
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XV (2016), 731-808

Solutions of the focusing nonradial critical
wave equation with the compactness property

THOMAS DUYCKAERTS, CARLOS KENIG AND FRANK MERLE

Abstract. Consider the focusing energy-critical wave equation in 3, 4 or 5 space
dimensions. In a previous paper, we proved that any solution which is bounded in
the energy space converges, along a sequence of times and in some weak sense,
to a solution with the compactness property, that is a solution whose trajectory
stays in a compact subset of the energy space up to space translation and scaling.
It is conjectured that the only solutions with the compactness properties are sta-
tionary solutions and solitary waves that are Lorentz transforms of the formers. In
this note we prove this conjecture with an additional non-degeneracy assumption
related to the invariances of the elliptic equation satisfied by stationary solutions.
The proof uses a standard monotonicity formula, modulation theory, and a new
channel of energy argument which is independent of the space dimension.

Mathematics Subject Classification (2010): 35L05 (primary); 35L71, 35B15,
35B33, 35J61 (secondary).

1. Introduction

In this work we consider the energy-critical focusing nonlinear wave equation in
N = 3, 4, 5 space dimensions:

(
@2t u �1u � |u|

4
N�2 u = 0 (t, x) 2 I ⇥ RN

u�t=0 = u0 2 Ḣ1 @t u�t=0 = u1 2 L2,
(1.1)

where I is an interval (0 2 I ), u is real-valued, Ḣ1 := Ḣ1(RN ), and L2 :=

L2(RN ).
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The equation is locally well-posed in Ḣ1 ⇥ L2. If u is a solution, we will
denote by (T�(u), T+(u)) its maximal interval of existence. On (T�(u), T+(u)),
the following two quantities are conserved:

E[u] = E(u(t), @t u(t)) =

1
2

Z
|ru|2dx +

1
2

Z
(@t u)2dx �

N � 2
2N

Z
|u|

2N
N�2 dx

(the energy) and
P[u] = P(u, @t u(t)) =

Z
urudx

(the momentum).
Denote by 6 the set of non-zero stationary solutions of (1.1):

6 :=

n
Q 2 Ḣ1(RN ) \ {0} s.t. �1Q = |Q|

4
N�2 Q

o
. (1.2)

The only radial elements of 6 are ±�
N�2
2 W (�x), for � > 0 where the ground state

W is given by
W (x) =

1⇣
1+

|x |2
N (N�2)

⌘ N�2
2

. (1.3)

In [18], the authors have proved the soliton resolution for spherically symmetric
solutions of equation (1.1) in the case N = 3. Namely, any bounded radial solution
u of (1.1) has an asymptotic expansion of the following form

u(t, x) =

JX
j=1

◆ j

� j (t)
1
2
W

✓
x

� j (t)

◆
+ vL(t, x) + "(t, x),

where vL is a solution to the linear wave equation, J is a natural number (J � 1 if
T+(u) is finite), ◆ j 2 {�1,+1}, and, as t ! T+(u),

0 < �1(t) ⌧ . . . ⌧ �J (t), ("(t), @t"(t)) �! 0 in Ḣ1 ⇥ L2.

The proof is based on the classification of radial solutions of (1.1) that do not satisfy
an exterior energy estimate, and the “channel of energy” method, which consists, in
a contradiction argument, in bounding from below the Ḣ1⇥L2 norm of the solution
outside a well-chosen light cone. This work uses several properties that are specific
to the radial case (in particular, it relies heavily on the fact that W is the only non-
zero radial stationary solution of (1.1) up to scaling), and to space dimension 3,
where the exterior energy estimates for the free wave equation are the strongest.

Much less is known in higher dimensions, and in the nonradial case. The
existence of elements of 6 that are not spherically symmetric, and with arbitrary
large energy was proved by Ding [11] using a variational argument (see also [25]
for the case of bounded domains). More explicit constructions of such solutions are
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available in [9, 10]. However, only existence results are available, and the elements
of 6 are not classified.

Other particular solutions of (1.1) are solitary waves given by Lorentz trans-
form of stationary solutions: if Q 2 6 and ` 2 RN satisfies |`| < 1, then

Q`(t, x) = Q

  
�

tp
1� |`|2

+

1
|`|2

 
1p

1� |`|2
� 1

!
` · x

!
` + x

!

= Q`(0, x � t`)

is a global, non-scattering, bounded solution of (1.1), travelling in the direction `
(here and in the sequel | · | is the Euclidean norm on RN ).

We expect that the soliton resolution for (1.1) is still valid without the radiality
assumption, namely that any solution u that is bounded for positive time can be
written, as t ! T+(u), as a finite sum of solitary waves modulated by space trans-
lations and scaling, a linear solution, and a remainder that goes to 0 in Ḣ1 ⇥ L2.
One major difficulty in the proof of this conjecture is the lack of classification of
solutions of the stationary equation.

The main result of our previous paper, [18, Theorem 1], is a first step in the
classification of arbitrary large, bounded, nonradial solutions of (1.1). It implies that
for any bounded solution of (1.1) there exists a sequence of time tn ! T+(u) such
that u(tn) converges, in some weak sense and up to scaling and space-translation,
to the initial data Q`(0) of a solitary wave. The proof of [18] is based on the notion
of solutions of (1.1) with the compactness property, which first appears in [22] and
plays an important role in the compactness/rigidity method initiated in [29] (see
also [30, 31, 49]), and more generally in the classification of bounded solutions of
dispersive equations (see e.g. [48]).
Definition 1.1. We say that a solution u of (1.1) has the compactness propertywhen
there exist �(t) > 0, and x(t) 2 RN , and t 2 (T�(u), T+(u)) such that:

K =

n⇣
�
N
2 �1(t)u (t, �(t) ·+x(t)) , �

N
2 (t)@t u (t, �(t) ·+x(t))

⌘
, t2(T�(u), T+(u))

o

has compact closure in Ḣ1 ⇥ L2.
The null solution, as well as the solitary waves Q`, with Q 2 6, for |`| < 1

have the compactness property. We conjecture (rigidity conjecture for solutions
with the compactness property) that these are the only solutions of (1.1) with the
compactness property.

This conjecture was settled in [13, Theorem 2] for radial solutions. Again, the
uniqueness of the radial stationary solution W plays an important role in the proof.
Without the radial assumption, one has the following weaker result from [18]:

Proposition 1.2. Let u be a nonzero solution with the compactness property, with
maximal time of existence (T�, T+). Then

(a) E[u] > 0 and |`| < 1, where ` = �
P[u]
E[u] .
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(b) T� = �1 or T+ = +1.
(c) there exist two sequences {t±n }n , two elements Q± of6 such that limn!+1 t±n =

T± and

lim
n!1

���� N
2 �1 �t±n �

u
�
t±n , �

�
t±n

�
· +x

�
t±n

��
� Q±

`

�
t±n

����
Ḣ1

+

���� N
2
�
t±n

�
@t u

�
t±n , �

�
t±n

�
· +x

�
t±n

��
� @t Q±

`

�
t±n

����
L2

= 0.
(1.4)

It is essential, in order to prove the soliton resolution conjecture, to improve the
classification of solutions with the compactness property. In this paper, we prove the
rigidity conjecture for solutions with the compactness property, under an additional
nondegeneracy assumption on the energy functional at the stationary solution Q+

given by Proposition 1.2. This condition is related to the invariances of 6.
If Q 2 6, then x 7! Q(x + b), where b 2 RN , x 7! Q(Px), where P 2 ON ,

x 7! �N/2�1Q(�x), where � > 0 and x 7!
1

|x |N�2 Q
� x

|x |2
�
are also in 6 (ON is the

classical orthogonal group). We will denote byM the group of isometries of L
2N
N�2

(and Ḣ1) generated by the preceding transformations. We will see thatM defines
a N 0-parameter family of transformations in a neighborhood of the identity, where

N 0

= 2N + 1+

N (N � 1)
2

.

If Q 2 6 we let
LQ = �1�

N + 2
N � 2

|Q|

4
N�2 (1.5)

be the linearized operator around Q. Let

ZQ =

n
f 2 Ḣ1(RN ) s.t. LQ f = 0

o
(1.6)

and
eZQ = span

n
(2� N )x j Q + |x |2@x j Q � 2x j x · rQ, @x j Q, 1  j  N ,

(x j@xk � xk@x j )Q, 1  j < k  N ,
N � 2
2

Q + x · rQ
o
.
(1.7)

The vector space eZQ is the null space of LQ generated by the family of transforma-
tionsM defined above, so that eZQ ⇢ ZQ (see Lemma 3.8 for a rigorous proof). We
note that eZQ is of dimension at most N 0, but might have strictly lower dimension if
Q has symmetries. For example,

eZW = span
⇢
N � 2
2

W + x · rW, @x j W, 1  j  N
�

is of dimension N + 1. We will make the following non-degeneracy assumption

ZQ =
eZQ . (1.8)

If Q satisfies (1.8) and ✓ 2 M, then ✓(Q) also satisfies (1.8). Furthermore, W
satisfies (1.8) (see [19, Remark 5.6]).
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The main result of this paper is the following:
Theorem 1.3. Let u be a non-zero solution with the compactness property. Assume
that Q+ or Q� (given by Proposition 1.2) satisfies the non-degeneracy assumption
(1.8). Then there exists Q 2 6 such that u = Q`, where ` = �P[u]/E[u] satisfies
|`| < 1 by Proposition 1.2.

The nondegeneracy assumption (1.8) is classical in spectral theory and geo-
metrical analysis. The null directions generated by all the geometric invariances,
including the Kelvin transform, appear for example in [32, 39]. It is known that W
is nondegenerate: see for example [19], where it is established as a consequence
of [43]. C. Musso and J. Wei [41] have recently established the nondegeneracy
of the solutions constructed in [9, 10]. There is no known example of a stationary
solutions of (1.1) that does not verify (1.8).

The main new ingredient in the proof of Theorem 1.3 is an exterior energy
argument. Unlike our previous papers on equation (1.1) using a similar method,
the space dimension is not restricted to N = 3 (see [13–15, 17]) or to odd space
dimension [16], but works the same way in any low space dimension. We refer to
the sketch of proof below for more details. As usual, the restriction N  5 is merely
to avoid a nonlinearity with a low regularity, and it is very likely that the proof
adapts to higher dimensions using the results of [4] and additional technicalities to
deal with the fact that the potential |Q|

4
N�2 is not C1 if N � 6.

With an additional a priori bound on the Ḣ1 ⇥ L2 norm of the solution u,
the stationary solution Q in the conclusion of Theorem 1.3 is equal (up to scal-
ing, space-translation and sign change) to the ground state W : see Corollary 4.9
in Section 4 below. This implies the rigidity theorem [16, Theorem 2]. We take
this opportunity to mention that there is a mistake in the statement of [16, Theorem
2]. We refer to Corollary 4.9 for a corrected version of this result. See also the
corrected arXiv version.

We next sketch the proof of Theorem 1.3, which is given in Section 4.
The first step (see Section 4.1) is to use the Lorentz transformation to reduce

to the case of a zero momentum solution. For this we need to know that the Lorentz
transform of a solution of (1.1) with the compactness property is a solution of (1.1)
with the compactness property. This fact, proved in Section 6 is not obvious since
the Lorentz transformation mixes space and time variables. In this section, we also
clarify a few facts about Lorentz transformation of solutions of (1.1). This also uses
precise properties of the Cauchy problem for (1.1) (proved in Section 2).

We next apply Proposition 1.2 to u (see Section4.2). Since by the first step
` = �P[u]/E[u] = 0, this yields a stationary solution Q 2 6 and a sequence
tn ! T+(u) such that

�
(u(tn), @t u(tn))

 
n converges to (Q, 0) up to space transla-

tion and scaling. Reversing time if necessary we can assume that Q satisfies the
nondegeneracy assumption (1.8). We must prove that u equals Q (after a fixed
translation and scaling). We argue by contradiction: if this is not the case, we con-
struct in Section4.3, using a continuity argument, a solution w of (1.1) with the
compactness property which has the same energy as Q, is close to Q for positive
times, but it is not a stationary solution.
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We next use the main result of Section 5 that states that any nonstationary
solution w which has the energy of a stationary solution Q and remains close to Q
satisfies T+(w) = +1 and has an asymptotic expansion of the form

w(t) = S + e�!t Y + O(e�!
+t ), as t ! +1, (1.9)

where S 2 6, Y is an eigenfunction of the linearized operator LS , the number �!2
is the corresponding negative eigenvalue (with ! > 0) and !+ > !. It is in this
part of the proof that we use the nondegeneracy assumption (1.8). The proof uses
modulation theory in the spirit of [19], where this result is proved for Q = W .
However new technical difficulties arise because LS might have more than one
negative eigenvalue and more invariances must be taken into account.

We finally reach a contradiction (see Section 4.4) by proving that there is no
solution w with the compactness property and the expansion (1.9). This is the core
of the proof of Theorem 1.3. The idea is to use a channel of energy argument which
is based on exterior energy estimates for the linearized equation @2t h + LSh = 0
instead of the free wave equation @2t u � 1u = 0. This argument, which is the
main novelty of the paper, has the advantage of working in any space dimension
N � 3, whereas the usual channel of energy method depends very strongly on the
dimension N .

Apart from the sections mentioned above, Section 3 is dedicated to preliminar-
ies on stationary solutions. We recall there is a result of Meshkov [40] on the decay
of eigenfunction of the linearized operator at a stationary solution which is crucial
in our proof. We thank T. Cazenave for helpful discussions on this topic and for
mentioning Meshkov’s work to us.

We conclude this introduction by giving some references to related works. The
defocusing energy-critical wave equation was treated in many papers, including
[2, 3, 23, 24, 27, 42, 44, 45, 47]. The works [19, 30] classify the dynamics of the
focusing equation below and at the energy threshold E[W ] (see also [20]). For
the classification of the dynamics of solutions with energy E[u] < E[W ] + ",
see [13,16,33–36]. For examples of nonscattering bounded solutions of (1.1) in this
energy range, see e.g [12, 26, 37, 38] and references therein. The works [14, 17, 18]
classify the dynamics of large energy solutions. Finally, we would like to point out
that the exterior energy estimates and the channel of energy argument were also
used in the context of wave maps [5–7, 28] and subcritical or supercritical wave
equations [15,46].

Notations. If N is an integer and R > 0, we will denote by BN (R) be the ball of
RN , centered at the origin with radius R.

We let ON = ON (R) be the orthogonal group, which is the group of N ⇥ N
real orthogonal matrices such that AT A is the identity matrix, and by SON the
special orthogonal group, i.e.. the subset of A 2 ON such that det A = 1.

We denote by S = S(RN ) the space of Schwartz functions on RN .
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2. Preliminaries on well-posedness

In this subsection, we recall the exact definition of a solution of (1.1) and give some
sufficient conditions for a function u to be a solution. These conditions will be used
essentially in Section 6 on the Lorentz transformation. The classical Cauchy theory
for (1.1) uses the space L

N+2
N�2

�
R, L

2(N+2)
N�2 (RN )

�
. We will rather use the Cauchy

theory developed in [30], based on the space L
2(N+1)
N�2 (RN+1) which is invariant

under Lorentz transform. Let us emphasize that both Cauchy theories give the same
definition of solution of (1.1) (see Claim 2.4 below).

