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Extensors and the Hilbert scheme

JÉRÔME BRACHAT, PAOLO LELLA, BERNARD MOURRAIN

AND MARGHERITA ROGGERO

Abstract. The Hilbert scheme Hilbnp(t) parametrizes closed subschemes and
families of closed subschemes in the projective space Pn with a fixed Hilbert
polynomial p(t). It can be realized as a closed subscheme of a Grassmannian or
a product of Grassmannians. In this paper we consider schemes over a field k
of characteristic zero and we present a new proof of the existence of the Hilbert
scheme as a subscheme of the GrassmannianGrN (r)

p(r) , where N (r) = h0(OPn (r)).
Moreover, we exhibit explicit equations defining it in the Plücker coordinates of
the Plücker embedding of GrN (r)

p(r) .
Our proof of existence does not need some of the classical tools used in pre-

vious proofs, as flattening stratifications and Gotzmann’s Persistence Theorem.
The degree of our equations is deg p(t) + 2, lower than the degree of the

equations given by Iarrobino and Kleiman in 1999 and also lower (except for the
case of hypersurfaces) than the degree of those proved by Haiman and Sturmfels
in 2004 after Bayer’s conjecture in 1982.

The novelty of our approach mainly relies on the deeper attention to the in-
trinsic symmetries of the Hilbert scheme and on some results about Grassmannian
based on the notion of extensors.

Mathematics Subject Classification (2010): 14C05 (primary); 15A75, 13P99
(secondary).

Introduction

The study of Hilbert schemes is a very active domain in algebraic geometry. The
Hilbert scheme was introduced by Grothendieck [17] as the scheme representing the
contravariant functorHilbnp(t) : (Schemes/k)� ! (Sets) that associates to a scheme
Z the set of flat families X ,! Pn ⇥Spec k Z ! Z whose fibers have Hilbert poly-
nomial p(t). Thus, the Hilbert scheme Hilbnp(t) parametrizes the universal family
of subschemes in the projective space Pn with Hilbert polynomial p(t). It is natural
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to embed the Hilbert functor in a suitable Grassmann functor and to construct the
Hilbert scheme as a subscheme of a GrassmannianGrN (r)

p(r) for a sufficiently large r ,
where N (t) equals

�n+t
n
�
.

Over the years, several authors addressed the problem of finding alternative
proofs of the representability of the Hilbert functor, for the purpose of giving sim-
pler equations for the representing scheme. This is also the aim of the present
paper. In fact, we present a new proof of the existence of the Hilbert scheme as a
subscheme of GrN (r)

p(r) and we exhibit explicit equations defining it in the case of a
field k of characteristic 0.

There are some reasons for which we consider our work significant that con-
cern the tools used in the proofs and the shape of the equations, in particular the
degree.

In order to simplify Grothendieck’s proof, a first crucial point is the concept of
regularity that Mumford introduced for the choice of the degree r [26,27]. A further
simplification is due to Gotzmann, whose Regularity Theorem gives a formula for
the minimum r only depending on p(t) [15]. Other key tools and results that usu-
ally appear in this context are flattening stratifications, fitting ideals, Gotzmann’s
Persistence Theorem and Macaulay’s Estimates on the Growth of Ideals.

In this paper, the number r is always that given by Gotzmann’s formula and
in our proof we make use of Macaulay’s Estimates, but we do not need any of the
other quoted results. We replace them by a deeper attention to the inner symmetries
of the Hilbert scheme induced by the action of the projective linear group on Pn ,
and by exploiting the nice combinatorial properties of Borel-fixed ideals. These are
far from being new ideas to study Hilbert schemes. Indeed, they play a central role
in some of the more celebrated and general achievements on this topic, first of all
Hartshorne’s proof of connectedness [19]. However, to our knowledge, they have
never been used before to prove the existence or to derive equations for Hilbnp(t).

The proof of the representability of the Hilbert functor given by Haiman and
Sturmfels in [18] following Bayer’s strategy starts with a reduction to the local case;
the open cover of Hilbnp(t) they consider is that induced by the standard open cover
of GrN (r)

p(r) . We introduce a new open cover for the Grassmann functor, that we will
call the Borel open cover. It is obtained considering only a few open subfunctors
GI of the standard cover, each corresponding to a Borel-fixed ideal generated by
N (r) � p(r) monomials of degree r , and all the open subfunctors GI,g, for every
g 2 PGL(n + 1), in their orbit (Proposition 3.2). The Borel open subfunctors HI,g
of the Hilbert functor are defined accordingly.

Restricting to each Borel subfunctorGI,g, the properties of J -marked sets and
bases over a Borel-fixed ideal J developed in [24] (and later used in [1]) allow us
to prove that HI,d is representable and to obtain a new proof of the existence of
Hilbnp(t) (Theorem 4.9).

Towards the aim of deriving equations for the Hilbert scheme, we then expand
the notion of marked set to the universal element of the family

F ,! Pn ⇥Spec k GrN (r)
p(r) ! GrN (r)

p(r)
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parameterized by the Grassmannian and to its exterior powers. Indeed, exploiting
the notion of an extensor and its properties, we obtain a description of the univer-
sal element by a set of bi-homogeneous generators of bi-degree (r, 1) in k[x,1],
where x and 1 are compact notation for the set of variables on Pn and the Plücker
coordinates on the Grassmannian. We also obtain a similar description (again lin-
ear w.r.t. 1) for the exterior powers of the universal element of F (Theorem 5.10).
These sets of generators allow us to write explicitly a set of equations for the Hilbert
scheme in the ring k[1] of the Plücker coordinates (Theorem 6.5).

The degree of our equations is upper bounded by d + 2, where d := deg p(t)
is the dimension of the subschemes of Pn parametrized byHilbnp(t). It is interesting
that the degree of the equations is so close to the geometry of the involved objects.
Furthermore, d + 2 is lower than the degree of the other known sets of equations
for the embedding of the Hilbert scheme in a single Grassmannian. We quote the
equations of degree N (r+1)� p(r+1)+1 in local coordinates given by Iarrobino
and Kleiman [21, Proposition C.30], and the equations of degree n+1 in the Plücker
coordinates conjectured by Bayer in his thesis [3] and obtained by Haiman and
Sturmfels as a special case of a more general result in [18].

By the way, we observe that our method, applied with slightly different strate-
gies, also allows to obtain sets of equations very similar to those by Iarrobino and
Kleiman and by Haiman and Sturmfels (Theorems 6.6 and 6.7).

At the end of the paper we apply our results in order to compute a set of equa-
tions defining the Hilbert schemes of 2 points in P2, P3 and P4 and of 3 points
in P2. In particular, we illustrate in detail our method in the case of Hilb22 and
we compare the equations we obtain with those obtained by Brodsky and Sturm-
fels [7]. We observe that the two sets of equations, though different, generate the
same ideal, more precisely the saturated ideal of Hilb22 in Gr

6
2 ⇢ P14. Our equa-

tions describe the saturated ideal also in the case of Hilb32 in Gr
10
2 ⇢ P44, Hilb42 in

Gr152 ⇢ P104 and Hilb23 in Gr103 ⇢ P119, but we do not know if this nice property
holds in general. However, the lower degree marks a significant step forward in or-
der to compute this special ideal (see Table 7.1) and allows further experiments and
investigations.

Let us now explain the structure of the paper. In Section 2, we recall some
properties that we will use throughout the paper. In particular, we describe the
Hilbert functor, its relation with the Grassmann functor and the standard open cover.
In Section 3, we introduce the Borel open cover. Section 4 contains the generali-
ties about marked sets and bases over Borel-fixed ideals and it ends with the first
main result of the paper, namely Theorem 4.9 on the representability of the Hilbert
functor. Section 5 contains the results on Grassmannians based on the theory of
extensors (Theorem 5.10). In Section 6, after some new technical results about
marked bases, we present the equations defining the Hilbert scheme and we prove
their correctness (Theorem 6.5). In Subsections 6.1 and 6.2 we derive equations
similar to those by Iarrobino-Kleiman and by Haiman-Sturmfels. In Section 7, we
illustrate the constructions and results of the paper in the case of Hilbert schemes
describing 2 or 3 points.
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1. Notation

Let k be a field of characteristic 0. In the following k[x] will denote the polyno-
mial ring k[x0, . . . , xn] and Pn the n-dimensional projective space Proj k[x]. For a
k-algebra A, we will denote by A[x] := A ⌦k k[x] the polynomial ring with co-
efficients in A and by PnA the projective space Proj A[x] = Pn ⇥Spec k Spec A. As
usual, for a subset E of a ring R, we denote by (E) the ideal of R generated by E
and for a subset F of an R-module M , we denote by hFi the R-submodule of M
generated by E ; we sometimes write R(E) and RhFi when more than one ring is
involved.

Let us now consider a scheme X ⇢ PnA. For each prime ideal p of A, we
denote by Ap the localization in p, by k(p) the residue field and by Xp the fiber
of the structure morphism X ! Spec A. The Hilbert polynomial pp(t) of Xp is
defined as

pp(t) = dimk(p) H0(Xp,OXp(t)) ⌦k k(p), t � 0.

If X is flat over Spec A and the Hilbert polynomial pp(t) of every localization co-
incides with p(t), then p(t) is called the Hilbert polynomial of X (for further de-
tails see [20, III, Section 9]). There exists a positive integer r only depending on
p(t), called Gotzmann number, for which the ideal sheaf IX of each scheme X
with Hilbert polynomial p(t) is r-regular (in the sense of Castelnuovo-Mumford
regularity). By Gotzmann’s Regularity Theorem ([15, Satz (2.9)] and [21, Lemma
C.23]), this implies the surjectivity of the morphism

H0
�
OPnA(r)

� �X
�! H0

�
OX (r)

�
.

Wewill denote by N (t) the dimension of k[x]t . The polynomial q(t) := N (t)�p(t)
is the Hilbert polynomial of the saturated ideal defining X and it is called the volume
polynomial of X . In particular, for t = r the Gotzmann number of p(t), we set
p := p(r), q := q(r) and N := N (r).

