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On a singular perturbed problem in an annulus

SANJIBAN SANTRA AND JUNCHENG WEI

Abstract. In this paper we prove the conjecture due to Ruf–Srikanth [14]. We
prove the existence of positive solution under Dirichlet and Neumann boundary
conditions, which concentrate near the inner boundary and outer boundary of an
annulus respectively as " ! 0. In fact, our result is independent of the dimension
of RN .
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1. Introduction

There has been a considerable interest in understanding the behavior of positive
solutions of the elliptic problem

8>><
>>:
"21u � u + f (u) = 0 in �
u > 0 in �

u = 0 or
@u
@⌫

= 0 on @�
(1.1)

where " > 0 is a parameter, f is a superlinear nonlinearity and � is a smooth
bounded domain in RN . Let F(u) =

R u
0 f (t)dt. We consider the problem when

f (0) = 0 and f 0(0) = 0. This type of equations arise in various mathemati-
cal models derived from population theory, chemical reactor theory see Gidas-Ni-
Nirenberg [6]. In the Dirichlet case, Ni – Wei showed in [19] that the least energy
solutions of equation (1.1) concentrate, for " ! 0, to single peak solutions, whose
maximum points P" converge to a point P with maximal distance from the bound-
ary @�. In the Neumann case, Ni–Takagi [17] showed that for sufficiently small
" > 0, the least energy solution is a single boundary spike and has only one local
maximum P" 2 @�.Moreover, in [18], they prove that H(P") ! maxP2@� H(P)
as " ! 0 where H(P) is the mean curvature of @� at P. A simplified proof was
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given by del Pino–Felmer in [3], for a wider class of nonlinearities using a method
of symmetrization.

We mention some nice results on the multiple boundary and interior peaked so-
lutions for the Neumann case of (1.1). For the single and multiple boundary spikes,
Gui [8] constructed multiple boundary spike solutions at multiple local maximum
points of H(P), using a variational method. Wei [21] and Wei–Winter [22] con-
structed single and multiple boundary spike solutions at multiple non-degenerate
critical points of H(P), using the Lyapunov–Schmidt reduction method. Later on
Y.Y. Li [10] and del Pino–Felmer–Wei [4] constructed single and multiple boundary
spikes in the degenerate case. For a detailed bibliography on this topic, we refer to
the review article by Ni [16].

Higher dimensional concentrating solutions was studied by Ambrosetti–Mal-
chiodi–Ni in [1, 2]; they consider solutions which concentrate on spheres, i.e. on
(N � 1)- dimensional manifolds. They studied the problem

8><
>:
"21u � V (r)u + f (u) = 0 in A
u > 0 in A
u = 0 on @A,

(1.2)

in an annulus A = {x 2 RN
: 0 < a < |x | < b}, V (r) is a smooth radial potential

bounded below by a positive constant. They introduced a modified potential M(r)=
r N�1V ✓ (r), with ✓ =

p+1
p�1 �

1
2 , satisfying M

0(b) < 0 (respectively M 0(a) > 0),
then there exists a family of radial solutions which concentrates on |x | = r" with
r" ! b (respectively r" ! a) as " ! 0. In fact, they conjectured that in N � 3
there could exist also solutions concentrating to some manifolds of dimension k
with 1  k  N�2.Moreover, inR2, concentration of positive solutions on curves
in the general case was proved by del Pino–Kowalczyk–Wei [5]. The Neumann case
was studied by Malchiodi-Montenegro [11,12].

In Esposito et al. [7], the asymptotic behavior of radial solutions for the sin-
gularly perturbed elliptic problem (1.2) was studied using the Morse index infor-
mation to describe the complete description of the blow-up behavior. As a result,
they exhibit sufficient conditions which guarantee that radial ground state solutions
blow-up and concentrate at the inner or outer boundary of the annulus. For more,
interesting consequences, see Pacella-Srikanth [13] and Ruf-Srikanth [14,15].

In this paper, we consider the following two singular perturbed problems,
8><
>:
"21u � u + u p = 0 in A
u > 0 in A
u = 0 on @A,

(1.3)

8><
>:
"21u � u + u p = 0 in A
u > 0 in A
@u
@⌫ = 0 on @A,

(1.4)
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where A is an annulus in RN
= RM

⇥ RK with A = {x 2 RN
: 0 < a <

|x | < b}, " > 0 is a small number and ⌫ denotes the unit normal to @A and
N � 2. In this paper, we are interested in finding solution u(x) = u(r, s) where
r =

q
x21 + x22 + · · · x2M and s =

q
x2M+1 + x2M+2 + · · · x2K .

Let us consider the conjecture due to Ruf and Srikanth:
Does there exist a solution for the problems (1.3) and (1.4), which concentrates

on RM+K�1 dimensional subsets as " ! 0?

Theorem 1.1. For " > 0 sufficiently small, there exists a solution of (1.3) which
concentrates near the inner boundary of A.

