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On a singular perturbed problem in an annulus

SANJIBAN SANTRA AND JUNCHENG WEI

Abstract. In this paper we prove the conjecture due to Ruf-Srikanth [14]. We
prove the existence of positive solution under Dirichlet and Neumann boundary
conditions, which concentrate near the inner boundary and outer boundary of an
annulus respectively as ¢ — 0. In fact, our result is independent of the dimension
of RN,
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1. Introduction

There has been a considerable interest in understanding the behavior of positive
solutions of the elliptic problem

EAu—u+ fw)=0 inQ
u>0 in Q (1'1)

0
u=20 or—u:0 on 92
av

where ¢ > 0 is a parameter, f is a superlinear nonlinearity and 2 is a smooth
bounded domain in RY. Let F(u) = fou f()dt. We consider the problem when
f@©) = 0 and f/(0) = 0. This type of equations arise in various mathemati-
cal models derived from population theory, chemical reactor theory see Gidas-Ni-
Nirenberg [6]. In the Dirichlet case, Ni — Wei showed in [19] that the least energy
solutions of equation (1.1) concentrate, for ¢ — 0, to single peak solutions, whose
maximum points P, converge to a point P with maximal distance from the bound-
ary 0X2. In the Neumann case, Ni-Takagi [17] showed that for sufficiently small
& > 0, the least energy solution is a single boundary spike and has only one local
maximum P, € 9€2. Moreover, in [18], they prove that H (P;) — maxpcgq H(P)
as ¢ — 0 where H(P) is the mean curvature of Q2 at P. A simplified proof was
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given by del Pino—Felmer in [3], for a wider class of nonlinearities using a method
of symmetrization.

‘We mention some nice results on the multiple boundary and interior peaked so-
lutions for the Neumann case of (1.1). For the single and multiple boundary spikes,
Gui [8] constructed multiple boundary spike solutions at multiple local maximum
points of H(P), using a variational method. Wei [21] and Wei—Winter [22] con-
structed single and multiple boundary spike solutions at multiple non-degenerate
critical points of H (P), using the Lyapunov—Schmidt reduction method. Later on
Y.Y.Li [10] and del Pino—Felmer—Wei [4] constructed single and multiple boundary
spikes in the degenerate case. For a detailed bibliography on this topic, we refer to
the review article by Ni [16].

Higher dimensional concentrating solutions was studied by Ambrosetti—-Mal-
chiodi—Ni in [1,2]; they consider solutions which concentrate on spheres, i.e. on
(N — 1)- dimensional manifolds. They studied the problem

2Au—V@)u+ fu)=0 inA
u>0 in A (1.2)
u=20 ondA,

inan annulus A = {x e RY : 0 < a < |x| < b}, V(r) is a smooth radial potential
bounded below by a positive constant. They introduced a modified potential M (r) =
rN=1vOrr), with 6 = Z—J_ri - %, satisfying M'(b) < O (respectively M'(a) > 0),
then there exists a family of radial solutions which concentrates on |x| = r, with
re — b (respectively r, — a) as ¢ — 0. In fact, they conjectured that in N > 3
there could exist also solutions concentrating to some manifolds of dimension k
with 1 < k < N —2. Moreover, in R?, concentration of positive solutions on curves
in the general case was proved by del Pino—Kowalczyk—Wei [5]. The Neumann case
was studied by Malchiodi-Montenegro [11,12].

In Esposito et al. [7], the asymptotic behavior of radial solutions for the sin-
gularly perturbed elliptic problem (1.2) was studied using the Morse index infor-
mation to describe the complete description of the blow-up behavior. As a result,
they exhibit sufficient conditions which guarantee that radial ground state solutions
blow-up and concentrate at the inner or outer boundary of the annulus. For more,
interesting consequences, see Pacella-Srikanth [13] and Ruf-Srikanth [14,15].

