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Asymptotic behavior and rigidity results
for symmetric solutions of the elliptic system 1u = Wu(u)

NICHOLAS D. ALIKAKOS AND GIORGIO FUSCO

Abstract. We study symmetric vector minimizers of the Allen-Cahn energy
J (u) =

R ⇣ 1
2 |ru|

2
+ W (u)

⌘
dx and establish various results concerning their

structure and their asymptotic behavior in unbounded domains.
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1. Introduction

The problem of describing the structure of bounded solutions u : � ! Rm of the
equation

1u = f (u), for x 2 � (1.1)

where f : Rm
! Rm is a smooth map and � ⇢ Rn is a smooth domain that

can be bounded or unbounded and may also enjoy symmetry properties, is a diffi-
cult and important problem which has attracted the interest of many authors in the
last twentyfive years, see [8, 9, 11, 17] just to mention a few. Questions concern-
ing monotonicity, symmetry and asymptotic behavior are the main objectives of
these investigations. Most of the existing literature concerns the scalar case m = 1
where a systematic use of the maximum principle and its consequences are the
main tools at hand. For the vector case m � 2 we mention the works [10] and [18]
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where the control of the asymptotic behavior of solutions was basic for proving
existence. In this paper we are interested in the case where f (u) = Wu(u) is the
gradient of a potential W : Rm

! R and u is a minimizer for the action functionalR ⇣1
2 |rv|

2
+ W (v)

⌘
, the Allen-Cahn energy, in the following sense:

Definition 1.1. A map u 2 C2(�; Rm) \ L1(�; Rm), with � ⇢ Rn an open set,
is said to be a minimizer or minimal if for each bounded open lipshitz set �0

⇢ � it
results

J�0(u) = min
v2W 1,2

0 (�0
;Rm)

J�0(u + v), J�0(v) =

Z
�0

✓
1
2
|rv|

2
+ W (v)

◆
, (1.2)

that is u|�0 is an absolute minimizer in the set of W 1,2(�0
; Rm) maps which coin-

cide with u on @�0.
Clearly if u : � ! Rm is minimal then it is a solution of the Euler-Lagrange

equation associated to the functional J�0 which is the vector Allen-Cahn equation

1u = Wu(u), for x 2 �. (1.3)

We will work in the context of reflection symmetries. Our main results are Theo-
rem 1.4 on the asymptotic behavior of symmetric minimizers and Theorem 1.7 and
Theorem 1.8 on the rigidity of symmetric minimizers. By rigidity we mean that,
under suitable assumptions, a symmetric minimizer u : Rn

! Rm must in effect
depend on a number of variables k < n strictly less than the dimension n of the
domain space. These theorems, in the symmetric setting, are vector counterparts
of analogous results which are well known in the scalar case m = 1 [7, 13]. How-
ever in the vector case there is more structure as we explain after the statement of
Theorem 1.7.

We let G be a reflection group acting both on the domain space� ✓ Rn and on
the target space Rm . We assume that W : Rm

! R is a nonnegative C3 potential
such that:

H1 W is symmetric with respect to G: W (gu) = W (u), for g 2 G, and u 2 Rm .

For Theorem 1.4 and Theorem 1.7, G = S, where S denotes the group of order 2
generated by the reflection Rd

3 z 7! ẑ 2 Rd in the plane {z1 = 0}:

ẑ = (�z1, z2, . . . , zd), for d = n, m.

In this case the symmetry of W is expressed by W (û) = W (u), for u 2 Rm . For
Theorem 1.8, G = T , where T denotes the group of order 6 of the symmetries of
the equilateral triangle. T is generated by the reflection � through the hyperplane
{z 2 Rd

: z2 = 0} and by the reflections �± through the hyperplane {z 2 Rd
: z2 =

±

p

3z1}. We let F ⇢ Rd , for d = n or d = m be a fundamental region [19] for the
action of G on Rd . If G = S we take F = Rd

+
= {z 2 Rd

: z1 > 0}. If G = T we
take F = {z 2 Rd

: 0 < z2 <
p

3z1, z1 > 0}.
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H2 There exists a 2 F ⇢ Rm such that:

0 = W (a)  W (u), for u 2 F . (1.4)

Moreover a is nondegenerate in the sense that the quadratic form D2W (a)(z, z)
is positive definite.

In the symmetric setting we assume minimality in the class of symmetric variations:
Definition 1.2. Assume that � ⇢ Rn and u 2 C2(�; Rm) \ L1(�; Rm) are sym-
metric:

x 2 � ) gx 2 �, for g 2 G,

u(gx) = gu(x), for g 2 G, and x 2 �.
(1.5)

Then u is said to be a symmetric minimizer if for each bounded open symmetric
lipschitz set �0

⇢ � and for each bounded symmetric v 2 W 1,2
0 (�0

; Rm) it results

J�0(u)  J�0(u + v). (1.6)

In the following by a minimizer we will always mean a symmetric minimizer in the
sense of the definition above. We set

Z =

�
z 2 Rm

: z 6= a,W (z) = 0
 
.

Theorem 1.3. Assume G = S and assume that W satisfies H1 �H2. Assume that
� ✓ Rn is convex-symmetric in the sense that

x = (x1, x2, . . . , xn) 2 � ) (t x1, x2 . . . , xn) 2 �, for |t |  1. (1.7)

Let u : � ! Rm be a minimizer and assume that there are � > 0 and d0 � 0 such
that

|u(x) � z| > �, for z 2 Z, d(x, @�+) � d0, and x 2 �+ (1.8)

where �+
= {x 2 � : x1 > 0}. Assume moreover that

|u| + |ru|  M, for x 2 �, (1.9)

for some M > 0.
Then there exist k0, K0 > 0 such that

|u � a|  K0e�k0d(x,@�+), for x 2 �+. (1.10)

Proof. From (1.8) and (1.9) it follows that the restriction of the minimizer u to the
subset {x 2 � : x1 > d0} satisfies the assumptions of Theorem 1.2 in [15], which
implies the estimate (1.10).
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For example, if � = {x 2 R2 : x2 > 0}, (1.10) yields

|u � a|  K0e�k0 min{x1,x2}, for x 2 �+.

This implies limt!+1 u(t z) = a for each unit vector z 2 �+ but does not imply
limx1!+1 u(x1, x2) = a for fixed x2 > 0 or limx2!+1 u(x1, x2) = a for fixed
x1 > 0.

Examples of minimizers that satisfy the hypothesis of Theorem 1.3 are pro-
vided by the entire equivariant solutions of (1.3) constructed in [3, 5, 14]. The gra-
dient bound in (1.9) is a consequence of the smoothness of � or, as in the case of
the entire solutions referred to above, it follows from the fact that u in Theorem 1.3
is the restriction to a non smooth set � of a smooth map defined in Rn .

We denote by CExpS (�, Rm) the set of lipschitz symmetric maps v : � ! Rm

that satisfy the bounds

kvkC0,1(�,Rm)  M,

|v � a| + |rv|  K0e�k0d(x,@�+), for x 2 �+.
(1.11)

We remark that from (1.10) and elliptic regularity, after redefining k0 and K0 if
necessary, we have

u 2 CExpS (�, Rm), (1.12)

for the minimizer in Theorem 1.3.

Theorem 1.4. Assume W , � and u : � ! Rm as in Theorem 1.3. Assume more-
over that

H3 The problem
8><
>:
u00

= Wu(u) for s 2 R
u(�s) = û(s) for s 2 R
lim

s!+1

u(s) = a,
(1.13)

has a unique solution ū : R ! Rm .

H4 The operator T : D(T ) ! L2(R, Rm) defined by

D(T ) = W 2,2
S (R, Rm), T v = �v00

+ Wuu(ū)v, (1.14)

where W 2,2
S (R, Rm) ⇢ W 2,2(R, Rm) is the subspace of symmetric maps, has a

trivial kernel.