Theorem 1.2. For " > 0 sufficiently small, there exists a solution of (1.4) which
concentrates near the outer boundary of A.

2. Set up for the approximation

Note that, under symmetry assumptions, A can be reduced to a subset of R2 where
D = {(r, s) : r > 0, s > 0, a2 < r2+ s2 < b2}. Let P" = (P1,", P2,") be a point of
maximum of u" in A, then u"(P") � 1. From (1.3) we obtain

"2urr + "2uss + "2
(M � 1)

r
ur + "2

(K � 1)
s

us � u + u p = 0 (2.1)

Let D1,D2 are the inner and outer boundary of D respectively and D3,D4 are the
horizontal and vertical boundary of D respectively.

If P=(P1, P2) be a point in D such that dist(P,D1)=d, then we can express

P1 = (a + d) cos ✓; P2 = (a + d) sin ✓ (2.2)

where ✓ is the angle between the x-axis and the line joining P. Furthermore, if
dist(P,D2) = d, then we can express

P1 = (b � d) cos ✓; P2 = (b � d) sin ✓ . (2.3)

See Figure 2.1 and Figure 2.2.
The functional associated to the problem is

I"(u) =

Z
D
rM�1sK�1

✓
"2

2
|ru|2 +

1
2
u2 �

1
p + 1

u p+1
◆
drds. (2.4)

Moreover, (1.3) reduces to8><
>:
"2urr + "2uss + "2 (M�1)

r ur + "2 (K�1)
s us � u + u p = 0 in D

u = 0 on D1 [D2
@u
@⌫ = 0 on D3 [D4.
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Figure 2.1. Dirichlet case
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Figure 2.2. Neumann Case

Re-scaling about the point P, we obtain in A"

urr + uss + "
(M � 1)
P1 + "r

ur + "
(K � 1)
P2 + "s

us � u + u p = 0. (2.5)

The entire solution associated to (2.1) where U satisfies8><
>:
1(r,s)U �U +U p

= 0 in R2
U(r, s) > 0 in R2
U(r, s) ! 0 as |(r, s)| ! 1.

(2.6)

Moreover U is non-degenerate, which means

Ker

1(r,s) � 1+ pU p�1

�
=

⇢
@U
@r

,
@U
@s

�
. (2.7)

Let z = (r, s). Moreover, U(z) = U(|z|) and the asymptotic behavior of U at
infinity is given by 8<

:
U(z) = A|z|�

1
2 e�|z|

⇣
1+ O

⇣
1
|z|

⌘⌘
U 0(z) = �A|z|�

1
2 e�|z|

⇣
1+ O

⇣
1
|z|

⌘⌘ (2.8)

for some constant A > 0.
Let K (z) denote the fundamental solution of �1(r,s) + 1 centered at 0. Then,

for |z| � 1, we have 8<
:
U(z) =

⇣
B + O

⇣
1
|z|

⌘⌘
K (z)

U 0(z) =

⇣
�B + O

⇣
1
|z|

⌘⌘
K (z)

(2.9)

for some positive constant B.
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LetU",P(z) = U(| z�P
" |). Now we construct the projection map for the Dirich-

let case as 8><
>:
"21(r,s)PU",P � PU",P +U p

",P = 0 in D
PU",P(r, s) > 0 in D
PU",P(r, s) = 0 on @D,

(2.10)

and the projection in the Neumann case as8>><
>>:
"21(r,s)QU",P � QU"P +U p

",P = 0 in D
QU",P(r, s) > 0 in D
QU",P
@⌫

(r, s) = 0 on @D.

(2.11)

If v" = U",P � PU",P and w" = U",P � QU",P , then we have(
"21(r,s)v" � v" = 0 in D
v" = U",P on @D,

(2.12)

8<
:
"21(r,s)w" � w" = 0 in D
@w"

@⌫
=

@U",P
@⌫

on @D.
(2.13)

Consider the function s(✓) = cosM�1 ✓ sinK�1 ✓ in [0, ⇡2 ]. Then neither ✓0 = 0 nor
✓0 =

⇡
2 are points of maxima of s. But s > 0 and hence ✓0 lies in (0, ⇡2 ).

Furthermore, consider the function h(d) = d + e�
d
" in 0 < d < 1. Then h

attains its minimum at a point d = "| ln "|.
For any ✓ 2

⇥
✓0��, ✓0+�

⇤
;we define the configuration space for the Dirichlet

and Neumann case as

3",D =

⇢
P 2 D : dist(P,D1) �

k
2
" ln

1
"

�
(2.14)

and
3",N =

⇢
P 2 D : dist(P,D2) �

k
2
" ln

1
"

�
(2.15)

respectively for some k > 0 small.
We develop the following lemma similar to Lin, Ni and Wei [9].