We first recall the Strichartz estimates [21]. Let I be an open interval contain-
ing 0 and (w0, w1) 2 Ḣ1 ⇥ L2. Let

w(t)=cos(t
p

�1)w0+
sin(t

p

�1)
p

�1
w1+

Z t

0

sin
�
(t � s)

p

�1
�

p

�1
h(s) ds, for t 2 I.

Then, if D1/2x h 2 L
2(N+1)
N+3 (I ⇥ RN ), we have

sup
t2I

k(w, @tw)(t)kḢ1⇥L2 +

���D1/2x w
���
L
2(N+1)
N�1 (I⇥RN )

+ kwk

L
2(N+1)
N�2 (I⇥RN )

+ kwk

L
N+2
N�2 (I,L

2(N+2)
N�2 (RN ))

 C
✓
k(w0, w1)kḢ1⇥L2 +

���D1/2x h
���
L
2(N+1)
N+3 (I⇥RN )

◆
,

(2.1)

and if h 2 L1(I, L2(RN ))

sup
t2I

k(w, @tw)(t)kḢ1⇥L2 +

���D1/2x w
���
L
2(N+1)
N�1 (I⇥RN )

+ kwk

L
2(N+1)
N�2 (I⇥RN )

+ kwk

L
N+2
N�2 (I,L

2(N+2)
N�2 (RN ))

 C
⇣
k(w0, w1)kḢ1⇥L2 + khkL1(I,L2(RN ))

⌘
.

(2.2)

Definition 2.1. Let I be an open interval containing 0, and (u0, u1) 2 Ḣ1 ⇥ L2.
We say that u is a solution of (1.1) in I if

(u, @t u) 2 C0(I, Ḣ1 ⇥ L2),

u 2 L
2(N+1)
N�2
loc

⇣
I, L

2(N+1)
N�2

⇣
RN

⌘⌘
,

D1/2x u 2 L
2(N+1)
N�1
loc

⇣
I, L

2(N+1)
N�1

⇣
RN

⌘⌘
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and

u(t) = cos
⇣
t
p

�1
⌘
u0 +

sin
�
t
p

�1
�

p

�1
u1

+

Z t

0

sin
�
(t � s)

p

�1
�

p

�1
|u|

4
N�2 u(s) ds.

(2.3)

Recall from [30] that for any initial data (u0, u1) 2 Ḣ1⇥ L2, there is a unique solu-
tion u of (1.1) defined on a maximal interval of definition Imax(u)=(T�(u),T+(u))⇢
R, that satisfies the blow-up criterion

T+(u) < 1 =) kuk
L
2(N+1)
N�2 ((0,T+(u))⇥RN )

= +1. (2.4)

More precisely, if u 2 L
2(N+1)
N�2

�
(0, T+(u)) ⇥ RN �, then T+(u) = +1 and u scat-

ters, in Ḣ1 ⇥ L2, to a linear solution as t ! +1.
Note that by the Strichartz estimate (2.1), any solution u belongs to the space

L
N+2
N�2
loc

⇣
Imax(u), L

2(N+2)
N�2 (RN )

⌘
.

Since by Hölder and Sobolev inequalities

kuk
2(N+1)
N�2

L
2(N+1)
N�2 (I⇥RN )

 C sup
t2I

���(u(t), @t u(t))
��� N
N�2

Ḣ1⇥L2

���u��� N+2
N�2

L
N+2
N�2 (I,L

2(N+2)
N�2 )

,

we also have, in view of the Strichartz estimate (2.2), the following variants of the
blow-up and scatttering criteria:

T+(u) < 1 =) kuk
L
N+2
N�2

✓
(0,T+(u)),L

2(N+2)
N�2 (RN )

◆
= +1, (2.5)

and if u 2 L
N+2
N�2

⇣
(0, T+(u)), L

2(N+2)
N�2

�
RN �⌘, then T+(u) = +1 and u scatters to

a linear solution as t ! +1.
Remark 2.2. Let u be a solution of (1.1) in the sense of Definition 2.1. If (u0, u1) 2

C1

0 (RN ), then u 2 C1(Imax ⇥ RN ) and is a classical solution of (1.1). By the
Strichartz estimates and a density argument, one can check that if (u0, u1) is a
general element of Ḣ1 ⇥ L2, the corresponding solution u satisfies (@2t � 1)u =

|u|
4

N�2 u in the sense of distributions.
We next give three sufficient conditions for a function u to be a solution. The

first one is [30, Remark 2.14] and we omit the proof.

Claim 2.3. Let u 2 L
2(N+1)
N�2 (I⇥RN ) be such that (u, @t u) 2 C0(Ḣ1⇥L2). Assume

that there exists a sequence (uk) of solutions of (1.1) such that
sup
t2I

k(u � uk, @t u � @t uk)(t)kḢ1⇥L2 �!

k!1

0

sup
k

kukk
L
2(N+1)
N�2 (I⇥RN )

< 1.

Then u is a solution of (1.1).
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Claim 2.4. Let I be an open interval containing 0, and (u0, u1) 2 Ḣ1⇥L2. Assume

that u 2 L
N+2
N�2
loc

�
I, L

2(N+2)
N�2 (RN )

�
satisfies the integral equation (2.3). Then u is a

solution of (1.1).

Proof. By the definition of a solution, it is sufficient to check:

u 2 L
2(N+1)
N�2
loc

⇣
I, RN

⌘
, D1/2x u 2 L

2(N+1)
N�1
loc

⇣
I, RN

⌘
.

Since by our assumptions on u, |u|
4

N�2 u 2 L1loc
�
I, L2(RN )

�
, this follows immedi-

ately from the Strichartz estimate (2.2).

We next prove that a solution of (1.1) in the distributional sense, that satisfies an ap-
propriate space-time bound, is also a solution of (1.1) in the sense of Definition 2.1.

Lemma 2.5. Let (u0, u1) 2 Ḣ1 ⇥ L2, I be an open interval such that 0 2 I ,

u 2 L
N+2
N�2
loc

⇣
I, L

2(N+2)
N�2 (RN )

⌘
and (u, @t u) 2 C0

⇣
I, Ḣ1 ⇥ L2

⌘
.

Assume furthermore (u, @t u)�t=0 = (u0, u1) and

@2t u �1u = |u|
4

N�2 u in D0(I ⇥ RN ). (2.6)

Then u is a solution of (1.1).

Proof. In view of Claim 2.4, it suffices to check that u satisfies the integral equation
(2.3). Let I+ = I \ (0,+1). We prove (2.3) for t 2 I+, the proof of (2.3) for
t 2 I \ (�1, 0) is exactly the same. Let

v(t) = u(t) � cos(t
p

�1)u0 �

sin(t
p

�1)
p

�1
u1.

Then (v, @tv) 2 C0(I, Ḣ1 ⇥ L2), (v, @tv)�t=0 = (0, 0), and

@2t v �1v = |u|
4

N�2 u in D0(I ⇥ RN ). (2.7)

Let h 2 C1

0 (I+ ⇥ RN ). Let, for t 2 R,

H(t) = �

Z
+1

t

sin
�
(t � s)

p

�1
�

p

�1
h(s) ds,

so that H 2 C1

�
RN+1� (with compact support in x), H(t) = 0 for large t and

@2t H �1H = h. Let ' 2 C1(R) such that '(� ) = 1 if � � 1, and '(� ) = 0 if
� 

1
2 . If a 2 (0, 1], we let

Ha(t, x) = '

✓
t
a

◆
H(t, x).
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Note that Ha
2 C1

0
�
RN+1�. By (2.7),

ZZ
RN+1

v(t, x)(@2t �1)Ha(t, x) dtdx=

ZZ
RN+1

|u|
4

N�2 u(t, x)Ha(t, x) dtdx . (2.8)

By dominated convergence and Fubini’s Theorem,

lim
a!0

ZZ
RN+1

|u|
4

N�2 u(t, x)Ha(t, x) dtdx

=

Z
RN

Z
+1

0
|u|

4
N�2 u(t, x)H(t, x) dtdx

= �

Z
+1

0

Z s

0

Z
RN

|u|
4

N�2 u(t, x)
sin

�
(t � s)

p

�1
�

p

�1
h(s, x) dx dt ds

= �

Z
RN

Z
+1

0

Z s

0

sin
�
(t � s)

p

�1
�

p

�1
|u|

4
N�2 u(t, x) dt h(s, x) ds dx,

where at the last line we have also used the self-adjointness of sin
�
(t�s)

p

�1
�

p

�1
. As a

conclusion, the right hand-side of (2.8) satisfies:

lim
a!0

ZZ
RN+1

|u|
4

N�2 u(t, x)Ha(t, x) dtdx

=

Z
RN

Z
+1

0

Z t

0

sin
�
(t � s)

p

�1
�

p

�1
|u|

4
N�2 u(s, x) ds h(t, x) dt dx . (2.9)

We next consider the left-hand side of (2.8):
ZZ

RN+1
v(t, x)(@2t �1)Ha(t, x) dtdx

=

ZZ
RN+1

v(t, x)
✓
1
a2
'00

✓
t
a

◆
H(t, x)

+

2
a
'0

✓
t
a

◆
@t H(t, x) + '

✓
t
a

◆
h(t, x)

◆
dtdx .

(2.10)

Assume that we have proved:

lim
a!0

ZZ
RN+1

v(t, x)
1
a2
'00

✓
t
a

◆
H(t, x) dtdx = 0 (2.11)

lim
a!0

ZZ
RN+1

v(t, x)
1
a
'0

✓
t
a

◆
@t H(t, x) dtdx = 0. (2.12)
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Then, by (2.8), (2.9) and (2.10)
Z

RN

Z
+1

0

Z t

0

sin
�
(t � s)

p

�1
�

p

�1
|u|

4
N�2 u(s, x) ds h(t, x) dt dx

=

Z
RN

Z
+1

0
v(t, x)h(t, x) dt dx .

(2.13)

Since h is arbitrary in C1

0
�
I+ ⇥ RN �, we deduce, in view of the definition of v,

the desired integral formula (2.3).
It remains to check (2.11) and (2.12). We only prove (2.11), the proof of (2.12)

is similar. Using that @tv 2 C0(I, L2) and v�t=0 = @tv�t=0 = 0 almost everywhere,
we deduce

8t 2 I, v(t) 2 L2(RN ) and lim
t!0

1
t
kv(t)kL2 = 0.

Let " > 0 and a0 such that kv(t)kL2  "t for t 2 (0, a0]. Then (using that
'00(t/a) = 0 for t � a or t  0),

����
ZZ

RN+1
v(t, x)

1
a2
'00

✓
t
a

◆
H(t, x) dtdx

����  C
Z a

0

"t
a2

dt  C",

which concludes the proof of (2.11), and thus of Lemma 2.5.

3. Properties of stationary solutions

This section concerns the set 6 of non-zero stationary solutions of (1.1). More
precisely, in Subsection 3.1, we give the asymptotics, for large x , of an element Q
of 6. We also study the setM of transformations, mentioned in the introduction,
leaving6 invariant. Subsection 3.2 concerns the linearized operator LQ . Finally, in
3.3, under the nondegeneracy assumption (1.8), we choose modulation parameters
inM in order to satisfy some orthogonality properties.

3.1. Kelvin transformation and asymptotic behaviour

Recall that 6 is the set of non-zero functions Q in Ḣ1(RN ) such that

�1Q = |Q|

4
N�2 Q (3.1)

in the sense of distributions on RN .
We fix an arbitrary one to one map ⇣ from {(i, j) 2 N2, 1  i < j  N } ton

1, 2, . . . , N (N�1)
2

o
. If c =

⇣
c1, . . . , c N (N�1)

2

⌘
2 R N (N�1)

2 , we write

Pc = exp
�
[pi, j ]1i, jN

�
2 SON , (3.2)
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where pi,i = 0, pi, j = c⇣(i, j) if i < j , pi, j = �c⇣( j,i) if j < i . This defines a
parametrization of the special orthogonal groupSON byR N (N�1)

2 in a neighborhood
of the identity matrix.

Let A = (s, a, b, c) 2 RN 0

= R ⇥ RN
⇥ RN

⇥ R N (N�1)
2 . We let, for f 2 Ḣ1,

✓A( f )(x) = e
(N�2)s
2

���� x
|x |

� a|x |
����
2�N

f

 
b +

es Pc(x � a|x |2)
1� 2ha, xi + |a|2|x |2

!
. (3.3)

Proposition 3.1. Let Q 2 6. Then

(a) Q 2 C1(RN ) if N = 3, 4 and Q 2 C4(R5) if N = 5.
(b) We have:

8↵ 2 NN , s.t. |↵|  4, 9C↵ > 0,
��@↵x Q(x)

��
 C↵|x |�N+2�|↵|, |x | � 1.

(c) The function
eQ : x 7!

1
|x |N�2 Q

✓
x

|x |2

◆

is also in 6. Furthermore,

k
eQk

2
Ḣ1 = k

eQk

2N
N�2

L
2N
N�2

= kQk

2N
N�2

L
2N
N�2

= kQk
2
Ḣ1 .

(d) Let A = (s, a, b, c) 2 RN 0

= R ⇥ RN
⇥ RN

⇥ R N (N�1)
2 . Then the function

✓A(Q) is in 6.
(e) If A1, A2 2 BN 0

(") (" > 0 small), then

✓A1 � ✓A2 = ✓A3, (✓A1)
�1

= ✓A4,

where A3, A4 2 RN 0 and the maps (A1, A2) 7! A3 and A1 7! A4 are C1

from
�
BN 0

(")
�2 (respectively BN 0

(")) to a neighborhood of 0 in RN 0 .

Remark 3.2. In the cases N = 3, 4 when the nonlinearity is smooth, the estimates
of point (b) holds for all multi-index ↵. Furthermore, one can adapt the proof of
this estimate to prove

Q(x) =

1
|x |N�2 P

✓
x

|x |2

◆
+O

✓
1

|x |k+N�1

◆
, |x | ! 1, (3.4)

where P is a homogeneous harmonic polynomial of degree k � 0. This polynomial
can be a non-zero constant. In this case, |x |N�2Q(x) converges to some non-zero
real number. This is the case of the explicit radial stationary solution W . If the
degree of P is positive, then |x |N�2Q(x) tends to 0 as |x | ! 1. The existence
of solutions of (3.1) such that (3.4) holds with nonconstant P follows from the
existence of changing sign solutions of (3.1), proved in [11], and the Kelvin trans-
formation given by (c). To our knowledge, the existence of solutions of (3.1) such
that (3.4) holds with P of arbitrary degree is still an open problem.
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Remark 3.3. Point (d) of the proposition gives a parametrization of an open neigh-
borhood of the identity in M. Note that it includes space translations (s = 0,
a = c = 0), scaling (a = b = c = 0) and space rotations (a = b = 0, s = 0),
as well as additional tranformations which can be constructed by conjugating space
translations with the Kelvin transformation (b = c = 0, s = 0). However, the
Kelvin tranformation defined in (c) cannot be described by this parametrization.

