⌫)),

where ⇡M⇥N : T ⇤M ⌦ T N ! M ⇥ N is the canonical bundle morphism, and
the connection KT ⇤M⌦T N is defined for every v 2 T (T ⇤M) and w 2 T (T N ) by
KT ⇤M⌦T N (v ⌦ w) = KT ⇤M(v) ⌦ KT N (w), where KT ⇤M : T (T ⇤M) ! T ⇤M and
KT N : T (T N ) ! T N are the respective Levi-Civita connection maps on T ⇤M and
T N [56, Definition 3.9]. The associated geodesic distance is denoted by dS . Given
two co-locally weakly differentiable maps u, v : M ! N , we note that for almost
every x 2 M ,

d(u, v)(x) = dS((x, u(x)), (x, v(x)))  dS(Du(x), Dv(x)), (4.1)

with the usual identification of M ⇥ N with M ⇥ N ⇥ {0} ⇢ T ⇤M ⌦ T N .
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As a consequence, the convergence of Definition 4.1 is induced by the distance

�̇1,p(u, v) = �(Du, Dv) +

���|Du|g⇤

M⌦gN � |Dv|g⇤

M⌦gN

���
L p(M)

,

here � is a distance of the form (3.1) taking the continuous distance dS on T ⇤M ⌦

T N . In fact, a sequence (u`)`2N converges strongly to u in Ẇ 1,p(M, N ) if and only
if (Du`)`2N converges to Du locally in measure and

lim
`!1

Z
M

|Du`|
p
g⇤

M⌦gN =

Z
M

|Du|pg⇤

M⌦gN .

This follows from the Euclidean counterpart [12, Proposition 4.7.30], [58, Theorem
4.2.6], [14, Exercise 4.17.3].

The Sobolev space with this distance is automatically complete.

Proposition 4.2. If N is complete, then the metric space (Ẇ 1,p(M, N ), �̇1,p) is
complete.

Proof. Let (u`)`2N be a Cauchy sequence for the distance �̇1,p. By the complete-
ness of L p(M), there exists a map w 2 L p(M) such that (|Du`|g⇤

M⌦gN )`2N con-
verges to w in L p(M). By the properties of the distance defined in (3.1), there is
a subsequence (Du`k )k2N which is Cauchy almost everywhere with respect to the
distance dS [12, Exercise 4.7.60], [53, Théorème 5.8.31] and (|Du`k |g⇤

M⌦gN )k2N
converges to w almost everywhere on M . By the nonexpansiveness property (4.1),
(u`k )k2N is a Cauchy sequence with respect to the distance d. Since N is com-
plete, the sequence (u`k )k2N converges almost everywhere to a measurable map
u : M ! N . Since dS is continuous, it is complete on every compact subset of
T ⇤M ⌦ T N [48, Theorem 45.1]. Therefore there exists a measurable bundle mor-
phism � : T M ! T N such that (Du`k )k2N converges almost everywhere to �
and |�|g⇤

M⌦gN = w. By the weak closure property (Proposition 3.8), � = Du.
Therefore, (Du`k )k2N converges almost everywhere to Du and thus with respect to
�. Since the sequence (Du`)`2N is Cauchy with respect to the distance �, the whole
sequence (Du`)`2N converges to Du with respect to the distance �.

This notion of convergence is strong enough to imply the continuity of the
pointwise distance in Sobolev spaces.

Proposition 4.3. Let p 2 [1,1). If the sequence (u`)`2N in Ẇ 1,p(M, N ) con-
verges strongly to u2 Ẇ 1,p(M,N ) in Ẇ 1,p(M,N ), then the sequence (d(u`,u))`2N
converges strongly to 0 in Ẇ 1,p(M).