In this paper, we consider the following two singular perturbed problems,

e2Au—u+u?P=0 inA
u=>0 in A (1.3)
u=0 on dA,

2Au—u+u?=0 inA
u>0 in A (1.4)
u _ ondA,

3 =
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where A is an annulus in RY = R x R with A = {x e RY : 0 < a <
x| < b}, & > 0 is a small number and v denotes the unit normal to dA and
N > 2. In this paper, we are interested in finding solution u(x) = u(r, s) where

— /42442 2 _ /2 2 2
r=,/x +x2+~--xMands—\/xM+l+xM+2+~--xK.

Let us consider the conjecture due to Ruf and Srikanth:

Does there exist a solution for the problems (1.3) and (1.4), which concentrates
on RM+K=1 dimensional subsets as ¢ — 0?

Theorem 1.1. For ¢ > 0 sufficiently small, there exists a solution of (1.3) which
concentrates near the inner boundary of A.

Theorem 1.2. For ¢ > 0 sufficiently small, there exists a solution of (1.4) which
concentrates near the outer boundary of A.

2. Set up for the approximation

Note that, under symmetry assumptions, A can be reduced to a subset of R?> where
D={(rs):r>0,5s>0,a> <r>+s><b?.LetP, = (P1,e, P2¢) be a point of
maximum of u, in A, then u.,(P;) > 1. From (1.3) we obtain
M—1 K -1
2—( )ur—l—ezi( )us
r s

2

U + 2ugs + € —u4+uP=0 2.1

Let Dy, D, are the inner and outer boundary of D respectively and D3, Dy are the
horizontal and vertical boundary of D respectively.
If P=(P;, P>) be a point in D such that dist(P, D) =d, then we can express

Pi=(a+d)cosO; P, = (a+d)sinb 2.2)

where 0 is the angle between the x-axis and the line joining P. Furthermore, if
dist(P, D,) = d, then we can express

Pi=®B—d)cosb; Py = (b —d)sin6. 2.3)

See Figure 2.1 and Figure 2.2.
The functional associated to the problem is

2
| |
Is(u)=/ PR E gy 4 iyt \ards.  (24)
o 2 TS

Moreover, (1.3) reduces to

2up + tug + 82—(Mr_1)ur + 82—(Ks_1)us —u+uP=0 inD
u=0 on Dy UD,
% =0 on D3 U Dy.
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=0 D4
Figure 2.1. Dirichlet case Figure 2.2. Neumann Case
Re-scaling about the point P, we obtain in A,
(M —-1) (K-1)
urr—i-uss—l—smur—l—spz_i_gsus—u—i—ul’=0. (2.5)
The entire solution associated to (2.1) where U satisfies
AgsyU—-U+UP =0 inR?
U(r,s) >0 in R? (2.6)
U(r,s) =0 as |(r, s)] — oo.
Moreover U is non-degenerate, which means
oU oU
Ker | Agy — 14+ pUP™' | =1 —, —1|. (2.7)
' ar  os

Let z = (r,s). Moreover, U(z) = U(|z|) and the asymptotic behavior of U at
infinity is given by

Uz) = Alz|"2e (1 +0 (i))

|z]

U'(z) = —Alz| " 2e (1 ) (l)> (2.8)

Iz

for some constant A > 0.
Let K (z) denote the fundamental solution of —A(, 5) + 1 centered at 0. Then,
for |z] > 1, we have

(2.9)

for some positive constant B.
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LetUg p(z) = U(| % |). Now we construct the projection map for the Dirich-
let case as
&N (5)PUs.p — PUep + UL, =0 inD
PU; p(r,s) >0 inD (2.10)
PU; p(r,s) =0 on 9D,

and the projection in the Neumann case as

&2 A(,5)QUe,p — QUep + U£P =0 inD

QUs,P(r, S) > 0 lnD (211)
U,

¢ S’P(’"vs)zo on dD.
av

If ve =U; p — PU; p and w, = Ug p — QU;, p, then we have

ezA(,,S)vg —ve=0 inD

2.12
ve = Ue p on 0D, (12
szA(m)ws —w, =0 inD
dwg U, p (2.13)

= on dD.
av av

Consider the function s(6) = cos™~16 sin€ =19 in [0, %]. Then neither 6y = 0 nor
6o = 7 are points of maxima of s. But s > 0 and hence 6 lies in (0, 7).