Lemma 2.1. Assuming that k2"| ln "|  d(P,D1)  �, then we obtain

v"(z) = (B + o(1))K
✓

|z � P?|
"

◆
+ O("2+� ), (2.16)

where P? = P + 2d(P,D1)⌫P and P 2 D1 is a unique point such that d(P, P) =

2d(P,D1), while � is a small positive number; � is sufficiently small. Moreover,
⌫P is the outer unit normal at P.
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Proof. Define 8><
>:
"21(r,s)9" �9" = 0 in D
9" > 0 in D
9" = 1 on @D.

(2.17)

Then for sufficiently small ", 9" is uniformly bounded.
But for z 2 @D, we obtain

U",P(z) = U
✓

|z � P|

"

◆
= (A + o(1))"

1
2 |z � P|

�
1
2 e�

|z�P|

" .

First, we have
U",P(z) = (B + o(1))K

✓
|z � P|

"

◆
.

Hence by the comparison principle we obtain, for some � > 0 small,

v"  C"2+�9" whenever d(P,D1) � 2"| ln "|.

Therefore, it remains to check whether (2.16) holds in
k
2
"| ln "|  d(P,D1)  2"| ln "|. (2.18)

Define the function

�1(z) = (B � "
1
4 )K

✓
|z � P?|

"

◆
+ "2+�9". (2.19)

Then �1 satisfies
"21(r,s)�1 � �1 = 0. (2.20)

For any z in D1 with |z � P|  "
3
4 we have

|z � P|

"
=

⇣
1+ O

⇣
"
1
2
⌘

| ln "|
⌘

|z � P?|
"

(2.21)

and hence
v"  �1.

For any z 2 D1 with |z � P| � "
3
4 we have

v"(z)  Ce�"
�
1
4

 "2+�  �1.

Summarizing, we obtain,

v"  �1 for all z 2 D1.
Similarly, we obtain the lower bound for z 2 D1,

v"(z) � (B + "
1
4 )K

✓
|z � P?|

"

◆
� "2+�9". (2.22)
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Corollary 2.2. Assume that k2"| ln "|  d(P,D2)  � where � is sufficiently small.
Then

w"(z) = �(B + o(1))K
✓

|z � P?|
"

◆
+ O

⇣
"2+�

⌘
, (2.23)

where P? = P + 2d(P,D2)⌫P and P 2 D2 is a unique point such that d(P, P) =

2d(P,D2), while � is a small positive number. Moreover, ⌫P is the outer unit
normal at P.

3. Refinement of the projection

Define

H10 (D)=

⇢
u 2 H1 : u(x) = u(r, s), u = 0 in D1 and D2;

@u
@⌫

= 0 in D3 and D4
�
.

Define a norm on H10 (D) as

kvk
2
" =

Z
D
rM�1r K�1

h
"2 |rv|

2 dx + v2
i
drds. (3.1)

In this section we will refine the projection to incorporate the Neumann boundary
condition on D3 and D4. We define a new projection as

V",P = ⌘PU",P , (3.2)

where 0  ⌘  1 is smooth cut off function

⌘(x) =

(
1 in D \ Bd/2(P)

0 in D \ Bd(P).
(3.3)

Here d = dist(P, @D) is dependent on ".We will choose d at the end of the proof.
We define

u" = V",P + '",P . (3.4)

Let '",P = '. Using this ansatz, (1.3) reduces to
(
"21(r,s)' � ' + "2 (M�1)

r 'r + "2 (K�1)
s 'r + f 0(V",P)' = h in D

' = 0 on @D,

where h = �S"[V",P" ] + N"['], while

S"[V",P ] = "21(r,s)V",P + "2
(M � 1)

r
V",P,r + "2

(K � 1)
s

V",P,s

�V",P + f (V",P) (3.5)
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and
N"['"] = { f (V",P" + ') � f (V",) � f 0(V",P")'}.

Let
E",P =

⇢
! 2 H10 (D),

⌧
!,
@V",P
@r

�
"

=

⌧
!,
@V",P
@s

�
"

= 0
�
.

Let D" = {z : "z + P 2 D}.

Lemma 3.1. For any z 2 D" \ Bd/2"(P) we have

PU",P(z) = O("k). (3.6)

Proof. For any z 2 D" \ Bd/2"(P) we have

PU",P(z) 

����U
✓

|z �

P
"

|

◆
� v",P("z)

����
= O(e�|x� P

" |

+ e�|x� P?
" |

+ "2+� )

= O(e�
d(P,P?)

" + "2+� )

= O(e�
2d(P,@D1)

" + "2+� ) = O("k).

(3.7)

Lemma 3.2. Let P 2 3",D. Then the energy expansion is given by

I"(V",P)=

Z
D
rM�1sK�1

✓
"2

2
|rV",P |

2
+

1
2
V 2",P �

1
p + 1

V p+1
",P

◆
drds

= � "2PM�1
1 PK�1

2 + �1"
2PM�1
1 PK�1

2 U
✓
2d(P,@D1)

"

◆
+ o("2)U

✓
k| ln "|

◆

where � =
p�1

2(p+1)
R
R2 U

p+1drds and �1 =
1
2
R
R2 U

pe�r drds.