Then there exist k, K > 0, depending only on W and M , such that

|u(x) � ū(x1)|  Ke�kd(x,@�), for x 2 �. (1.15)
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Remark 1.5. A significant feature of Theorem 1.4 is that the estimate (1.15) is
valid, with k, K independent of �, for bounded or unbounded domains and in par-
ticular for domains bounded in the x1 direction.
Remark 1.6. The map ū in assumption H3 can be characterized as a minimizer of
the functionalA(v)=

R
R

⇣
1
2 |v

0
|
2
+ W (u)

⌘
ds in the set of symmetricW 1,2

loc (R, Rm)

maps that satisfy
lim

s!+1

v(s) = a. (1.16)

Theorem 1.7. Assume that � = Rn and that W and u : Rn
! Rm are as in

Theorem 1.4. Then u is unidimensional:

u(x) = ū(x1), x 2 Rn. (1.17)

From [3, 5] and [14], we know that given a finite reflection group G, provided W
is invariant under G, there exists a G-equivariant solutions u : Rn

! Rm of the
system (1.3). It is natural to ask about the asymptotic behavior of these solutions.
In particular, given a unit vector ⌫ = (⌫1, . . . , ⌫n) 2 Rn one may wonder about the
existence of the limit

lim
�!+1

u(x 0

+ �⌫) = ũ(x 0), (1.18)

where x 0 is the projection of x = x 0
+ �⌫ on the hyperplane orthogonal to ⌫. One

can conjecture that this limit does indeed exist and that ũ is a solution of the same
system equivariant with respect to the subgroup G⌫ ⇢ G that leave ⌫ fixed, i.e.
the stabilizer of ⌫. In [3, 5] and [14] an exponential estimate analogous to (1.10)
in Theorem 1.3 was established. This gives a positive answer to this conjecture
for the case where ⌫ is inside the set D = Int [g2Ga gF ⇢ Rn . Here F is a
fundamental region for the action of G on Rd , for d = n, m and Ga ⇢ G is
the subgroup that leave a fixed. Under the assumptions H3 and H4 Theorem 1.4
goes one step forward and shows that the conjecture is true when ⌫ belongs to the
interior of one of the walls of the set D above and G⌫ is the subgroup of order
two generated by the reflection with respect to that wall. In the proof of Theorem
1.4 the estimate (1.10) is basic. Once the exponential estimate in Theorem 1.4 is
established, we conjecture that, under assumptions analogous to H3 and H4, the
approach developed in the proof of Theorem 1.4 can be used to handle the case
where ⌫ belongs to the intersection of two walls of D. We also expect that, under
the assumption that at each step ũ is unique and hyperbolic, the process can be
repeated to establish the whole hierarchy of limits corresponding to all possible
choice of ⌫ and ũ is always a solution of the system equivariant with respect to
the subgroup G⌫ . This program is motivated by the analogy between equivariant
connection maps and minimal cones [4].

Theorem 1.8 below gives an example, in the diffuse interface set-up, that cor-
responds to a minimal cone that splits into a triod and a hyperplane [22]. Theorem
1.8 concerns minimizers equivariant with respect to the symmetry group T of the
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equilateral triangle. We can imagine that T = G⌫ for some ⌫ that belongs to the
intersection of two walls of D. The following assumptions H0

3 and H
0

4, in the case
at hand where G = T , correspond to the assumption H3 and H4 in Theorem 1.4.
We assume that

a = (1, 0, . . . , 0) 2 Rm .

H0

3 The problem 8><
>:
u00

= Wu(u) for s 2 R,

u(�s) = � u(s) for s 2 R
lim

s!+1

u(s) = �±a
(1.19)

has a unique solution ū : R ! Rm .
H0

4 the operator T : D(T ) ! L2(R, Rm) defined by

D(T ) = W 2,2
� (R, Rm), T v = �v00

+ Wuu(ū)v, (1.20)

where W 2,2
� (R, Rm) ⇢ W 2,2(R, Rm) is the subspace of the maps that satisfy

u(�s) = � u(s), has a trivial kernel.
Then we have the assumptions concerning uniqueness and hyperbolicity of ũ:
H5 There is a unique T -equivariant solution ũ : R2 ! Rm of (1.3)

ũ(gs) = gũ(s), for g 2 T and s 2 R2 (1.21)

that satisfies the estimate

|ũ(s) � a|  Ke�kd(s,@D2), for s 2 D2, (1.22)

where D2 = {s 2 R2 : |s2| <
p

3s1, s1 > 0}.
H6 the operator T : D(T ) ! L2(R2, Rm) defined by

D(T ) = W 2,2
T (R2, Rm), T v = �1v + Wuu(ū)v, (1.23)

where W 2,2
T (R2, Rm) ⇢ W 2,2(R2, Rm) is the subspace of T -equivariant maps,

has a trivial kernel.
We are now in the position of stating:
Theorem 1.8. Assume that W satisfies H1 and H2 with a = (1, 0, . . . , 0) and
moreover that 0 = W (a) < W (u) for u 2 F \ {a}. Assume that H0

3, H
0

4 and
H5, H6 hold. Let u : Rn

! Rm , for n � 3 and m � 2, be a T -equivariant
minimizer that satisfies (1.9) and, for some � > 0, d0 � 0, the condition

|u(x) � �±a| � � for d(x, @D) > d0 and x 2 D, (1.24)

where D = {x 2 Rn
: |x2| <

p

3x1, x1 > 0}.
Then u is two-dimensional:

u(x) = ũ(x1, x2), for x 2 Rn. (1.25)
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Remark 1.9. If instead of a minimizer defined on Rn we considered a minimizer
defined on a subset � ⇢ Rn , which in analogy with (1.7) satisfies
x = (x1, x2, x3, . . . , xn) 2 �

) (l cos�, l sin�, x3, . . . , xn) 2 �, for l2

0,
q
x21 + x22

�
and � 2 [0, 2⇡),

instead of (1.25), the conclusion of Theorem 1.8 would be exponential convergence
of u to ũ similar to (1.15).

Theorem 1.8 is an example of a De Giorgi type result for systems where mono-
tonicity is replaced by minimality (see [2, 12] and [21, Section 3]). In the symmet-
ric setting we are considering, it is the PDE analog of the fact that a minimal cone
C in Rn with the symmetry of the equilateral triangle is necessarily of the form
C =

˜C ⇥ Rn�2, with ˜C the triod in the plane. The rest of the paper is devoted to the
proofs. In Section 2 we prove Theorem 1.4. In Section 2.1 and Section 2.2 we prove
a number of lemmas that are basic for the proof of Theorem 1.4 that we conclude
in Sections 2.3 and 2.4. Theorems 1.7 and Theorem 1.8 are proved in Section 2.5
and Section 3.

2. The proof of Theorem 1.4

The proof of Theorem 1.4 that we present here, from an abstract point of view, has
a lot in common with the proof of Theorem 1.2 in [15]. We will remark on this
point later and spend a few words to motivate the various lemmas that compose the
proof of Theorem 1.4. We begin with some notation and two basic lemmas.

If E ⇢ Rd , for d � 1, is a measurable set we letHd(E) be the d-dimensional
Lebesgue measure of E .

2.1. Basic lemmas

In the following we use the notation x = (s, ⇠) with x1 = s and (x2, . . . , xn) = ⇠ .
From (1.11) it follows that, if (l, ⇠) 2 �+ satisfies d((l, ⇠), @�+) � l, then the
map s ! u(s, ⇠), s 2 [�l, l], that we still denote with u, satisfies the bound

|u � a| + |us |  K0e�k0s, for s 2 [0, l]. (2.1)
Note that from the assumption that a is nondegenerate in H2 we also have

|ū � a| + |ūs |  K0e�k0s, for s � 0. (2.2)
Let Tl the operator defined by

Dl(Tl)={v 2 W 2,2
S ([�l, l], Rm) : v(±l) = 0}, Tlv=�v00

+ Wuu(ū)v. (2.3)

For l2(0,+1] we let hv,wil =
R l
�l vw denote the inner product in L2((�l,l), Rm).