By [50], if Q is an Ḣ1 solution of (1.1), then Q is locally bounded. By Sobolev
inequalities, point (a) follows. The remainder of this subsection is devoted to points
(b), (c) and (d).

3.1.1. Kelvin transformation

We first prove:

Lemma 3.4. Let Q 2 L
2N
N�2 (RN ) \ Ḣ1(RN ) such that (3.1) holds in the sense of

distributions on RN
\ {0}. Then Q 2 (C1

\ Ḣ1)(RN ) if N = 3, 4 and Q 2

(C4 \ Ḣ1)(R5) if N = 5. Furthermore Q satisfies (3.1) in the classical sense on
RN .

Proof. By (a), it is sufficient to prove that Q satisfies (3.1) in the sense of distribu-
tions on RN . Let ' 2 C1

0 (RN ).
Let  2 C1

0 (RN ) such that  (x) = 1 is |x |  1 and  (x) = 0 is |x | � 2.
Then Z

Q1' =

Z
Q1

 ⇣
 

⇣ x
"

⌘
+ 1�  

⇣ x
"

⌘⌘
'(x)

�

= �

Z
|Q|

4
N�2 Q

⇣
1�  

⇣ x
"

⌘⌘
'(x) dx

+

Z
Q1

⇣
 

⇣ x
"

⌘
'(x)

⌘
dx

(3.5)

where we have used, in the first integral of the last line, the fact that Q satisfies
(3.1) in the sense of distributions outside the origin. By the dominated convergence
theorem,

lim
"!0+

Z
|Q|

4
N�2 Q(x)

⇣
1�  

⇣ x
"

⌘⌘
'(x) dx =

Z
|Q|

4
N�2 Q(x)'(x) dx .

Moreover
Z
Q(x)1

⇣
 

⇣ x
"

⌘
'(x)

⌘
dx =

Z
Q(x)

1
"2
1 

⇣ x
"

⌘
'(x) dx

+

2
"

Z
Q(x)r 

⇣ x
"

⌘
· r'(x) dx

+

Z
Q(x) 

⇣ x
"

⌘
1'(x) dx .

(3.6)
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We have

����
Z
Q(x)

1
"2
1 

⇣ x
"

⌘
'(x)dx

���� 1
"2

kQk

L
2N
N�2

✓Z ���1 ⇣ x
"

⌘��� 2N
N+2

|'(x)|
2N
N+2 dx

◆N+2
2N

 kQk

L
2N
N�2

"
N
2 �1

k1 k

L
2N
N+2

k'kL1 �!

"!0
0.

Bounding similarly the other terms in (3.6), we get

lim
"!0

Z
Q(x)1

⇣
 

⇣ x
"

⌘
'(x)

⌘
dx = 0,

and thus
�

Z
Q1' =

Z
|Q|

4
N�2 Q',

which shows as announced that Q satisfies (3.1) in the sense of distributions on
RN .

Let us prove point (c) of Proposition 3.1.
We first note that the Kelvin transformation

T : f 7!

1
|x |N�2 f

✓
x

|x |2

◆

is an isometry of L
2N
N�2 that satisfies, for any smooth function f ,

1(T f ) =

1
|x |N+2 (1 f )

✓
x

|x |2

◆
, for x 6= 0. (3.7)

If f 2 C1

0
�
RN

\ {0}
�
, then T f 2 C1

0
�
RN

\ {0}
�
and by integration by parts,

kT f k2Ḣ1 = �

Z
1(T f )T f

= �

Z 1
|x |2N

(1 f )
✓

x
|x |2

◆
f
✓

x
|x |2

◆
dx = �

Z
1 f f = k f k2Ḣ1,

where we have used that the fact that the Jacobian determinant of x 7!
x

|x |2 is
1

|x |2N .
Using the density of C1

0 (RN
\ {0}) in Ḣ1, we deduce that T is also an isometry of

Ḣ1.
Combining the preceding argument with Lemma 3.4, we get that if Q is a Ḣ1

solution of (3.1) on RN , then eQ = T Q is also a Ḣ1 solution of (3.1) on RN .
The equality

R
Q

2N
N�2 =

R
|rQ|

2 follows from a simple integration by parts, which
concludes the proof of (c).
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3.1.2. Asymptotic behaviour

Let us prove point (b) of Proposition 3.1. Let Q and eQ be as in the proposition. By
(a) and (c), eQ can be extended to a C4 solution of (3.1). As a consequence,

|Q(x)| =

1
|x |N�2

����eQ
✓

x
|x |2

◆���� 

C
|x |N�2 .

More generally, writing for |↵|  4

@↵x Q(x) =

X
�+�=↵

✓
↵

�

◆
@�x

✓
1

|x |N�2

◆
@
�
x

✓eQ
✓

x
|x |2

◆◆
,

and using that @↵x eQ is locally bounded, we obtain the desired estimate.
3.1.3. Transforms of stationary solutions

It remains to prove point (d) of Proposition 3.1. Let M be the group of one-to-one
maps of RN

[ {1} generated by

• the translations Ta : x 7! x + a, where a 2 RN ;
• the dilations D� : x 7! �x , where � > 0;
• the linear isometries P 2 ON (R);
• the inversion J : x 7!

x
|x |2 .

We adopt the conventions Ta(1) = D�(1) = P(1) = J (0) = 1, J (1) = 0. If
' 2 M and f 2 Ḣ1, we denote by

2'( f ) =

�� det'0(x)
�� N�2
2N f ('(x)).

We note that 2'� = 2 �2' and

2Ta ( f )(x) = f (x + a), 2D�( f )(x) = �N/2�1 f (�x), 2P( f )(x) = f (Px),

and that 2J ( f ) is the Kelvin transform of f . We deduce that
�
2', ' 2 M

 
is

exactly the groupM of isometries of Ḣ1 generated by space translations, scaling,
linear isometries and the Kelvin transform mentioned in the introduction. In view
of point (c) of Proposition 3.1,

f 2 6 =) 2'( f ) 2 6.

We next prove that the transformations ✓A defined by (3.3) are inM. Letting

'A(x) = b +

es Pc(x � a|x |2)
1� 2ha, xi + |a|2|x |2

, (3.8)
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we see that
��� det('0

A(x))
��� = eNs

��� x
|x | � a|x |

����2N . As a consequence, for any f 2

Ḣ1,

✓A( f ) = | det'0

A(x)|
N�2
2N f ('A(x)) = 2'A( f ) (3.9)

and thus that it is sufficient to show that 'A 2 M . For this we notice that the
function  a defined by

 a(x) = J � T�a � J (x) =

x � a|x |2

1� 2ha, xi + |a|2|x |2

is in M . Since
'A = Tb � Pc � Des �  a (3.10)

we obtain that 'A is an element of M , which concludes the proof.

3.1.4. Composition and inverse of the transformations

It remains to prove point (e) of Proposition 3.1. We use the notations Ta , D�,  a of
the preceding subsection. By direct computations, if a, b 2 RN , P 2 ON , � > 0,

Tb � D� = D� � T��1b, Tb � P = P � TP�1(b), P � D� = D� � P (3.11)
 a � D� = D� �  �a,  a � P = P �  P�1(a) (3.12)
 a � Tb(x) = T� � M � Dµ �  ↵, where (3.13)

µ�1
= 1+ |a|2|b|2 � 2ha, bi, ↵ = µ(a � |a|2b), (3.14)

� = µ(b � |b|2a), M(x) = µ�12h↵, xi� � 2hb, xia + x . (3.15)

Note that µ is well-defined if a 6= b/|b|2, which is the case if |a| < 1 and |b| < 1,
and that M 2 SON , as can be checked directly by computing M⇤M . Moreover, it
is easy to see that (a, b) 7! (↵,�, µ,M) is C1 in a neighborhood of the origin of
R2N .

Let A j = (a j , b j , c j , s j ) 2 BN 0

(") ( j = 1, 2), A = (a, b, c, s) 2 BN 0

(").
Then by (3.10),

'A1 � 'A2 = Tb1 � Pc1 � Des1 �  a1 � Tb2 � Pc2 � Des2 �  a2

and
'�1
A =  �a � De�s � P�c � T�b.

Point (e) then follows from formulas (3.11),. . . , (3.15) and the fact that c 7! Pc is
a local diffeomorphism, in a neighborhood of the origin from R N (N�1)

2 toON .



NONRADIAL WAVES WITH THE COMPACTNESS PROPERTY 747

3.2. Properties of the linearized operator

This subsection concerns the linearized operator LQ around a non-zero stationary
solution Q, and the quadratic form associated to LQ . In Subsection 3.2.2, we prove
a coercivity property of this quadratic form and give some consequences. We then
consider, in Subsection 3.2.3, the vector space eZQ defined in the introduction. We
finally give, in Subsection 3.2.4 the precise asymptotics of an eigenfunction associ-
ated to a negative eigenvalue of LQ .

3.2.1. Preliminaries and notations

Let Q 2 6. We denote by

LQ = �1�

N + 2
N � 2

|Q|

4
N�2 (3.16)

the linearized operator at Q, and by

8Q( f ) =

1
2

Z
|r f |2 �

N + 2
2(N � 2)

Z
|Q|

4
N�2 f 2 =

1
2

Z
LQ f f (3.17)

the corresponding quadratic form, defined for f 2 Ḣ1
�
RN �.

Claim 3.5. Let V be a subspace of Ḣ1
�
RN � such that

8 f 2 V, 8Q( f )  0. (3.18)

Then dim V is finite.

Proof. Indeed, by Proposition 3.1, if f 2 V , then k f k2Ḣ1  C
R 1
1+|x |4 | f (x)|

2 dx .
By Hardy’s inequality and Rellich-Kondrachov Theorem, the injection

Ḣ1 �! L2
✓

RN ,
1

1+ |x |4
dx

◆

is compact. Thus the unit ball of V is compact, which proves the result.

Since by Proposition 3.1 |Q|

4
N�2 (x) 

C
1+|x |4 , it is classical (see [8, Section 8]) that

LQ is a self-adjoint operator with domain H2
�
RN �. By [8, Theorem 8.5.1] and

Claim 3.5, the essential spectrum of LQ is [0,+1), and LQ has no positive eigen-
value and a finite number of negative eigenvalues. We will denote this eigenvalues
by �!21, . . . ,�!

2
p, where

0 < !1  . . .  !p,

and the eigenvalues are counted with their order of multiplicity. Note that p �

1 because LQQ = �
4

N�2 |Q|

4
N�2 Q. The spectrum of LQ is exactly [0,+1) [
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{�!2j } j=1...p. Let us consider an orthonormal family (Y j ) j=1...p of eigenvectors of
LQ corresponding to the eigenvalues �!2j :

LQY j = �!2j Y j ,
Z

RN
Y jYk = � jk =

(
0 if j 6= k
1 if j = k.

(3.19)

By elliptic regularity, these functions are C3 (C1 if N = 3 or N = 4). It is well-
known that they are exponentially decreasing at infinity (see Proposition 3.9 below
for their precise asymptotics).

The min-max principle implies

8 f 2 H1(RN ),

Z
Y1 f =

Z
Y2 f = . . .=

Z
Yp f = 0 =) 8Q( f ) � 0. (3.20)

Let
ZQ =

n
f 2 Ḣ1(RN ), s.t. LQ f = 0

o
. (3.21)

Note that the elements of ZQ are not assumed to be in L2. By Claim 3.5, ZQ is
finite dimensional. Let (Z j ) j=1...m be a basis of ZQ . We have

8 j = 1 . . .m, 8k = 1 . . . p,
Z

Z jYk = 0. (3.22)

Since the functions Z1, . . . , Zm,Y1, . . . ,Yp are linearly independent, one can find,
by an elementary linear algebra argument, E1, . . . , Em 2 C1

0 (RN ) such that

8 j=1 . . .m, 8k=1 . . . p,
Z
E jYk =0, 8 j, k=1 . . .m,

Z
E j Zk =� jk . (3.23)

3.2.2. A coercivity property

In this part we prove the following positivity property of LQ :

Proposition 3.6. Let (Yk)k=1...p, (E j ) j=1...m be as above. There exists a constant
c̃ > 0 with the following property. If f 2 Ḣ1(RN ) and

8k = 1 . . . p,
Z
Yk f = 0 and 8 j = 1 . . .m,

Z
E j f = 0 (3.24)

then
8Q( f ) � c̃k f k2Ḣ1 . (3.25)
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We will also prove the following consequences of Proposition 3.6:

Corollary 3.7. There are constants "0,C > 0 with the following property. Let
S 2 6 such that

kS � QkḢ1 < "0. (3.26)

Then

kS � QkḢ1  C
mX
i=1

����
Z

(S � Q)Ei
���� . (3.27)

Furthermore, if A 2 RN 0 is small,

k✓A(Q) � QkḢ1  C|A|, (3.28)

where the transformation ✓A is defined in (3.3).

Proof of Proposition 3.6. The proof is quite standard, we give it for the sake of
completeness.

Step 1. We show that for all f 2 Ḣ1(RN ),

Z
Y1 f = . . . =

Z
Yp f = 0 =) 8Q( f ) � 0. (3.29)

Indeed, by (3.20), (3.29) holds if f 2 H1(RN ). Assume that f is in Ḣ1 but not in
L2, and that the orthogonality conditions in the left-hand side of (3.29) hold. Let
� 2 C1

0 (RN ) such that �(x) = 1 if |x |  1 and �(x) = 0 if |x | � 2. Let

f"(x) = �("x) f (x),

so that f" 2 H1(RN ). Then

f" = g" +

pX
k=1

↵k"Yk, where for all k, ↵k" =

Z
f"Yk,

Z
g"Yk = 0.

We have
|↵k"| =

����
Z

f"Yk
���� =

����
Z �

�("x) � 1
�
f (x)Yk(x) dx

����
 C

Z
|x |�1/"

| f (x)Yk(x)| dx �!

"!0
0.

By the definition of g" and the fact that (3.29) holds in H1, we have 8Q(g") � 0.
Thus

8Q( f") = 8Q(g") +

pX
k=1

↵2k"8Q(Yk) �

pX
k=1

↵2k"8Q(Yk) �!

"!0
0.
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Since

8Q( f") =

1
2

Z
|r (�("x) f (x))|2 dx

�

N + 2
2(N � 2)

Z
(�("x))2 f 2(x)|Q|

4
N�2 (x) dx �!

"!0
8Q( f ),

we obtain as announced 8Q( f ) � 0.

Step 2. We show that for all f 2 Ḣ1(RN ),

Z
f Y1 = . . . =

Z
f Yp =

Z
f E1 = . . . =

Z
f Em

= 0 =)

�
f = 0 or 8Q( f ) > 0

�
.

(3.30)

Indeed, let
H =

⇢
g 2 Ḣ1 s.t.

Z
gY1 = . . . =

Z
gYp = 0

�
.