Proof. We obtain

I"(V",P) =

Z
D
rM�1sK�1

✓
"2

2
|rV",P |

2
+

1
2
V 2",P �

1
p + 1

V p+1
",P

◆
drds

=

Z
D
⌘2rM�1sK�1

✓
"2

2
|rPU ",P |

2
+

1
2
PU2",P �

1
p + 1

PU p+1
",P

◆
drds

+

1
p + 1

Z
D
rM�1sK�1

✓
⌘2 � ⌘p+1

◆
PU p+1

",P drds

+"2
Z
D
rM�1sK�1⌘r⌘PU"rPU"drds (3.8)

+"2
Z
D
rM�1sK�1

|r⌘|2(PU",P)2drds

= J1 + J2 + J3 + J4.
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Hence we have

J1=
Z
D
rM�1sK�1

✓
"2

2
|rPU",P |

2
+

1
2
PU2",P �

1
p + 1

PU p+1
",P

◆
drds

�

Z
D
(1�⌘2)rM�1sK�1

✓
"2

2
|rPU",P |

2
+

1
2
PU2",P�

1
p+1

PU p+1
",P

◆
drds

=

Z
D
rM�1sK�1

✓
1
2
U p
",P PU",P �

1
p + 1

PU p+1
",P

◆
drds

+ "2
Z
@Bd (P)

rM�1sK�1
✓
@PU",P
@r

+

@PU",P
@s

◆
PU",Pdrds

� "2
Z
@Bd/2(P)

rM�1sK�1
✓
@PU",P
@r

+

@PU",P
@s

◆
PU",Pdrds

= "2
✓
1
2

�

1
p + 1

◆Z
D"

(P1 + "r)M�1(P2 + "s)K�1U p+1(z)drds

+

1
2

Z
D
U p
",Pv"rM�1sK�1drds + O

✓Z
D
U p�1
",P v2"r

M�1sK�1drds
◆

+ "2
Z
@Bd (P)

rM�1sK�1
✓
@PU",P
@r

+

@PU",P
@s

◆
PU",Pdrds

� "2
Z
@Bd/2(P)

rM�1sK�1
✓
@PU",P
@r

+

@PU",P
@s

◆
PU",Pdrds

+

Z
D\Bd/2

rM�1sK�1
✓
"2

2
|rPU",P |

2
+

1
2
PU2",P�

1
p + 1

PU p+1
",P

◆
drds.

(3.9)

Now we estimate

"2
✓
1
2

�

1
p + 1

◆Z
D"

(P1 + "r)M�1(P2 + "s)K�1U p+1(z)drds

=

p � 1
2(p + 1)

"2PM�1
1 PK�1

2

Z
R2
U p+1(r, s)drds

+ o("2)U(k| ln "|).

(3.10)
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From Lemma 2.1, we compute the interaction term
Z
D
U p
",Pv"rM�1sK�1drds

= "2
Z
D"
U pU

✓����z �

P � P?

"

����
◆

(P1 + "r)M�1(P2 + "s)K�1drds

= "2PM�1
1 PK�1

2 U
✓���� P � P?

"

����
◆

(�1 + o(1)) + O("2+� )

= "2PM�1
1 PK�1

2 U
✓
2d(P, @D1)

"

◆
(�1 + o(1)) + O("2+� )

= "2PM�1
1 PK�1

2 U
✓
2d(P, @D1)

"

◆
(�1 + o(1)) + o("2)U(k| ln "|).

(3.11)

Note that we have used the fact that |P�P?|
" � |z|.Moreover, we obtain

J2 =

Z
D
rM�1sK�1

⇣
⌘2 � ⌘p+1

⌘
PU p+1

",P drds = o("2)U (k| ln "|) .

Furthermore, we have

"2
Z
@Bd (P)

rM�1sK�1
✓
@PU",P
@r

+

@PU",P
@s

◆
PU",Pdrds = o("2)U (k| ln "|) ,

"2
Z
@Bd/2(P)

rM�1sK�1
✓
@PU",P
@r

+

@PU",P
@s

◆
PU",Pdrds = o("2)U (k| ln "|) ,

J3 = "2
Z
D
rM�1sK�1⌘r⌘PU"rPU"drds = o("2)U (k| ln "|) ,

and

J4 = "2
Z
D
rM�1sK�1

|r⌘|2(PU",P)2drds = o("2)U
✓
k| ln "|

◆
.

Hence we obtain the result.