In practice, this proposition allows to deduce the continuity of non-linear Sobolev
embedding from their classical linear counterpart.
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Proof of Proposition 4.3. We first observe that for the geodesic distance d, for every
⇠ 2 T N ,

lim
⇣!⇠

⇡N (⇣ )6=⇡N (⇠)

(Dd)(⇠, ⇣ ) = 0,

and that Du` = Du almost everywhere on the set where u` = u (Proposition 1.11).
Therefore, since (Du`)`2N converges to Du locally in measure, (D(d(u`, u)))`2N
converges to 0 in measure. Since for every ` 2 N, almost everywhere in M

|D(d(ul , u))|  |Du`|g⇤

M⌦gN + |Du|g⇤

M⌦gN ,

and the sequence (|Du`|g⇤

M⌦gN )`2 N converges to |Du|g⇤

M⌦gN in L p(M), by
Lebesgue’s dominated convergence theorem, the sequence (D(d(ul , u)))`2N con-
verges to 0 in L p(M).

4.2. Comparison with other notions of convergence

We first remark that the notion of convergence is stable under isometric embedding.
Therefore the convergence of Definition 4.1 coincides with the classical conver-
gence defined by embedding into Euclidean spaces.

Proposition 4.4. If ◆ : N ! Ñ is an isometric embedding, then the sequence
(u`)`2N converges strongly to u 2 Ẇ 1,p(M, N ) in Ẇ 1,p(M, N ) if and only if the
sequence (◆ � u`)`2N converges strongly to ◆ � u 2 Ẇ 1,p(M, Ñ ) in Ẇ 1,p(M, Ñ ).
Proof. Since ◆ is an embedding, (D(◆ � u`))`2N converges to D(◆ � u) in measure
if and only if (Du`)`2N converges to Du locally in measure. As ◆ is isometric, for
every ` 2 N,

|D(◆ � u`)|g⇤

M⌦gÑ � |D(◆ � u)|g⇤

M⌦gÑ = |Du`|g⇤

M⌦gN � |Du|g⇤

M⌦gN ;

the conclusion follows from the definition of convergence.

The distance �̇◆1,p(u, v) = �̇1,p(◆�u, ◆�v) gives thus the same topology as �̇1,p.
However the completeness of Ẇ 1,p(M, N ) will then depend on the completeness
of ◆(N ); a necessary condition is that ◆(N ) should be closed. When N is complete
but not compact, the original Nash embedding theorem will give ◆(N ) which is not
closed [49, 50]; it is however always possible when N is complete to have a Nash
embedding theorem with ◆(N ) closed [47].

We would also like to compare this notion with the metric of Chiron [17, Sec-
tion 1.6]1 for u, v 2 Ẇ 1,p(M, N ):

�̇C1,p(u, v) = �(u, v) +

⇣Z
M

��
|Du|g⇤

M⌦gN � |Dv|g⇤

M⌦gN
��p⌘ 1

p
,

1 As the modulus of the derivative has several definitions, we have in fact a family of distances out
of which we take the one that uses our notion of modulus of the derivative. Instead of introducing
the notion of Lebesgue spaces into metric spaces, we consider convergence in measure for maps
from M to N .
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where � is a distance of the form (3.1). In order to study the topological equivalence
of these metrics, we give a criterion of convergence in measure of the derivative.

Proposition 4.5 (Criterion for convergence in measure). Let (u`)`2N be a se-
quence of co-locally weakly differentiable maps from M to N . If the sequence
(u`)`2N converges locally in measure to a co-locally weakly differentiable map
u : M ! N and if the sequence (|Du`|g⇤

M⌦gN )`2N converges to |Du|g⇤

M⌦gN in
L1loc(M), then the sequence (Du`)`2N converges to Du locally in measure.

As an immediate consequence we have the topological equivalence between
�̇1,p and �̇C1,p.

Proposition 4.6. Let p2 [1,1). Let (u`)`2N be a sequence of maps in Ẇ 1,p(M,N )
and u2 Ẇ 1,p(M, N ). The sequence (u`)`2N converges strongly to u in Ẇ 1,p(M,N )
if and only if lim`!1 �̇C1,p(u`, u) = 0.

This proposition is due to Chiron when N = R and p > 1. The proof of
Proposition 4.5 relies on the Balder-Visintin criterion of strong convergence.