Furthermore, consider the function 2(d) = d + e_% in0 <d < 1. Then h
attains its minimum at a pointd = ¢|Ineg].

Forany 0 € [90 —38,600+46 ]; we define the configuration space for the Dirichlet
and Neumann case as

k 1
Aep = {P € D :dist(P,Dy) > Esln—} (2.14)
&

and P |
AN = {P € D : dist(P, D,) > Esln —} (2.15)
£

respectively for some k > 0 small.
We develop the following lemma similar to Lin, Ni and Wei [9].

Lemma 2.1. Assuming that gsl Ing| <d(P,Dy) <3, then we obtain
_ |Z - P*l 240
ve(z) = (B+o(1)K Y + 0(™™), (2.16)

where P* = P +2d(P, Dy)vp and P e Dy is a unique point such that d(P, P) =
2d(P, Dy), while o is a small positive number; § is sufficiently small. Moreover,
Vg is the outer unit normal at P.
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Proof. Define
A Ve — W, =0 inD
Y, >0 in D
Y, =1 on dD.

Then for sufficiently small ¢, W, is uniformly bounded.
But for z € 3D, we obtain

lz = P|

Ua,P(Z) = U(

First, we have

|z — P]
Uep(2) = (B + 0(1))K( . )

Hence by the comparison principle we obtain, for some ¢ > 0 small,

Ve < Ce?t7 W, whenever d(P, D)) > 2¢|Ine|.

Therefore, it remains to check whether (2.16) holds in
k
§£| Ing| <d(P,Dy) <2¢|lneg|.

Define the function
|z — P
£

¢1(z)=(B—85)K< >+82+U\IJ8.

Then ¢; satisfies
e Ag.d1 — 1 =0.

. . 3
For any z in D; with |z — P| < ¢4 we have

_p _p
2= Pl _ (1 10 (s%) |ln8|> 2 |
& £

and hence
Ve < 1.

. 3
For any z € D with |z — P| > &4 we have

1
ve(z) < Ce™® * < 2™ < gy,
Summarizing, we obtain,
v < ¢ forall z € D;.

Similarly, we obtain the lower bound for z € Dy,

— P*
ve(z) = (B —I—s‘]‘)K(u) - 82+"III£.
)

) — (A+o(1)e2|z — Pl 2e” =

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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Corollary 2.2. Assume that gsl Ine| < d(P, D) < 8 where § is sufficiently small.
Then

we(z) = —(B + o(l))K('Z _SP*|> 10 (s”“) , (2.23)

where P* = P +2d(P, D;)vp and P € D, is a unique point such that d(P, P) =
2d(P, D»), while o is a small positive number. Moreover, Vp IS the outer unit
normal at P.

3. Refinement of the projection

Define

0
HOI(D)z {u € H' :u(x) = u(r,s),u =0in D; and Ds; B_M =0in D3 andD4}.
v
Define a norm on HO1 (D) as
o2 :/ pM=1p KL [82 IVul? dx +v2] drds. 3.1)
D

In this section we will refine the projection to incorporate the Neumann boundary
condition on D3 and D4. We define a new projection as

Ve,p =nPU; p, (3.2)

where 0 < 1 < 1 is smooth cut off function

(3.3)

(x) = 1 inDﬂBd/z(P)
T =010 inD\ Ba(P).

Here d = dist(P, aD) is dependent on . We will choose d at the end of the proof.
We define
ug = Ve p +@e p. 34

Let ¢¢, p = ¢. Using this ansatz, (1.3) reduces to
EAp — o+ g 4 28D g 4 f(V, p)p=h in D
=0 on 9D,
where h = —S¢[ Ve, p,]1 + Nelo], while

s (M —1) (K-1)

SelVe.p] = €2 M) Ve.p + ¢ Vep,r 82—
_Vs,P + f(Vs,P) (3'5)

VS,P,S
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and
Neloe] = {f(Ve,Pg + @) — f(Ve,) - f/(Vs,PgXD}'

Let av, aV,
Ec.p = {a)eHOl(D),<a), 8’P> =<a>, Lp> =0}.
€ &

ar as
LetD, ={z:ez+ P € D}.
Lemma 3.1. For any z € D, \ By (P) we have
PU; p(z) = O(eh). (3.6)
Proof. For any z € D, \ By2:(P) we have