Remark 3.3. From lemma 3.2 we have

I"(V",P) =

Z
D
rM�1sK�1

✓
"2

2
|rV",P |

2
+

1
2
V 2",P �

1
p + 1

V p+1
",P

◆
drds

= � "2PM�1
1 PK�1

2 + �1"
2PM�1
1 PK�1

2 U
✓
2d
"

◆
+ o("2)U

✓
k| ln "|

◆
.
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So if we expand the expression in d and ✓ we have

"�2 I"(V",P)=


� aM+K�2

+ � aM+K�3d+ �1aM+K�2U
✓
2d
"

◆�
cosM�1 ✓ sinK�1 ✓

+o("2)U
✓
k| ln "|

◆
+ O("2d2).

Note that the right-hand side is a function of d and ✓ only and achieves its minimum
in d at a point d ⇠ "| ln "| provided cosM�1 ✓ sinK�1 ✓ 6= 0. This is the main reason
of choosing the configuration space (2.14).

4. The reduction

In this section we will reduce the proof of Theorem 1.1 to finding a solution of the
form u" = V",P + ' for (1.3) to a finite dimensional problem. We will prove that
for each P 2 3",D , there is a unique ' 2 E",P such that⌧

I 0"
✓
V",P + '

◆
, ⌘

�
"

= 0 8⌘ 2 E",P .

Let
J"(') = I"

✓
V",P + '

◆
.

We expand J"(') near '",P = 0 as

J"(') = J"(0) + l",P(') +

1
2
Q",P(',') + R"(')

where
l",P(') =

Z
D
rM�1sK�1


"2rV",Pr' + V",P' � V p

",P'

�
drds

=

Z
D
rM�1sK�1S"[V",P ]'drds,

(4.1)

Q",P(', ) =

Z
D
rM�1sK�1


"2r'r + ' � pV p�1

",P ' 

�
drds, (4.2)

and

R"(') =

1
p + 1

Z
D
rM�1sK�1

✓
V",P + '

◆p+1
�

✓
V",P

◆p+1

� (p + 1)
✓
V",P

◆p
' �

p(p + 1)
2

✓
V",P

◆p�1
'2

�
drds.

(4.3)

We will prove in Lemma 4.1 that l",P(') is a bounded linear functional in E",P .
Hence by the Riesz representation theorem, there exists l",P 2 E",P such that

hl",P ,'i" = l",P(') 8' 2 E",P .
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In Lemma 4.2 we will prove that Q",P(', ⌘) is a bounded linear operator from E",P
to E",P such that

hQ",P', ⌘i" = Q",P(', ⌘) 8', ⌘ 2 E",P .

Thus finding a critical point of J"(') is equivalent to solving the problem in E",P :

l",P + Q",P' + R0

"(') = 0. (4.4)

We will prove in Lemma 4.3 that the operator Q",P is invertible in E",P . In Lemma
4.5, we will prove that, if ' belongs to a suitable set, R0

"(') is a small perturbation
term in (4.4). Thus we can use the contraction mapping theorem to prove that (4.4)
has a unique solution for each fixed P 2 3",D.

Lemma 4.1. The functional l",P : H10 (D) ! R defined in (4.1) is a bounded linear
functional. Moreover, we have

kl",Pk" = o(")
p
U(k| ln "|).

Proof. We have

l",P(') =

Z
D
rM�1sK�1S"[V",P ]'drds

=

Z
D
rM�1sK�1


"21(r,s)V",P + "2

(M � 1)
r

V",P,r + "2
(K � 1)

s
V",P,s

�V",P + f (V",P)

�
'

=

Z
D
rM�1sK�1


"21(r,s)⌘PU",P + "2

(M � 1)
r

(⌘PU",P)r

+ "2
(K � 1)

s
(⌘PU",P)s � ⌘PU",P + f (⌘PU",P)

�
'

=

Z
D
⌘rM�1sK�1


"21(r,s)PU",P

+"2
(M�1)

r
PU",P,r + "2

(K�1)
s

PU",P,s � PU",P+ f (PU",P)

�
'

+ "2
Z
D
rM�1sK�1

[PU",P1(r,s)⌘+rPU",Pr⌘]'

+

Z
D
rM�1sK�1(⌘ � ⌘p)PU p

",P'

+"2
Z
D
⌘rM�1sK�1


(M � 1)

r
PU",P,r +

(K � 1)
s

PU",P,s

�
'

+ "2
Z
D
rM�1sK�1


⌘r

(M � 1)
r

PU",P,r + ⌘s
(K � 1)

s
PU",P

�
'
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=

Z
D
⌘rM�1sK�1


f (PU",P) � f (U",P)

�
'

+"2
Z
D
⌘rM�1sK�1


(M � 1)

r
PU",P,r +

(K � 1)
s

PU",P,s

�
'drds

+"2
Z
D
rM�1sK�1


⌘r

(M � 1)
r

PU",P,r + ⌘s
(K � 1)

s
PU",P

�
'

+

Z
D
rM�1sK�1(⌘ � ⌘p)PU p

",P'drds

+"2
Z
D
rM�1sK�1

[PU",P1(r,s)⌘ + rPU",Pr⌘]'drds.