Proposition 4.7 (Balder–Visintin criterion of strong convergence).
[7, Theorem 1], [55, Corollary 2]. Let ( f`)`2N be a sequence in L1(U, Rk). If the
sequence ( f`)`2N converges weakly to f 2 L1(U, Rk) and for almost every x 2 U ,
the point f (x) is an extreme point of\

j2N
co{ fi (x) : i � j},

then the sequence ( f`)`2N converges to f in L1(U, Rk).

For a set A ✓ Rk , the set co A denotes the convex hull of A, that is, the set of
convex combinations of elements of A. A point c is an extreme point of a convex
set C if C \ {c} is convex.

Proof of Proposition 4.5. Let U ✓ N and ' 2 C1(N , Rn) be the extended local
chart given by Lemma 1.6 and let K ✓ M be compact. In view of Proposition 3.7,
and the weak compactness criterion in L1loc(M), the sequence (D(' � u`))`2N con-
verges weakly to D(' � u) in L1(K ).

By taking a subsequence, we can assume that the sequences (u`)`2N and
(|Du`|)`2N converge almost everywhere in M . In order to apply the Balder–Visintin
criterion of strong convergence, we note that for every x 2 M ,

D(' � u`)(x) 2 D'(u`(x))
⇣
B̄|Du`(x)|g⇤M⌦gN

⌘

and so

co {D(' � uk)(x) : k � `} ✓ co
n
D'(uk(x))

⇣
B̄|Duk(x)|g⇤M⌦gN

⌘
: k � `

o
.
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Hence, since for almost every x 2 K , (D'(u`(x)))`2N converges to D'(u(x)) and
(|Du`(x)|g⇤

M⌦gN )`2N converges to |Du(x)|g⇤

M⌦gN , we have\
`2N

co{D(' � uk)(x) : k � `} ✓ D'(u(x))
⇣
B̄|Du(x)|g⇤M⌦gN

⌘
.

We finally observe that for every x 2 u�1(U), |Du(x)|g⇤

M⌦gN is an extremal point
of B̄|Du(x)|g⇤M⌦gN

and D'(u(x)) is invertible, therefore D(' � u)(x) is an extremal
point of D'(u(x))(B̄|Du(x)|g⇤M⌦gN

) and hence of
T
`2N co{D(' � uk)(x) : k � `}.

Hence by the Balder–Visintin criterion of strong convergence (Proposition 4.7), the
sequence (D(' � u`))`2N converges to D(' � u) in L1(K \ u�1(U)) and thus in
measure on K \ u�1(U). By covering M and N by countably many such compact
sets K and extended local charts (',U), we obtain the conclusion.

The reader will observe that our argument relies on the structure of the norm
that endows T ⇤M⌦T N . More precisely our proof requires the norm on T ⇤M⌦T N
to be uniformly convex; this is not the case when min(dim(M), dim(N )) � 2 for
the operator norm.
Proposition 4.8. Let p2(1,1). Let (u`)`2N be a sequence of maps in Ẇ 1,p(M,N )
and u 2 Ẇ 1,p(M, N ). If (u`)`2N converges to u locally in measure and

lim
`!1

Z
M

|Du`|
p
g⇤

M⌦gN =

Z
M

|Du|pg⇤

M⌦gN ,

then (|Du`|g⇤

M⌦gN )`2N converges to |Du|g⇤

M⌦gN in L
p(M).

In particular the two metrics introduced by Chiron have the same convergent
sequences [17, Lemma 2] for p > 1. By Proposition 4.6, this notion of convergence
is also equivalent to convergence in Ẇ 1,p(M, N ). When p = 1, the equivalence
does not hold already in the Euclidean case [17, Lemma 2]. The proof relies on the
Proposition 2.2.