P
PUg p(z) < U<|z — ;I) — Vg, p(£2)
— O El f o Ty 240 (3.7)
— O(e—d(P;,P ) + 82+O')
2d(P,0Dy)
— 0 & =+ = 0(h). O

Lemma 3.2. Let P € A p. Then the energy expansion is given by

2
M—1_K—1(¢€ L) 1 p+1
I (Ve p)= /Dr s <—2 IVVe pl~+ EVS,P ~ o Vi )drds

2d(P,dD
=ye?PM PS4 ylezPlM_leK_lU<¥>+ 0(82)U<k| lnsl)
&

where y = % Jxe UPtldrds and y, = %fRZ UPe " drds.

Proof. We obtain

2
—1 k-1(¢ 1 1 |
IE(VE,P) = /;VM lsK 1(7|VV5,P|2 + EVSZ’P — ﬁvgl?; )drds

2
& 1 1
=/n2rM“sK—1( |VPU5,P|2+—PU§p——PUfJ;,l)drds
5 ,

2 20 8P p
1 1 k- 1
+—p+1 DrM sk 1<n2 — np+]>PU£; drds
+82f erlstannPUSVPUgdrds 3.9)
D

+82/ rM1 K P (PUL, p)*drds
D

=Ji+h+ I3+ s
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Hence we have

1 1
I A e L
S 20T T

1
/(1 nHrM-lske 1< VPUspP+5 Lpu? —mPU;f;l)drds

1 1

M—1_K—1 p p+1

_/ r s <§U8’PPU€,p — —PUS’P )drds
D p

+1
oPU. oPU.
+82/ rM_lsK_l( =P 4 8’P>PUg,pdrds
B4 (P) or os
JPU PU
—82/ rM‘lsK‘l( =L+ "’”’P>PU8,pdrds
dBa/2(P) dr ds
(3.9)
1
:82(_ )/ (P 4+ er)M=1(Py + es)XTurt (2)drds
2 p+1
1
+—/ PUS M=1sK=1grds + O / Upplver_lsK_ldrds
2 )p & e
0PU. 0PU.
+82/ Mls’“( =L+ E’P)PUg,pdrds
3By (P) or as
JPU PU
82/ Mls’“( =L+ "’"’P>PU8,pdrds
3B4/2(P) or as
1
+/ pM=1gK= 1( |VPng|2+ PU2 ——PUf;I)drds.
D\Bd/z p+1 ’
Now we estimate
1
82<———)/ (P + er)M=1(Py + e)X1UPH (2)drds
2 p+1
—1
- P £2P1M1P2K1f UPt(r, s)drds (3.10)
2(p+ 1) R2

+ 0(eH)U (k| Ine)).
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From Lemma 2.1, we compute the interaction term

foPvng_lsK_ldrds
a2

= 82/ UPU(

P—P
:82P]M_1P2K_1U<‘
&

*

f—

)(Pl +er)M(Py + &)X Ndrds

*

>(y1 +o(1)) + 0(*) @3.11)
_ 82PIM‘1P2’<“U<2”’(P+””)M +o(1) + 0(>7)

= eZPIM—IPZK—1U<M>(y1 +o(1)) + 0(e?)U (k| Ing)).

Note that we have used the fact that lP_s—P*l >> |z|. Moreover, we obtain

= / MK (3 P t) PUL drds = o(e)U i nel) .
A |

Furthermore, we have

9PU.p  9PU
82/ rM_lsK_1< =L+ £’P>PU£,pdrds = o(e)U (k|Inel),
9By (P) ar os

IPU, IPU,
82/ pM-1 K- ( LA ”"*P) PU, pdrds = o(e)U (k|Ine]),
agd/2(p) or as

J3 = szf M= K=y PUVPU,drds = o(¢*)U (k|In¢|),
D

and

Jy= 82/ MK Vn2(PU, p)ldrds = 0(82)U<k| In g|>.
D
Hence we obtain the result.