Let

I1 =

Z
D
⌘rM�1sK�1


f (PU",P) � f (U",P)

�
'dx

=

Z
Bd/2(P)

rM�1sK�1

f (PU",P) � f (U",P)

�
'

+

Z
Bd\Bd/2(P)

rM�1sK�1

f (PU",P) � f (U",P)

�
'.

Then using the decay estimates in (2.16), we obtain

I1  C
Z
Bd

✓
U",P

◆p�1
v"'dx

 C"

s
U

✓
P � P?

"

◆✓Z
D

|'|
2rM�1sk�1drds

◆ 1
2

= o(")
p
U(k| ln "|)k'k".

Also it is easy to check that, all the other terms are of o(")
p

U(k| ln "|)k'k". Hence
we obtain

|l",P(')| = o(")
p
U(k| ln "|)k'k"

and as a result
kl",Pk" = o(")

p
U(k| ln "|).

Lemma 4.2. The bilinear form Q",P(', ⌘) defined in (4.2) is a bounded linear.
Furthermore,

|Q",P(', ⌘)|  Ck'k"k⌘k"

where C is independent of ".
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Proof. Using the Hölder’s inequality, there exists C > 0 such that
Z
D
rM�1sK�1V p�1

",P '⌘ drds  C
Z
D
rM�1sK�1

|'||⌘|  Ck'k"k⌘k"

and ����
Z
D
rM�1sK�1

["2r'r⌘ + '⌘]drds
����  Ck'k"k⌘k".

Lemma 4.3. There exists ⇢ > 0 independent of ", such that

kQ",P'k" � ⇢k'k" 8' 2 E",P , P 2 3",P .

Proof. Suppose there exists a sequence "n ! 0, 'n 2 E"n,P , P 2 3",D such that
k'nk"n = "n and

kQ"n'nk"n = o("n).

Let '̃n(z) = 'n("nz + P) and Dn = {y : "nz + P 2 D} such that
Z
Dn

r M�1sK�1
[|r'̃n|

2
+ '̃2n] = "�2n

Z
D
rM�1sK�1

["2n|r'n|
2
+ '2n] = 1. (4.5)

Hence there exists ' 2 H1(R2) such that '̃n * ' 2 H1(R2) and hence '̃n ! ' 2

L2loc(R2).We claim that

1(r,s)' � ' + pU p�1' = 0 in R2

that is, for all ⇣ 2 C1

0 (R2),
Z

R2
rM�1sK�1

r'r⇣ +

Z
R2
rM�1sK�1'⇣ = p

Z
R2
rM�1sK�1U p�1'⇣. (4.6)

Now
Z
D
rM�1sK�1


"2D'nD⇣ + 'n⇣ � pV p�1

",P 'n⇣

�
= hQ"n,P'n, ⇣ i"

= o("n)k⇣k"n

which implies
Z
D"
rM�1sK�1


r'̃nr ⇣̃ + '̃n ⇣̃ � pṼ p�1

",P '̃n ⇣̃

�
= o(1)k⇣̃k,
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where

Ṽ"n,P(z) = V"n,Pn ("nz + P),

˜PU "n,P(z) = PU"n,Pn ("nz + P),

k⇣̃k2 =

Z
Dn

r M�1sK�1

|r ⇣̃ |2 + |⇣̃ |2

�
,

Ẽ"n,P =

⇢
⇣̃ :

Z
Dn

r M�1sK�1
r ⇣̃rW̃n,r + rM�1sK�1⇣̃ W̃n,r

= 0 =

Z
Dn

r M�1sK�1
r ⇣̃rW̃n,s + rM�1sK�1⇣̃ W̃n,s

�
,

and W̃n,r = "n
@V"n ,Pn ("n y+Pn)

@r , W̃n,s = "n
@V"n ,Pn ("n y+Pn)

@s . Let ⇣ 2 C1

0 (R2). Then
we can choose a1, a2 2 R such that

⇣̃n = ⇣ � [a1,nW̃n,r + a2,nW̃n,s].

Note that W̃n,r satisfies the problem(
�1(r,s)W̃n,r + W̃n,r = p⌘U p�1(y) @U@r +8n(y) in Dn
W̃n,r = 0 on @Dn

(4.7)

where 8n(y) = "n
@⌘
@r (U

p
� P̃U",P) + "n

@
@r

⇥
2r(r,s)⌘r P̃U",P +1(r,s)⌘ P̃U",P

⇤
.

Then we claim that W̃n,r is bounded in H10 (Dn).Using the Hölder’s inequality,
we haveZ
Dn

r M�1sN�1
[rW̃n,r |

2
+ W̃ 2

n,r ] = p
Z
Dn

r M�1sN�1⌘U p�1 @U
@r

W̃n,r

+

Z
Dn

r M�1sN�18nW̃n,r

 C
✓Z

Dn

r M�1sk�1W̃ 2
n,r

◆ 1
2

 C
✓Z

Dn

r M�1sN�1
[rW̃n,r |

2
+ W̃ 2

n,r ]

◆ 1
2
.