We first prove �
f 2 H and 8Q( f ) = 0

�
=) f 2 ZQ . (3.31)

Let f 2 H such that 8Q( f ) = 0. Denoting also by 8Q the bilinear form

8Q( f, g) =

1
2

Z
r frg �

N + 2
2(N � 2)

Z
|Q|

4
N�2 f g,

we get by Cauchy-Schwarz for8Q (using that by Step 1,8Q is nonnegative on H ),

8h 2 H, 8Q( f, h) = 0. (3.32)

Let g 2 Ḣ1, and write g = h +

Pp
k=1 �kYk , with h 2 H and �k =

R
gYk . Then

8Q( f, g) = 8Q( f, h)| {z }
0 by (3.32)

+

pX
k=1

�k 8Q( f,Yk)| {z }
0 since f 2H

.

In particular,
8g 2 C1

0 (RN ),

Z
f LQg = 0, (3.33)

i.e. LQ f = 0 in the sense of distribution. Thus f 2 ZQ . Hence (3.31).
Combining (3.31) with the definition of E1,. . . ,Em , we obtain✓

f 2 H, 8Q( f ) = 0 and
Z

f E1 = . . . =

Z
f Em = 0

◆
=) f = 0

and (3.30) follows (using again that 8Q is nonnegative on H ).
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Step 3. We conclude the proof of Proposition 3.6, arguing by contradiction and
using a standard compactness argument. If the conclusion of the proposition does
not hold, there exists a sequence { fn}n in Ḣ1 such that8>><

>>:
8n, 8k 2 {1, . . . , p}, 8 j 2 {1, . . . ,m},

Z
fnYk =

Z
fn E j = 0

8n, 0 < 8Q( fn) 

1
n
and k fnkḢ1 = 1.

(3.34)

Extracting a subsequence, we can assume

fn −−−⇀
n→∞

f weakly in Ḣ1. (3.35)

In particular,
R

|r f |2  lim supn!1

R
|r fn|2. Furthermore, using the fact that,

by Proposition 3.1, lim|x |!1 |x |2|Q|

4
N�2 (x) = 0, we get by Hardy’s inequality and

Rellich-Kondrachov Theorem:

lim
n!1

Z
|Q|

4
N�2 f 2n =

Z
|Q|

4
N�2 f 2.

Combining with (3.34), we obtain

8Q( f )  0. (3.36)

Since by (3.34) and (3.35)Z
f Y1 = . . . =

Z
f Yp =

Z
f E1 = . . . =

Z
f Em = 0,

we deduce by Step 2 that f = 0. As a consequence, limn!1

R
|Q|

4
N�2 f 2n = 0.

Since 0 < 8Q( fn)  1/n, we obtain limn!1

R
|r fn|2 = 0 which contradicts the

equality k fnkḢ1 = 1 in (3.34). The proof is complete.

Proof of Corollary 3.7. In all the proof, C > 0 is a large, positive constant, depend-
ing only on Q and the choice of Z1, . . . , Zm, E1, . . . , Em and that may change from
line to line. Let

g= S � Q, ↵i =

Z
g Yi , � j =

Z
g E j , i=1, . . . , p, j=1, . . . ,m (3.37)

h = g �

pX
i=1

↵ j Y j �

mX
j=1

� j Z j . (3.38)

Note thatZ
hYi = 0,

Z
hE j = 0, i = 1, . . . , p, j = 1, . . . ,m. (3.39)

kgkḢ1  khkḢ1 + C
pX

i=1
|↵i | + C

mX
j=1

|� j |. (3.40)
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Furthermore,

�1g = |S|
4

N�2 S � |Q|

4
N�2 Q

= |Q + g|
4

N�2 (Q + g) � |Q|

4
N�2 Q =

N + 2
N � 2

|Q|

4
N�2 g + RQ(g),

(3.41)

where

RQ(g) = |Q + g|
4

N�2 (Q + g) � |Q|

4
N�2 Q �

N + 2
N � 2

|Q|

4
N�2 g (3.42)

satisfies the pointwise bound
��RQ(g)

��
 C

⇣
|Q|

6�N
N�2 |g|2 + |g|

N+2
N�2

⌘
. (3.43)

By (3.43), if kgk
L
2N
N�2

 1 (which holds by (3.26) if "0 is small enough),

kRQ(g)k
L
2N
N+2

 Ckgk2
L
2N
N�2

 Ckgk2Ḣ1 . (3.44)

By (3.41), LQ(g) = RQ(g), and thus, by the definition (3.38) of h,

LQh +

pX
j=1

↵ j!
2
j Y j = RQg. (3.45)

Multiplying (3.45) by Y j and integrating over RN , we get, using also (3.39) and
(3.44),

8 j = 1, . . . , p, |↵ j |  Ckgk2Ḣ1 . (3.46)

Multiplying (3.45) by h and integrating over RN , we obtain, using (3.39), (3.44)
and Proposition 3.6, khk2Ḣ1  Ckgk2Ḣ1khkL

2N
N�2

and thus

khkḢ1  Ckgk2Ḣ1 . (3.47)

Combining (3.46) and (3.47) with (3.40), we deduce

kgkḢ1  Ckgk2Ḣ1 + C
mX
i=1

|�i |  C"0kgkḢ1 + C
mX
i=1

|�i |,

and thus, if "0 > 0 is chosen small enough, the conclusion (3.27) of the corollary.
It remains to prove (3.28). By (3.27),

k✓A(Q) � QkḢ1 C
mX
i=1

����
Z

(✓A(Q) � Q) Ei
����C

mX
i=1

����
Z
Q
�
(✓A)

⇤ (Ei ) � Ei
����� ,

and the conclusion follows from Lemma A.3 in the appendix.
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3.2.3. Null directions

We next check that the vector space eZQ defined in the introduction is included in
ZQ .

Lemma 3.8. Let Q 2 6. Then the following functions g are in Ḣ1\C1(RN ) and
satisfy LQg = 0:

N � 2
2

Q + x · rQ (3.48)

(2� N )x j Q + |x |2@x j Q � 2x j x · rQ, k 2 {1, . . . , N } (3.49)
@x j Q, j = 1, . . . , N , (3.50)

(x j@xk � xk@x j )Q, 1  j < k  N . (3.51)

Proof. The fact that the functions defined in (3.48). . . (3.51) are smooth follows
immediately from the fact that Q is smooth (see Proposition 3.1). Furthermore, by
Proposition 3.1 again, all the functions (3.48), (3.50) and (3.51) are in Ḣ1. We have

8s 2 R, �1
⇣
e

(N�2)
2 s Q

�
esx

�⌘
=

���e N�2
2 s Q

�
esx

���� 4
N�2 e

N�2
2 s Q

�
esx

�
8b 2 RN , �1Q(x + b) = |Q(x + b)|

4
N�2 Q(x + b)

8c 2 RN , �1Q(Pcx) = |Q(Pcx)|
4

N�2 Q(Pcx).

Differentiating these equalities with respect to s, b or c, and taking the resulting
equality at 0, we get (3.48), (3.50) and (3.51).

To get (3.49), let h =
@
@y j

⇣
1

|y|N�2 Q
⇣

y
|y|2

⌘⌘
, and observe that by points (a) and

(c) of Proposition 3.1 and (3.50), h is in Ḣ1 \ C4 and satisfies:
✓
1+

N + 2
(N � 2)|y|4

|Q|

4
N�2

✓
y

|y|2

◆◆
h = 0,

at least away from the origin. Let g =
1

|x |N�2 h
⇣

x
|x |2

⌘
. Since the Kelvin transforma-

tion is an isometry of Ḣ1, we get that g is in Ḣ1. Using that1g=
1

|x |N+2 (1h)
� x

|x |2
�
,

we obtain

1g +

N + 2
N � 2

|Q|

4
N�2 g = 0 (3.52)

outside x = 0. An explicit computation gives g(x) = �(N � 2)x j Q + |x |2@x j Q �

2x j x ·rQ. Thus g is smooth and must satisfy (3.52) also at x = 0, which concludes
the proof.
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3.2.4. Estimates on the eigenfunctions

Consider the radial coordinates:

r = |x |, ✓ =

x
|x |

2 SN�1.

In this section we recall the following result of V. Z. Meshkov [40]:

Proposition 3.9. Let Q 2 6 and Y 2 L2(RN ) such that Y 6= 0 and

LQY = �!2Y, (3.53)

with ! > 0. Then

Y (x) =

e�!|x |

|x |
N�1
2

✓
V
✓
x
|x |

◆
+8(x)

◆
,

where V 2 L2(SN�1) is not identically 0, andZ
SN�1

|8(r, ✓)|2 d✓  Cr�1/2. (3.54)

As an immediate consequence of Proposition 3.9, we obtain:

Corollary 3.10. Let Y be as in Proposition 3.9. Then there exists a constant C > 0
such that for large r ,

Z
SN�1

|Y (r, ✓)|2 d✓ �

e�2!r

C r N�1 .

Proposition 3.9 is Theorem 4.3 of [40]. The proof of this result uses the following
bound:

8r � 1,
Z
SN�1

|Y (r, ✓)|2 d✓  C
e�2!r

r N�1 , (3.55)

which follows from estimates of S. Agmon [1]. We give a proof of (3.55) for the
sake of completeness, refering to [40] for the rest of the proof of Proposition 3.9.

Proof of (3.55). By scaling we can assume ! = 1. By elliptic regularity (and since
|Q|

4
N�2 2 C1(RN )), we have Y 2 C3(RN ) \ H2(RN ). Let

G(R) =

Z
+1

R

Z
SN�1

|rY (r, ✓)|2 + |Y (r, ✓)|2 d✓r N�1 dr. (3.56)

Step 1. Bound on G We show that there exists C > 0 such that

8R > 0, G(R)  Ce�2R . (3.57)
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By (3.53),
Z

+1

R

Z
SN�1

(1Y Y +

N + 2
N � 2

|Q|

4
N�2Y 2 � Y 2) d✓ r N�1dr = 0.

Integrating by parts and using that Y 2 Ḣ1(RN ) to prove that the “boundary term”
at infinity is zero, we obtain

�

Z
+1

R

Z
SN�1

⇣
|rY |

2
+ Y 2

⌘
d✓ r N�1dr

+

N + 2
N � 2

Z
+1

R

Z
SN�1

|Q|

4
N�2Y 2 d✓ r N�1dr � RN�1

Z
SN�1

(Y@rY )(R, ✓) d✓=0,

and thus
G(R) = �RN�1

Z
SN�1

(Y@rY )(R, ✓) d✓

+

N + 2
N � 2

Z
+1

R

Z
SN�1

|Q|

4
N�2Y 2 d✓ r N�1dr.

(3.58)

Furthermore, differentiating the definition (3.56) of G, we obtain

G 0(R) = �RN�1
Z
SN�1

|rY (R, ✓)|2 + (Y (R, ✓))2 d✓ .

Therefore
2G(R) + G 0(R)

= �RN�1
Z
SN�1

⇣
|rY |

2
+ Y 2 + 2Y@rY

⌘
(R, ✓) d✓

+

2(N + 2)
N � 2

Z
+1

R

Z
SN�1

|Q|

4
N�2Y 2 d✓r N�1 dr.

By Proposition 3.1 (b),

2G(R) + G 0(R) 

C
R4

Z
+1

R

Z
SN�1

Y 2(r, ✓) d✓ r N�1dr 

C
R4
G(R). (3.59)

Thus
d
dR

h
logG(R) + 2R

i


C
R4

. (3.60)

Integrating, we obtain that log
�
e2RG(R)

�
is bounded from above, which yields

(3.57).

Step 2: end of the proof. Let for r > 0.

b(r) = r N�1
Z
SN�1

|Y (r, ✓)|2 d✓ .
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By Step 1, b(r) and b0(r) are integrable on (1,+1). Thus b(r) converges to 0 as
r ! +1. Hence, for R � 1,

|b(R)| =

����
Z

1

R
b0(r) dr

����


Z
1

R

✓
(N � 1)r N�2

Z
SN�1

|Y (r, ✓)|2 d✓

+r N�1
Z
SN�1

|@rY (r, ✓)Y (r, ✓)| d✓
◆
dr

 CG(R)  Ce�2R,

which gives (3.55).

We will also need the following estimate on the L
2(N+2)
N�2 norm of Y , which is essen-

tially a corollary of Proposition 3.9 and its proof:

Lemma 3.11. There exists C > 0 such that

8R � 1,
Z

|x |�R
|Y (x)|

2(N+2)
N�2 dx  C

e�
2(N+2)!
N�2 R

RqN
,

where qN =
4(N�1)
N�2 if N = 3, 4 and q5 =

32
9 .

Proof. We assume as before ! = 1. Let for J = ( j, k), 1  j < k  N ,
@✓J = x j@xk � xk@x j . We notice that the derivatives @✓J are tangential to the spheres
r SN�1, and that the tangential component of the gradient, rT v, satisfies |rT v| 

C
r
P

J |r✓J v|. Furthermore, each @✓J commutes with 1.
Step 1. Estimate on GJ
Fix J = ( j, k) with 1  j < k  N . In this step we prove

8R � 1,
Z
SN�1

⇣
|Y (R, ✓)|2 + |@✓J Y (R, ✓)|2

⌘
d✓  C

e�2R

RN�1 . (3.61)

Let
GJ (R) =

Z
+1

R

Z
SN�1

|r@✓J Y (r, ✓)|2 + |@✓J Y (r, ✓)|2 d✓r N�1 dr.

Using the argument of Step 2 of the proof of (3.55), we see that (3.61) will follow
from:

8R � 1, GJ (R)  Ce�2R . (3.62)

We next prove (3.62). We have

1(@✓J Y ) � @✓J Y +

N + 2
N � 2

|Q|

4
N�2 @✓J Y = �@✓J

✓
N + 2
N � 2

|Q|

4
N�2

◆
Y. (3.63)
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Proceding as in Step 1 of the proof of (3.55), we obtain

2GJ (R) + G 0

J (R)  C
Z

+1

R

Z
SN�1

|Q|

4
N�2 (@✓J Y )2d✓ r N�1dr

+ C
Z

+1

R

Z
SN�1

���@✓J
⇣
|Q|

4
N�2

⌘
Y@✓J Y

��� d✓ r N�1dr.
(3.64)

By Proposition 3.1 (b), |Q|

4
N�2 +

���@✓J
⇣
|Q|

4
N�2

⌘���  C/R4. In view of (3.57), we
obtain

Z
+1

R

Z
SN�1

|Q|

4
N�2 (@✓J Y )2d✓ r N�1dr 

C
R2

Z
+1

R

Z
SN�1

|rY |
2d✓ r N�1dr



Ce�2R

R2
.

and
Z

+1

R

Z
SN�1

���@✓J
⇣
|Q|

4
N�2

⌘
Y @✓JY

���d✓ r N�1dr

C
R3

Z
+1

R

Z
SN�1

|rY |
2
+|Y |

2d✓ r N�1dr



Ce�2R

R3
.

By (3.64), we deduce

2GJ (r) + G 0

J (R) 

Ce�2R

R2
,

and thus
d
dR

⇣
e2RGJ (R)

⌘


C
R2

.

Integrating between 1 and R > 1, we obtain (3.62).

Step 2. We prove the conclusion of the lemma in the case N 2 {3, 4}. By Sobolev
embedding on the sphere SN�1,

k f k
L
2(N+2)
N�2 (SN�1)

 Ck f k
H
2(N�1)
N+2 (SN�1)

.