We will use the usual notation for terms x↵
:= x↵0

0 , . . . , x↵n
n , where ↵ =

(↵0, . . . ,↵n) 2 Nn+1. When a term order comes into play, we assume the variables
ordered as x0 < · · · < xn; we will denote by <DegRevLex and <Lex the degree
reverse lexicographic and the lexicographic orders. We will denote by x↵(i) the i-
terms of degree r in descending DegRevLex order. For any term x↵ , let min(x↵)
and max(x↵) denote respectively the minimal and the maximal variable which di-
vides x↵ .

For any polynomial f 2 A[x], the support Supp( f ) of f is the set of terms that
appear in f with non-zero coefficient and coeffx ( f ) ⇢ A is the set of coefficients
of the terms in Supp( f ); with the obvious meaning, we use the notation coeffx (U)
also if U is a subset of A[x].

We loosely denote by the same letter the monomial ideals in k[x] and that in
A[x] generated by the same set of terms. If J is a monomial ideal, we will denote
by BJ its minimal monomial basis and by N (J ) the set of terms in k[x] \ J . For
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a subset V of a standard graded module R =

L
t Rt , Vs and V>s will denote

respectively V \ Rs and V \

L
t>s Rt .

An s-multi-index H = (h1, . . . , hs) is an ordered sequence h1 < h2 < · · · <
hs in {1, . . . , N }; its complementaryHc is the (N � s)-multi-index with entries in
the set {1, . . . , N } \H. For any s-multi-index H, we will denote by "H 2 {�1, 1}
the signature of the permutation (1, . . . , N ) 7! H,Hc. Moreover, ifH ⇢ K, "KH is
the signature of K 7! H,K \H. For every m 6 N � p, we will denote by E (m)

the set of all (p + m)-multi-indices.
For every I 2 E (0), J (I) is the ideal generated by the terms x↵( j) correspond-

ing to the indices j 2 Ic.

2. Hilbert and Grassmann functors

In the following, Hilbnp(t) will denote the Hilbert functor (Schemes/k)� ! (Sets)
that associates to an object Z of the category of schemes over k the set

Hilbnp(t)(Z) = {X ⇢ Pn ⇥Spec k Z | X ! Z flat with Hilbert polynomial p(t)}.

and to any morphism of schemes f : Z ! Z 0 the map

Hilbnp(t)( f ) : Hilb
n
p(t)(Z

0) ! Hilbnp(t)(Z)

X 0
7! X 0

⇥Z 0 Z .

It is easy to prove that Hilbnp(t) is a Zariski sheaf [27, Section 5.1.3]; hence, we can
consider it as a covariant functor from the category of noetherian k-algebras [28,
Lemma E.11]

Hilbnp(t) : (k-Algebras) ! (Sets)
such that for every finitely generated k-algebra A

Hilbnp(t)(A) =

�
X ⇢ PnA | X ! Spec A flat with Hilbert polynomial p(t)

 
.

and for any k-algebra morphism f : A ! B

Hilbnp(t)( f ) : Hilb
n
p(t)(A) ! Hilbnp(t)(B)

X 7! X ⇥Spec A Spec B.

The Hilbert schemeHilbnp(t) is defined as the scheme representing the Hilbert func-
tor. Our notation for the Hilbert functor follows that used for instance in [18], where
the functor of points of a scheme Z is denoted by Z . Note that we are not assuming
the representability of Hilbnp(t) as a known fact, but we will prove it at the end of
Section 4.

Let us briefly recall the strategy of the construction of the Hilbert scheme based
on Castelnuovo-Mumford regularity and Gotzmann number. The following propo-
sition suggests to look for an embedding in a representable functor and reduce to
the local case.
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Proposition 2.1 ([18, Proposition 2.7 and Corollary 2.8]). Let Z be a scheme
and ⌘ : F ! Z be a natural transformation of functors (k-Algebras) ! (Sets),
where F is a Zariski sheaf. Suppose that Z has a cover of open subsets U such that
each subfunctor ⌘�1(U) ✓ F is representable. Then, also F is representable.

Moreover, if the natural transformations ⌘�1(U) ! U , given by restricting ⌘,
are induced by closed embeddings of schemes, then so is ⌘.

The overall strategy introduced by Bayer [3] for the construction of the Hilbert
scheme uses an embedding in a Grassmann functor (for a detailed discussion we
refer Section 2 of [18] and to [11, Section VI.1]). If X 2 Hilbnp(t)(A), then by
flatness H0(OX (r)) is a locally free A-module of rank p(r). Hence, the sur-
jective map �X : H0

�
OPnA(r)

�
' AN ! H0

�
OX (r)

�
is an element of the set

defined by the Grassmann functor GrNp over A. Indeed, the Grassmann functor
GrNp : (k-Algebras) ! (Sets) associates to every finitely generated k-algebra A the
set

GrNp (A) =

⇢
isomorphism classes of epimorphisms

⇡ : AN ! P of locally free modules of rank p

�
.

Equivalently, we can define

GrNp (A) =

⇢
submodules L ✓ AN such that
AN/L is locally free of rank p

�
. (2.1)

In the second formulation, ⇡ is the canonical projection ⇡L : AN ! AN/L . This
functor is representable and the representing scheme GrNp is called the Grassman-
nian (see [30, Section 16.7]).

We fix the canonical basis {a1, . . . , aN } for AN and the isomorphism AN '

H0
�
OPnA(r)

�
given by ai 7! x↵(i). Thus, we obtain a universal family

F ,! Pn ⇥GrNp ! GrNp (2.2)

parameterized by the Grassmannian and the natural transformation of functors

H : Hilbnp(t) ! GrNp

sending X 2 Hilbnp(t)(A) to ⇡X : H0
�
OPnA(r)

�
! H0

�
OX (r)

�
2 GrNp (A) (or

equivalently to L = H0
�
IX (r)

�
).

The Grassmannian has the following well-known open cover that we call the
standard open cover of GrNp . Let us fix a basis {e1, . . . , ep} for Ap. For every
I = (i1, . . . , i p) 2 E (0), let us consider the injective morphism

0I : Ap ! AN

e j 7! ai j
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and the subfunctor GI that associates to every noetherian k-algebra A the set

GI(A) =

n
L 2 GrNp (A) such that ⇡L � 0I is surjective

o
.

Proposition 2.2. For I 2 E (0), the GI are open subfunctors of GrNp that cover it.

Proof. See [29, Section 22.22].

Remark 2.3. For every L 2 GI(A) the map ⇡L � 0I is an isomorphism, as it is a
surjective morphism from a free A-module to a locally free A-module of the same
rank. Therefore, L is the kernel of the epimorphism �L := (⇡L�0I)�1�⇡L : AN !

Ap such that �L(ai j ) = e j for every i j 2 I.
On the other hand, the kernel of every surjective morphisms � : AN ! Ap

sending ai j to e j is by definition a module L 2 GI(A): we will write �L instead of
� to emphasize this correspondence.

Every map �L is completely determined by the images of the q = N � p
elements ah with h 2 Ic. If �L(ah) =

Pp
j=1 �hj e j = �L

⇣Pp
j=1 �hj ai j

⌘
, the

kernel L contains the free A-module L 0 generated by the q elements bh := ah �Pp
j=1 �hj ai j 2 AN with h 2 Ic. Then, AN = L 0

� hai j | i j 2 Ii ✓ L �

hai j | i j 2 Ii ✓ AN , so that L = L 0 and AN/L are free A-modules of rank q and p
respectively.

Through the fixed isomorphism AN ' H0
�
OPnA(r)) given by a j 7! x↵( j),

the elements bh correspond to polynomials f↵(h) := x↵(h)
�

Pp
j=1 �hj x↵(i j )

2

H0
�
OPnA(r)

�
. In this way, for L = H(A)(X) 2 GI(A), the polynomials f↵(h)

generate the ideal (IX )>r , while for a general L 2 GI(A), the A-module h f↵(h), h 2

Ici ✓ H0
�
OPnA(r)

�
is free of rank q, but the Hilbert polynomial of Proj(A[x]/

( f↵(h), h 2 Ic)) is not necessarily p(t).
In the following, keeping in mind the above construction, we often consider

the ideal I = ( f↵(h), h 2 Ic) as an element of GI(A), identifying it with the A-
module L = Ir . In the same way, we will write I 2 HI(A) when I 2 GI(A) and
the Hilbert polynomial Proj(A[x]/I ) is p(t).

The proof of the representability of the Hilbert functor after Bayer’s strategy
given in [18] uses the open cover ofHilbnp(t) of the subfunctorsHI := H�1(GI)\

Hilbnp(t), that we will call the standard open cover of Hilb
n
p(t).

In this paper we introduce new open covers of the Grassmann and the Hilbert
functors, called Borel open covers, that take into account of the action of the pro-
jective linear group on the Grassmann and Hilbert functors induced by that on Pn .

3. The Borel open cover

An ideal J ⇢ k[x] is said Borel-fixed if it is fixed by the action of the Borel subgroup
of the upper triangular matrices.
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These ideals are involved in many general results about Hilbert schemes for the
following reason. Galligo [14] and Bayer and Stillman [4] proved that the generic
initial ideal of any ideal is Borel-fixed, which means, in the context of Hilbert
schemes, that any component and any intersection of components of Hilbnp(t) con-
tains at least a point corresponding to a scheme defined by a Borel-fixed ideal.

In characteristic zero, the notion of Borel-fixed ideals coincides with the notion
of strongly stable ideals. An ideal J is said strongly stable if, and only if, it is
generated by terms and for each term x↵

2 J also the term x j
xi x

↵ is in J for all
xi | x↵ and x j > xi . Moreover, the regularity of J is equal to the maximum degree
of terms in its minimal monomial basis [16, Proposition 2.11]. For further details
about Borel-fixed ideals see [6, 16, 25].
Notation 3.1. For any Hilbert polynomial p(t) and for the related integers r , p,
N , q

• B is the set of the Borel-fixed ideals in k[x] generated by q terms of degree r .
• Bp(t) is the set of Borel-fixed ideals in B with Hilbert polynomial p(t).
• A Borel multi-index I is any multi-index in E (0) such that J (I) 2 B.
• For every element g 2 PGL := PGLQ(n + 1), eg denotes the automorphism in-
duced by g on A[x]r and on the Grassmann and Hilbert functors and g⇧ denotes
the corresponding action on an element.