We let kvkl = hv, vi

1
2
l and kvk1,l = kvkW 1,2([�l,l],Rm).

For the standard inner product in Rm we use the notation (·, ·).
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If v : [�l, l] ! Rm satisfies (2.1), then kvk1,l  C =
K0
p

k0
. We set

B1,2l := {v 2 W 1,2
S ([�l, l], Rm) : v(±l) = 0; kvk1,l  C}, (2.4)

where W 1,2
S ([�l, l], Rm) is the subspace of symmetric maps. Let S be defined by

S = {⌫ 2 W 1,2
S ([�l, l], Rm) : v(±l) = 0; k⌫kl = 1}. (2.5)

Lemma 2.1. Assume H1 and H2 as in Theorem 1.4 and let el : B1,2l ! R be
defined by

el(v) :=

1
2
(hūs + vs, ūs + vsil � hūs, ūsil) +

Z l

�l
(W (ū + v) � W (ū))ds. (2.6)

Then there exist l0 > 0, q� > 0 and c > 0 such that, for all l � l0, we have
8>>>>><
>>>>>:

Dqqel(q⌫) � c2 for q 2 [0, q�
] and ⌫ 2 S

el(q⌫) � el(q�⌫) for q�
 q and ⌫ 2 S,

el(q⌫) � ẽl(p, q, ⌫)

:= el(p⌫) + Dqel(p⌫)(q � p) for 0  p < q  q� and ⌫ 2 S
Dp ẽl(p, q, ⌫) � 0 for 0  p < q  q� and ⌫ 2 S.

(2.7)

Remark 2.2. el is a kind of effective potential. Indeed, as we shall see, in the proof
of Theorem 1.4 the map L2((�l, l), Rm) 3 q 7! el(q⌫) plays a role similar to the
one of the usual potential R 3 q 7! W (a + q⌫) in the proof of [15, Theorem 1.2].

Proof. Differentiating twice el(q⌫) with respect to q gives

Dqqel(q⌫) =

Z l

�l
(⌫s, ⌫s) +

Z l

�l
Wuu(ū + q⌫)(⌫, ⌫) (2.8)

= Dqqel(q⌫)|q=0 +

Z l

�l

⇣
Wuu(ū + q⌫) � Wuu(ū)

⌘
(⌫, ⌫).

By the interpolation inequality

kvkL1 

p

2kvk

1
2
1,lkvk

1
2
l 

p

2kvk1,l , (2.9)

for q⌫ 2 B1,2l we get via the second inequality

kq⌫kL1 

p

2C, (2.10)

and via the first
k⌫kL1 

p

2C
1
2 q�

1
2 . (2.11)
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Therefore we have

|Wuiu j (ū(s) + q⌫(s)) � Wuiu j (ū(s))| 

p

2C
1
2W 000q

1
2 , (2.12)

where W 000 is defined by

W 000

:= max
1i, j,km

s2R,|⌧ |1,⌧2Rm

Wuiu j uk

⇣
ū(s) + ⌧

p

2C
⌘

. (2.13)

From (2.12) we get
����
Z l

�l

⇣
Wuu(ū + q⌫) � Wuu(ū)

⌘
(⌫, ⌫)

����  C1q
1
2 , (2.14)

where C1 > 0 is a constant independent of l. We now observe that

Dqqel(q⌫)|q=0 = hTl⌫, ⌫il = hT ⌫̃, ⌫̃i1, (2.15)

where ⌫̃ is the trivial extension of ⌫ to R. T is a self-adjoint operator which is
positive by the minimality of ū. Therefore assumption H4 implies that the point
spectrum of T is bounded below by a positive number. FromH2 the smallest eigen-
value µ of the matrix Wuu(a) is positive and Persson’s Theorem in [1] implies that
also the remaining part of the spectrum of T , the essential spectrum, is bounded
below by µ > 0. It follows that the spectrum of T is bounded below by a positive
constant 0 < µ̃  µ. From this (2.15) and Theorem 13.31 in [20] it follows

Dqqel(q⌫)|q=0 � µ̃, (2.16)

which together with (2.14) implies

Dqqel(q⌫)| � µ̃ � c2 :=

µ̃

2
, for q 2 [0, q̄], (2.17)

where q̄ =
1
4

µ̃2

C1 . This concludes the proof of (2.7)1. We now consider the problem

min
v2B1,2l
kvkl�q̄

el(v). (2.18)

Since the constraint in problem (2.18) is closed with respect to weak convergence
in W 1,2

0 , if v̄l is a minimizer of problem (2.18), we have v̄l 6= 0. This implies

el(v̄l) = ↵l > 0. (2.19)

Indeed the uniqueness assumption about ū implies that v ⌘ 0 is the unique mini-
mizer of el . We have

lim inf
l!+1

↵l = ↵ > 0. (2.20)
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To prove this we assume that instead there is a sequence lk such that limk!+1 ↵lk =

0. We can also assume that the sequence ˜̄vlk of the trivial extensions of v̄lk converges
weakly in W 1,2 to a map v̄ which by lower semicontinuity satisfies

e1(v̄) = 0. (2.21)

This is in contradiction with the assumption that v ⌘ 0 is the unique minimizer of
e1. Indeed the constraint in problem (2.18) persists in the limit and implies v̄ 6= 0.
This establishes (2.20) and concludes the proof of (2.7)2 with q�

= min
�
q̄,

p

2↵
c
 
.

The last two inequalities in (2.7) are straightforward consequences of (2.7)1.

Lemma 2.3. Let be u as in Theorem 1.3 and assume that

(l, ⇠) 2 �+, d ((l, ⇠), @�) � l, (2.22)

then there is a constant C2 > 0 independent of l > 1, such that

ku(·, ⇠) � ūkL1([�l,l],Rm)  C2ku(·, ⇠) � ūk
2
3
l . (2.23)

Proof. From (2.22) u(·, ⇠) satisfies (2.1). Therefore using also (2.2) there exists
s̄ 2 [0, l] such that |u(s, ⇠) � ū(s)|  m =: |u(s̄, ⇠) � ū(s̄)|. From this and
|u(·, ⇠)s � ūs |  2K0 it follows

|u(s,⇠)�ū(s)|�m(1�2K0|s�s̄|), for s2 [�l, l] \


s̄ �

m
2K0

, s̄+
m
2K0

�
(2.24)

and a simple computation gives (2.23).

Before continuing with the proof, we explain the meaning of the lemmas that
follow. Given l, r > 0 and & 2 Rn�1 we let Crl (&) ⇢ Rn denote the cylinder

Crl (&) := {(s, ⇠) : �l < s < l; |⇠ � & | < r}. (2.25)

Lemma 2.4, Lemma 2.5 and Lemma 2.6 describe successive deformations through
which, for fixed � > 0, % > 0 and q̄ 2 (0, q�), we transform the minimizer u first
into a map v then into w and finally into a map wq̄ that satisfies the conditions

wq̄
= u, on � \ Cr+2%l+� (&),

wq̄(l +

�

2
, ⇠) = ū(l +

�

2
), for |⇠ � & |  r +

%

2
,

kwq̄(·, ⇠) � ū(·)kl+ �
2

 q̄, for |⇠ � & |  r +

%

2

(2.26)

The deformations described in these lemmas are complemented by precise quanti-
tative estimates on the amount of energy required for the deformation (see (iii) in
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Lemma 2.4, (iii) in Lemma 2.5 and (2.47) in Lemma 2.6). Lemma 2.4 describes the
deformation of u into a map v that coincides with ū on the bases of Cr+%

l+ �
2
(&):

v = u, outside Cr+2%l+� (&) \ Cr+2%l (&)

v

✓
l +

�

2
, ⇠

◆
= ū

✓
l +

�

2

◆
, for |⇠ � & |  r + %.

(2.27)

Lemma 2.5 describes the deformation of v into a map w that satisfies

w = v, outside Cr+%

l+ �
2
(&) \ Crl+ �

2
(&)

kw(·, ⇠) � ū(·)kl+ �
2

 q̄, for |⇠ � & | = r +

%

2
.