If N = 3 or N = 4, 2(N�1)
N+2  1. By (3.61),

Z
SN�1

|Y (r, ✓)|
2(N+2)
N�2 d✓  C

✓Z
SN�1

|Y (r, ✓)|2 + |@✓Y (r, ✓)|2 d✓
◆ N+2

N�2



C

r
(N�1)(N+2)

N�2
e�

2(N+2)
N�2 r
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where we have denoted |@✓Y |
2

=

P
J |@✓J Y |

2. Multiplying by r N�1 and integrating
between R and1, we obtain the desired estimate when N = 3 or N = 4.

Step 3. We next treat the case N = 5. Note that 2(N+2)
N�2 =

14
3 . Since

2(N�1)
N+2 =

8
7 >

1, it is tempting to differentiate a second time the equation (3.53) on Y to obtain L2
estimates on @2✓ Y and use a Sobolev inequality on the sphere S

4 to bound the L14/3

norm. This is not possible because of the low regularity of |Q|

4
3 , and we will rather

use directly the equation (3.53) to get a bound on1Y , then the H2-critical Sobolev
inequality on R5.

Using the Sobolev inequality k f kL4(S4)  Ck f kH1(S4) we obtain, by Step 1,
and the same proof as in Step 2,

Z
+1

R

Z
S4

|Y (r, ✓)|4d✓r4dr

Z
+1

R

✓Z
S4

|Y (r, ✓)|2 + |@✓Y (r, ✓)|2d✓
◆2
r4dr



Ce�4R

R4
.

(3.65)

Let ' 2 C1(R) such that '(r) = 0 if r  0 and '(r) = 1 if r � 1. Let

YR(x) = '(|x | � R)Y (x).

By (3.57), and equation (3.53) (noting that all derivatives of x 7! '(|x | � R) are
uniformly bounded for R � 1),

8R � 1,
Z

R5

⇣
Y 2R + |rYR|

2
+ |1YR|

2
⌘
dx  Ce�2R .

Using the H2-critical Sobolev inequality in R5, we deduce
Z

|x |�R
Y 10(x)dx 

Z
R5
Y 10R (x)dx  Ce�10R . (3.66)

The conclusion of the lemma follows from (3.65), (3.66) and the interpolation in-
equality

k f k
L
14
3

 k f k
16
21
L4k f k

5
21
L10 .

3.3. Choice of the modulation parameters

Recall from the introduction the definition of eZQ . By Lemma 3.8, eZQ ⇢ ZQ . The
nondegeneracy assumption (1.8) means that these two vector spaces are identical.

As before, we denote by Z1,. . . ,Zm a basis of ZQ and E1,. . . ,Em elements of
C1

0 such that (3.23) holds.
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Let A 2 RN 0 . Recall from (3.3) the definition of ✓A. We will denote by ✓�1
A

the inverse of ✓A, and by
⇣
✓�1
A

⌘
⇤

its adjoint. An explicit computation shows that

⇣
✓�1
A

⌘
⇤

(g)(x) =

��det'0

A(x)
�� N+2
2N g ('A(x))

= e
(N+2)s
2

���� x
|x |

� |x |a
����
�(N+2)

g

 
b +

es Pc(x � |x |2a)
1� 2ha, xi + |a|2|x |2

!
.
(3.67)

In this subsection we show the following:

Lemma 3.12. Assume (1.8). There exists a neighborhood U of 0 in RN 0 , a neigh-
borhood V of Q in H�1, and a C1, Lipschitz continuous map 9 : V ! U such
that,

8 f 2 V, 8i = 1 . . .m,
D
f,
⇣
✓�1
9( f )

⌘
⇤

(Ei )
E
H�1,H1

�

Z
QEi = 0. (3.68)

Remark 3.13. If f 2 Ḣ1, then (3.68) is equivalent to

8i = 1 . . .m,

Z ⇣
✓�1
9( f )( f ) � Q

⌘
Ei = 0. (3.69)

We will often use (3.69) instead of (3.68), but will also need (3.68) which has the
advantage of making sense for any f 2 H�1.

Proof of Lemma 3.12. By Corollary A.2 (with  = E j which is an element of S)
and (3.67),

8 : (A, f )2 BN
0

(")⇥H�1(RN ) 7�!

✓D
f,
⇣
✓�1
A

⌘
⇤

(E j )
E
H�1,H1

�

Z
QE j

◆
j=1...m

2Rm

is well defined and C1. Using Corollary A.2 again, we can differentiate

8 j (A, Q) =

Z
Q
⇣
✓�1
A

⌘
⇤

(E j ) �

Z
QE j

under the integral sign, which yields:

@8 j

@s
(0, Q) = �

Z ✓
x · rQ +

N � 2
2

Q
◆
E j

@8 j

@ai
(0, Q) = �

Z ⇣
(N � 2)xi Q � |x |2@xi Q + 2xi x · rQ

⌘
E j

@8 j

@bi
(0, Q) = �

Z
@xi QE j

@8 j

@ci
(0, Q) =

Z
(x`@xk � xk@x`)QE j ,
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with ⇣(k, `) = i , where ⇣ is the map appearing in the definition (3.2) of Pc. By the
nondegeneracy assumption (1.8), we deduce that the differential map d18(0, Q)

with respect to the first variable A is onto from RN 0 to Rm . If m = N 0, this map
is an isomporhism of RN 0 and we can directly apply the implicit function theorem.
In the general case, Let L : Rm

! RN 0 be a right inverse of d18(0, Q) (so that
d18(0, Q)L is the identity of Rm), and e8(B, f ) = 8(L(B), f ). Then (taking a
smaller " > 0 if necessary),

e8 : Bm(") ⇥ H�1
! Rm

satisfies the assumptions of the implicit function theorem. We deduce that there
exist a neighborhood U of 0 in Rm , a neighborhood V of Q in H�1, and a C1 mape9 : V ! U such that

8 f 2 V, e8 �e9( f ), f
�

= 8
�
L(e9( f )), f

�
= 0.

Letting 9( f ) = L �
e9, we obtain a C1 map that satisfies (3.68). It remains to

prove that 9 is Lipschitz-continuous on V . For this it is sufficient to prove that the
differential of e9 is bounded on V . Differentiating the relation e8 �e9( f ), f

�
= 0

with respect to f , we obtain:

(@1e8)
�e9( f ), f

�
�

�
de9( f )

�
+ (@2e8)

�e9( f ), f
�

= 0.

Next, note that (@2e8)
�e9( f ), f

�
is the map g 7!

�⌦
g,

�
✓�1e9( f )

�
⇤

(E j )
↵
H�1,H1

�
j=1...m ,

and that (@1e8)(e9( f ), f ) is an isomorphism of Rm , uniformly bounded (as well as
its inverse) on V . Finally, we obtain that de9( f ), as a bounded linear operator from
H�1 to Rm , is uniformly bounded for f 2 V , which yields the result.

We conclude this section with a technical estimate, which says that under the non-
degeneracy assumption (1.8), in a neighborhood of a a non-zero stationary solution
Q, the distance of a Ḣ1 function f to 6 is well estimated by the distance of f to
✓9( f )(Q), where 9 is the map constructed in Lemma 3.12.

Lemma 3.14. Let Q 2 6 such that the nondegeneracy assumption (1.8) holds.
There exists a small constant "2 > 0 with the following property. Let f 2 Ḣ1 and
S 2 6 such that

k f � QkḢ1 + k f � SkḢ1 < "2. (3.70)
Then, if A = 9( f ) is given by Lemma 3.12,

k f � ✓A(Q)kḢ1  Ck f � SkḢ1 . (3.71)

Proof. We will prove

kS � ✓A(Q)kḢ1  Ck f � SkḢ1, (3.72)

which obviously implies (3.71) (with a larger constant C).
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Since the map 9 of Lemma 3.12 is Lipschitz-continuous, we have |A|  C"2.
Taking "2 > 0 small, we can use Corollary 3.7. By (3.28) and assumption (3.70),

���✓�1
A (S) � Q

���
Ḣ1

= kS � ✓A(Q)kḢ1

 k f � SkḢ1 + kQ � ✓A(Q)kḢ1 + k f � QkḢ1

 C"2.

(3.73)

By (3.27) in Corollary 3.7

���✓�1
A (S) � Q

���
Ḣ1

 C
mX
i=1

����
Z

(✓�1
A (S) � Q)Ei

���� . (3.74)

By the definition of A = 9( f ), we have
R ⇣
✓�1
A ( f ) � Q

⌘
Ei = 0 for all i , and

(3.74) implies

���✓�1
A (S) � Q

���
Ḣ1

 C
mX
i=1

����
Z ⇣

✓�1
A (S) � ✓�1

A ( f )
⌘
Ei

����
 Ck✓�1

A (S) � ✓�1
A ( f )kḢ1 = CkS � f kḢ1,

which concludes the proof.

4. Proof of the main result

In this section we prove Theorem 1.3. Let, for f 2 Ḣ1

d(6, f ) := inf
�
k f � QkḢ1, Q 2 6

 
. (4.1)

We will use the following proposition, proved in Section 5 below:

Proposition 4.1. Let Q 2 6 satisfying the nondegeneracy property (1.8). Then
there exists �0 = �0(Q) with the following property. If u is a solution of (1.1) with
maximal time of existence T+ and such that

E(u, @t u) = E(Q, 0) (4.2)
ku0 � QkḢ1 + ku1kL2 < �0 (4.3)

sup
t2[0,T+)

d(6, u(t)) + k@t u(t)kL2 < �0, (4.4)

then T+ = +1. Furthermore, there exists S 2 6, of the form S = ✓A(Q) with
A 2 RN 0 close to 0, such that one of the following holds:

u ⌘ S
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or there exists a (non-zero) eigenfunction Y of LS , with eigenvalue �!2 such that,
for some !+ > !,

��(u(t), @t u(t)) �

�
S + e�!t Y,�!e�!t Y

���
Ḣ1⇥L2  Ce�!

+t . (4.5)

Remark 4.2. Proposition 4.1 remains valid if Q = 0. In this case, S = 0 and
the linearized operator LS = �1 has no eigenvalue, so that (4.5) is impossible.
The conclusion of the proposition means that the only small solution of (1.1) such
that E[u] = 0 is 0, which is an immediate consequence of the critical Sobolev
inequality.

We will also need the fact, proved in Section 6, that the Lorentz transform of
a solution with the compactness property is also a solution with the compactness
property (see Proposition 6.2 for a precise statement).

We let u be a non-zero solution with the compactness property, so that there
exist �(t), and x(t) such that

K=

n⇣
�
N
2 �1(t)u (t, �(t) ·+x(t)), �

N
2 (t)@t u (t, �(t) · +x(t))

⌘
, t 2(T�(u), T+(u))

o

has compact closure in Ḣ1 ⇥ L2

4.1. Reduction to the case of zero momentum

By Proposition 1.2, there exist Q 2 6, ` 2 BN (1) and sn ! T+(u) such that

lim
n!1

����N/2�1 (sn) u (sn, � (sn) · +x (sn)) � Q` (0)
���
Ḣ1

+

����N/2 (sn) @t u (sn, � (sn) · +x (sn)) � @t Q` (0)
���
Ḣ1

= 0.
(4.6)

By Proposition 6.2, we get that u�` is well defined and has the compactness prop-
erty. Furthermore, in view of the proof of Lemma 6.12 (see Remark 6.15), there
exists a sequence of times {tn} such that (u�`(tn), @t u�`(tn)) converges to (Q, 0)
(up to scaling and space translation). We deduce P[u�`] = 0. As a consequence, it
is sufficient to prove Theorem 1.3 assuming

P[u] = 0,

which we will do in the sequel.

4.2. Existence of the stationary profile

By Proposition 1.2, (1.2), and since P[u] = 0, there exists a sequence t+n ! T+(u)
and Q 2 6 such that

lim
n!1

���� N�2
2 (t+n )u

�
t+n , �(t+n ) · +x(t+n )

�
� Q

���
Ḣ1

+

��@t u(t+n )
��
L2 = 0,

where Q verifies (1.8).
(4.7)
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LetM(Q) = {✓(Q), ✓ 2M}. If ( f, g) 2 Ḣ1 ⇥ L2, we let dQ be defined by

dQ( f, g) = inf
�
k f � ✓(Q)kḢ1 + kgkL2, ✓ 2M

 
(4.8)

Claim 4.3.

(a) dQ is continuous on Ḣ1 ⇥ L2;
(b) M(Q) is closed in Ḣ1;
(c) 8( f, g) 2 Ḣ1 ⇥ L2, dQ( f, g) = 0 () ( f, g) 2M(Q) ⇥ {0}.

Proof. Point (a) is elementary, and (c) follows immediately from (b). Let us
prove (b).

Let {Qn}n be a sequence inM(Q), and S 2 Ḣ1 such that limn kQn � SkḢ1 =

0. We fix a small constant " > 0 and choose n0 such that

8n, p � n0, kQn � QpkḢ1 < ".

For n � n0, we let An = 9(Qn) 2 RN 0 , where 9 is given by Lemma 3.12 with
Q = Qn0 . Note that the sequence {An}n�n0 is bounded inRN 0 (by C"). Extracting,
we can assume

lim
n!1

An = A 2 RN 0

with |A|  C".

By Lemma 3.14 with f = S = Qn , Q = Qn0 , and taking " smaller than the
constant "2 of Lemma 3.14, we have

Qn = ✓An (Qn0) �!

n!1

✓A(Qn0).

Thus S = ✓A(Qn0) 2M(Q) since Qn0 2M(Q).

4.3. Existence and properties of an asymptotic compact solution

We first prove two lemmas. We must show that (u0, u1) 2 M(Q) ⇥ {0}. We argue
by contradiction.

Lemma 4.4. Let u be as above, and assume that (u0, u1) /2 M(Q) ⇥ {0}. Let
�1 > 0 be a small parameter. Then there exists a solution w of (1.1) such that w
has the compactness property and

dQ(w0, w1) = �1 (4.9)
8t 2 [0, T+(w)), dQ(w(t), @tw(t))  �1. (4.10)

Proof. Step 1: construction of w. By Claim 4.3, (c), and since (u0, u1) /2M(Q)⇥

{0} we have dQ(u0, u1) > 0. Choose �1 small, so that �1 < dQ(u0, u1). We have

lim
n!1

dQ(u(t+n ), @t u(t+n )) = 0. (4.11)
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By continuity of dQ , if n is large, there exists tn such that

0 < tn < t+n (4.12)
8t 2 (tn, t+n ], dQ

�
u(t), @t u(t)

�
< �1 (4.13)

dQ(u(tn), @t u(tn)) = �1. (4.14)

We let
wn(s, y) = �

N�2
2 (tn)u

�
tn + �(tn)s, x(tn) + �(tn)y

�
,

where �(t), x(t) are given by Definition 1.1. By the compactness property, extract-
ing subsequences in n if necessary, there exist (w0, w1) 2 Ḣ1 ⇥ L2 such that

lim
n!1

k(wn(0) � w0, @swn(0) � w1)kḢ1⇥L2 = 0. (4.15)

By Lemma 6.10 (a), w has the compactness property.
Step 2. Proof of (4.9) and (4.10).