Remark 3.3. From lemma 3.2 we have

2

1 k—1( & 1 1
Is(Vs,P) = LTM 1SK 1<7|VV5,P|2+§V82’P—ﬁvg—;]>drds

2d
ye? P pft 4 y182P1M_1P2K_1U<?> + 0(82)U(k| 1n8|>.
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So if we expand the expression in d and 6 we have
2d

s_zlg(Vg,p): [yaM+K—2+ yaM+K_3d+ J/1aM+K_2U (—)]COSM_1 9sink1o
€

+0(82)U<k| ln8|) + 0(2d?).

Note that the right-hand side is a function of d and 6 only and achieves its minimum
ind atapointd ~ ¢|In¢| provided cos™ ! 9 sinf~1g # 0. This is the main reason
of choosing the configuration space (2.14).

4. The reduction

In this section we will reduce the proof of Theorem 1.1 to finding a solution of the
form u, = V, p + ¢ for (1.3) to a finite dimensional problem. We will prove that
foreach P € A, p,thereis aunique ¢ € E, p such that

<I;<V8,P +90>, n> =0Vne E;p.
&€

Let
Je(p) = 18<V8,P +(,0>-

We expand J:(¢) near ¢, p = 0 as

1
Je(@) = J:(0) + ls,P(QO) + EQS,P((,O’ ©) + R:(p)

where
lo. p(9) = / pM—1 K1 [EZVVS’PVgO + Ve pp — Vgljp(p}drds
D 4.1)
:/ erlstng[Vg,p](pdrds,
D
Qe.p(p. V) = fD rMlght [szww +ov —pV)/, lww]drds, 4.2)
and
1 Mol K1 p+1 p+1
R:(p) = ? r N Vs,P + @ - Ve,P
p D (43)

p p—1
—(p+ 1)(\/8,,3) @ — w&ap) <p2]drds.

We will prove in Lemma 4.1 that /. p(¢) is a bounded linear functional in E; p.
Hence by the Riesz representation theorem, there exists /. p € E; p such that

(le.p,9)e =l p(p) Yo € E¢ p.
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In Lemma 4.2 we will prove that Q. p (¢, n) is a bounded linear operator from E, p
to E¢ p such that

(QE,P(pv 77)8 = QS,P((ps 77) V(p7 n € ES,P~

Thus finding a critical point of Jg(¢) is equivalent to solving the problem in E; p:
le.p + Qe,pp + Ry(9) = 0. 44

We will prove in Lemma 4.3 that the operator Q p is invertible in E; p. In Lemma
4.5, we will prove that, if ¢ belongs to a suitable set, R..(¢) is a small perturbation
term in (4.4). Thus we can use the contraction mapping theorem to prove that (4.4)
has a unique solution for each fixed P € A; p.

Lemma 4.1. The functional l; p : HO1 (D) — Rdefined in (4.1) is a bounded linear
functional. Moreover, we have

lle.plle = 0(e)y/U (k| Inel).

Proof. We have
le.p(9) = / M= KNS, Ve plodrds
D

. (M —1) (K -1
= / pM-1gk 1|:82A(r,s)Vs,P+82st,P,r + &7 p Ve.p.s
D

—Vep+ f(Vs,P):|(P

1 K- M —-1)
:/ M—=1 sk 1|:<92A(r,s)77PU£,P +82f(77PU8,P)r

(K)

mPUg p)s —nPUgp + f(nPUg, P)]

+
:/ M-1gK- 1[8 Agr5)PUs, p
+2

M — K—1
( )PUg,p,r 4 2&D

s PUs,P,s - PUS,P"‘f(PUs,P)](p

/ MK PU, pAgrsyn+V PUe pVnlp
/ MK () Py PU g
(M — 1) K -1
pM=1 K= 1[ - PU; p,+ PUg ps|®

s

2/M1K1|: (M —1) (K—1)
S

; PUS,P,I‘ + s

+e&

PUa,Pi|§0
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- fD nrM_lsK_l[f(PUa,P) - f(Ug,p)}o
M —1 K —1
+82/ nersKl[i( )PUs’p,r + ( )PUS,p,si|(pdrds
D r s