(2.28)

Lemma 2.6 describes the deformation of w into wq̄ . Lemma 2.7 and Corollary 2.8
show that we can replace wq̄ with a map ! that coincides with wq̄ outside Cr+

%
2

l+ �
2
(&)

and has less energy than wq̄ . Moreover Corollary 2.8 yields a quantitative estimate
for the energy difference.

In Section 2.3 we put all these energy estimates together and show (see Propo-
sition 2.9) that, if d(Cr+2%l+� (&), @�) � l + � and r, l are sufficiently large, the as-
sumption

ku(·, &) � ū(·)kl � q�

is incompatible with the minimality of u, thus establishing the estimate

ku(·, &) � ū(·)kl < q�,

which is the main step in the proof of Theorem 1.4.

2.2. Replacement lemmas

Lemma 2.4. Let � and % > 0 be fixed. Assume that Cr+2%l+� (&) ⇢ � satisfies

d
⇣
Cr+2%l+� (&), @�

⌘
� l + �. (2.29)

Then there exists a map v 2 CExpS (�, Rm) such that

(i) v = u, on � \

⇣
Cr+2%l+� (&) \ Cr+2%l (&)

⌘
,

(ii) v
�
l +

�
2 , ⇠

�
= ū

�
l +

�
2
�
, for |⇠ � & |  r + %.

(iii) JCr+2%l+� (&)
(v) � JCr+2%l+� (&)

(u)  C0rn�1e�2k0l ,

where C0 > 0 is a constant independent of l and r .
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Proof. For (s, ⇠) 2 Cr+%

l+� (&) \ Cr+%
l (&) we define v by

v(s, ⇠) =

✓
1� |1� 2

s � l
�

|

◆
ū(s) +

����1� 2
s � l

�

���� u(s, ⇠), (2.30)

for s 2 [l, l + �] and |⇠ � & |  r + %.

It remains to define v(s, ⇠) for (s, ⇠) 2 (l, l + �) ⇥ {⇠ : r + % < |⇠ � & | < r + 2%}.
Set

Bu(s, ⇠) =

l + � � s
�

u(l, ⇠) +

s � l
�

u(l + �, ⇠), (2.31)

ũ(s, ⇠) = u(s, ⇠) � Bu(s, ⇠).

Note that by (2.30) |⇠ � & | = r + % implies v(l, ⇠) = u(l, ⇠), v(l + �, ⇠) =

u(l + �, ⇠) and therefore we have

|⇠ � & | = r + % ) Bu(s, ⇠) = Bv(s, ⇠), for s 2 [l, l + �] (2.32)

where v is defined in (2.30). Set, for s 2 [l, l + �]

v̂(s, ⇠) = v

✓
s, (r + %)

⇠ � &

|⇠ � & |

+ &

◆
� Bu

✓
s, (r + %)

⇠ � &

|⇠ � & |

+ &

◆
, (2.33)

where again v is defined in (2.30). With these notations we complete the definition
of v by setting

v(s, ⇠) = Bu(s, ⇠) +

|⇠ � & | � r � %

%
ũ(s, ⇠) +

2% + r � |⇠ � & |

%
v̂(s, ⇠), (2.34)

for (s, ⇠) 2 (l, l + �) ⇥ {⇠ : r + % < |⇠ � & | < r + 2%} .

Statements (i) and (ii) are obvious consequences of the definition of v. Direct in-
spection of (2.30) and (2.34) shows that v is continuous. From (2.30) v(s, ⇠) is
a linear combination of ū(s) and u(s, ⇠) computed for s 2 [l, l + �]. A similar
statement applies to v(s, ⇠) in (2.34) since Bu(s, ⇠), v̂(s, ⇠) and ũ(s, ⇠) are linear
combinations of u(s, ⇠) and v(s, ⇠) in (2.30) computed for s 2 [l, l+�]. From this,
assumption (2.29) and (2.1) we conclude

|v � a| + |rv|  C3e�k0l for (s, ⇠) 2 Cr+2%l+� (&) \ Cr+2%l (&), (2.35)

whereC3 > 0 is a constant independent of l and r . From (2.35) and the assumptions
on the potential W it follows, for (s, ⇠) 2 Cr+2%l+� (&) \ Cr+2%l (&),

1
2
|rv|

2
+ W (v)  C4e�2k0l , (2.36)

which together withHn(Cr+2%l+� (&) \Cr+2%l (&))  C5rn�1 concludes the proof.
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Given a number 0 < q̄ < q�, let Aq̄ ⇢ Rn�1 be the set

Aq̄ :=

n
⇠ : kv(·, ⇠) � ū(·)kl+ �

2
> q̄, |⇠ � & | < r + %

o
, (2.37)

where v is the map constructed in Lemma 2.4.

Lemma 2.5. Let v as before and let S := Aq̄ \ {⇠ : r < |⇠ � & | < r + %}. Then
there is a constant C1 > 0 independent of l and r and a map w 2 CExpS (�, Rm)
such that

(i) w = v on � \

�
Cr+%

l+ �
2
(&) \ Crl+ �

2
(&)
�

(ii) kw(·, ⇠) � ū(·)kl+ �
2

 q̄, for |⇠ � & | = r +
%
2 .

(iii) JCr+%

l+ �
2
(&)\Crl+ �

2
(&)

(w) � JCr+%

l+ �
2
(&)\Crl+ �

2
(&)

(v)  C1Hn�1(S).

Proof. Set

qv(⇠) = kv(·, ⇠) � ū(·)kl+ �
2
,

⌫v(s, ⇠) =

v(s, ⇠) � ū(s)
qv(⇠)

,
for s 2

✓
�l �

�

2
, l +

�

2

◆
, and ⇠ 2 S. (2.38)

For s 2

�
� l �

�
2 , l +

�
2
�
, and ⇠ 2 S, define

w(s, ⇠) = ū(s) + qw(⇠)⌫v(s, ⇠),

qw(⇠) =

✓
1�

����1� 2
|⇠ � & | � r

%

����
◆
q̄ +

����1� 2
|⇠ � & | � r

%

���� qv(⇠).
(2.39)

From this definition it follows that w coincides with v = ū+qv⌫v if |⇠ �& | = r or
|⇠ � & | = r + % or qv

= q̄. This shows that w coincides with v on the boundary of
the set (�l � �

2 , l +
�
2 ) ⇥ S and implies (i). From (2.39) it also follows that qw

= q̄
for |⇠ � & | = r +

%
2 for ⇠ 2 S. This and the definition of S imply (ii). To prove (iii)

we note that

|w � ū|=|qw⌫v
| |qv⌫v

|=|v � ū|, for s2
✓

�l �

�

2
, l +

�

2

◆
, and ⇠ 2 S (2.40)

which implies

|w � a|  K0e�k0s, for s 2

✓
0, l +

�

2

◆
, and ⇠ 2 S. (2.41)

Therefore we have
Z l+ �

2

�l� �
2

(W (w) � W (v)) 

Z l+ �
2

�l� �
2

W (w)  C, for ⇠ 2 S. (2.42)
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We can write

w =

qw

qv
(v � ū), for s 2

✓
0, l +

�

2

◆
, and ⇠ 2 S

therefore we have, using also v 2 CExpS (�, Rm) and (2.2)

ws =

qw

qv
(vs � ūs) ) |ws |  Ke�k|s|,

w⇠ j =

✓
qw

qv

◆
⇠ j

(v � ū) +

qw

qv
v⇠ j .