Notice that the set of Borel-fixed ideals in Bp(t) can be efficiently computed by
means of the algorithm presented in [8] and subsequently improved in [23].

For any p-multi-index I 2 E (0) and any g 2 PGL, we consider the following
subfunctor of the Grassmann functor :

GI,g(A) =

⇢
free quotient AN ⇡L

�! AN/L of rank p
such that ⇡L �eg � 0I is surjective

�
.

These subfunctors are open, because the functorial automorphism of GrNp induced
byeg extends toGI,g ' GI,id = GI . It is obvious that these subfunctors also cover
GrNp , but in fact it is sufficient to consider a smaller subset.

Proposition 3.2. The collection of subfunctors
n
GI,g

�� g 2 PGL, I 2 E (0) s.t. J (I) 2 B
o

covers the Grassmann functor GrNp and the representing schemes GI,g cover the
Grassmannian GrNp .

Proof. Let ⇡:AN ! P be an element ofGrNp (A). Following [29, Lemma 22.22.1],
we prove the result showing that for any p 2 Spec A there exist a multi-index I and
a change of coordinates g such that the morphism ⇡ � eg � 0I is surjective in a
neighborhood of p.
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Let Ap be the local algebra obtained by localizing in p, mp its maximal ideal
and k(p) the residue field. Tensoring by k(p) the morphism ⇡ , we obtain the mor-
phism of vector spaces

⇡p : k(p)N ! Pp/mpPp

whose kernel is a vector subspace of k(p) ⌦ Sr of dimension q.
Now, consider the ideal I ⇢ k(p) ⌦ S generated by ker⇡p and let J be its

generic initial ideal. We fix an element g 2 PGL such that J = in(g ⇧ I ). By
properties of Gröbner bases, we know that dimk(p) Jr = dimk(p)(g ⇧ I )r (J and g ⇧ I
have the same Hilbert function). Furthermore, the terms of degree r not belonging
to J are a basis both of (k(p) ⌦ Sr )/Jr and (k(p) ⌦ Sr )/(g ⇧ I )r .

Finally, the multi-index I is the one such that J (I) = J .

Definition 3.3. We call Borel subfunctor of GrNp any element of the collection of
subfunctors of Proposition 3.2. Moreover, we denote by HI,g the open subfunctor
H�1(GI,g) \Hilbnp(t).

Theorem 3.4. The collection of subfunctors
n
HI,g

�� g 2 PGL, I 2 E (0) s.t. J (I) 2 Bp(t)
o

(3.1)

covers the Hilbert functor Hilbnp(t).

Proof. Consider an element X 2 Hilbnp(t)(A). As above, it is sufficient to prove that
for any p 2 Spec A, there exists a subfunctor HI,g such that Xp = X ⇥k Spec k(p)

is an element of HI,g
�
k(p)

�
.

Localizing at p, we obtain a scheme Xp flat over Spec k(p) with Hilbert poly-
nomial p(t), as the flatness and so the Hilbert polynomial are preserved by local-
ization. Let IX ⇢ k(p) ⌦ S be the saturated ideal defining Xp, I := (IX )>r and J
the generic initial ideal of I . By the same argument used in the proof of Proposi-
tion 3.2, we fix a change of coordinated g 2 PGL such that J = in(g ⇧ I ) and the
multi-index I 2 E (0) such that J (I) = J . By construction, J (I) 2 Bp(t), as J and
I share the same Hilbert function.

Definition 3.5. The Borel cover of Hilbnp(t) is the collection of the open subfunc-
tors (3.1) of Theorem 3.4.

In next section we will prove that the open subfunctorHI,g is empty if J (I) 2

B \ Bp(t).

4. Representability

Our proof that the Hilbert functor is representable mainly uses the theory of marked
sets and bases on a Borel-fixed ideal developed in [5, 9, 24]. We recall some of the
results and notation contained in the quoted papers.
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Definition 4.1 ([9, Definitions 1.3, 1.4]). A monic marked polynomial (marked
polynomial for short) is a polynomial f 2 A[x] together with a specified term x↵

of Supp( f ), called head term of f and denoted by Ht( f ). We assume furthermore
that the coefficient of x↵ in f is 1A. Hence, we can write a marked polynomial as
f↵ = x↵

�

P
c↵� x� , with x↵

= Ht( f↵), x�
6= x↵ and c↵� 2 A.

Definition 4.2. Let J be a monomial ideal. A finite set F of homogeneous marked
polynomials f↵ = x↵

�

P
c↵� x� , with Ht( f↵) = x↵ , is called a J -marked set if

the head terms x↵ form the minimal monomial basis BJ of J , and every x� is an
element ofN (J ). Hence,N (J ) generates the quotient A[x]/(F) as an A-module.

A J -marked set F is a J -marked basis if the quotient A[x]/(F) is freely gen-
erated byN (J ) as an A-module, i.e., A[x] = A[x](F) � AhN (J )i.
Remark 4.3. Observe that if I is generated by a J -marked basis, then Proj(A[x]/I )
is A-flat, since A[x]/I is a free A-module.

In the following we will consider only J -marked sets F with J 2 B, i.e., of
the shape

F =

n
f↵ := x↵

�

X
c↵� x�

�� x↵
2 Jr , x�

2 N (J )r , c↵� 2 A
o

. (4.1)

For every ideal I generated by such a J -marked set F , we have A[x]r = hFi �

hN (J )r i, hence Ir is a free direct summand of rank q of A[x]r = H0
�
OPn(A)(r)

�
and it corresponds to an element of GrNp (A). In fact, if I 2 E (0) is the p-multi-
index such that J (I) = J , then I 2 GI(A).

Moreover I 2 HI(A) if, and only if, the Hilbert polynomial of A[x]/(I ) is
p(t). Now we will prove that this happens if, and only if, J 2 Bp(t) and F is a
J -marked basis.
We need some more properties concerning Borel-fixed ideals and marked bases.

Lemma 4.4. If J 2 B, then rk(Jt ) > q(t) and k[xd+1, . . . , xn]t ⇢ Jt for all t > r .

Proof. The first assertion follows by Macaulay’s Estimates on the Growth of Ide-
als [16, Theorem 3.3]. Thus, the degree of the Hilbert polynomial of A[x]/J is
at most d = deg p(t). By [8, Proposition 2.3], we have xrd+1 2 J that implies
k[xd+1, . . . , xn]t ⇢ Jt for t > r , by the strongly stable property.

Proposition 4.5 ([12, Lemma 1.1], [5, Lemma 1.2]). Let J be a strongly stable
ideal and let BJ be its minimal monomial basis.

(i) Each term x↵ can be written uniquely as a product x� x� with x�
2 BJ and

min x� > max x� . Hence, x� <Lex x⌘ for every term x⌘ such that x⌘
| x↵ and

x↵�⌘ /2 J . We will write x↵
= x�

⇤J x� to refer to this unique decomposition.
(ii) If x↵

2 J \ BJ and x j = min x↵ , then x↵/x j 2 J .
(iii) If x� /2 J , while x�x�

2 J , then x�x�
= x↵

⇤J x�0 with x↵
2 BJ and

x� >Lex x�0 (possibly x�0

= 1). In particular, if xi x�
2 J , then either

xi x�
2 BJ or xi > min x� .



EXTENSORS AND THE HILBERT SCHEME 75

Definition 4.6. Let J 2 B and I be the ideal generated by a J -marked set F in
A[x]. We consider the following sets of polynomials:

• F (s)
:=

�
x� f↵

�� deg �x� f↵
�
= t, f↵ 2F,min x↵ >max x� (i.e. x↵+�

= x↵
⇤J x�)

 
;

•
bF (s)

:=

�
x� f↵

�� deg �x� f↵
�

= t, f↵ 2 F, min x↵ < max x�
 
;

• N (J, I ) := I \ hN (J )i.

Note that for s = r , we have F (r)
= F ,

⌦
F (r)↵

= Ir andN (J, I )r = 0.

Theorem 4.7 ([24, Theorems 1.7, 1.10]). For J 2 B, let I be the ideal generated
by a J -marked set F in A[x]. Then, for every s > r ,

(i) Is =

⌦
F (s)↵

+

⌦bF (s)↵;
(ii) the A-module

⌦
F (s)↵ is free of rank equal to |F (s)

| = rk(Js);
(iii) Is =

⌦
F (s)↵

�N (J, I )s .

Moreover, the following conditions are equivalent:

(iv) F is a J -marked basis;
(v) for all s > r , Is =

⌦
F (s)↵;

(vi) N (J, I )r+1 = 0;
(vii) Ir+1 =

⌦
F (r+1)↵;

(viii)
VQ+1 Ir+1 = 0, where Q := rk(Jr+1).

Proof. This result is proved in a more general context in [24]. We only observe that
the conditions “N (J, I )s = 0 and Is =

⌦
F (s)↵ for every s 6 reg(J ) + 1” appearing

in [24] are equivalent to (vi) and (vii), since in the present hypotheses J is generated
in degree r and r is its regularity. With respect to [24], the only new item is (viii),
which is obviously equivalent to (vi) and (vii). In fact, by (ii) and (iii) we have
Ir+1 =

⌦
F (r+1)↵

�N (J, I )r+1 and rk
⌦
F (r+1)↵

= rk(Jr+1) = Q.

Corollary 4.8. Let I 2 E (0) be such that J (I) 2 B and let g 2 PGL. Then:

HI,g is not empty () J (I) 2 Bp(t).

Moreover, for J = J (I) 2 Bp(t) and any k-algebra A

HI,g(A) = {g ⇧ I s.t. I is generated by a J -marked basis in A[x]} .

Proof. It is sufficient to prove the result for g = id, i.e., for HI .
Let A be any k-algebra. If J = J (I) 2 Bp(t), then J 2 GI(A) and the Hilbert

polynomial of Proj(A[x]/J ) is p(t); hence J 2 HI(A).
On the other hand, if J = J (I) 2 B\Bp(t) and I 2 GI(A), then I is generated

by a J -marked set and rk(Js) > q(s) for every s � 0 (Lemma 4.4). By Theorem
4.7, the A-module Is contains a free submodule of rank equal to that of Js , hence
I /2 HI(A).