Proof of Proposition 4.8. Since (|Du`|g⇤

M⌦gN )`2N is bounded in L p(M) and p 2

(1,1), by taking a subsequence, we can assume that (|Du`|g⇤

M⌦gN )`2N converges
weakly to some w in L p(M). Since (u`)`2N converges to u locally in measure,
for every f 2 C1c (M, Rk), |D( f � u)|g⇤

M⌦gk  | f |Lipw almost everywhere in
M . Hence, by Proposition 2.2, |Du|g⇤

M⌦gN  w almost everywhere in M . On
the other hand, by lower semicontinuity of the norm under weak convergence [14,
Proposition 3.5], [44, Theorem 2.11], [58, Theorem 5.4.6] and by our assumption,Z

M
w p

 lim inf
`!1

Z
M

|Du`|
p
g⇤

M⌦gN =

Z
M

|Du|pg⇤

M⌦gN

and so w = |Du|g⇤

M⌦gN almost everywhere in M . The sequence (|Du`|g⇤

M⌦gN )`2N
converges thus weakly to |Du|g⇤

M⌦gN in L p(M). Since p 2 (1,1), we conclude
that (|Du`|g⇤

M⌦gN )`2N converges to |Du|g⇤

M⌦gN in L p(M) [12, Corollary 4.7.16],
[58, Exercise 5.3], [14, Exercise 4.19].



122 ALEXANDRA CONVENT AND JEAN VAN SCHAFTINGEN

When N = R, we already known that the Sobolev space is not complete un-
der the Chiron distance [17, Lemma 2]. We extend this result to Sobolev spaces
between Riemannian manifolds.

Proposition 4.9. If M and N are nonempty Riemannian manifold and p 2 [1,1)
then (Ẇ 1,p(M, N ), �̇C1,p) is not complete.

Proof. We give the proof when M = (0, 1). The reader will adapt the proof to the
general case. Choose � 2 C1([0, L], N ) such that for every t 2 [0, L], |� 0(t)|gN =

1 and define, following Chiron [17, Lemma 2], for every ` 2 N, the function u` :

(0, 1) ! N for each t 2 (0, 1) by

u`(t) = �
�
dist(t, Z/`)

�
.

For every ` 2 N, the function u` is Lipschitz and |u0

`|gN = 1 almost everywhere
in (0, 1). Moreover, the sequence (u`)`2N converges uniformly to the constant map
u = � (0). Since

lim
`!1

Z 1

0
|u0

`|
p
gN = 1 6= 0 =

Z 1

0
|u0

|
p,

the sequence (u`)`2N does not converge in Ẇ 1,p((0, 1), N ). By Proposition 4.6,
the space (Ẇ 1,p(M, N ), �̇C1,p) is not complete.

4.3. Intrinsic distance

A natural candidate for an intrinsic distance is for u, v 2 Ẇ 1,p(M, N ) :

�1,p(u, v) =

✓Z
M
dS(Du, Dv)p

◆ 1
p

2 [0,1].

This distance can be infinite. This will happen for instance if M has infinite Rie-
mannian volume and u, v are distinct constant maps.

We first note that this distance characterizes Sobolev maps.

Proposition 4.10. If v 2 Ẇ 1,p(M, N ) then u 2 Ẇ 1,p(M, N ) and d(u, v)2 L p(M)
if and only if the map u is co-locally weakly differentiable and dS(Du, Dv) 2

L p(M).

This distance characterizes also the simultaneous convergence in Ẇ 1,p(M, N ).
In the absence of a Poincaré inequality, the convergence associated to �1,p is
stronger than the convergence of Definition 4.1.

Proposition 4.11. If (u`)`2N is a sequence in Ẇ 1,p(M, N ) and u 2 Ẇ 1,p(M, N )
then the sequence (dS(Du`, Du))`2N converges to 0 in L p(M) if and only if the
sequence (u`)`2N converges strongly to u in Ẇ 1,p(M, N ) and the sequence
(d(u`, u))`2N converges to 0 in L p(M).