(2.43)

From qv
⇠ j

= h⌫v, v⇠ j il+ �
2
and (2.39) it follows

✓
qw

qv

◆
⇠ j

=

����1� 2
|⇠ � & | � r

%

����
⇠ j

✓
1�

q̄
qv

◆

�

✓
1�

����1� 2
|⇠ � & | � r

%

����
◆

q̄
(qv)2

⌦
⌫v, v⇠ j

↵
l+ �

2
,

)

�����
✓
qw

qv

◆
⇠ j

����� 

2
%

+

1
qv

��v⇠ j

��
l+ �

2
,

(2.44)

where we have used q̄
qv  1 for ⇠ 2 S. From (2.43) and (2.44) it follows

|w⇠ j |

 
2
%

+

kv⇠ j kl+ �
2

q̄

!
|v�ū|+|v⇠ j |Ke�k0|s|, for s2

✓
�l�

�

2
, l+

�

2

◆
, and ⇠2 S,

where again we have used v 2 CExpS (�, Rm) and (2.2). From this and (2.43) we
conclude Z l+ �

2

�l� �
2

⇣
|rw|

2
� |rv|

2
⌘



Z l+ �
2

�l� �
2

|rw|
2

 C, for ⇠ 2 S. (2.45)

This inequality and (2.42) conclude the proof.

Lemma 2.6. Let w the map constructed in Lemma 2.5. Define wq̄ by setting

wq̄
=

8><
>:
ū + q̄⌫v for (s, ⇠) 2 Cr+

%
2

l+ �
2
(&), and ⇠ 2 Aq̄

w for (s, ⇠) 2 Cr+
%
2

l+ �
2
(&), ⇠ 62 Aq̄ , and (s, ⇠) 62 Cr+

%
2

l+ �
2
(&).

(2.46)

Then wq̄
2 CExpS (�, Rm) and

J
C
r+ %

2
l+ �
2

(&)
(wq̄) � J

C
r+ %

2
l+ �
2

(&)
(w)  0. (2.47)
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Proof. We have w � ū = qw⌫w and qw > q̄ on Aq̄ . Thus, recalling the definition
of el , Lemma 2.1 and q̄  q�, we have el+ �

2
(q̄⌫w)�el+ �

2
(qw⌫w)  0 and therefore

J
C
r+ %

2
l+ �
2

(&)
(wq̄)� J

C
r+ %

2
l+ �
2

(&)
(w)=

Z
Ãq̄

�
el+ �

2
(q̄⌫w) � el+ �

2
(qw⌫w)

⌘
d⇠

+

1
2
X
j

Z
Ãq̄

✓D
w
q̄
⇠ j

,w
q̄
⇠ j

E
l+ �

2
�

⌦
w⇠ j , w⇠ j

↵
l+ �

2

◆
d⇠



1
2
X
j

Z
Ãq̄

✓D
w
q̄
⇠ j

, w
q̄
⇠ j

E
l+ �

2
�

⌦
w⇠ j , w⇠ j

↵
l+ �

2

◆
d⇠

(2.48)

where we have set Ãq̄ = Aq̄ \ Br+ %
2
(&) with Br+ %

2
(&) =

�
|⇠ � & |  r +

%
2
 
.

To conclude the proof we note that for ⇠ 2 Ãq̄

w
q̄
⇠ j

= q̄⌫v
⇠ j , )

D
w
q̄
⇠ j

, w
q̄
⇠ j

E
l+ �

2
= q̄2

D
⌫v
⇠ j , ⌫

v
⇠ j

E
l+ �

2
,

w⇠ j = qw
⇠ j ⌫ + qw⌫v

⇠ j , )

⌦
w⇠ j , w⇠ j

↵
l+ �

2
=

⇣
qw
⇠ j

⌘2
+

�
qw
�2 D

⌫v
⇠ j , ⌫

v
⇠ j

E
l+ �

2
,

(2.49)

where we have also used the fact that h⌫v, ⌫v
il+ �

2
= 1 implies h⌫v, ⌫v

⇠ j
il+ �

2
= 0.

From (2.49) it followsD
w
q̄
⇠ j

, w
q̄
⇠ j

E
l+ �

2
�

⌦
w⇠ j , w⇠ j

↵
l+ �

2
= �

⇣
qv
⇠ j

⌘2
+

⇣
q̄2 �

�
qw
�2⌘ D

⌫v
⇠ j , ⌫

v
⇠ j

E
l+ �

2
 0,

for ⇠ 2 Ãq̄ . This and (2.48) prove (2.47).

Next we show that we can associate to wq̄ a map ! 2 CExpS (�, Rm) which

coincides withwq̄ on�\Cr+
%
2

l+ �
2
(&) and has less energy thanwq̄ . Moreover we derive

a quantitative estimate of the energy difference. We follow closely the argument
in [15]. First we observe that, if we define q⇤(⇠) := qwq̄

(⇠), we can represent
J
C
r+ %

2
l+ �
2

(&)
(wq̄) in the polar form

J
C
r+ %

2
l+ �
2

(&)

⇣
wq̄
⌘

� J
C
r+ %

2
l+ �
2

(&)
(ū)

=

Z
Br+ %

2
(&)\{q⇤>0}

 
1
2

 ��
rq⇤

��2
+ q⇤2

X
j

D
⌫w
⇠ j , ⌫

w
⇠ j

E
l+ �

2

!
+el+ �

2

�
q⇤⌫w

�!
d⇠.

(2.50)

This follows from ⌫w
= ⌫v and from h⌫v, ⌫v

⇠ j
il+ �

2
= 0, which imply

X
j

D
w
q̄
⇠ j

, w
q̄
⇠ j

E
l+ �

2
=

��
rq⇤

��2
+ q⇤2

X
j

D
⌫w
⇠ j , ⌫

w
⇠ j

E
l+ �

2
,
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and from the definition of el in Lemma 2.1. We remark that the definitions of
q⇤ and wq̄ imply

q⇤

 q̄, on Br+ %
2
(&),

q⇤

= q̄, on Aq̄ \ Br+ %
2
(&).

(2.51)

Lemma 2.7. Let c > 0 as in Lemma 2.1 and let ' : Br+ %
2
(&) ⇢ Rn�1

! R be the
solution of (

1' = c2' in Br+ %
2
(&)

' = q̄ on @Br+ %
2
(&).

(2.52)

Then there is a map ! 2 CExpS (�, Rm) with the following properties

8>>><
>>>:

! = wq̄ on � \ Cr+
%
2

l+ �
2
(&)

! = q!⌫w
+ ū on Cr+

%
2

l+ �
2
(&)

q!
 '  q̄ on Br+ %

2
(&).

(2.53)

Moreover

J
C
r+ %

2
l+ �
2

(&)
(wq̄) � J

C
r+ %

2
l+ �
2

(&)
(!)

�

Z
Br+ %

2
(&)\{q⇤>'}

⇣
el+ �

2
(q⇤⌫w)�el+ �

2
('⌫w)�Dqel+ �

2
('⌫w)(q⇤

� ')
⌘
d⇠.

(2.54)

Proof. Let b > 0, b  min⇠2Br+ %
2
(&) ' be fixed and let Ab ⇢ Br+ %

2
(&) the set

Ab := {⇠ 2 Br+ %
2
(&) : q⇤ > b}. Ab is an open set since wq̄

= ū + q⇤⌫w is
continuous by construction. Let

JAb(p) =

Z
Ab

✓
1
2
|r p|2 + el+ �

2

�
|p|⌫w

�◆
d⇠, (2.55)

Since Ab is open and q⇤
2 L1(Ab, R) there exists a minimizer p⇤

2 q⇤
+

W 1,2
0 (Ab, R) of the problem

JAb(p
⇤) = min

q⇤
+W 1,2

0 (Ab,R)

JAb(p). (2.56)

We also have

0  p⇤

 q̄. (2.57)
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This follows from (2.7) that implies JAb
� p⇤

+|p⇤
|

2
�

 JAb(p⇤) and therefore
p⇤

� 0. The other inequality is a consequence of JAb(min{p⇤, q̄})  JAb(p⇤)
which follows from Z

Ab

��
r(min{p⇤, q̄})