I (M —1) (K—=1)
—1—82/DrM IgK 1|:nr . PUe pr + 15 . PU&P:|‘/’

+/DrM_lsK_](17 —nP)PUL podrds
+82/;FM_lsK_I[PUg’PA(r’S)n + VPU, pVnledrds.
Let
ho= [t s F ) — W o
= / ersK1[f(PUa,P)—f(Us,p)}ﬂ
By (P)

+ / rM‘lsK‘l[ﬂPUg,p) - f(Ug,m}p.
Bi\Ba/2(P)

Then using the decay estimates in (2.16), we obtain

p—1
C/ (U&p> Vepdx
Bq
1
P — P* 2
Ce U( ></ |<p|2rM1s’<1drds)
& D

= o(e)yU(klIneD ¢

Also it is easy to check that, all the other terms are of o(¢)/U (k| In¢])||¢||.. Hence
we obtain

I

IA

IA

lle,p(@)| = o(e)/U (k| Ine|)|lglle
and as a result

Ile.plle = 0(e)y/U (k| In¢gl). O

Lemma 4.2. The bilinear form Q. p(p,n) defined in (4.2) is a bounded linear.
Furthermore,

|Qe,p(@, M| = Cllgllelinlle

where C is independent of €.
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Proof. Using the Holder’s inequality, there exists C > 0 such that

— — —1 — —
[ sk ondrds < ¢ [ MK gl < Clglelnl
D D

and

‘ fD rM K 2V + pnldrds| < Cligllelinll.. 0

Lemma 4.3. There exists p > 0 independent of ¢, such that

Qe polle = pllelle Yo € Ec p, P € Ag p.

Proof. Suppose there exists a sequence ¢, — 0, ¢, € E¢, p, P € A¢ p such that
”Wn”e,, = ¢y and

”an(pn”en =o0(ep).
Let ¢,(2) = ¢n(enz + P) and D, = {y : €42 + P € D} such that

[ s g = e [ Vel g =1 @

Hence there exists ¢ € H'(R?) such that $, — ¢ € H'(R?) and hence ¢, — ¢ €
leoc (R?). We claim that

Ay — @+ pUP 9 =0 in R?

that is, for all ¢ € CJ°(R?),

f rM=1sK=1gyve +/ rM-1sK=1g¢ :P/ rML Ry rTlee 46
R2 R2 R?

Now

/ rM_ISK_1|:82D(DnDC + @nt _pvgpf;l§0n§:| = (an,P(Pn, {)e
D
= o(en)lC e,

which implies

— — ~ - s yPls = ¢
/D Pt K 1[vwnv;+wnc—pvg’fp wnf} = oIl



ON A SINGULAR PERTURBED PROBLEM IN AN ANNULUS 851

where

Ve, p(2) = Ve, p,(enz + P),
PU., p(z) = PU,, p,(exz + P),

||E||2=fD rM—lsK—1[|VE|2+|E|2],

Egn’P = {{ :/ rM_lsK_IVEVWn,r +rM_]sK_IZ‘Wn,r

=0= / ML K=YV, +rM1sKIEVT/n,s},
and W, , = enw Wys = 8,,%. Let ¢ € C°(R?). Then
we can choose ay, az € R such that

En =¢ - [al,an,r + aZ,an,s]~

Note that W, , satisfies the problem

4.7)

A(rs)I/Vnr‘i‘VV N _anp 1(}’) +q> ()’) inDn
Wn,r =0 on 9D,

where @, (y) = &, 9L (UP — PUs p) + €1 2 [2V(5)1V PUs. p + Agryn PUs p].

Then we claim that Wny + is bounded in HO1 (D). Using the Holder’s inequality,
we have

1 N— ~ ~ 1 N— 10U -~
/ rM lsN 1[VWn,r|2 + W,,%’r] — p/ rM lsN anP lW nr
n Dy

+/ rM_lsN_ICDan,r
! 4.8)
C(/D rM—lsk—IWir)

~ ~ 2
< c(/ erle[VWn,r|2+W3,,]) :

Hence fDn pM=1gN=1 [|VW,,J 12 + W,% » ] is uniformly bounded and as a result there
exists W, such that

IA

Wy, — W, in H'(R?)

up to a subsequence. Hence

- . s
Wy — W, in Li .
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Note that W, satisfies the problem,

U
—AgsyWr + W, = pUp_la— in R?