The second statement directly follows from Theorem 4.7(ii) and the equiva-
lence (iv),(v).
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In [24] a functorMfJ : (Rings) ! (Sets) is defined for a strongly stable ideal
J in Z[x0, . . . , xn], by taking for a ring A

MfJ (A) = {ideals I generated by J -marked bases in A[x0, . . . , xn]} .

Therefore, the open subfunctor HI is the restriction of MfJ to the sub-category
(k-Algebras).

The marked functor MfJ is represented by a closed subscheme of the affine
space AD

Z , for a suitable D. For the main features of MfJ and the proof of its
representability see [24]. Here, we are only interested in the case J 2 B. Under
this condition, any J -marked set has the shape (4.1) and is uniquely determined by
the list of D = q(r) · p(r) coefficients c↵� . Among the ideals generated by marked
sets, those generated by marked bases are given for instance by the closed condition
(viii) (or even (vi)) of Theorem 4.7.

Theorem 4.9. The Hilbert functor Hilbnp(t) is the functor of points of a closed sub-
scheme Hilbnp(t) of the Grassmannian Gr

N
p .

Proof. By Proposition 2.1, it suffices to check the representability on an open cover
of GrNp and Hilbnp(t): we choose the Borel open cover (Definitions 3.3 and 3.5).
For every I 2 E (0) such that J := J (I) 2 Bp(t) and for every g 2 PGL, HI,g is
naturally isomorphic to HI . Moreover, HI is the functor of points of the k-scheme
HI := MfJ ⇥SpecZ Spec k. Indeed, the scheme HI is the subscheme of AD

k = GI
(where D = p(r) · q(r)) defined by the closed equivalent conditions of Theorem
4.7. Hence HI is the functor of points of a closed subscheme HI of GI .

On the other hand if J (I) 2 B\Bp(t), thenHI is empty (Corollary 4.8), hence
it is the functor of points of a closed subscheme of GI . By Proposition 3.2 and the
second part of Proposition 2.1, we conclude that Hilbnp(t) is the functor of points of
a closed subscheme Hilbnp(t) of Gr

N
p .

The next sections are devoted to describe how to determine equations defining the
Hilbert scheme Hilbnp(t) as subscheme of the Grassmannian Gr

N
p .

5. Extensors and the Plücker embedding

In this section we consider any Grassmann functor, that we will denote by GrNp . In
next sections, we will apply the tools developed to the study of the Hilbert functor
and scheme. However, all the results of this section hold true for every p and N ,
not only for those obtained starting from an Hilbert polynomial p(t) of subschemes
of Pn .

In this section, we think at GrNp (A) as presented in (2.1); furthermore, our
arguments allow us to restrict to the open subfunctors GI , introduced in Section 3.
Thus, the elements of GrNp (A) we are mainly interested in are free submodules L
of AN of rank q, such that AN/L is free of rank p.
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We begin stating some well-know notions and results about exterior algebras.

Definition 5.1. Given a free A-module M , an extensor of stepm in M is an element
of ^mM of the form µ1 ^ · · · ^ µm with µ1, . . . , µm in M .

Notice that µ1 ^ · · · ^ µm vanishes whenever the submodule generated by
µ1, . . . , µm has rank lower than m.

Lemma 5.2. Let � : P ! Q be a linear morphism of A-modules.

(i) For any m, there exists a unique map ^
m P ! ^

mQ such that

p1 ^ · · · ^ pm 7! �(p1) ^ · · · ^ �(pm).

We denote this morphism by �(m).
(ii) If � is an isomorphism (respectively surjective), then �(m) is an isomorphism

(respectively surjective) for every m.
(iii) If � is injective and P is free, then �(m) is injective for everym [13, Theorems

1, 8].
(iv) If Q is free with basis {l1, . . . , ls}, then for every 1 6 m 6 s, the exterior

algebra ^
mQ is free of rank

� s
m
�
with basis {li1 ^ · · · ^ lim | 1 6 i1 < · · · <

im 6 s}.
In particular, all the extensors of step s = rk Q associated to different bases
of Q are equal up to multiplication by an invertible element of A [10, Corol-
lary A2.3].

(v) If M = P � Q, then
Vm(P � Q) =

L
r+s=m

Vr P ⌦

Vs Q.

Remark 5.3. As in the previous sections, a1, . . . , aN is a fixed basis of the A-
module AN . We also fix the isomorphism

VN AN ' A sending a1 ^ · · · ^ aN
to 1A. For any m-multi-index J = ( j1, . . . , jm), we will denote by aJ the extensor
a j1 ^ · · ·^a jm of ^m AN . By Lemma 5.2(iv), these extensors give a basis of ^m AN .
We observe that aJ ^ aH = 0 ifH \ J 6= ;, while aJ ^ aJ c = "J a1 ^ · · · ^ aN ,
where "J is the signature of J ,J c. Taking into account the fixed isomorphism, we
will simply write aJ ^ aJ c = "J .

Every A-module L 2 GI(A) has the special set of generators

BI(L) :=

(
bs := as �

X
i2I

�si ai
���� s 2 Ic

)

described in Remark 2.3. We will call it the I-marked set of L , extending the
terminology we use in the special case of interest in this paper (Definition 4.2)1.

1 The marked set BI (L) is in fact a basis for L; however, we do not call it “marked basis”,
because in the case of a Grassmannian containing a Hilbert scheme, this terminology refers only
to the points of the Hilbert scheme.
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Definition 5.4. For every L 2 GI(A) and S = (s1, . . . , sm) ⇢ Ic, we denote by
bS the extensor bs1 ^ · · · ^ bsm 2 ^

mL . The I-marked set of ^mL is the free set of
generators

B(m)
I (L) :=

�
bS | S ⇢ Ic, |S| = m

 
.

In particular, B(1)
I (L) = BI(L).

The aim of the present section is that of determining a unified writing in terms
of the Plücker coordinates ofGrNp of a set of generators of ^mL , where 1 6 m 6 q
and L 2 GI(A). This set of generators will also contain the I-marked set of ^mL .

By Lemma 5.2(iii), there is a natural inclusion ^
mL ✓ ^

m AN for every L 2

GI(A). Hence, every element f 2 ^
mL has a unique writing f =

P
cJ aJ , with

coefficients cJ 2 A.

Lemma 5.5. Let L 2 GI(A).

(i) If bS 2 B(m)
I (L) and K := S [ I, then

bS = aS + "KS
X

"KH (bIc ^ aK\H) aH (5.1)

where the sum is over the m-multi-indicesH 6= S such thatH ✓ K, and "KH
is the signature of the permutation K 7! H,K \H.

(ii) If f =

P
cJ aJ is any non-zero element of ^mL ⇢ ^

m AN , then there is at
least one non-zero coefficient cJ with J ⇢ Ic.

Proof. Up to a permutation, we may assume that Kc,S,I = (1, . . . , N ). Hence,
"KS = 1.

(i) We use the distributive law with bs j = as j �

P
i2I �s j i ai and immediately

see that the coefficient of aS in bS is 1A, as I \ S = ;, and the other extensors
aH 6= aS that can appear with non-zero coefficient are those given in the statement.
As a consequence, note that bS ^ aT = 0 if T is an (N � m)-multi-index and
T c

6✓ K, i.e., T 6◆ Kc.
Now we prove the given formula for the coefficients, focusing on each m-

multi-index H. Let us denote by �H the coefficient of aH in bS . Applying again
the distributive law on aKc ^ bS ^ aK\H, the only non-zero summand is �H (aKc ^

aH ^ aK\H) = �H "KH, hence, �H = "KH (aKc ^ bS ^ aK\H) and

bS = aS +

X
"KH (aKc ^ bS ^ aK\H) aH (5.2)

withH ✓ K, |H| = m,H 6= S .
It remains to verify that (aKc ^bS^aK\H) = (bIc ^aK\H). Applying (5.2), we

can write aKc = bKc �

P
� 0

H0
aH0 where |H0

| = |Kc
| andH0

6= Kc. We substitute
and get

(aKc ^ bS ^ aK\H) = (bKc ^ bS ^ aK\H) �

X
H0

� 0

H0 (aH0 ^ bS ^ aK\H).
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All the summands on H0 vanish. Indeed, this is obvious if H0 and K \ H are
not disjoint. On the other hand, if they are and we denote by T their union, then
bS ^ aT = 0 since Kc

\K \H = ; andH0
6◆ Kc. Finally, (aKc ^ bS ^ aK\H) =

(bKc ^ bS ^ aK\H) = (bIc ^ aK\H).

(ii) As f 2 ^
mL , we can also write f =

P
dS bS , with S ⇢ Ic and dS 6= 0.

By the previous item, aS appears only in the writing of bS , hence its coefficient cS
is dS 6= 0.

We would like to rewrite the coefficients appearing in the writing of the exten-
sors bS given in (5.1) in terms of the Plücker coordinates of L . Then, let us recall
how they are defined.

The projective space PE can be seen as the scheme representing the functor

PE
: (k-Algebras) ! (Sets)

that associates to any k-algebra A the set

PE (A) =

⇢
isomorphism classes of epimorphisms

⇡ : AE+1
! Q of locally free modules of rank 1

�
.

Hence, we can consider the natural transformation of functors P : GrNp ! PE

given by:

P(A) :
⇣
�L : AN ⇡

�! AN/L
⌘

2 GrNp (A)

7�!

✓
�

(p)
L : ^

p AN ⇡ (p)
��! ^

p(AN/L)

◆
2 PE (A)

where ^
p AN is free of rank

�N
p
�

= E + 1 and ^
p AN/L is locally free of rank 1.