��2


Z
Ab

��
r p⇤

��2

and from (2.7). Since the map q ! el+ �
2
(|q|⌫w)) is a C1 map, we can write the

variational equation
Z
Ab

⇣
(r p⇤,r� ) + Dqel+ �

2
(p⇤⌫w)�

⌘
d⇠ = 0, (2.58)

for all � 2 W 1,2
0 (Ab, R) \ L1(Ab). In particular, if we define A⇤

b := {x 2 Ab :

p⇤ > '}, we have
Z
A⇤

b

⇣�
r p⇤,r�

�
+ Dqel+ �

2

�
p⇤⌫w

�
�
⌘
d⇠ = 0, (2.59)

for all � 2 W 1,2
0 (Ab, R)\L1(Ab) that vanish on Ab\A⇤

b. If we take � = (p⇤
�')+

in (2.59) and use (2.7) which implies Dqel+ �
2
(p⇤⌫w) � c2 p⇤ we get

Z
A⇤

b

⇣�
r p⇤,r(p⇤

� ')
�
+ c2 p⇤

�
p⇤

� '
�⌘
d⇠  0. (2.60)

This inequality and
Z
A⇤

b

⇣�
r',r

�
p⇤

� '
��

+ c2'
�
p⇤

� '
�⌘
d⇠ = 0, (2.61)

that follows from (2.52) imply
Z
A⇤

b

⇣��
r

�
p⇤

� '
���2

+ c2
�
p⇤

� '
�2⌘ d⇠  0. (2.62)

That isHn(A⇤

b) = 0 which together with p⇤
 ' on Ab \ A⇤

b shows that

p⇤

 ', for ⇠ 2 Ab. (2.63)

Let ! be the map defined by setting

!=

8<
:

wq̄ for (s,⇠)2� \ (�l �
�
2 , l+

�
2 )⇥Ab

ū+q!⌫w
= ū +min{p⇤,q⇤

}⌫w for ⇠ 2 Ab.
(2.64)
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Note that this definition, the definition of Ab and (2.63) imply

q!
 ', for ⇠ 2 Br+ %

2
(&). (2.65)

From (2.64) we have

J
C
r+ %

2
l+ �
2

(&)
(wq̄) � J

C
r+ %

2
l+ �
2

(&)
(!)

�

Z
Ab\{p⇤<q⇤

}

 
1
2

 ��
rq⇤

��2
�

��
r p⇤

��2
+

⇣�
q⇤
�2

�

�
p⇤
�2⌘ nX

j=1

D
⌫w
⇠ j , ⌫

w
⇠ j

E
l+ �

2

!

+el+ �
2

�
q⇤⌫w

�
� el+ �

2

�
p⇤⌫w

�!
d⇠

�

Z
Ab\{p⇤<q⇤

}

✓
1
2
��
rq⇤

��2
�

��
r p⇤

��2
+ el+ �

2

�
q⇤⌫w

�
� el+ �

2

�
p⇤⌫w

�◆
d⇠

�

Z
Ab\{p⇤<q⇤

}

✓
1
2
��
rq⇤

� r p⇤

��2
+el+ �

2

�
q⇤⌫w

�
� el+ �

2

�
p⇤⌫w

�
� Dqel+ �

2

�
p⇤⌫w)(q⇤

� p⇤
� ⌘

d⇠ � 0.

(2.66)

where we have used
1
2

⇣��
rq⇤

��2
�

��
r p⇤

��2⌘
=

1
2
��
rq⇤

� r p⇤

��2
+

�
r p⇤,r

�
q⇤

� p⇤
��

andZ
Ab\{p⇤<q⇤

}

�
r p⇤,r

�
q⇤

� p⇤
��
d⇠ =�

Z
Ab\{p⇤<q⇤

}

Dqel+ �
2

�
p⇤⌫w

� �
q⇤

� p⇤
�
d⇠

which follows from (2.58) with � = (q⇤
� p⇤)+. From (2.7)3 and (2.63) we have

el+ �
2

�
q⇤⌫w

�
� ẽl+ �

2

�
p⇤, q⇤, ⌫w

�
� el+ �

2

�
q⇤⌫w

�
� ẽl+ �

2

�
', q⇤, ⌫w

�
. (2.67)

From this and (2.65) which implies

Br+ %
2
(&) \

�
� < q⇤

 
= Ab \

�
� < q⇤

 
⇢ Ab \

�
p⇤ < q⇤

 
, (2.68)

we haveZ
Ab\{p⇤<q⇤

}

⇣
el+ �

2

�
q⇤⌫w

�
�el+ �

2

�
p⇤⌫w

�
�Dqel+ �

2

�
p⇤⌫w

� �
q⇤

� p⇤
�⌘
d⇠

�

Z
Br+ %

2
(&)\{'<q⇤

}

⇣
el+ �

2

�
q⇤⌫w

�
�el+ �

2

�
p⇤⌫w

�
�Dqel+ �

2

�
p⇤⌫w

��
q⇤

� p⇤
�⌘
d⇠

�

Z
Br+ %

2
(&)\{'<q⇤

}

⇣
el+ �

2

�
q⇤⌫w

�
�el+ �

2

�
'⌫w

�
�Dqel+ �

2

�
'⌫w

� �
q⇤

�'
�⌘
d⇠.

(2.69)

The inequality (2.54) follows from this and (2.66).
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Corollary 2.8. Let wq̄ be as before and let ! 2 CExpS (�, Rm) be the map con-
structed in Lemma 2.7. Then there are l0 > 0, r0 > 0 and a number c1 > 0
independent of l � l0, r � r0 such that

J
C
r+ %

2
l+ �
2

(&)
(wq̄) � J

C
r+ %

2
l+ �
2

(&)
(!) � c1Hn�1 �Aq̄ \ Br (&)

�
. (2.70)

Proof. Set R = r+ %
2 , then we have '(⇠) = q̄�(|⇠�& |, R)with �(·, R) : [0, R] !

R a positive function which is strictly increasing in (0, R]. Moreover we have
�(R, R) = 1 and

R1 < R2, t 2 (0, R1) ) �(R1 � t, R1) > �(R2 � t, R2). (2.71)

Note that ⇠ 2 Br (&) implies '(⇠)  q̄�(r, r +
%
2 ). Therefore for ⇠ 2 Br (&) \ Aq̄

we have

el+ �
2
(q̄⌫w) � el+ �

2
('⌫w) � Dqel+ �

2
('⌫w)(q̄ � ')

=

Z q̄

'

⇣
Dqel+ �

2
(s⌫w) � Dqel+ �

2
('⌫w)

⌘
ds

� c2
Z q̄

'
(s � ')ds =

1
2
c2(q̄ � ')2 �

1
2
c2q̄2

⇣
1� �

⇣
r, r +

%

2

⌘⌘2
,

(2.72)

where we have also used (2.7)1. The corollary follows from this inequality, from
(2.51), (2.54) and from the fact that, by (2.71), the last expression in (2.72) is in-
creasing with r . Therefore, for r � r0, for some r0 > 0, we can assume

c1 =

1
2
c2q̄2

⇣
1� �

⇣
r0, r0 +

%

2

⌘⌘2
. (2.73)

2.3. Estimating qu(&) = ku(·, &) � ū(·)kl

Let u be as in Theorem 1.4 and l0, q� as in Lemma 2.1 and assume that & is such
that

ku(·, &) � ū(·)kl � q�, (2.74)

for some l � l0. Then u 2 CExpS (�, Rm) implies that there is r0 > 0 independent
of l � l0 such that

ku(·, ⇠) � ū(·)kl � q̄, for |⇠ � & |  r0. (2.75)

Let j0 � 0, be minimum value of j that violates the inequality

c1
rn�10
2

✓
1+

c1
C1

◆ j
 C1

⇣
(r0 + ( j + 1)%)n�1 � (r0 + j%)n�1

⌘
, (2.76)
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where c1 and C1 are the constants in Corollary 2.8 and Lemma 2.5. Let l� � l0 be
fixed so that