(4.8)

Hence
R
Dn
r M�1sN�1⇥

|rW̃n,r |
2
+ W̃ 2

n,r
⇤
is uniformly bounded and as a result there

exists Wr such that
W̃n,r * Wr in H1(R2)

up to a subsequence. Hence

W̃n,r ! Wr in L2loc.
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Note that Wr satisfies the problem,8><
>:

�1(r,s)Wr + Wr = pU p�1 @U
@r

in R2Z
R2
rM�1sK�1

[|rWr |
2
+ |Wr |

2
]= p

Z
R2
rM�1sK�1U p�1 @U

@r
Wr .

(4.9)

We claim that W̃n,r ! Wr in H1(R2). First note thatZ
Dn

r M�1sK�1
[|rW̃n,r |

2
+|W̃n,r |

2
]= p

Z
Dn

r M�1sK�1U p�1 @U
@r

W̃n,r

+

Z
Dn

r M�1sK�18nW̃n,r

! p
Z

R2
rM�1sK�1U p�1 @U

@r
Wr

=

Z
R2
rM�1sK�1

[|rWr |
2
+|Wr |

2
]drds.

(4.10)

Here we have used that W̃n,r converges weakly in L2. Hence W̃n,r ! Wr =
@U
@r in

H1 strongly. Similarly, we can show that W̃n,s ! Ws =
@U
@s in H

1 strongly. Now
if we plug the value ⇣̃n in (4.7) and let n ! 1, we obtainZ

R2
rM�1sK�1


r'r⇣ � pU p�1'⇣ + '⇣

�

= a1
✓Z

R2
rM�1sK�1


r'r

@U
@r

+ '
@U
@r

� pU p�1'
@U
@r

�◆

+a2
✓Z

R2
rM�1sK�1


r'r

@U
@s

+ '
@U
@s

� pU p�1'
@U
@s

�◆

where ai = limn!1 ai,n.
Using the non-degeneracy condition (2.7) we obtainZ

RN
rM�1sK�1


r'r⇣ + '⇣ � pU p�1'⇣

�
= 0.

Hence we have (4.6).
Since ' 2 H1(R2), it follows by non-degeneracy

' = b1
@U
@r

+ b2
@U
@s

.

Since '̃n 2 Ẽ"n,P , letting n ! 1 in (4.7), we haveZ
R2
rM�1sK�1

r'r

@U
@r

= 0
Z

R2
rM�1sK�1

r'r

@U
@s

= 0,
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which implies b1 = b2 = 0. Hence ' = 0 and for any R > 0 we have
Z
B"n R(P)

rM�1sK�1'2ndrds = o("2n).

Hence

o("2n) � hQ"n,P('n),'ni"n � k'nk
2
"n � p

Z
D

(V"n,P)
p�1'2n

� "2n � o(1)"2n

which implies a contradiction.
Lemma 4.4. Let R"(') be the functional defined by (4.3). Let ' 2 H10 (D), then

|R"(')| = "⌧k'k
2
" (4.11)

and

kR0

"(')k" = "⌧k'k". (4.12)

for some ⌧ > 0 small.

Proof. We have

|R"(')|  o
✓Z

D
rM�1sK�1V p�1

",P '2
◆

 o(1)
Z
D
rM�1sK�1V p�1

",P '2 = o(1)k'k
2
".

Choosing o(1) = "⌧ , we obtain the first estimate. The second estimate follows in a
similar way.

Lemma 4.5. There exists "0 > 0 such that for " 2 (0, "0], there exists a C1 map
' : E",P ! H, such that ' 2 E",P we have

⌧
I 0"

✓
V",P + '

◆
, ⌘

�
"

= 0, 8⌘ 2 E",P .

Moreover, we have
k'k" = o(")

p
U(k| ln "|).

Proof. We have l",P + Q",P' + R0

"(') = 0. As Q�1
",P exists, the above equation is

equivalent to solving

Q�1
",Pl",P + ' + Q�1

",P R
0

"(') = 0.
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Define
G(') = �Q�1

",Pl",P � Q�1
",P R

0

"(') 8' 2 3",D.

Hence the problem is reduced to finding a fixed point of the map G.
For any '1 2 E",P and '2 2 E",P with k'1k"  o("1�⌧ )

p

U(k| ln "|), k'2k" 

o("1�⌧ )
p

U(k| ln "|)

kG('1) � G('2)k"  CkR0

"('1) � R0

"('2)k".

From Lemma 4.4, we have

hR0

"('1) � R0

"('2), ⌘i"  o(1)k'1 � '2k"k⌘k".

Hence we have

kR0

"('1) � R0

"('2)k"  o(1)k'1 � '2k".