The collection of open subfunctors GI of Proposition 2.2 is exactly that in-
duced by the transformationP and the standard affine cover of the projective space
PE corresponding to the basis {aJ | J 2 E (0)

} of ^p AN .
We denote by1 the variables of PE and we index them using the multi-indices

I 2 E (0) so thatGI be the open subscheme of the Grassmannian defined by the con-
dition 1I 6= 0. The Grassmannian GrNp is a closed subscheme of PE

= Proj k[1]

defined by the Plücker relations, that are generated by homogeneous polynomials
of degree 2: we will denote by k[1] the coordinate ring of GrNp , i.e., the quotient
of k[1] under the Plücker relations, so that GrNp = Proj k[1] ⇢ PE

= Proj k[1]

(see for instance [22]).
We can also associate Plücker coordinates to each module L 2 GI(A). Upon

fixing an isomorphism i : ^
p (AN/L) ' A, P(A)(L) can be seen as the map

i � �
(p)
L or, equivalently, as the function

i � �
(p)
L :

n
aJ

�� J 2 E (0)
o

! A given by aJ 7! 1J (L) := i
�
�

(p)
L (aJ )).
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Since two isomorphisms i, i 0 : ^
p AN/L ! A only differ by the multiplication

by a unit u 2 A, the Plücker coordinates of L are defined up to invertible elements
in A.

By definition of GI(A), we have the decomposition as direct sum AN = L �

hai | i 2 Ii, so that �(p)
L factors through ^

p AN ! ^
N AN ! ^

p(AN/L) given by
aJ 7! bIc ^ aJ 7! aJ , where bIc is the only element of the I-marked set B(q)

I (L)
of ^q L .

Hence, the Plücker coordinates of L are
⇣
1J (L) = bIc ^ aJ

�� J 2 E (0)
⌘

. (5.3)

We identify bIc ^ aJ withelementsof Abyfixingthe isomorphisms^N AN ' Aand
i : ^

p AN/L ! A. For the first one we fixed that sending a(1,...,N ) to 1; if we
choose i : aI 7! 1, then (5.3) gives the representative of the Plücker coordinates
with1I(L) = 1. Indeed, in our setting "Ic = 1 and bIc ^aI = aIc ^aI = a(1,...,N )

by Lemma 5.5.
Therefore, Plücker coordinates of L can be obtained as the maximal minors

of the q ⇥ N matrix whose rows contain the elements of BI(L). More precisely,
1J (L) is the minor corresponding to the columns with indices in J c, up to a sign
given by the signature "J .

Using (5.3) we can finally rewrite the coefficients appearing in (5.1) in terms
of the Plücker coordinates of L .

Corollary 5.6. Let L 2 GI(A), bS be any extensor in B(m)
I (L) and K := S [ I.

Then
"KS 1I(L) bS = "KS 1I(L) aS +

X
"KH1K\H(L) aH

where the sum is over the m-multi-indicesH such thatH ✓ K,H 6= S .

Definition 5.7. For every 1 6 m 6 q, we define the following subset of k[1]
N :

B(m)
:=

8>><
>>:�

(m)
K :=

X
H✓K
|H|=m

"KH1K\H aH
���� K 2 E (m)

9>>=
>>; .

Moreover, for every I 2 E (0), we define B(m)
I :=

n
�
(m)
K

�� K 2 E (m), K ◆ I
o
.

Remark 5.8. For every m-multi-index S that does not intersect I, aS appears in a
single element of B(m)

I , the one with indexK = I [S . Moreover, �(m)
K � "KS 1I aS

is the sum
P

"KH1K\H aH, where all the m-multi-indicesH intersect I.
Hence, for every element f 2 ^

mk[1]
N we can write 1I f as a sum f1 + f2

with f1 2 hB(m)
I i and f2 2 haH s.t. |H| = m andH \ I 6= ;i.
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We will now evaluate the elements �
(m)
K at L 2 GI(A); of course, such evalua-

tions are defined only up to units of A. Through evaluation at L , we can also see that
the notations of Definition 5.7 are consistent with those introduced in Definition 5.4
to denote I-marked sets of ^mL .

Theorem 5.9. Let I 2 E (0), A be a k-algebra and L be a module in GI(A). Then,
for every 1 6 m 6 q,

(i) the evaluation of B(m)
I at L is the I-marked set B(m)

I (L) of ^mL;
(ii) the evaluation B(m)(L) of B(m) at L is a set of generators of ^mL .

Proof. (i) Let K be a (q + m)-multi-index containing I and let S = K \ I. As a
straightforward consequence of Lemma 5.5 and Corollary 5.6, we see that �(m)

K (L)
is equal (up to units of A) to the element bS of the I-marked set of ^mL . Note that
for L 2 GI(A) andH = S we may set 1K\S(L) = 1I(L) = 1.

(ii) By the previous item, it suffices to prove that B(m)(L) ⇢ ^
mL .

Let us consider any �
(m)
K0

2 B(m) and write1I �
(m)
K0

= �1+ �2 as in Remark 5.8
with �1 2 hB(m)

I i and �2 2 haH s.t. |H| = m andH \ I 6= ;i. Under our assump-
tion, 1I(L) is a unit in A; therefore, we need to prove that �2(L) = 0.

If there is a p-multi-index I 0
⇢ K0 such that L 2 GI 0(A), then it follows by (i)

that �(m)
K0

(L) 2 B(m)
I 0

(L) ⇢ ^
mL , so that also �2(L) 2 ^

mL and we get �2(L) = 0
by Lemma 5.5(ii).

Therefore, �2 vanishes over the non-empty open subfunctor GI(A) \ GI 0(A)

of the Grassmann functor, hence it vanishes on GrNp .

We will use the results of this section in order to compute equations defining
globally the Hilbert scheme as subscheme of the Grassmannian, starting from those
defining HI in GI . Then in the following the elements of basis a1, . . . , aN of
AN will correspond to the terms x↵(1), . . . , x↵(N ) in k[x]r . We can reformulate
Theorem 5.9 in this special setting.

Theorem 5.10. The universal family F ,! Pn ⇥ GrNp ! GrNp parameterized
by the Grassmannian, given in (2.2), is generated by the set of bi-homogeneous
elements in k[1, x]

(
�
(1)
K =

X
h2K

"K
{h} 1K\{h} x↵(h)

��� 8 K 2 E (1)

)

and the m-th exterior power of the universal element is generated by
8><
>:�

(m)
K =

X
H⇢K
|H|=m

"KH1K\H x↵(h1)
^ · · · ^ x↵(hm)

���� 8 K 2 E (m)

9>=
>; .
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6. Equations

In this section we will obtain global equations defining the Hilbert scheme. In par-
ticular, the new set of equations has degree lower than the other known equations.
Towards this aim we need to refine some results of Section 4, in particular Theo-
rem 4.7.

These results concern any J -marked set F , where J is a Borel-fixed ideal
generated by q terms of degree r ; we do not assume that the Hilbert polynomial
pJ (t) of A[x]/J is p(t). However, we know that r is the regularity of J and,
by Lemma 4.4, k[xd+1, . . . , xn]>r ⇢ J and deg pJ (t) 6 d = deg p(t); hence
N (J )>r ⇢ (x0, . . . , xd). In particular, the support of every polynomial f↵ 2 F
is contained in (x0, . . . , xd), except for only one possible term, the head term
Ht( f↵) = x↵ .
Definition 6.1. Let J 2 B and let I ⇢ A[x] be an ideal generated by a J -marked
set F . Making reference (and in addition) to Definition 4.6, we set:

• F 0
:=

�
xi f↵ 2 F (r+1)

| i = d + 1, . . . , n
 

= F (r+1)
\ (x0, . . . , xd);

• F 00
:=

�
xi f↵ 2 F (r+1)

| i = 0, . . . , d
 

= F (r+1)
\ (x0, . . . , xd);

• S :=

�
x j f� � xi f↵ | 8x j f� 2

bF (r+1), xi f↵ 2 F (r+1) s.t. x j x�
= xi x↵

 
;

• q 0
:= dimk k[xd+1, . . . , xn]r+1;

• q 00
:= q(r + 1) � q 0;

• I 00 := Ir+1 \ (x0, . . . , xd);
• I (1) := hxh Ir | 8 h = 0, . . . , di ✓ I 00.

Theorem 6.2. Let J 2 B and I ⇢ A[x] be an ideal generated by a J -marked set
F . Then,

(i) hF 0
i is a free A-module of rank q 0;

(ii) hF 00
i is a free A-module contained in I (1) of rank > q 00;

(iii) Ir+1 = hF 0
i � I 00;

(iv) I 00 = hF 00
i �N (J, I )r+1 = hF 00

i + hSi.

Moreover, the following conditions are equivalent:

(v) J 2 Bp(t) and F is a J -marked basis;
(vi) ^

q(r+1)+1 Ir+1 = 0;
(vii) ^

q 00
+1 I 00 = 0;

(viii) ^
q 00

+1 I (1) = 0 and
�
^
q 00 I (1)

�
^ I 00 = 0.

Proof. (i) It is sufficient to recall that F 0 is a subset of the set of linearly indepen-
dent polynomials F (r+1), hence the A-module hF 0

i is free of rank equal to |F 0
|.

Moreover |F 0
| = q 0 by Lemma 4.4.

(ii) We can prove that hF 00
i is free with rank |F 00

| by the same argument
used for (i). Moreover, by definition and Lemma 4.4, hF 00

i = |F (r+1)
| � |F 0

| =

rk(Jr+1) � |F 0
| > q(r + 1) � q 0.
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(iii), (iv) We obtain the equality Ir+1 = hF 0
i� hF 00

i�N (J, I )r+1 as a conse-
quence of Theorem 4.7(iii) and the fact that F (r+1) is the disjoint union of F 0 and
F 00. It is obvious by the definition that hF 00

i �N (J, I )r+1 ✓ I 00. Then, to prove
Ir+1 = hF 0

i � I 00 it suffices to verify that the sum hF 0
i + I 00 is direct. If h is any

element h =

P
di↵xi f↵ 2 hF 0

i with di↵ 2 A, di↵ 6= 0, then xi x↵
2 Supp(h),

since the head terms of the monic marked polynomials xi f↵ 2 F 0 are distinct terms
in k[xd+1, . . . , xn]r+1, while xi f↵ � xi x↵

2 (x0, . . . , xn). Therefore, we also get
I 00 = hF 00

i �N (J, I )r+1,
Let us consider the set of generators F 0

[ F 00
[
bF (r+1) of the A-module Ir+1.