M—1_K—1 2 r2 M—1_K—1,,p—10U 9)
/ r s [IVW,. |7 + |W,]| ]:p/ r s Uur— —w,.
R2 R2 ar
We claim that W,” — W, in H'(R?). First note that
e - ~ e _,oU -
/ rM=1gK ][|VWn,r|2+|Wn,r|2]=p/ pM-tgK=1yp la_rWn,r
n D”l

+/ rMilsKiquan,r

aU
— p/ pPM-lgK=lgp=1"—w,
R2 or

(4.10)

:/ rM= K= VW, 2+ | W, |*1drds.
R

2
Here we have used that Wn’r converges weakly in L?. Hence Wn,r - W, = % in
H' strongly. Similarly, we can show that Wn, s = W= %—lsj in H' strongly. Now

if we plug the value Z, in (4.7) and let n — oo, we obtain

ferlsKl[VW{ — pUP gt +<p§}
R
aU U U
=a / MK YoV — +o— — pUPlp—
R2 ar ar or

oU oUu oUu
tar / pM-I K- gy 2 4 o= — pUP lp—
R2 as as as

where a; = lim,_, 0 Gj -
Using the non-degeneracy condition (2.7) we obtain

/RN rM_lsK_1|:V(pVC + ¢ —pUp_lgag] =0.

Hence we have (4.6).
Since ¢ € H'(R?), it follows by non-degeneracy

Since ¢, € Eq, p, letting n — oo in (4.7), we have

oU
/ rM_lsK_IV(pV— =0
R2 or

U

/ rM_lsK_IV(pV— =0,
R2 as
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which implies b; = b, = 0. Hence ¢ = 0 and for any R > 0 we have
/ rM_lsK_I(p,zldrds = 0(8,21).
snR(P)

Hence

o(g2)

v

(Qe,, P (@), On)e, = lonlly — p / (Ve.p)P " loon

v

g2 —o(1)e? 0

which implies a contradiction.
Lemma 4.4. Let R, (@) be the functional defined by (4.3). Let ¢ € HO1 (D), then

IR:(p)| = " ll@)l? (4.11)

and

IRL(@) e = e llglle- (4.12)
for some T > 0 small.

Proof. We have

|Re (@)1

IA

0(/ M—1 K~ 1Vp 1¢2)

o(l)f M=1gK=1y P02 — o(1) )2,

IA

Choosing o(1) = €7, we obtain the first estimate. The second estimate follows in a
similar way. O

Lemma 4.5. There exists €9 > 0 such that for ¢ € (0, g9, there exists a C' map
¢ : Ec.p— H, suchthat ¢ € E. p we have

<Ié<V€,P +§0>’ T)> = 07 VT] € Eé‘,P-
&

lelle = o(e)y U (k| Ingl).

Proof. We have [, p + Q¢ pp + R.(p) = 0. As Q;}D exists, the above equation is
equivalent to solving

Moreover, we have

o, lsP+(ﬂ+Q8PR (p) =0.
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Define
G(9) =—0Q; ple.p — Q. pRL(®) VYo € Acp.

Hence the problem is reduced to finding a fixed point of the map G.
For any ¢ € E¢ p and g3 € E¢ p with |lgi]le < o(e'"")/UK[Ine]), g2l <
o' ") Uk Ine])

1G(@1) — G(@2)lle < ClIRL(p1) — Re(g2) e
From Lemma 4.4, we have
(Ry(¢1) — Ru(¢2), m)e < o(Dllg1 — @2lle 17

Hence we have

IR:(p1) — Ri(p2)lle < o(Dllgr — @2lle.
Hence G is a contraction as

1G(p1) — G(@2)lle < Co(D)llgr — @2lle-

Also for ¢ € E¢ p with [¢|: < o(e!=")/Uk[Ing[), and t > 0 sufficiently small

IG@ e < Clile,plle + CIIRL (@)l
< Co(e)\/U(k|Ing|) + Co(¢' ™) /U (k| Ing|) (4.13)
< Co(e)y/U(k|Ing]).