The equality (4.9) follows directly from (4.14) and (4.15) by the continuity of
dQ .

To prove (4.10), it is sufficient to prove that for all s in [0, T+(w)), there exists
N (s) such that

8n � N (s), tn + �(tn)s < t+n . (4.16)
The desired property (4.10) will then follow from (4.13), (4.15) and the continuity
of dQ .

We prove (4.16) by contradiction. Assume that there exists s 2 [0, T+(w))
such that (4.16) does not hold. Then, since tn < t+n , extracting subsequences if
necessary, there exists a sequence sn such that

8n, sn 2 [0, s] and tn + �(tn)sn = t+n . (4.17)

Extracting again subsequences, we assume

lim
n!1

sn = s1 2 [0, s].

By long time perturbation theory,

lim
n!1

k(wn(sn), @swn(sn)) � (w(s1), @sw(s1))kḢ1⇥L2 = 0,

that is

lim
n!1

⇣
�N/2�1(tn)u

�
t+n , �(tn) · +x(tn)

�
, �N/2(tn)@t u

�
t+n , �(tn) · +x(tn)

� ⌘
=

�
w(s1), @sw(s1)

�
in Ḣ1⇥L2. By (4.11) and the continuity of dQ , we deduce dQ(w(s1), @sw(s1)) =

0. By Claim 4.3 (c), w(s1) 2 M(Q) and @sw(s1) = 0, which contradicts (4.9).
The proof of the Lemma is complete.
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We can choose �1 in Lemma 4.4 so small that dQ(w0, w1) = �1 < �0, where �0 is
given by Proposition 4.1. As a consequence, there exists eQ 2M(Q) such that

k(w0, w1) � (eQ, 0)kḢ1⇥L2 < �0.

Since Q satisfies the non-degeneracy assumption (1.8), this is also the case for eQ.
Combining with (4.10), we see that w satisfies the assumptions of Proposition 4.1.
By the conclusion of this proposition, T+(w) = +1 and, since (w0, w1) /2M(Q)
(by (4.9)), there exists S 2M(Q) and Y such that

LSY = �!2Y, Y 6⌘ 0, ! > 0 (4.18)

8t � 0, k("(t), @t"(t))kḢ1⇥L2  Ce�!
+t , (4.19)

where !+ > ! is close to ! and

"(t) = w(t) � S � e�!t Y. (4.20)

We next prove:

Lemma 4.5. There exist r0, T > 0 and a constant C > 0 such that for all t0 � T ,

sup
t>T�(w)

k(r"(t), @t"(t))kL2({|x |�r0+|t0�t |})  Ce�!
+t0 . (4.21)

Remark 4.6. The bound (4.21) is valid for all t 2 (T�(w),+1). However we will
use it only for T�(w) < t < t0
Remark 4.7. In the supremum in (4.21), t can be negative, and thus, if |T�(w)|
is large, e�!t can be very large. However, in the region {|x | � r0 + |t0 � t |},
e�!t Y (x) is small (see Claim 4.8 below).

Proof. We notice that f (t) = w(t)�S satisfies @2t f +LS f = RS( f ), where RS( f )
is defined in (3.42). Thus "(t) = f (t) � e�!t Y satisfies

@2t " �1" =

N + 2
N � 2

|S|
4

N�2 " + RS
�
" + e�!t Y

�
. (4.22)

In the sequel, we denote by �r0,t0 the characteristic function of the set
�
(t, x) 2

RN+1, s.t. |x | � r0 + |t � t0|
 
. We will need the following bounds, proved in

Appendix D, which are consequences of the estimates obtained in Section 3.2.4.
Claim 4.8.

�r0,t0S 2 L
N+2
N�2 L

2(N+2)
N�2 := L

N+2
N�2

⇣
R, L

2(N+2)
N�2 (RN )

⌘
, �r0,t0e

�!t Y 2L
N+2
N�2 L

2(N+2)
N�2

���r0,t0S��L N+2
N�2 L

2(N+2)
N�2



C
rN/2�1
0

,
���r0,t0e�!t Y��L N+2

N�2 L
2(N+2)
N�2

 Ce�!(t0+r0).
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By Strichartz estimates and the local well-posedness theory for (1.1),

w 2 L
N+2
N�2
loc

⇣
(T�(w),+1) , L

2(N+2)
N�2

⌘
.

Thus " 2 L
N+2
N�2
loc

⇣
(T�(w),+1) , L

2(N+2)
N�2

⌘
. Using Claim 4.8, we deduce

✓
RS

�
" + e�!t Y

�
+

N + 2
N � 2

|S|
4

N�2 "

◆
�r0,t0 2 L1loc

⇣
(T�(w),+1), L2

⌘
.

We define " as the solution, in the integral sense, of the following equation:

8<
:

@2t " �1" =

✓
RS

�
" + e�!t Y

�
+

N + 2
N � 2

|S|
4

N�2 "

◆
�r0,t0

(", @t")�t=t0 = (", @t")�t=t0 .

(4.23)

By Strichartz estimates,

(", @t") 2 C0
⇣
(T�(w),+1), Ḣ1 ⇥ L2

⌘
and

" 2 L
N+2
N�2
loc

⇣
(T�(w),+1), L

2(N+2)
N�2

⌘
.

(4.24)

By finite speed of propagation and equations (4.22) and (4.23), " = " almost every-
where for (x, t) such that |x | � r0 + |t � t0|, and we can rewrite (4.23) as

8<
:

@2t " �1" =

✓
RS

�
" + e�!t Y

�
+

N + 2
N � 2

|S|
4

N�2 "

◆
�r0,t0

(", @t")�t=t0 = (", @t")�t=t0 .

(4.230)

We shall prove that there is a large constant C > 0 such that if r0 and t0 are large,

k"k
L
N+2
N�2

�
(T�(w),+1);L

2(N+2)
N�2

�+ sup
t>T�(w)

k("(t), @t"(t))kḢ1⇥L2  Ce�!
+t0 . (4.25)

We will use a bootstrap argument. Let I ⇢ (T�(w),+1) be an interval such that
t0 2 I and

k"k
L
N+2
N�2

�
I ;L

2(N+2)
N�2

�  Me�!
+t0 (4.26)
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(M will be specified later). We will write �=�r0,t0 , L(I )=L
N+2
N�2

�
I, L

2(N+2)
N�2 (RN )

�
to lighten the notation. By Strichartz estimates, (4.19) and equation (4.230),

k"kL(I ) + sup
t2I

k("(t), @t"(t))kḢ1⇥L2  Ce�!+t0

+ C
��RS(" + e�!t Y )�

��
L1(I,L2)

+ C
���|S| 4

N�2 "�
���
L1(I,L2)

(4.27)

(here and until the end of the proof, C denotes a large positive constant, that may
change from line to line and is independent of M). By the pointwise bound (3.43)
on RS and Hölder’s inequality��RS(" + e�!t Y )�

��
L1(I,L2)

 C
✓

kS�k

6�N
N�2
L(I )

��(" + e�!t Y )�
��2
L(I ) +

��(" + e�!t Y )�
�� N+2
N�2
L(I )

◆
.

Combining with Claim 4.8 and the bootstrap assumption (4.26), we obtain��RS(" + e�!t Y )�
��
L1(I,L2)

C

0
@ 1

r
6�N
2

0

⇣
M2e�2!

+t0
+ e�2!(t0+r0)

⌘
+M

N+2
N�2 e�

N+2
N�2!

+t0
+e�

N+2
N�2!(t0+r0)

1
A.

(4.28)

On the other hand, using again Hölder’s inequality, Claim 4.8 and the bootstrap
assumption (4.26),

���|S| 4
N�2 "�

���
L1(I,L2)

 CkS�k

4
N�2
L(I )k"kL(I ) 

C
r20
Me�!

+t0 . (4.29)

Combining (4.27), (4.28) and (4.29), we obtain that there exists a constant C0 > 0
(independent of the choice of M) such that

k"kL(I ) + sup
t2I

k("(t), @t"(t))kḢ1⇥L2

 C0
✓
e�!

+t0
+

M
r20
e�!

+t0
+

M2

r
6�N
2

0

e�2!
+t0

+ M
N+2
N�2 e�

N+2
N�2!

+t0

+

1

r
6�N
2

0

e�2!(t0+r0)
+ e�

N+2
N�2!(t0+r0)

◆
.

(4.30)

We let M = C0 + 3, choose r0 > 0 so large that

C0M
r20

 1,
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then choose T > 0 large, so that

C0
✓
M2

r
6�N
2

0

e�2!
+T

+M
N+2
N�2 e�

N+2
N�2!

+T
+

1

r
6�N
2

0

e�2!(T+r0)
+e�

N+2
N�2!(T+r0)

◆
e!+T

 1

Then, if t0 � T ,

(4.26) =) sup
t2I

k("(t), @t"(t))kḢ1⇥L2 + k"kL(I )  (M � 1)e�!
+t0 . (4.31)

By (4.24), k"kL((t0�⌘,t0+⌘))  Me�!+t0 for small positive ⌘. Letting

� = sup
n
t > t0, k"kL((t0,t))  Me�!

+t0
o

,

we obtain by (4.31) that k"kL((t0,� ))  (M � 1)e�!+t0 , and thus � = +1 and, by
(4.31),

sup
t0<t

k("(t), @t"(t))kḢ1⇥L2  (M � 1)e�!
+t0 .

Using a similar argument for times t  t0, we deduce (4.25). Since " = " in the
region |x | � r0 + |t � t0|, we obtain the conclusion (4.21) of the Lemma.

4.4. End of the proof

We next close the proof of Theorem 1.3 by an energy channel argument. Let w be
the asymptotic solution, satisfying the compactness property, defined in the preced-
ing subsection. We will prove that

lim inf
t!T�(w)

k@tw(t)kL2 > 0,

contradicting Proposition 1.2. Let t 2 (T�(w), 0]. We have

@tw(t) = �!e�!t Y + @t"(t).

Hence ✓Z
r0+|t�t0||x |r0+|t�t0|+1

|@tw(t, x)|2 dx
◆ 1
2

�

1
C

 Z r0+|t�t0|+1

r0+|t�t0|

Z
SN�1

Y 2(r, ✓)e�2!t d✓ r N�1 dr

! 1
2

�

✓Z
r0+|t�t0||x |r0+|t�t0|+1

|@t"(t, x)|2 dx
◆ 1
2
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By Corollary 3.10 and Lemma 4.5 we deduce that if t0 � T , and r0 is as in
Lemma 4.5,

k@tw(t)kL2 �

1
C

 Z r0+|t�t0|+1

r0+|t�t0|
e�2!t e�2!r dr

!1/2
� Ce�!

+t0

�

1
C1

e�!(t0+r0)
� C2e�!

+t0,

for some constants C1,C2. We have used the fact that t is negative, so that |t� t0| =

t0 � t . We fix t0 � T such that 1
2C1 e

�!r0
� C2e�(!+

�!)t0 , and obtain

8t 2 (T�(w), t0], k@twkL2 �

1
2C1

e�!t0�!r0 .

Since P[w] = 0, we must have ` = 0 in Proposition 1.2, which shows that

lim
n!1

k@tw(t�n )kL2 = 0,

a contradiction. The proof is complete.

4.5. Rigidity result with an additional bound on the solution

We prove here the following consequence of Theorem 1.3, which is a corrected ver-
sion of [16, Theorem 2]. See also the corrected arXiv version arXiv:1003.0625v5,
where a proof independent of Theorem 1.3 is given. We recall from (1.3) the defini-
tion of the radial stationary solutionW , that satisfies the nondegeneracy assumption
(1.8) (see e.g. [19, Remark 5.6]).

Corollary 4.9. Let u be a solution of (1.1) with the compactness property. Let
` = �P[u]/E[u]. Assume that one of the following holds:

lim sup
t!T+(u)

��
ru(t)

��2
L2 <

2N � 2(N � 1)|`|2

N
p
1� |`|2

��
rW

��2
L2 (4.32)

or

lim sup
t!T+(u)

��
ru(t)

��2
L2 + (N � 1)

��@t u(t)��2L2 <
2p

1� |`|2

��
rW

��2
L2 . (4.33)

Then there exist x0 2 RN , ◆0 2 {�1,+1} and �0 > 0 such that

u(t, x) = ◆0�
N
2 �1
0 W`(�0t, �0x + x0),

where ` = �P[u]/E[u] is an element of BN (1) by Proposition 1.2.



770 THOMAS DUYCKAERTS, CARLOS KENIG AND FRANK MERLE

Remark 4.10. Note that

inf
0`<1

2N � 2(N � 1)`2

N
p

1� `2
=

4
p

N � 1
N

,

which shows that Corollary 4.9 implies Theorem 2 of the arXiv version of [16].

Proof of Corollary 4.9. Let u be as in Corollary 4.9, and Q+
2 6 be given by

Proposition 1.2. According to Theorem 1.3, and since W satisfies the nondegen-
eracy assumption (1.8), it is sufficient to prove that Q+ is equal to W up to sign
change, space translation and scaling. We recall (see [16, Proof of Lemma 2.6]):

Q 2 6 and krQk
2
L2 < 2krWk

2
L2

=) 9◆0 2 {�1,+1}, �0 > 0, x0 2 RN s.t. Q(x) = ◆0�
N
2 �1
0 W (�0x). (4.34)

We are thus reduced to prove

krQ+

k
2
L2 < 2krWk

2
L2 . (4.35)

Recall that
krQ+

k
2
L2 = kQ+

k

2N
N�2

L
2N
N�2

.

Let j = 1 . . . N . Multiplying the equation �1Q+
= |Q+

|

4
N�2 Q+ by x j@x j Q+

and integrating by parts, we obtain

k@x j Q
+

k
2
L2 =

1
N

krQ+

k
2
L2 .

We deduce by direct computations

krQ+

` (0)k2L2 =

N � (N � 1)|`|2

N
p
1� |`|2

krQ+

k
2
L2

k@t Q+

` (0)k2L2 =

|`|2

N
p
1� |`|2

krQ+

k
2
L2 .

Thus we see that (4.32) or (4.33) implies, together with the conclusion (1.4) of
Proposition 1.2, that (4.35) holds, which concludes the proof of Corollary 4.9.

5. Convergence to a stationary solution by modulation theory

This section is devoted to the proof of the Proposition 4.1.
We divide the proof into two steps: in 5.1, we prove that u converges expo-

nentially to a stationary solution; in 5.2, we conclude the proof. The proof relies
on modulation theory and precise asymptotics on approximate linear differential
systems.
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5.1. Exponential convergence to the stationary solution

In this subsection, we prove the following proposition, which is the first of two steps
of the proof of Proposition 4.1.

Proposition 5.1. Let u satisfy the assumptions of Proposition 4.1. Then T+ = +1.
Furthermore, there exist S 2 6, of the form S = ✓A(Q) with A 2 RN 0 close to 0,
and !,C > 0 such that

8t � 0, k(u(t) � S, @t u(t))kḢ1⇥L2  Ce�!t .

In all Section 5.1, we consider a solution u as in Propositions 4.1 and 5.1, and two
small parameters, �0, r0 > 0 such that

0 < �0 ⌧ r0 ⌧ 1.