INTRINSIC SOBOLEV SPACES BETWEEN MANIFOLDS 123

Proof. First assume that (u`)`2N converges strongly to u in Ẇ 1,p(M, N ) and
(d(u`, u))`2N converges to 0 in L p(M). By the definition of convergence in
Ẇ 1,p(M, N ) (Definition 4.1), ( |Du`|g⇤

M⌦gN ) `2N converges to |Du|g⇤

M⌦gN in
L p(M) and (Du`)`2N converges to Du locally in measure. The latter convergence
implies that (dS(Du`, Du))`2N converges to 0 in measure. Since for every ` 2 N,

dS(Du`, Du)  d(u`, u) + |Du`|g⇤

M⌦gN + |Du|g⇤

M⌦gN

almost everywhere in M , the conclusion follows from Lebesgue’s dominated con-
vergence theorem [12, Theorem 2.8.5].

Conversely, if (dS(Du `, Du))`2N converges to 0 in L p(M), then (dS(Du`,
Du))`2N converges to 0 in measure and thus (Du`)`2N converges to Du locally in
measure. Moreover, (|Du`|g⇤

M⌦gN )`2N converges to |Du|g⇤

M⌦gN in measure. Since
for every ` 2 N,

|Du`|g⇤

M⌦gN  dS(Du`, Du) + |Du|g⇤

M⌦gN

almost everywhere in M , by Lebesgue’s dominated convergence theorem, the se-
quence (|Du`|g⇤

M⌦gN )`2N converges to |Du|g⇤

M⌦gN in L p(M). Finally, by the non-
expansiveness property (4.1), it is clear that the sequence (d(u`, u))`2N converges
to 0 in L p(M).

Finally, Sobolev spaces are complete under this metric.

Proposition 4.12. If N is complete, then the metric space (Ẇ 1,p(M, N ), �1,p) is
complete.

Proof. Let (u`)`2N be a Cauchy sequence for the metric �1,p. There exists a subse-
quence (Du`k )k2N which is a Cauchy sequence for dS almost everywhere in M . By
the nonexpansiveness property (4.1), (u`k )k2N is a Cauchy sequence for d almost
everywhere in M . Since N is complete, the sequence (u`k )k2N converges almost
everywhere to a map u : M ! N .

Since for every k 2 N, |Du`k |g⇤

M⌦gN  dS(Du`k , Du`0) + |Du`0 |g⇤

M⌦gN al-
most everywhere in M , we deduce that the sequence (|Du`k |)k2N is bounded almost
everywhere in M and

lim sup
k!1

Z
M

|Du`k |
p
g⇤

M⌦gN < 1.

Since the distance dS is complete on any compact subset of T ⇤M ⌦ T N , the se-
quence (Du`k )k2N converges almost everywhere to a bundle morphism � : T M !

T N . By the closure property (Proposition 3.8), we deduce that u 2 Ẇ 1,p(M, N )
and Du = �. By Fatou’s lemma, for every k 2 N,

�1,p(u`k , u)  lim inf
j!1

�1,p(u`k , u` j ),

and thus limk!1 �1,p(u`k , u) = 0. Since the sequence (u`)`2N is a Cauchy se-
quence for �1,p, the conclusion follows.
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Remark 4.13. In the above properties, the Sasaki metric can be generalized to
strongly concordant (with the Euclidean structure g⇤

M ⌦ gN ) metrics, that is, any
metric G on T (T ⇤M ⌦ T N ) such that

(a) for every ⌫ 2 T (T ⇤M ⌦ T N ),

G(D⇡M⇥N (⌫))  G(⌫);

(b) there exists  > 0 such that for every ⌫ 2 T (T ⇤M ⌦ T N ),

(�1D(g⇤

M ⌦ gN )(⌫))2  4(g⇤

M ⌦ gN )(⇡T ⇤M⌦T N (⌫))G(⌫),

where ⇡T ⇤M⌦T N : T (T ⇤M ⌦ T N ) ! T ⇤M ⌦ T N is the canonical bundle
morphism, and for every e 2 T ⇤M ⌦ T N ,

G(Verte(e))  2(g⇤

M ⌦ gN )(e),

where Verte is the vertical lift defined for each ⌫ 2 ⇡�1
M⇥N ({⇡M⇥N (e)}) by

Verte(⌫) =

d
dt

(e + t ⌫)|t=0 2 Te(T ⇤M ⌦ T N ).