C0(r0 + j0%)n�1e�kl
�

 c1✓n�1
rn�10
2

, (2.77)

where C0 is defined in Lemma 2.4 and ✓n is the measure of the unit ball in Rn ,

Proposition 2.9. Let �, %, q̄ 2 (0, q�) and l� � l0 be fixed as before and let r�
=

r0+ j0% where j0 � 0 is the minimum value of j that violates (2.76). Assume l � l�

and assume that Cr
�
+2%

l+� (&) ⇢ � satisfies

d
⇣
Cr

�
+2%

l+� (&), @�
⌘

� l + �. (2.78)

Then

qu(&) = ku(·, &) � ū(·)kl+ �
2

< q�. (2.79)

Proof. Suppose instead that

ku(·, &) � ū(·)kl+ �
2

� q�, (2.80)

and set

�0 := ✓n�1
rn�10
2

. (2.81)

Then l � l� � l0 and (2.75) imply

Hn�1(Aq̄ \ Br0(&)) � 2�0. (2.82)

For each 0  j  j0 let r j := r0 + j% and let v j , w j , w
q̄
j and ! j be the maps

v, w, wq̄ and ! defined in Lemma 2.4, Lemma 2.5, Lemma 2.6 and Lemma 2.7
with l � l� and r = r j . Then from these Lemmas and Corollary 2.8 we have

J (u)
C
r j+2%
l+� (&)

� J (v j )Cr j+2%l+� (&)
� �C0rn�1j e�kl

�

,

J (v j )Cr j+2%l+� (&)
� J (w j )C

r j+2%
l+� (&)

� �C1Hn�1 �Aq̄ \

�
B&,r j+1 \ Br j (&)

��
,

J (w j )C
r j+2%
l+� (&)

� J (wq̄
j )C

r j+2%
l+� (&)

� 0,

J (wq̄
j )C

r j+2%
l+� (&)

� J (! j )C
r j+2%
l+� (&)

� c1Hn�1 �Aq̄ \ B&,r j
�
.

(2.83)
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From this and the minimality of u it follows

0 � �C0rn�1j e�kl
�

� C1Hn�1 �Aq̄ \

�
B&,r j+1 \ Br j (&)

��
+ c1Hn�1 �Aq̄ \ B&,r j

�
.

(2.84)

Define

� j := Hn�1 �Aq̄ \ Br j (&)
�
� �0, for j � 1. (2.85)

For j = 0 the inequality (2.84), using also (2.77), implies

0 � �c1�0 � C1(�1 + �0) + 2C1�0 + 2c1�0 � c1�0 � C1(�1 � �0). (2.86)

If j > 0 in a similar way we get

0 � �c1�0 � C1(� j�1 � � j ) + c1(� j + �0) = c1� j � C1(� j+1 � � j ). (2.87)

From (2.86) and (2.87) it follows

� j �

✓
1+

c1
C1

◆ j
�0, (2.88)

and therefore, using also (2.81),

c1
✓
1+

c1
C1

◆ j
✓n�1

rn�10
2

 C1
�
� j+1 � � j

�
 C1✓n�1

⇣
rn�1j+1 � rn�1j

⌘
. (2.89)

This inequality is equivalent to (2.76). It follows that, on the basis of the definition
of j0, putting j = j0 in (2.89) leads to a contradiction with the minimality of u.

2.4. Conclusion of the proof of Theorem 1.4: the exponential estimate

Lemma 2.10. Assume r > r�
+ 2% and l > l� + � and assume that Crl (&0) ⇢ �

satisfies

d
�
Crl (&0), @�

�
� l. (2.90)

Then there are constants K1 and k1 > 0 independent of r > r�
+2% and l > l� +�

such that

ku(·, &0) � ūkl  K1e�k1r . (2.91)

Proof. From r > r�
+ 2% it follows that |& � &0|  r � (r�

+ 2%) implies

d
⇣
Cr

�
+2%

l (&), @�
⌘

� l. (2.92)
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Therefore we can invoke Proposition 2.9 to conclude that

ku(·, &) � ūkl  q�, for |& � &0|  r � (r�

+ 2%). (2.93)

Let ' : Br�(r�
+2%)(&0) ! R be the solution of

8><
>:

1' = c2' in Br�(r�
+2%)(&0)

' = q� on @Br�(r�
+2%)(&0).

(2.94)

Then we have

ku(·, &) � ūkl  '(&), for & 2 Br�(r�
+2%)(&0). (2.95)

This follows by the same argument leading to (2.65) in the proof of Lemma 2.7.
Indeed (2.93) shows that u satisfies the assumptions on wq̄ in Lemma 2.7 with q�

instead of q̄ and therefore if (2.95) does not hold, then by proceeding as in the proof
of Lemma 2.7 we can construct a competing map ! that satisfies (2.95) and has less
energy than u contradicting its minimality property. In particular (2.95) implies

ku(·, &0) � ūkl  '(&0). (2.96)

On the other hand it can be shown, see Lemma 2.4 in [16], that there is a constant
h0 > 0 such that

�(0, r)  e�h0r , for r � r0
From this and (2.96) we get

'(&0) = q̄�
�
0, r � (r�

+ 2%)
�

 q̄eh0(r
�
+2%)e�h0r = K1e�k1r . (2.97)

This concludes the proof with K1 = q̄eh0(r�
+2%) and k1 = h0.

We are now in the position of proving the exponential estimate (1.15) in The-
orem 1.4. We distinguish two cases:

Case 1 x = (s, ⇠) 2 � satisfies s > 1
2d(x, @�). In this case, taking also into

account that � satisfies (1.7), we have

d(x, @�+) �

1
2
d(x, @�). (2.98)

From this and Theorem 1.3 it follows

|u(s, ⇠) � ū(s)|  |u(s, ⇠) � a| + |ū(s) � a|

 K0e�k0d(x,@�+)
+ K0e�k0s  2K0e�

1
2 k0d(x,@�),

(2.99)

where we have also used (2.2).



ASYMPTOTICS AND RIGIDITY FOR SOLUTIONS OF AN ELLIPTIC SYSTEM 831

Case 2 x = (s, ⇠) 2 � satisfies 0  s 
1
2d(x, @�). In this case, elementary

geometric considerations and the assumption (1.7) on � imply the existence of
↵ 2 (0, 1) (↵ =

1
4 will do) such that

C↵d(x)
s+↵d(x)(⇠) ⇢ � and (2.100)

d
⇣
C↵d(x)
s+↵d(x)(⇠), @�

⌘
� s + ↵d(x),

where we have set d(x) := d(x, @�). From (2.100) and Lemma 2.10 it follows

ku(·, ⇠) � ūks+↵d(x) K1e�k1↵d(x), for ↵d(x)>max{r�

+2%, l�+�}. (2.101)

This and Lemma 2.3 imply

|u(s, ⇠) � ū(s)|  C2K
2
3
1 e

�
2
3 k1↵d(x,@�). (2.102)

The exponential estimate follows from (2.99) and (2.102).

2.5. Proof of Theorem 1.7

If� = Rn the proof of Theorem 1.4 simplifies since we can avoid the technicalities
needed in the case in which � is bounded in the s = x1 direction and assume
l = +1. The possibility of working with l = +1 is based on the following
lemma:

Lemma 2.11. Let u : Rn
! Rm be the symmetric minimizer in Theorem 1.3.

Given a smooth open set O ⇢ Rn�1 let R ⇥ O the cylinder R ⇥ O = {(s, ⇠) : s 2

R, ⇠ 2 O} and let W 1,2
0S (R ⇥ O, Rm) be the subset of W 1,2

S (R ⇥ O, Rm) of the
maps that vanish on @(R ⇥ O). Then it results

JR⇥O(u)  JR⇥O(v) (2.103)

for each map v 2 u + W 1,2
0S (R ⇥ O, Rm) that satisfies the assumptions in Theo-

rem 1.3.