Hence G is a contraction as

kG('1) � G('2)k"  Co(1)k'1 � '2k".

Also for ' 2 E",P with k'k"  o("1�⌧ )
p

U(k| ln "|), and ⌧ > 0 sufficiently small

kG(')k"  Ckl",Pk" + CkR0

"(')k"

 Co(")
p
U(k| ln "|) + Co("1�⌧+⌧ )

p
U(k| ln "|)

 Co(")
p
U(k| ln "|).

(4.13)

Hence

G : 3",D \ Bo("1�⌧ )pU(k| ln "|)(0) ! 3",D \ Bo("1�⌧ )pU(k| ln "|)(0)

is a contraction map. Hence, by the contraction mapping principle there exists a
unique ' 2 3",D \ Bo("1�⌧ )pU(k| ln "|)(0) such that ' = G(') and

k'k" = kG(')k"  Co(")
p
U(k| ln "|).

We write u" = V",P + '. Then we have

I"(u") = I"(V",P)

+

Z
D
rM�1sK�1("2rV",Pr' � V",P' + f (V",P)')drds

+

1
2

✓Z
D
rM�1sK�1


"2|r'|

2
� '2 + f 0(V",P)'2

�
drds

◆

�

Z
D
rM�1sK�1


F(V",P+')�F(V",P)�" f (V",P)'�

1
2
f 0(V",P)'2

�
drds
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which can be expressed as

I"(u")= I"(V",P)

+

Z
D
S"[V",P ]'rM�1sK�1drds

+

1
2

✓Z
D

["2|r'|
2dx � '2 + f 0(V",P)'2]rM�1sK�1drds

◆

�

Z
D
rM�1sK�1


F(V",P+')�F(V",P)� f (V",P)'�

1
2
f 0(V",P)'2

�
drds

= I"
✓
V",P

◆
+ O(kl",Pk"k'k" + k'k

2
" + R"('))

= I"
✓
V",P

◆
+ o("2)U(k| ln "|).

5. The reduced problem: min-max procedure

Proof of Theorem 1.1. Let G"(P) = G"(d, ✓) = I"(u"). Consider the problem

min
d23",P

max
✓0��✓✓0+�

G"(d, ✓).

To prove that G"(P) = I"
�
V",P + '

�
is a solution of (1.1), we need to prove that P

is a critical point of G", in other words we are required to show that P is a interior
point of 3",D .

For any P 2 3",P , from Lemma 4.3 we obtain

G"(P) = I"(V",P) + O(kl",Pk"k'k" + k'k
2
" + R"('))

= I"(V",P) + o("2)U(k| ln "|)

= "2� PM�1
1 PK�1

2 + "2�1PM�1
1 PK�1

2 U
✓
2d(P,D1)

"

◆

+ o("2)U(k| ln "|).

(5.1)

We have the expansion

G"(d, ✓) = � "2

aM+K�2

+ aM+K�3d + ��1�1aM+K�2U
✓
2d(P,D1)

"

◆

+O(d2)
�
cosM�1 ✓ sinK�1 ✓ + o("2)U(k| ln "|)

= � "2

aM+K�2

+ aM+K�1d + ��1�1aM+K�2U
✓
2d
"

◆�

⇥ cosM�1 ✓ sinK�1 ✓ + o("2)U(k| ln "|) + O("2d2).
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It is clear that the maximum is attained at some interior point ✓ 0
2 (✓0 � �, ✓0 + �).

Moreover, for this ✓ 0, the minimum is attained at a interior point of 3",D. This
finishes the proof.

6. The reduced problem: max-max procedure

Proof of Theorem 1.2. Here we obtain the critical point using a max-max proce-
dure. The projection in the Neumann case is just Q",P . Hence the reduced problem

R"(P) = "2� PM�1
1 PK�1

2 � "2�1PM�1
1 PK�1

2 U
✓
2d(P,D2)

"

◆

+ o("2)U(k| ln "|).
(6.1)

Consider
max
d23",N

max
✓0��✓✓0+�

R"(d, ✓). (6.2)

We have the expansion

R"(d, ✓) = � "2

bM+K�2

� bM+K�3d � ��1�1bM+K�2U
✓
2d(P,D2)

"

◆

+O(d2)
�
cosM�1 ✓ sinK�1 ✓ + o("2)U(k| ln "|)

= � "2

bM+K�2

� bM+K�3d � ��1�1bM+K�2U
✓
2d
"

◆�

⇥ cosM�1 ✓ sinK�1 ✓ + o("2)U(k| ln "|) + O("2d2).

It is clear that the maximum in ✓ is attained at some interior point ✓ 0
2 (✓0��, ✓0+

�). Moreover, for this ✓ 0, the maximum is attained at a interior point d of 3",N if
we choose k > 0 to be sufficiently small. Hence Theorem 1.2 is proved.
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