Such metrics are natural metrics on vector bundles [10,32,41]. An another example
is the Cheeger-Gromoll metric [16].

Given ◆ : N ! R⌫ an isometric embedding such that ◆(N ) is closed, we have
two natural distances under the hand : the distance �1,p and the induced distance,

�◆1,p(u, v) =

✓Z
M

⇣
|◆ � u � ◆ � v|

2
+ |D(◆ � u) � D(◆ � v)|2

⌘ p
2
◆ 1

p
.

(The distance on the right is in fact the Sasaki distance on T ⇤M ⌦ TR⌫ .) The next
two propositions show that even if they induce the same topology and they are both
complete, they are not uniformly equivalent in general.

Proposition 4.14. If M is a nonempty Riemannian manifold, p 2 [1,1) and n �

2, then the identity map

i :
⇣
Ẇ 1,p(M, Sn), �1,p

⌘
!

⇣
Ẇ 1,p(M, Sn), �◆1,p

⌘

is not uniformly continuous.

Proof. We begin by considering the case M = R. Choose y 2 Sn and ⇢ : Sn ! Sn
be a non-identical isometry such that ⇢(y) = y and u 2 C1(R, Sn) such that for
every x 2 R \ [�1, 1], ⇢(u(x)) = y and ⇢(u(x)) 6= u(x) in (�1, 1).
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Let u� : R ! Sn be defined for every t 2 R by u�(t) = u(t/�) and let v� =

⇢ � u�. Since ⇢ is an isometry, D⇢ : TSn ! TSn is an isometry on tangent vectors.
Since n � 2, for every e 2 TSn there exists a path � such that P� (e) = D⇢(e); the
length of � with respect to the Sasaki metric GS can be bounded uniformly by 2⇡ .
Therefore, we have for every e 2 TSn , dS(e, D⇢(e))  2⇡ and we deduce that

�1,p(u�, v�) =

✓Z
R
dS(Du�, Dv�)

p
◆ 1

p
 2⇡ �

1
p .

On the other hand,

�◆1,p(u�, v�) =

✓Z
R
�
�
|u � ⇢ � u|2 + ��2

|Du � D(⇢ � u)|2
� p
2

◆ 1
p
,

Consequently, lim�!0 �1,p(u�, v�) = 0 while lim inf�!0 �
◆
1,p(u�, v�) = 1.

In the general case, let a 2 M and let ⇢ 2 (0, ⇢i (a)) where ⇢i (a) is the
injectivity radius of the Riemannian manifold M at the point a. We define then the
maps u� : M ! Sn and v� : M ! Sn for � > 0 and x 2 M by

u�(x) = u
⇣d(x, a) � ⇢

�

⌘
and v�(x) = �u

⇣d(x, a) � ⇢

�

⌘
;

the non-uniform continuity follows as in the case M = R treated above.

Proposition 4.15. If M is a nonempty Riemannian manifold and p 2 [1, dimM),
then the identity embedding map

i : (Ẇ 1,p(M, S1), �◆1,p) ! (Ẇ 1,p(M, S1), �1,p)
is not uniformly continuous.
Proof. We define u� = (cos('�), sin('�)) and v� = (� cos('�), sin('�)), where

'�(x) =

8>>>>>><
>>>>>>:

⇡

2
if d(x, y) � 2�

d(x, y) � �

2�
⇡ if �  d(x, y) < 2�

� sin
(d(x, y) � �)⇡

2�1+
dimM
p

if d(x, y) < �

and the point y 2 M is fixed. We observe that

lim inf
�!0

�1,p(u�, v�) = 2 lim inf
�!0

✓Z
M

�
cos('�)2 + |D'�|2

� p
2

◆ 1
p

> 0.

On the other hand, since p < dimM ,

lim sup
�!0

�◆1,p(u�, v�) = 2 lim sup
�!0

✓Z
M

�
cos('�)2 + sin('�)2|D'�|2

� p
2

◆ 1
p

= 0.
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[27] M. GIAQUINTA, G. MODICA and J. SOUČEK, Cartesian currents and variational problems
for mappings into spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), 393–485.
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