For every element x j f� 2
bF (r+1), we can find an element xi f↵ 2 F 0

[ F 00 such that
xi x↵

= x j x� and h j� := x j f� � xi f↵ 2 S. Then, we get a new set of generators
replacing bF (r+1) by S. The union of the three sets F 0, F 00 and S generates the
A-module Ir+1 and, in particular, F 00

[ S generates I 00, since S ✓ I 00.
(v),(vi) If J 2 Bp(t), then the statement is given by Theorem 4.7(iv),(viii),

as rk(Jr+1) = q(r + 1). On the other hand, if J /2 Bp(t), then by Gotzmann’s
Persistence Theorem we have rk(Jr+1) > q(r + 1), so that ^q(r+1)+1 Ir+1 6= 0 by
Theorem 4.7(ii).

(vi),(vii),(viii) are straightforward consequences of previous items.

Proposition 6.3. In the setting of Theorem 6.2, let B be any set of polynomials of
Ir containing F and consider the following two subsets of Ir+1:

1)
Ss

i=0 xi B;
2) {xi f � x j g | 8 f, g 2 B such that xi f � x j g 2 (x0, . . . , xd)}.

For s = n the elements in 1) generate Ir+1, while for s = d they generate I (1).
Moreover, the first set for s = d and the second set generate I 00.

Proof. The first and second assertions are straightforward by the definitions of Ir+1
and I (1). For the latter one, we observe that the polynomials in these two sets are
contained in I 00 = (F)r+1 \ (x0, . . . , xd). Thus, it suffices to prove the statement
in the case B = F .

By Theorem 6.2(iv), the A-module I 00 is generated by F 00
[ S. Obviously, F 00

is contained in the set given in 1). Moreover, S in contained in the set given in
2). Indeed, by definition of J -marked set and Lemma 4.4, for every f↵ 2 F we
have f↵ � x↵

⇢ hN (J )ir ⇢ (x0, . . . , xd). Then, f↵ 2 (x0, . . . , xd) if, and only if,
x↵

2 (x0, . . . , xd).

Remark 6.4. For every ideal I 2 GI(A) with J (I) 2 B, we will apply the previ-
ous results considering J (I) as J and the set of generators B(1)(I ) (where I stands
for Ir ) as B. Note that B(1)(I ) contains the I-marked set B(1)

I (I ), which is monic
since 1I(I ) is a unit in A and we may set 1I(I ) = 1.

In order to apply to I the equivalent conditions (v),. . . ,(viii) of Theorem 6.2 we
need to consider exterior products of the type ^

m
hx0 Ir , . . . , xs Ir i for some integers
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1 6 m 6 q(r + 1) + 1 and 0 6 s 6 N . The set of generators for this module we
use is 8>><

>>:
^
06i6s
mi>0

xi�(mi )
Ki

(I )
���� 8 �

(mi )
Ki

2 B(mi ) s.t.
X

mi = m

9>>=
>>; .

This set is obtained considering the decomposition of ^
m
hx0 Ir , . . . , xs Ir i as the

sum of the submodules (x0 ^
m0 Ir ) ^ · · · ^ (xs ^

ms Ir ) over the sequences of non-
negative integers (m0, . . . ,ms) with sum m. Note that in this writing we assume
that the i-th piece xi ^

mi Ir is missing whenever mi = 0; the number of factors is
at most s and the maximum is reached only if all the integers mi are positive.

We are now able to exhibit the ideal H in the ring of Plücker coordinates k[1]

that globally defines the Hilbert scheme as a subscheme of the Grassmannian. First,
we set

h1 := coeffx

8>><
>>:
^

06i6d
mi>0

xi�(mi )
Ki

���� 8 �
(mi )
Ki

2 B(mi ) s.t.
X

mi = q 00

+ 1

9>>=
>>; (6.1)

h2 := coeffx

8>><
>>:

0
BB@
^

06i6d
mi>0

xi�(mi )
Ki

1
CCA ^

⇣
x j�(1)

H ± xk�(1)
H

⌘ ���� (6.2)

8 �
(mi )
Ki

2 B(mi ) s.t.
P
mi = q 00

8 x j�(1)
H ± xk�(1)

H 2 W

9>>=
>>;

whereW is the set of polynomials x j�(1)
H ± xk�(1)

H such that

• H = (H \H) [ {h} andH = (H \H) [ {h}, i.e. the polynomial �(1)
H contains

the term 1H\Hx
↵(h) and �

(1)
H contains 1H\Hx

↵(h);
• the pair (x j ,�xk) is a syzygy for the monomials x↵(h) and x↵(h), i.e. x j x↵(h)

=

xkx↵(h) and the sign ± is chosen in order for the terms 1H\Hx j x
↵(h) and

1H\Hxkx
↵(h) to cancel;

• x-supp(x j�(1)
H ± xk�(1)

H ) ⇢ (x0, . . . , xd).

Moreover, we set h := h1 [ h2 and consider for every g 2 PGL the set of equations
g ⇧ h obtained by the action of g on the elements of h. Finally we define the ideal

H :=

 [
g2PGL

g ⇧ h

!
.
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Theorem 6.5. Let p(t) be an admissible Hilbert polynomial for subschemes of Pn
of degree d.

The homogeneous ideal H in the ring of Plücker coordinates k[1] of the
Plücker embeddingGrNp ,! PE is generated in degree6 d+2 and definesHilbnp(t)
as a closed subscheme of GrNp .

Proof. By definition, H is the smallest ideal in k[1] that contains the union of the
two sets of equations h1 and h2, given in (6.1) and (6.2), and is invariant by the
action of PGL. Since the action of PGL does not modify the degree of polynomials,
in order to prove the first part of the statement it suffices to recall that each �

(m)
K is

linear in the Plücker coordinates (Theorem 5.10); hence, the degree of each polyno-
mial in (6.1) is at most d + 1 and the degree of each polynomial in (6.2) is at most
d + 2. In both cases equality is achieved only when all the integers mi are strictly
positive.

For convenience, we denote by Z the subscheme of GrNp defined by H and by
D the saturated ideal in k[1] that defines Hilbnp(t) as a closed subscheme of Gr

N
p .

We have to prove that Z = Hilbnp(t). Note that H does not need to be saturated and
coincide withD.

As equality of subschemes is a local property, we may check the equality lo-
cally. The proof is divided in two steps.

Step 1. For every Borel multi-index I such that J (I) 2 B, the ideal generated by
h defines HI as closed subscheme of GI .

Step 2. For every (closed) point I of GrNp , Z and Hilbnp(t) coincide on a neighbor-
hood of I .

Proof of Step 1. We have to prove that for every k-algebra A and ideal I in GI(A),
I is contained inHI(A) if, and only if, the polynomials in h vanish when evaluated
at I .

Referring to Theorem 6.2 and Proposition 6.3, the vanishing at I of the poly-
nomials of h1 is equivalent to ^

q 00
+1 I (1) = 0 and that of the polynomials of h2 to

^
q 00 I (1) ^ I 00 = 0. The equivalence (v),(viii) of Theorem 6.2 and the definition of
marked basis allow to conclude.

Proof of Step 2. Both ideals H and D are invariant under the action of PGL, H by
construction andD because Hilbnp(t) is.

Due to the noetherianity of the ring of Plücker coordinates k[1], we can choose
h1, . . . , hm 2

S
g2PGL g ⇧ h that generate H. If hi 2 gi ⇧ h, then we get

(g1 ⇧ h [ · · · [ gm ⇧ h) = H.

By the invariance of H under the action of PGL, we also get, for each g 2 PGL

(gg1 ⇧ h [ · · · [ ggm ⇧ h) = g ⇧ (g1 ⇧ h [ · · · [ gm ⇧ h) = g ⇧ H = H.



86 J. BRACHAT, P. LELLA, B. MOURRAIN AND M. ROGGERO

On the other hand, if we restrict to the open subset GI,gg1 \ · · · \GI,ggm , then by
Step 1 and by the invariance ofD under the action of PGL, we see that the ideal

D = (gg1 ⇧ D [ · · · [ ggm ⇧ D)

defines the same subscheme as H = (gg1 ⇧ h [ · · · [ ggm ⇧ h). Therefore,

Hilbnp(t) \ (GI,gg1 \ · · · \GI,ggm ) = Z \ (GI,gg1 \ · · · \GI,ggm ).

It remains to prove that for every I 2 GrNp , we can find suitable g 2 PGL and
J (I) 2 B, such that I 2 GI,gg1 \ · · · \GI,ggm .

By Proposition 3.2, there are J (I) 2 B and g such that I 2 GI,g. The orbit
of I under the action of PGL is almost completely contained in GI,g; let U be an
open subset of PGL such that (g0)�1 ⇧ I 2 GI,g, i.e. I 2 GI,g0g. Therefore, for a
general g 2 PGL, it holds gg1g�1, . . . , ggmg�1

2 U and I 2 GI,gg1 \ · · ·\GI,ggm
as wanted.

For sake of completeness we now show how our strategy also allows to mimic
the construction of equations for Hilbnp(t) presented in the well-known papers by
Iarrobino and Kleiman [21] and by Haiman and Sturmfels [18].

6.1. Equations of higher degree

Let A be a k-algebra and I be an ideal in GI(A). Exploiting Theorem 5.10, we
obtain a set of generators for Ir+1 evaluating at I the following set of polynomials

x0B(1)
[ · · · [ xnB(1)

=

n
xi�(1)

K
�� i = 0, . . . , n, K 2 E (1)

o
.

By Theorem 6.2(v),(vi), we know that I 2 HI(A) if, and only if, ^q(r+1)+1 Ir+1
vanishes. The exterior power^q(r+1)+1 Ir+1 is generated by all the possible exterior
products of order q(r+1)+1 among the given set of generators of Ir+1. Therefore,
the conditions I 2 HI(A) is given by the vanishing at I of the x-coefficients in the
wedge products

q(r+1)+1^
j=1

xi j �
(1)
K j

, 8 0 6 i1 6 . . . 6 iq(r+1)+1 6 n, 8 K j 2 E (1).

The open subfunctors GI cover the Grassmann functor and each HI is repre-
sentable, so that we can apply Proposition 2.1. The natural transformations
HI : HI ! GI are induced by closed embeddings of schemes, hence the same
holds true forH : Hilbnp(t) ! GrNp .