Hence

G Ae,p N By yuarmen(©) = Ae,p N By, yugrmen @)

is a contraction map. Hence, by the contraction mapping principle there exists a
unique ¢ € Ag p N B, e1-vy e (0) such that ¢ = G(¢) and

lelle = 19(@)lle < Co(e)y/U (k| Inel).

We write u, = Vg p + ¢. Then we have
I (ue) = Is(Ve,P)
+ / rM KN @YV pV — Ve po + f (Ve p)@)drds
D

1

+§</ rM_lsK_1[82|V<p|2 -9’ + f/(Vg,p)(p2:|drds>
D

—/ pM—1gk=1 |:F(V€’P—|—(ﬂ)—F(ngp)—é‘f(vg’P)@—%f/(Vg’P)WZ}drds
D
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which can be expressed as
I (ue)=1c(Ve p)

—I—/ Sg[Vg,p](perlstldrds
D
1
+ 5( f [€%|Vel2dx — ¢* + f/<vg,p>¢2]rM1sK1drds)
D

1
- / rM—lsK—l[F(vs,p+¢>—F<vs,p>—f(vg,P)<p—Efkvapwz]drds
D

= I£<VS,P> + O, pllell@lle + ll? + Re())

= IS(VS,p> + o(eHU (k| Ing)).

5. The reduced problem: min-max procedure

Proof of Theorem 1.1. Let Go(P) = G¢(d, 0) = I.(u.). Consider the problem

min max  G.(d,0).
delAg p Op—6<0=<6p+5

To prove that G.(P) = Ig(Vg,p + go) is a solution of (1.1), we need to prove that P
is a critical point of G,, in other words we are required to show that P is a interior
point of A¢ p.

For any P € A, p, from Lemma 4.3 we obtain

Ge(P) = I.(Ve.p) + O(lle.pllcllglle + l@llZ + Re ()
= I:(Ve.p) + 0(e*)U (k| Ing|)

1k 1 k-1, (2d(P,D .1
— 2y pM-1pK-1 4 2y, pM-I pK 1U( ( 1))

&
+ 0(e?)U (k| Ine)).

We have the expansion

2d(P, D
Ge(d.0) = ye [aM+K‘2 +aMHK=3q 4 V_1710M+K—2U(g)

£
+O(d2)} cosM™ =19 sink=16 + 0(e2)U (k| Ine|)

— J/82|:aM+K_2 +aM+K—1d + y—lylaM+K—2U<%>:|
&

x cosM =1 g sink—19 4 o(e))U (k|Ing]) + O(2d?).
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It is clear that the maximum is attained at some interior point 8’ € (6y — 68, 6y + §).
Moreover, for this 6’, the minimum is attained at a interior point of A, p. This
finishes the proof. O

6. The reduced problem: max-max procedure

Proof of Theorem 1.2. Here we obtain the critical point using a max-max proce-
dure. The projection in the Neumann case is just Q. p. Hence the reduced problem

_ _ _ - 2d(P, D»)
Re(P) = 2y PMIpS g2y pM-1pf 1U(7
€ (6.1)
+ 0(e?)U (k| Ine)).
Consider
Re(d,0). 6.2
drenz?f,v eofalgggeﬁa e, 0) 6.2)
We have the expansion
[ 2d(P,D
Ro(d,0) = ygz pMAK=2 _ pM+K=3; yly]bM+K2U( ( 2))
&

+0(d2)} cosM 19 sinK=10 4+ 0(®)U (k| Ing|)

= pe?| pMFTK=2 _ pM+K=34 _ y—lyle+K—2U<%>i|

NS}

&

x cos® 1o sink—1o + 0(82)U(k| Ing|) + 0(82d2).

It is clear that the maximum in 6 is attained at some interior point 8’ € (o — 8, 6p +
8). Moreover, for this 6’, the maximum is attained at a interior point d of A y if
we choose k£ > 0 to be sufficiently small. Hence Theorem 1.2 is proved. O
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