5.1.1. Modulation of the solution

By our assumptions on u,
ku0 � QkḢ1 < �0. (5.1)

Let r0 > 0 be such that BḢ1(Q, r0) ⇢ V , where V is the neighborhood of Q in
H�1 given by Lemma 3.12. Let

T0 = inf
n
t 2 [0, T+) s.t. ku(t) � QkḢ1 � r0

o
. (5.2)

If ku(t) � QkḢ1 < r0 for all t 2 [0, T+), we let T0 = T+. We can choose �0 such
that 0 < �0 < r0/2, which implies by (4.3) that T0 > 0.

If t 2 [0, T0), we let A(t) = 9(u(t)) (9 given by Lemma 3.12), so that

8 j = 1, . . . ,m,

Z
h(t, x)E j (x) dx = 0, (5.3)

where
h = ✓�1

A (u) � Q. (5.4)
By Lemma 3.14 and (4.4)

8t 2 [0, T0), kh(t)kḢ1 =

��u(t) � ✓A(t)(Q)
��
Ḣ1  C�0. (5.5)

Since u2C1([0,T+),H�1(RN )), we know by Lemma 3.12 that A2C1([0,T0),RN 0

).
Furthermore (using the Lipschitz continuity of the function 9 of Lemma 3.12),
kA(t)k  Cr0. Let

↵ j (t) =

Z
h(t)Y j , � j (t) =

Z
@t u(t)(✓�1

A(t))
⇤Y j , j = 1, . . . , p (5.6)

�(t) =

vuut pX
j=1

↵2j (t). (5.7)
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Lemma 5.2. There exists C > 0 such that

8t 2 [0, T0),
1
C

�
k@t u(t)kL2 + kh(t)kḢ1

�
 �(t)  Ckh(t)kḢ1 . (5.8)

Proof. The inequality at the right-hand side of (5.8) follows immediately from the
definition of �(t). Let us show the other inequality.

By conservation of the energy, we have, for t 2 [0, T0),

E(Q, 0) = E(u(t), @t u(t)) = E
⇣
✓�1
A(t)(u(t)), @t u(t)

⌘
= E(Q + h(t), @t u(t))

and thus

E(Q, 0) = E(Q, 0) +

1
2

Z
(@t u(t))2 +8Q(h(t)) +O

✓
kh(t)k3

L
2N
N�2

◆
. (5.9)

Hence:

Z
(@t u(t))2 +8Q

 
h(t) �

pX
j=1

↵ j (t)Y j

!
 Ckh(t)k3Ḣ1 + C�2(t). (5.10)

By the definitions of A, h and ↵ j , we have

Z ⇣
h(t) �

pX
j=1

↵ j (t)Y j
⌘
Ek = 0, k = 1, . . . ,m,

Z ⇣
h(t) �

pX
j=1

↵ j (t)Y j
⌘
Y` = 0, ` = 1, . . . , p.

By Proposition 3.6,

�����h �

pX
j=1

↵ j Y j

�����
2

Ḣ1
 C8Q

 
h �

pX
j=1

↵ j Y j

!
.

Hence, by (5.10),

Z
(@t u)2 +

�����h �

pX
j=1

↵ j Y j

�����
2

Ḣ1
 Ckhk3Ḣ1 + C�2(t).
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Noting

kh(t)k2Ḣ1 =

�����
pX
j=1

↵ j Y j + h �

pX
j=1

↵ j Y j

�����
2

Ḣ1

0
@ pX

j=1

��↵ j Y j��Ḣ1+
�����h �

pX
j=1

↵ j Y j

�����
Ḣ1

1
A
2

 2

�����h �

pX
j=1

↵ j Y j

�����
2

Ḣ1
+ 2

 pX
j=1

|↵ j |
��Y j��Ḣ1

!2

 2

�����h �

pX
j=1

↵ j Y j

�����
2

Ḣ1
+ C�2,

we obtain the left-hand inequality in (5.8).

Lemma 5.3. There exists C > 0 such that

8t 2 [0, T0), kA0(t)k  C�(t).

Proof. Note that A(t) = 9(u(t)), where 9 is a C1 map from H�1 to RN 0 . Differ-
entiating, we obtain

A0(t) = (d9)(u(t))
du
dt

,

and thus, using the uniform bound of d9 in the proof of Lemma 3.12,

kA0(t)k  C
����dudt

����
H�1

 C
����dudt

����
L2

 C�(t),

where the last inequality follows from Lemma 5.2.

5.1.2. Reduction to an approximate finite-dimensional linear differential system

Lemma 5.4. Under the assumptions of Propostion 4.1, let ↵ j , � j and � be defined
by (5.6),(5.7). Then ↵ j ,� j 2 C1([0, T0), R) and

���↵0

j (t) � � j (t)
���  C�2(t) (5.11)���� 0

j (t) � !2j↵ j (t)
���  C

⇣
|A(t)|�(t) + �2(t)

⌘
. (5.12)

Proof. We have

↵ j (t) = �

Z
QYj +

Z
u(t)

⇣
✓�1
A(t)

⌘
⇤

(Y j ) and � j (t) =

Z
@t u(t)

⇣
✓�1
A(t)

⌘
⇤

(Y j ),
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and the fact that ↵ j and � j areC1follows from the fact that u2C2([0,T0),H�1(RN),
A 2 C1([0, T0), RN 0

) and Corollary A.2 with  = Y j . Differentiating under the
integral defining ↵ j , we obtain

↵0

j (t) =

Z
@t u(t)

⇣
✓�1
A(t)

⌘
⇤

(Y j )| {z }
� j (t)

+

Z
u(t)

@

@t

⇣⇣
✓�1
A(t)

⌘
⇤

(Y j )
⌘

. (5.13)

We note that the second integral is equal to
Z
✓�1
A(t) (u(t))

�
✓A(t)

�
⇤


@

@t

⇣⇣
✓�1
A(t)

⌘
⇤

(Y j )
⌘�

.

We have
�
✓A(t)

�
⇤

✓
@

@t

⇣⇣
✓�1
A(t)

⌘
⇤

(Y j )
⌘◆

=

@

@⌧

⇣�
✓A(t)

�
⇤

⇣
✓�1
A(⌧ )

⌘
⇤

(Y j )
⌘

�⌧=t

=

d
d⌧

⇣⇣
✓�1
B(⌧ )

⌘
⇤

(Y j )
⌘

�⌧=t
,

where, in view of point (e) of Proposition 3.1, ⌧ 7! B(⌧ ) is a C1 function such that
B(0) = 0.

Using Corollary A.2, we get that

�
✓A(t)

�
⇤

✓
@

@t

⇣⇣
✓�1
A(t)

⌘
⇤

(Y j )
⌘◆

is a linear combination of terms of the form T ⇤Y j , where T is one of the trans-
formations defining eZ: @x j , x j@xk � xk@x j , (2 � N )x j + |x |2@x j � 2x j x · r and
N�2
2 + x · r, we deduce:

Z
Q
�
✓A(t)

�
⇤


@

@t

⇣⇣
✓�1
A(t)

⌘
⇤

(Y j )
⌘�

=

mX
k=1

Z
�k(t)ZkY j = 0,

where for k = 1 . . .m, �k(t) 2 R. Using the definition of h, we get ✓�1
A(t) (u(t)) =

h(t) + Q and thus����
Z
u(t)

@

@t

⇣⇣
✓�1
A(t)

⌘
⇤

(Y j )
⌘���� =

����
Z
h(t)

�
✓A(t)

�
⇤ @

@t

⇣⇣
✓�1
A(t)

⌘
⇤

(Y j )
⌘����

 Ckh(t)k
L
2N
N�2

�����✓A(t)
�
⇤ @

@t

⇣⇣
✓�1
A(t)

⌘
⇤

(Y j )
⌘����

L
2N
N�2

 C�(t)
���� @@t

⇣⇣
✓�1
A(t)

⌘
⇤

Y j
⌘����

L
2N
N�2

 C|A0(t)|�(t)  C�2(t),
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by Lemmas 5.2, 5.3, and Corollary A.2. Hence (5.11).
We next prove (5.12). We have

� 0

j (t) =

Z
@2t u(t)

⇣
✓�1
A(t)

⌘
⇤

(Y j ) +

Z
@t u(t)

@

@t

⇣⇣
✓�1
A(t)

⌘
⇤

Y j
⌘

, (5.14)

and ����
Z
@t u

@

@t

⇣⇣
✓�1
A(t)

⌘
⇤

Y j
⌘����  Ck@t u(t)kL2

���� @@t
⇣⇣
✓�1
A(t)

⌘
⇤

Y j
⌘����

L2

 Ck@t u(t)kL2 |A
0(t)|,

(5.15)

by Corollary A.2. By Lemma 5.2 and 5.3, the right-hand term of (5.15) is bounded
by C�2(t) for a constant C > 0. Let us consider the first term in the right-hand side
of (5.14): Z

@2t u
⇣
✓�1
A

⌘
⇤

(Y j ) =

Z
(1u + |u|

4
N�2 u)

⇣
✓�1
A

⌘
⇤

(Y j ).

We fix t and denote, to simplify the notation,

'(x) = 'A(t)(x) = b(t) +

es(t)Pc(t)(x � a(t)|x |2)
1� 2ha(t), xi + |a(t)|2|x |2

.

Recall that

| det'0(x)| = eNs
���� x
|x |

� |x |a
����
�2N

(5.16)

and (see (3.9))

✓A( f )(x) = | det'0(x)|
N�2
2N f ('(x)) = e

(N�2)s
2

���� x
|x |

� a|x |
����
�(N�2)

f ('(x)).

Using that, by the definition (5.4) of h,

u = ✓A(Q + h) = | det('0(x))|
N�2
2N (Q + h)('(x)),

1u = | det('0(x))|
N+2
2N (1(Q + h))('(x)),

we obtainZ
@2t u

⇣
✓�1
A

⌘
⇤

Y j

=

Z
| det'0(x)|

N+2
2N (1u + |u|

4
N�2 u)(x)Y j ('(x)) dx

=

Z
| det'0(x)|

N+2
N

⇣
1(Q + h) + |Q + h|

4
N�2 (Q + h)

⌘
('(x))Y j ('(x)) dx

=

Z ���det'0

⇣
'�1(y)

⌘��� 2N (�LQh + RQ(h))(y)Y j (y) dy,



776 THOMAS DUYCKAERTS, CARLOS KENIG AND FRANK MERLE

where RQ is defined in (3.42). HenceZ
@2t u

⇣
✓�1
A

⌘
⇤

Y j = �

Z
LQhY j +

Z ✓
1�

���det'0('�1(y))
��� 2N

◆
LQ(h)Y j

+

Z ���det'0('�1(y))
��� 2N RQ(h)Y j .

(5.17)

By (3.44) and Lemma 5.2,
��RQ(h)

��
L
2N
N+2

 Ckhk2
L
2N
N�2

 C�2. Note that x =

'�1(y) ()
x

|x |2 = a + es P�c
y�b

|y�b|2 . Thus:

1
|'�1(y)|

=

����a +

es P�c(y � b)
|y � b|2

����
and �����

'�1(y)
|'�1(y)|2

� a

����� =

����e
s P�c(y � b)
|y � b|2

���� =

es

|y � b|
.

As a consequence (see (5.16))
���det('0('�1(y)))

��� 2N = e2s
�����
'�1(y)
|'�1(y)|

� a
���'�1(y)

���
�����
�4

= e2s
1

|'�1(y)|4

�����
'�1(y)��'�1(y)

��2 � a

�����
�4

= e�2s
⇣
|a|2|y � b|2 + 2

⌦
a, es P�c(y � b)

↵
+ e2s

⌘2
.

Let us denote by g(A, y) the expression on the last line. Note that g(0, y) = 1 for
all y, and that krAgk  CK (1+|y|4) if A stays in a bounded set K ofRN 0 . Hence,
if |A|  1, ����

���det('0('�1(y)))
��� 2N � 1

����  C|A|

⇣
1+ |y|4

⌘
.

Similarly,

ry

✓���det ⇣'0('�1(y))
⌘��� 2N

◆
 C|A|(1+ |y|3).

Going back to (5.17), we get����
Z
@2t u(✓

�1
A )⇤(Y j ) � !2j

Z
hY j

����
 C|A|

Z
RN

⇣
|Q|

4
N�2 |h Y j | + |rh|

�
|rY j | + |Y j |

�⌘
(1+ |y|)4

+ C
���(1+ |y|)4Y j

���
L
2N
N�2

kRQ(h)k
L
2N
N+2

 C
⇣
�(t)|A| + �2(t)

⌘
,
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by Lemma 5.2 and the decay properties of Y j . Combining with (5.14) and (5.15),
we get (5.12).

5.1.3. Exponential decay for a linear differential system

In this subsection, we consider approximate ordinary differential systems of the
form (5.11), (5.12).

Lemma 5.5. Let 0 < !1 < . . . < !p be real numbers. There exist "3 > 0, C3 > 0
(depending only on the ! j s) such that the following holds. Let T0 2 [0,+1] and,
consider, for j = 1 . . . p, ↵ j , � j 2 C1([0, T0), R). Let

� (t) =

vuut pX
j=1

!2j |↵ j (t)|2 + |� j (t)|2

and assume

k� k1 = sup
t2[0,T0)

� (t) < 1 (5.18)

8 j 2 1 . . . p, 8t 2 [0, T0), |↵0

j (t) � � j (t)|  "3� (t) (5.19)

8 j 2 1 . . . p, 8t 2 [0, T0), |� 0

j (t) � !2j↵ j (t)|  "3� (t). (5.20)

Then Z T0

0
� (t) dt  C3k� k1. (5.21)

If moreover T0 = +1 then

lim
t!+1

e
!1
2 t� (t) = 0. (5.22)

Proof. Step 1. We let

E±(t) :=

pX
j=1

�
� j (t) ± ! j↵ j (t)

�2
.

Note that
� 2(t) =

1
2
�
E+(t) + E�(t)

�
. (5.23)

If t 2 [0, T0),

E 0

±
(t) = 2

pX
j=1

�
� 0

j (t) ± ! j↵
0

j (t)
��
� j (t) ± ! j↵ j (t)

�
.
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By (5.19) and (5.20):
�����E 0

+
(t) � 2

pX
j=1

! j (� j (t) + ! j↵ j (t))2
�����

 2
pX
j=1

⇣
! j

���↵0

j � � j

��� + ! j |�
0

j � !2j↵ j |
⌘ ��� j + ! j↵ j

��

 2

vuut pX
j=1

(� j + ! j↵ j )2
pX
j=1

⇣
! j |↵

0

j � � j | + ! j |�
0

j � !2j↵ j |
⌘2

 C"3
p
E+(t)� (t).