Theorem 6.6 (Iarrobino-Kleiman-like equations for the Hilbert scheme).
The subscheme of GrNp representing the Hilbert functor Hilbnp(t) can be defined by
an ideal generated by homogeneous elements of degree q(r + 1) + 1 in the ring
k[1] of the Plücker coordinates.
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The above equations of degree q(r+1)+1 coincides on each open subscheme
GI of the standard open cover of the Grassmannian with the set of equations ob-
tained by Iarrobino and Kleiman in local coordinates. We could also exploit this
same argument using the Borel open cover of GrNp , instead of the standard one and
obtain a different set of equations of the same degree.

6.2. Equations of degree n + 1

As pointed out by Haiman and Sturmfels, if I = (Ir ) is generated by a set of
polynomials B, then the matrix Mr+1 that represents the generators x0B[ · · ·[xn B
of the module Ir+1 contains n + 1 copies of the matrix Mr corresponding to B.
Hence, some minors of Mr+1 are also minors of Mr and every minor of Mr+1 can
be obtained as the sum of products of at most n + 1 minors of Mr .

This observation suggests to expand ^
q(r+1)+1 Ir+1 as done in Remark 6.4 and

take the x-coefficients of^
06i6n
mi>0

xi�(mi )
Ki

, 8 �
(mi )
Ki

2 B(mi ) s.t.
X

mi = m.

Theorem 6.7 (Bayer-Haiman-Sturmfels-like equations for theHilbert scheme).
The subscheme of GrNp representing the Hilbert functor Hilbnp(t) can be defined by
an ideal generated by homogeneous elements of degree 6 n+1 in the ring k[1]

of the Plücker coordinates.

In this case, if we use the standard open cover of GrNp , we obtain the same
global equations given by Haiman and Sturmfels, while using the Borel open cover
we obtain a different set of equations with maximum degree n + 1.

7. Examples: Hilbert schemes of points
7.1. The Hilbert scheme Hilb22
The Gotzmann number of the Hilbert polynomial p(t)=2 is r= 2, hence N (r) = 6
and p(r) = 2. We identify H0

�
OP2(2)

�
with k6 by setting ai = x↵(i) where x↵(i) is

the i-th term in the sequence (x22 , x2x1, x
2
1 , x2x0, x1x0, x

2
0). In this way we obtain

the natural transformation of functors Hilb22 ! Gr62.

Standard open cover of Gr62 There are
�6
2
�

= 15 open subfunctor GI in the
standard open cover, each corresponding to a 2-multi-index I ⇢ {1, 2, 3, 4, 5, 6}.
Not every element of Gr62(A) is contained in one of them (not even the free ones),
if A is not a field or even a local ring.

Let us consider for instance A := k[t] and

⇡ : A6

 
1� t 0 t2 0 0 0
0 0 1 0 1+ t 1

!

������������! A2. (7.1)
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This map is surjective, since (1, 0) = (1 + t)⇡(a1) + ⇡(a3) � ⇡(a6) and (0, 1) =

⇡(a6). Its kernel is the free A-module L = ht2a1+(t�1)a3�(t�1)a6, a2, a4, a5�
(t + 1)a6i.

Thus, the quotient Q := A6/ ker⇡ is isomorphic to A2 and Q 2 Gr62(A).
Notice that the set of non-zero maximal minors {1 � t, 1 � t2, t2 + t3, t2} of the
matrix defining ⇡ generates A, but none of them alone does, so that Q does not
belong to any GI(A).

On the other hand, for the local k-algebra A0
:= k[t](t), the A0-module Q0

:=

Q ⌦A A0 is in GI(A0) for I = (1, 3). The I-marked set of the A0-module L 0 such
that Q0

= A06/L 0 is

b2 = a2 b5 = a5 +
t3+t2
1�t a1 � (1+ t)a3

b4 = a4 b6 = a6 +
t2
1�t a1 � a3

.

The Plücker coordinates of L 0 (with 113(L 0) = 1) are given by Corollary 5.6

112(L 0) = 0, 123(L 0) = 0, 135(L 0) =
t3+t2
1�t ,

113(L 0) = 1, 124(L 0) = 0, 136(L 0) =
t2
1�t ,

114(L 0) = 0, 125(L 0) = 0, 145(L 0) = 0,
115(L 0) = (1+ t), 126(L 0) = 0, 146(L 0) = 0,
116(L 0) = 1, 134(L 0) = 0, 156(L 0) = 0.

The generators B(m) For m = 1 there are 20 elements in B(1), since there are�6
3
�

= 20 multi-indices K 2 E (1). For instance for K 2 E (1)
13 we get

�
(1)
123 = 123 a1 � 113 a2 + 112 a3

�
(1)
134 = 134 a1 � 114a3 + 113 a4

�
(1)
135 = 135 a1 � 115 a3 + 113 a5

�
(1)
136 = 136 a1 � 116 a3 + 113 a6

and for K = (3, 5, 6) we get

�
(1)
356 = 156a3 � 136a5 + 135a6.

They are not independent. For instance there is the relation

113 �
(1)
356 + 136 �

(1)
135 � 135�

(1)
136 = (113156 � 115136 + 116135 )a3 = 0

(note that the expression in the round brackets is a Plücker relation).
For m = 2, B(2) contains

�6
4
�

= 15 elements. For instance,

�
(2)
1356 = 113a5^a6�115a3^a6+116a3^a5+135a1^a6�136a1^a5+156a1^a3.

Finally, B(3) contains
�6
5
�

= 6 elements and B(4) has a unique element.
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Borel open cover of Gr62 It is easy to check that there is only one Borel multi-
index of two elements, namely I = (5, 6).

As the minor of the matrix (7.1) corresponding to the last two columns is identi-
cally zero, for every p 2 Spec k[t], Qp is not contained inG56(k[t]p). We can apply
Proposition 3.2 and determine for p = (1� t) a change of coordinates g 2 PGLQ(3)
such that Qp is contained in G56,g(k(p)). Tensoring by the residue field k(p) ' k,
we obtain the following surjective morphism of vector spaces

k6
✓
0 0 1 0 0 0
0 0 1 0 2 1

◆

��������! k2

whose kernel is the vector space hx22 , x2x1, x2x0, x1x0 � x20i. The generic initial
ideal of the ideal I = (x22 , x2x1, x2x0, x1x0 � x20) is J = (x22 , x2x1, x

2
1 , x2x0). A

change of coordinates g such that g ⇧ I = J is, for instance, the automorphism
swapping x1 and x0. Indeed,

g ⇧
⇣
x22 , x2x1, x2x0, x1x0 � x20

⌘
=

✓
x22 , x2x0, x2x1, x

2
1 �

1
2
x1x0

◆

and

eg =

0
BBBBB@

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0

1
CCCCCA

so that ⇡p �eg � 056 =

✓
0 1
2 1

◆

is surjective. Notice that this change of coordinates does not work for all localiza-
tions. Indeed

⇡ �eg � 056 =

✓
0 t2

t + 1 1

◆

is not surjective in the localizations k[t](t+1) and k[t](t) as the determinant is not
invertible.

New equations Let us finally show how to determine the equations of degree 2
defining the scheme representing the Hilbert functor Hilb22 in the Grassmannian
Gr62.

As d = 0, I (1) = x0 I2 and its rank is equal to q(2) = q 00
= 4. Therefore, the

set of equations h1 of (6.1) is empty.
The set of equations h2 ensures that

V4 I (1) ^ I 00 = 0 and contains the x-
coefficients of the products between x0�(4)

123456 and each element ofW = {x2�(1)
245 �

x1�(1)
145, x2�

(1)
246� x1�(1)

146, x2�
(1)
256� x1�(1)

156, x2�
(1)
345� x1�(1)

245, x2�
(1)
346� x1�(1)

246, x2�
(1)
356�

x1�(1)
256, x1�

(1)
456 � x0�(1)

256, x2�
(1)
456 � x0�(1)

156, x1�
(1)
456 + x0�(1)

346, x2�
(1)
456 + x0�(1)

246}. We
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notice that this set gives redundant relations, indeed for instance

x0�(4)
123456 ^

⇣
x1�(1)

456 � x0�(1)
256

⌘
= x0�(4)

123456 ^ x1�(1)
456 � x0

⇣
�
(4)
123456 ^ �

(1)
256

⌘

= x0�(4)
123456 ^ x1�(1)

456 = x0�(4)
123456 ^ x1�(1)

456 + x0
⇣
�
(4)
123456 ^ �

(1)
346

⌘

= x0�(4)
123456 ^

⇣
x1�(1)

456 + x0�(1)
346

⌘

as each exterior product of order greater than 4 vanishes (in fact the x-coefficients
we obtain from such products of order 5 are contained in the ideal generated by the
Plücker relations). Hence, in order to determine the equations of h2 we consider the
set of polynomialscW = {x2�(1)

245�x1�(1)
145, x2�

(1)
246�x1�(1)

146, x2�
(1)
256�x1�(1)

156, x2�
(1)
345�

x1�(1)
245, x2�

(1)
346�x1�(1)

246, x2�
(1)
356�x1�(1)

256, x1�
(1)
456, x2�

(1)
456}. We get 48 equations which

are reduced to 30 by Plücker relations.
To obtain the equation definingHilb22 ⇢ Gr62, we need to determine the orbit of

these polynomials with respect to the action of PGLQ(3). However, in this special
case, we discover that the ideal generated by the Plücker relations and by h2 is
already PGLQ(3) invariant, i.e., the equations in h2 define the Hilbert scheme. The
Plücker relations and the following 30 equations defineHilb22 as subscheme of P14:

113114 � 112124 � 112115, 113124 � 112134 � 112125, 123124 � 112135,

114124�114115+112116, 12
24�114125+112126,123134+123125�113135,

114134 � 114125 + 112145 + 112126,124134 � 114135 + 112136,

12
34 � 115135 � 123145 + 113136, 12

15 � 114125 � 113116 + 112126,

124125�114135,115125�114135�113126+112136, 12
25�115135�123145,

124135 � 115135 � 123145 + 123126, 134135 � 125135 + 123136,

114145 � 112146,124145 � 112156, 134145 + 123146 � 113156,

115145 � 113146 + 112156,125145 � 123146, 135145 � 123156,

12
45 � 125146 + 115156,124126 � 114136 + 112156,

125126 � 115136 � 123146 + 113156,1
2
26 � 116136 � 125146 + 115156,

124146 � 114156,134146 + 125146 � 124156 � 115156,135146 � 125156,

145146 � 126146 + 116156, 136146 � 145156 � 126156.