Proof. Assume there are ⌘ > 0 and v 2 u + W 1,2
0S (R ⇥ O; Rm) that satisfie the

assumptions in Theorem 1.3 and the inequality

JR⇥O(u) � JR⇥O(v) � ⌘. (2.104)

For each l > 0 define ṽ 2 u + W 1,2
0S (R ⇥ O; Rm) by

ṽ =

8><
>:

v for s 2 [0, l], and ⇠ 2 O
(1+ l � s)v + (s � l)u for s 2 [l, l + 1], and ⇠ 2 O
u for s 2 [l + 1,+1), and ⇠ 2 O.
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The minimality of u implies

0 � J[�l�1,l+1]⇥O(u) � J[�l�1,l+1]⇥O(ṽ)

= J[�l�1,l+1]⇥O(u) � J[�l,l]⇥O(v) + O
⇣
e�kl

⌘
,

(2.105)

where we have also used the fact that both u and v satisfy (1.11). Taking the limit
for l ! +1 in (2.105) yields

0 � JR⇥O(u) � JR⇥O(v)

in contradiction with (2.104).

Once we know that u satisfies (2.103) the same arguments leading to Proposition 2.9
imply the existence of r� > 0 such that

R ⇥ Br�(⇠) ⇢ Rn
) ku(·, ⇠) � ūk1 < q�, (2.106)

where Br�(⇠) ⇢ Rn�1 is the ball of center ⇠ and radius r�. Since the condition
R ⇥ Br�(⇠) ⇢ Rn is trivially satisfied for each ⇠ 2 Rn�1 we have

ku(·, ⇠) � ūk1 < q�, for every ⇠ 2 Rn�1.

To conclude the proof we observe that everything that has been said concerning q�

can be repeated verbatim for each q 2 (0, q�). It follows that for each q 2 (0, q�
]

there is a r(q) > 0 such that (2.106) holds with q in place of q� and r(q) in place
of r�. Therefore we have

ku(·, ⇠) � ūk1 < q, for every ⇠ 2 Rn�1.

Since this holds for each q 2 (0, q�
] we conclude

u(·, ⇠) = ū, for every ⇠ 2 Rn�1

which complete the proof of Theorem 1.7.
Theorem 1.6 can also be proved by the method in [6, see Theorem 7.1]. This

is due to Lemma 2.1 that allows one to work with infinite cylinders.

3. Proof of Theorem 1.8

From an abstract point of view the proof of Theorem 1.8 is essentially the same as
the proof of Theorem 1.4 after quantities like qu and ⌫u etc. are reinterpreted and
properly redefined in the context of maps equivariant with respect to the group T of
the equilateral triangle. We divide the proof into steps pointing out the correspon-
dence with the analogous steps in the proof of Theorem 1.4. We write x 2 Rn in
the form x = (s, ⇠) with s = (s1, s2) 2 R2 and ⇠ = (x3, . . . , xn) 2 Rn�2.
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Step 1
From assumption (1.24) in Theorem 1.8 and equivariance it follows

|u(x) � a| � �, |u(x) � ��a| > �, for x 2 �+D, d(x, @�+D) � d0,
|u(x) � a| � �, |u(x) � �+a| > �, for x 2 ��D, d(x, @��D) � d0

(3.1)

where � , ±� are defined in the Introduction. From this and assumptions H0

3 and
H0

4 it follows that we can apply Theorem 1.4 with � = {(s1, s2, ⇠) 2 Rn
: s1 < 0}

and a± = �±a to conclude that there exist k, K > 0 such that

|u(s1, s2, ⇠) � ū(s2)|  Ke�k|s1|, for x 2

�
(s1, s2, ⇠) 2 Rn

: s1 < 0
 
. (3.2)

In exactly the same way we establish that

|ũ(s1, s2) � ū(s2)|  Ke�k|s1|, for s 2

n
(s1, s2) 2 R2 : s1 < 0

o
. (3.3)

From (3.2), (3.3) and equivariance it follows

|u(s, ⇠) � ũ(s)|  Ke�k|s|, for s 2 R2, and ⇠ 2 Rn�2. (3.4)

Let CExpT (Rn, Rm) the set of lipshizt maps v : Rn
! Rm which are equivariant

under T and satisfy

|v(s, ⇠) � ũ(s)|  Ke�k|s|,
|rsv(s, ⇠) � rs ũ(s)|  Ke�k|s|,
|r⇠v(s, ⇠)|  Ke�k|s|,

for s 2 R2, and ⇠ 2 Rn�2. (3.5)

We remark that from (3.4) we have u 2 CExpT (Rn, Rm) for the minimizer u in
Theorem 1.8.
Step 2
Set Bl = {s 2 R2 : |s| < l}, l > 0 and let h· , ·il denote the standard inner product
in L2(Bl , Rm) with associated norm k · kl .
Set k · k1,l = k · kW 1,2(Bl ,Rm).
Note that u 2 CExpT (Rn, Rm) implies

ku(·, ⇠)k1,l  C, for ⇠ 2 Rn�2

for some constant C > 0.
Define

B1,2l =

n
v 2 W 1,2

T (Bl , Rm) : v = 0 on @Bl , ku(·, ⇠)k1,l < C
o

and

S =

n
⌫ 2 W 1,2

T (Bl , Rm) : ⌫ = 0 on @Bl , k⌫kl = 1
o
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In analogy with the definition of el(v) in Lemma 2.1, we define the effective poten-
tial El(v) : B1,2l ! R for the case at hand. We set

El(v) =

1
2
�
hrs ũ + rsv,rs ũ + rsvil � hrs ũ,rs ũil

�

+

Z
Bl

�
W (ũ + v) � W (ũ)

�
ds.

(3.6)

From this definition and assumptions H5 and H6, arguing exactly as in the proof of
Lemma 2.1, we prove:

Lemma 3.1. Assume H5 and H6. Then there exist q� > 0 and c > 0 such that
8>>>>><
>>>>>:

DqqE(q⌫) � c2 for q 2 [0, q�
], ⌫ 2 S

E(q⌫) � E(q�⌫) for q�
 q, ⌫ 2 S

E(q⌫)� Ẽ(p, q, ⌫)

:=E(p⌫)+DqE(p⌫)(q� p) for 0  p < q  q�, ⌫ 2 S
DpẼ(p, q, ⌫) � 0, for 0  p < q  q�, ⌫ 2 S.

(3.7)

Step 3
In Section 2 replace the interval [�l, l] with the ball Bl ⇢ R2, the cylinder Crl (&)

with the product Bl ⇥ Br (&), Br (&) ⇢ Rn�2 the ball of center & 2 Rn�2 and radius
r , and observe that, for O 2 Rn�2 open bounded and smooth, the energy of a map
v 2 W 1,2

T (Bl ⇥ O, Rm) can be expressed in the polar form

JBl⇥O(v) =

Z
O

 
1
2

 ��
r⇠qv

��2
+ (qv)2

X
j

h⌫v
⇠ j , ⌫

v
⇠ j il

!
+ E

�
qv⌫v

�!
d⇠, (3.8)

where qv and ⌫v are defined by

qv(⇠) = kv(·, ⇠) � ũkl , for ⇠ 2 O

⌫v(s, ⇠) =

v(s, ⇠) � ũ(s)
qv(⇠)

, if qv(⇠) > 0.
(3.9)

Then we can follow step by step the arguments in Section 2 to prove statements
analogous to Lemmas 2.3-2.7, Corollary 2.8 and establish the analogous of
Proposition 2.9. Actually, since we are working in Rn and therefore there is no
boundary, the argument simplifies and the condition corresponding to (2.22) in
Lemma 2.3, (2.29) in Lemma 2.4 and Proposition 2.9 are not needed. In conclu-
sion, by arguing as in Section 2, we prove that, given q 2 (0, q�

], there are l(q) > 0
r(q) > 0 such that

Bl⇥Br (⇠)⇢Rn, and l� l(q), r�r(q) ) qu(⇠)=ku(·, ⇠) � ũ(·)kl <q. (3.10)
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Since the condition on the left hand side of (3.10) is trivially satisfied for all ⇠ 2

Rn�2 and for all q 2 (0, q�
] we deduce

u(s, ⇠) = ũ(s), for s 2 R2, and ⇠ 2 Rn�2

which concludes the proof.
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