Furthermore, we check that the ideal they generate is saturated, then it is the satu-
rated ideal of Hilb22. Its Hilbert polynomial is

21
4! t

4
+
15
4 t
3
+
45
8 t
2
+
15
4 t + 1, hence

Hilb22 ⇢ P14 is a subscheme of dimension 4 (as expected) and degree 21, as already
proved in [7, 18].

Iarrobino-Kleiman equations Let us now see how to compute the Iarrobino-
Kleiman equations for Hilb22. The universal element of Gr

6
2 is generated by B(1).

In order to compute ^
q(r+1)+1 Ir+1 = ^

9 I3 we use the set of generators x0B(1)
[

x1B(1)
[ x2B(1) of I3. The x-coefficients of any exterior product of order 9 are
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expressions of degree 9 in the Plücker coordinates. Their union defines Hilb22 ⇢

Gr62.
For instance, considering the 9 elements x2�(1)

126, x2�
(1)
156, x2�

(1)
234, x2�

(1)
356, x1�

(1)
123,

x1�(1)
345, x0�

(1)
146, x0�

(1)
234, x0�

(1)
456, the x-coefficients of their exterior product are the

maximal minors of the following matrix

Bayer-Haiman-Sturmfels equations In order to lower the degree of the equa-
tions, we can impose the vanishing of the exterior power ^9 I3 by considering ^

9 I3
generated by all exterior products x0�(m0)

J0 ^x1�(m1)
J1 ^x2�(m2)

J2 for (m0,m1,m2) such
that m0 + m1 + m2 = 9 and 0 6 m0,m1,m2 6 4. For m0 = 3, m1 = 2, m2 = 4,
we get for instance x0�(3)

23456 ^ x1�(2)
1346 ^ x2�(4)

123456, where

x0�
(3)
23456 = 156 x2x1x0 ^ x21 x0 ^ x2x20 � 146 x2x1x0 ^ x21 x0 ^ x1x20 + 145 x2x1x0 ^ x21 x0 ^ x30

+ 136 x2x1x0 ^ x2x20 ^ x1x20 � 135 x2x1x0 ^ x2x20 ^ x30 + 134 x2x1x0 ^ x1x20 ^ x30
� 126 x21 x0 ^ x2x20 ^ x1x20 + 125 x21 x0 ^ x1x20 ^ x30 � 124 x21 x0 ^ x1x20 ^ x30
+ 123 x2x20 ^ x1x20 ^ x30 ,

x1�
(2)
1346 = 146 x22 x1 ^ x31 � 136 x22 x1 ^ x2x1x0 + 134 x22 x1 ^ x1x20 + 116 x31 ^ x2x1x0

� 114 x31 ^ x1x20 + 113 x2x1x0 ^ x1x20 ,

x2�
(4)
123456 = 156 x32 ^ x22 x1 ^ x2x21 ^ x22 x0 � 146 x32 ^ x22 x1 ^ x2x21 ^ x2x1x0

+ 145 x32 ^ x22 x1 ^ x2x21 ^ x2x20 + 136 x32 ^ x22 x1 ^ x22 x0 ^ x2x1x0
� 135 x32 ^ x22 x1 ^ x22 x0 ^ x2x20 + 134 x32 ^ x22 x1 ^ x2x1x0 ^ x2x20
� 126 x32 ^ x2x21 ^ x22 x0 ^ x2x1x0 + 125 x32 ^ x2x21 ^ x22 x0 ^ x2x20
� 124 x32 ^ x2x21 ^ x2x1x0 ^ x2x20 + 123 x32 ^ x22 x0 ^ x2x1x0 ^ x2x20
+ 116 x22 x1 ^ x2x21 ^ x22 x0 ^ x2x1x0 � 115 x22 x1 ^ x2x21 ^ x22 x0 ^ x2x20
+ 114 x22 x1 ^ x2x21 ^ x2x1x0 ^ x2x20 � 113 x22 x1 ^ x22 x0 ^ x2x1x0 ^ x2x20
+ 112 x2x21 ^ x22 x0 ^ x21 x0 ^ x2x20 .
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Its x-coefficients are the following polynomials of degree 3 in the Plücker co-
ordinates:

12
26146 � 1251

2
46 � 116126156 + 1141

2
56,

125126146 � 125145146 � 116125156,

124126146 � 116124156 � 114145156,

123126146 + 125134146 � 116123156 � 114135156,

125126134 � 124125136 � 125134145 + 113125156,

116124145 + 1141
2
45 + 12

24146 � 114125146,

124125146 � 114125156,

116124135 � 114125136 + 114135145 + 123124146,

116124125 � 114125126 + 114125145,

115116124 � 114116125 + 114115145 � 112124146.

In Table 7.1, there is a comparison between the number of generators of the ideal
defining the Hilbert scheme obtained according to the three different strategies.

Table 7.1. A comparison among the characteristics of the different sets of equa-
tions defining the Hilbert schemes discussed in Section 7. The set h of new equa-
tions in this table contains the equations obtained considering only Borel multi-
indices. In order to determine the PGLQ(n + 1)-invariant ideal, we have al-
ways applied (n + 1)2 � 1 (the first summand) special changes of coordinates
and the second summand corresponds to the needed random changes of coordi-
nates (see http://www.paololella.it/EN/Publications files/Equations
HilbertSchemesOfPoints.m2 for the explicit computation). The values of the
Hilbert function of the ideals defining the Hilbert schemes have been computed from the
ideal generated by the new equations. Notice the large redundancy of Bayer-Haiman-
Sturmfels equations and Iarrobino-Kleiman equations which do not take into account
the symmetries of the Hilbert scheme.
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7.2. The Hilbert scheme Hilb32

The Hilbert scheme of 2 points in the projective space P3 can be constructed as
subscheme of the Grassmannian Gr102 ⇢ P44. The set h1 is empty (this happens
for every Hilbert scheme of points) and the set h2 contains 600 equations of degree
2 that can be reduced to 330 modulo the Plücker relations. The ideal generated by
h2 and by the Plücker relations is not PGLQ(4)-invariant. To obtain the equations
defining Hilb32 ⇢ Gr102 , we need to determine the orbits of these polynomials with
respect to the action of PGLQ(4). From a computational point of view, we consider
a random element of PGLQ(4), apply to our set of equations the induced automor-
phism on the ring of Plücker coordinates of Gr102 , add the new equations to the
previous set and repeat this process until the generated ideal stabilizes.

The ideal we obtain is again saturated and its Hilbert polynomial is

370
6!

t6 +

83
24
t5 +

86
9
t4 +

335
24

t3 +

823
72

t2 +

61
12
t + 1

so that Hilb32 turns out to be a subscheme of P44 of dimension 6 and degree 370,
defined by 570 quadratic equations (210 of them are Plücker relations).

7.3. The Hilbert scheme Hilb42

The Hilbert scheme of 2 points in P4 is constructed as subscheme of the Grassman-
nian Gr153 ⇢ P104. From the computational point of view, the hardest part is the
computation of the orbit of the equations g ⇧ h for a given change of coordinates
g 2 PGLQ(5). A first trick is to start considering simple changes of coordinates, for
instance change of sign of a variable (xi ! �xi ), swap of two variables (xi $ x j )
and sum of two variables (xi ! xi+x j ). These changes of coordinates are easier to
compute and bring us closer to the PGLQ(5)-invariant ideal of the Hilbert scheme,
but in general they are not sufficient. In this case, a generic (random) change of
coordinates g 2 PGLQ(5) induces a change of coordinates of Gr153 described by
a dense 105 ⇥ 105 matrix, so that computing the action of g on a monomial of
degree 2 in the Plücker coordinates requires more than 10000 multiplications, as
each variable is replaced by a linear form with 105 terms. Therefore, it would be
better to avoid redundancy in the equations of h. It is possible to reduce the redun-
dancy replacing the set B(mi ) with the union

SB(mi )
I , with I a Borel multi-index,

in the definition of equations (6.1) and (6.2). In the case of 2 points, there is a
unique Borel multi-index and for instance in the case of P4, the set B(1) contains�15
3
�
polynomials while B(1)

14,15 has only 13 polynomials. Applying these two tricks,
we are able to compute the equations of Hilb42 ⇢ P104. The equations contained
in h obtained considering only the Borel multi-index are 480 and besides 24 sim-
ple changes of coordinates we need 3 random changes of coordinates to obtain the
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PGLQ(5)-invariant ideal. Finally, the Hilbert scheme turns out to be a subscheme de-
fined by 3575 quadratic equations (1365 of them are Plücker relations) with Hilbert
polynomial

6125
8!

t8 +

452
288

t7 +

4027
576

t6 +

635
36

t5 +

31703
1152

t4 +

7849
288

t3 +

4849
288

t2 +

145
24

t + 1,

i.e., Hilb42 is a subscheme of P104 of dimension 8 and degree 6125.

7.4. The Hilbert scheme Hilb23

The Hilbert schemeHilb23 can be defined as subscheme of the GrassmannianGr
10
3 ⇢

P119. There are two Borel-fixed ideals defining 3 points in the plane: (x2, x31) and
(x22 , x2x1, x

3
1), so that in this case we can restrict to Borel multi-indices considering

the elements of B(1)
7,9,10 and B

(1)
8,9,10. In this way, the set h contains 720 equations

and we obtain a PGLQ(3)-invariant ideal applying 10 changes of coordinates (8
special and 2 random). The ideal defining the Hilbert scheme is generated by 5425
quadratic equations (2310 Plücker relations) and Hilb23 is a subscheme of P119 of
dimension 6 and degree 3309, as its Hilbert polynomial is

3309
6!

t6 +

1557
80

t5 +

553
16

t4 +

543
16

t3 +

2381
120

t2 +

33
5
t + 1.
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