Chosing "3 small enough, we get

E 0

+
(t) � 2!1E+(t) �

!1
2
p
E+(t)� (t) (5.24)

and similarly
E 0

�
(t)  �2!1E�(t) +

!1
2
p
E�(t)� (t). (5.25)

Step 2. We show that for all ⌧ 2 [0, T0),

E+(⌧ ) > E�(⌧ ) =) 8t 2 [⌧, T0), E+(t) > E�(t). (5.26)

We argue by contradiction, assuming that there exist ⌧ 2 [0, T0) and t 2 (⌧, T0)
such that E+(⌧ ) > E�(⌧ ) and E+(t)  E�(t). Let

� := inf {t 2 [⌧, T0) s.t. E+(t)  E�(t)} > ⌧. (5.27)

If t 2 [⌧, � ], then E+(t) � E�(t), and thus, by (5.23), E�(t)  � 2(t)  E+(t).
Combining with (5.24) (respectively (5.25)) we get

E 0

+
(t) �

3
2
!1E+(t) (5.28)

and
E 0

�
(t) 

1
2
!1E+(t) (5.29)

Thus, if t 2 [⌧, � ], E 0

+
(t) � E 0

�
(t), which contradicts the facts that E+(⌧ ) >

E�(⌧ ) and E+(� )  E�(� ). Step 2 is complete.

Step 3. We show (5.21). By Step 1, there exists ⌧ 2 [0, T0) such that:

8t 2 (0, ⌧ ), E�(t) � E+(t) and 8t 2 (⌧, T0), E�(t) < E+(t). (5.30)
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We take ⌧ = 0 if 8t 2 [0, T0) E�(t) < E+(t) and ⌧ = T0 if 8t 2 [0, T0), E�(t) �

E+(t).
Estimate on [0, ⌧ ). Assume ⌧ > 0. Then

8t 2 [0, ⌧ ), E+(t)  � 2(t)  E�(t). (5.31)

Hence by (5.25), E 0

�
(t)  �

3!1
2 E�(t) which yields, (using (5.23) again to get the

last inequality)

8t 2 [0, ⌧ ), � 2(t)  E�(t)  e�
3
2!1t E�(0)  2e�

3
2!1tk� k

2
1

. (5.32)

As a consequence
Z ⌧

0
� (t)dt 

p

2k� k1

Z ⌧

0
e�

3!1
4 t dt 

4
p

2
3!1

k� k1. (5.33)

Estimate on [⌧, T0). Assume ⌧ < T0. Then

8t 2 [⌧, T0), E�(t)  � 2(t)  E+(t). (5.34)

By (5.24), E 0

+
(t) �

3!1
2 E+(t), which gives, fixing T 2 (⌧, T0),

8t 2 [⌧, T ], E+(T ) � e
3
2!1(T�t)E+(t) � e

3
2!1(T�t)� 2(t). (5.35)

As a consequence
Z T

⌧
� (t)dt 

Z T

⌧

p
E+(t)e

3
4!1(t�T )dt 

p

2k� k1

Z T

�1

e
3
4!1(t�T ) dt



4
p

2
3!1

k� k1.

Letting T ! T0 and combining with (5.33), we get (5.21) with C3 =
8
p

2
3!1 .

Step 4. In this step, we assume T0 = +1 and prove (5.22). We first note:

8t > 0, E�(t) � E+(t). (5.36)

(in other words, the parameter ⌧ of Step 3 is equal to +1). If not, by Step 2, there
exists ⌧ > 0 such that for all t > ⌧ , E+(t) > E�(t). Then by (5.24) and (5.34),
E 0

+


3!1
2 E+ on [⌧,+1) which implies

8t > ⌧, E+(t) � e
3
2!1(t�⌧ )E+(⌧ ).

Since E+(⌧ ) > 0, this is a contradiction with the fact that � is bounded. Hence
(5.36). As a consequence of (5.36), the estimate (5.32) is valid on [0,+1) which
concludes the proof.
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5.1.4. End of the proof of the exponential convergence

We are now ready to conclude the proof of Proposition 5.1. Let u be as in this
proposition. We proceed in several steps.

Step 1. Closeness to the stationary solution. Recall from (5.2) the definition of
T0. We show (assuming that r0 and �0/r0 are small enough) that T0 = T+, where
by definition T+ = T+(u). By the definition of A(t), and since the function 9 of
Lemma 3.12 is Lipschitz-continuous, we have

8t 2 [0, T0), kA(t)k  Cr0. (5.37)

Chosing r0 small, we see that (5.11) and (5.12) imply that ↵ j and � j satisfy the
assumptions of Lemma 5.5. Thus, by (5.21),

Z T0

0
�(t) dt  C3 sup

t2[0,T0]

�
�(t) + k@t u(t)kL2

�
 C�0 (5.38)

(the second bound follows from (5.5) and (5.8)). By Lemma 5.3, since by the
assumptions of Proposition 4.1, ku(0) � Qk  �0 ,

8t 2 [0, T0), |A(t)|  |A(0)| + C�0  C 0�0, (5.39)

for some constant C 0 > 0. Recalling (5.5):

8t 2 [0, T0),
��u(t) � ✓A(t)Q

��
Ḣ1  C�0, (5.40)

and combining with (5.39), and (3.28) in Corollary 3.7, we obtain

8t 2 [0, T0), ku(t) � QkḢ1  C�0. (5.41)

Taking �0/r0 small enough, we deduce:

8t 2 [0, T0), ku(t) � QkḢ1  r0/2, (5.42)

which, by the definition of T0, implies T0 = T+, concluding Step 1.

Step 2. Global existence. We next show T+ = +1.
Assume by contradiction that T+ is finite. Since by Step 1, T+ = T0, we have

ku(t) � QkḢ1 < r0 for all t 2 [0, T+). This gives a contradiction by a standard
local well-posedness/stability result around Q if r0 is small enough.

Step 3. Convergence to a stationary solution. We conclude the proof of Proposi-
tion 5.1, proving that there exist A0 2 RN 0 , close to 0, and !,C > 0 such that
S = ✓A0(Q) satisfies

8t � 0, ku(t) � SkḢ1 + k@t u(t)kL2  Ce�!t .
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Indeed, by Lemma 5.5,
lim

t!+1

e!1t/2�(t) = 0. (5.43)

By Lemma 5.3, A(t) has a limit A0 as t ! +1, and

kA(t) � A0k  Ce�!1t/2. (5.44)

Let S = ✓A0(Q). Then

k@t u(t)kL2 + ku(t) � SkḢ1  k@t u(t)kL2 + ku(t) � ✓A(t)(Q)kḢ1

+ k✓A(t)(Q) � ✓A0(Q)kḢ1

 C�(t) +

���Q � ✓�1
A0 ✓A(t)Q

���
Ḣ1

 Ce�!1t/2,

where the bound by C�(t) at the second line follows from Lemma 5.2.

5.2. Expansion of the solution

We next conclude the proof of Proposition 4.1, showing:

Proposition 5.6. Let u be a solution of (1.1) such that T+(u) = +1, and there
exist S 2 6, and C, " > 0 such that

8t � 0, ku(t) � SkḢ1 + k@t u(t)kL2  Ce�"t . (5.45)

Then u satisfies the conclusion of Proposition 4.1.

Remark 5.7. The proof of Proposition 5.6 bears some similarities with the one
of Proposition 5.1, however the settings of the two proofs are different and it is
convenient to separate the two results. Note that in the proof of Proposition 5.6, in
contrast with the proof of Proposition 5.1, the solution is expanded around the limit
S of u(t) (not around the stationary solution Q which is close to the initial data),
and is not modulated. Note also that in Proposition 5.6, we do not need to assume
that S satisfies the nondegeneracy assumption (1.8).

Proof.

Step 1. Let Y1, . . . ,Yp, !1, . . . ,!p, Z1, . . . , Zm , E1, . . . , Em be as defined in Sec-
tion 3.2.2 (with Q = S). Let

�i (t) =

Z
Yi (u � S), ⇢ j (t) =

Z
E j (u � S), i = 1 . . . p, j = 1, . . .m.

Define:

h = u � S, g = u � S �

pX
i=1

�i Yi �

mX
j=1

⇢ j Z j , (5.46)
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and note that

8t � 0,
Z
gYi =

Z
gE j = 0, i = 1 . . . p, j = 1, . . .m. (5.47)

By energy conservation, E(u, @t u) = E(S, 0). In view of expansion (5.46), we
obtain �����

1
2
k@t uk2L2 +8S(g) �

1
2

pX
i=1

!2i �
2
i

�����  Ckhk3
L
2N
N�2

,

(see (5.9), (5.10) for a similar argument) and thus, by (5.47) and Proposition 3.6,

k@t uk2L2 �

pX
i=1

!2i �
2
i +

1
C

kgk2Ḣ1  Ckhk3
L
2N
N�2

, (5.48)

We let

! = sup
⇢
a > 0, lim

t!+1

eta
�
k@t u(t)kL2 + kh(t)kḢ1

�
= 0

�
2 [0,1].

By assumption (5.45), ! > 0. We note that

! = sup

(
a > 0, lim

t!+1

eta
pX
j=1

|� j (t)| = 0

)
. (5.49)

Indeed, let us temporarily denote by !̃ the right-hand side of (5.49). Clearly, !  !̃.
Let a < !̃. Then

pX
j=1

|� j (t)|  Ce�at .

By (5.48) and the definition of !,

k@t u(t)kL2 + kg(t)kL2  Ce�at + Ce�
5
4!t .

As a consequence, |⇢0

j (t)| =

��R E j@t u(t)
��

 Ce�at + Ce�
5
4!t . Integrating, we

get |⇢ j (t)|  C
⇣
e�at + e�

5
4!t

⌘
. Combining these estimates with the expansions

(5.46) we deduce a < !. Since a is arbitrarily close to !̃, we deduce !̃  !,
concluding the proof that ! = !̃.

In the sequel, if ! is finite, we will denote by !� a positive number such that
!� < !, arbitrarily close to ! and that may change from line to line. If ! = 1,
!� is a large positive constant that may change from line to line.
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Step 2. Let j 2 {1, . . . , p}. We prove that there exists C > 0 such that

8t � 0, |� j (t)| + |� 0

j (t)|  C max
⇣
e�! j t , e�2!

�t
⌘

. (5.50)

Furthermore, if 2! > ! j , there exist S j 2 R, and C > 0 such that

8t � 0,
��� j (t) � S j e�! j t

��
+

���� 0

j (t) + ! j S j e�! j t
���  Ce�2!

�t . (5.51)

Indeed, let � j,±(t) = � 0

j (t) ± ! j� j (t). Using

� 00

j (t) =

Z
Y j@2t u = �

Z
Y j LS(h) �

Z
Y j RS(h),

we get ���� 00

j (t) � !2j� j (t)
���  Ckhk2

L
2N
N�2

 Ce�2!
�t .

Thus ���� 0

j,±(t) ⌥ ! j� j,±(t)
���  Ce�2!

�t . (5.52)

Let us prove (5.50). We have���� ddt
�
e�! j t� j,+(t)

�����  Ce�(2!�
+! j )t .

Integrating between t and +1, we get��� j,+(t)
��
 Ce�2!

�t . (5.53)

Similarly ���� ddt
�
e! j t� j,�(t)

�����  Ce(! j�2!�)t (5.54)

Integrating between 0 and t , we obtain��� j,�(t)
��
 Ce�! j t

+ Ce�2!
�t . (5.55)

Combining (5.53) and (5.55), we obtain (5.50).
Next, we assume 2! > ! j and prove (5.51). We can take !� < ! so that

2!� > ! j . By (5.54), e! j t� j,�(t) has a limit ` j as t ! +1, and
��� j,�(t) � e�! j t` j

��
 Ce�2!

�t . (5.56)

Combining (5.53) and (5.56), we get (5.51) with S j = �
1
2! j
` j . Step 2 is complete.

Step 3. In this step, we assume that

8 j 2 {1, . . . , p}, ! j 6= !, (5.57)

and we prove that u ⌘ S. We will need the following Claim, whose proof is
postponed to the appendix.
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Claim 5.8. Let S 2 6. There exists ⌫ = ⌫(S) > 0 such that for all solutions u of
(1.1) such that T+(u) = +1 and

lim
t!+1

e⌫t
�
ku(t) � SkḢ1 + k@t u(t)kL2

�
= 0, (5.58)

we have u ⌘ S.
By Claim 5.8, it is sufficient to show ! = 1. We prove this by contradiction,

assuming that ! < 1. We will prove that there exists !+ > ! such that, for all
j 2 {1, . . . , p},

|� j (t)| + |� 0

j (t)|  Ce�!
+t , (5.59)

contradicting the definition (5.49) of !.
Let j 2 {1, . . . , p}. We distinguish two cases.
If ! < ! j , then (5.59) follows from (5.50), taking ! < !+ < max(! j , 2!�).
Assume now ! � ! j . In this case, (5.51) holds. Furthermore, by assumption

(5.57), ! > ! j , and thus

lim
t!1

e! j t
⇣
|� j (t)| + |� 0

j (t)|
⌘

= 0.

As a consequence, the real number S j in (5.51) must be 0, wich proves again (5.59),
concluding Step 2.

Step 4. In this step, we assume that there exists k 2 {1, . . . , p} such that ! = !k .
We define the following subsets J0, J+ and J� of {1, . . . , p}:

J0 =

n
j, ! j = !

o
, J� =

n
j, ! j < !

o
, J+ =

n
j, ! j > !

o
.

We first prove that there exists !+ > ! such that

j 2 J+ [ J� =) 9C > 0, 8t � 0,
��� j (t)�� +

���� 0

j (t)
���  Ce�!+t . (5.60)

If j 2 J+, then (5.60) follows from (5.50). If j 2 J�, then (5.51) holds. By the
definitions of J� and !, we must have S j = 0 in (5.51), and (5.60) follows again.

We next notice that if j 2 J0, then (5.51) holds for some S j 2 R. Furthermore,
in view of (5.60) and the definition (5.49) of !, there exists j 2 J0 such that S j 6= 0.
We let

Y (x) =

X
j2J0

S jY j ,

and note that Y 6= 0 and LQY = �!2Y . By (5.51), (5.60) and the above consider-
ations,

pX
j=1

���� 0

j (t)
2
� !2j�

2
j (t)

���  Ce�2!
+t (5.61)
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and

8t�0,

�����
pX
j=1

� j (t)Y j � e�!t Y

�����
Ḣ1

+

�����
pX
j=1

� 0

j (t)Y j + !e�!t Y

�����
L2
Ce�!

+t . (5.62)

It remains to prove:

8t � 0, kgkḢ1 +

mX
j=1

|⇢ j (t)| +

�����@t u(t) �

pX
j=1

� 0

j (t)Y j

�����
L2

 Ce�!
+t . (5.63)

Note that @t u = @t h =

Pp
i=1 �

0

i Yi +

Pm
j=1 ⇢

0

j Z j + @t g, and, from (5.47) and the
orthogonality properties of the functions Yi and Z j ,

8i 2 {1, . . . , p},
Z
Yi

 
mX
j=1

⇢0

j Z j + @t g

!
= 0.

As a consequence,

k@t uk2L2 =

pX
i=1

� 0

i
2
+

�����
mX
j=1

⇢0

j Z j + @t g

�����
2

L2
. (5.64)

By (5.48),

�����
mX
j=1

⇢0

j Z j + @t g

�����
2

L2
+

pX
i=1

� 0

i
2
�

pX
i=1

!2i �
2
i +

1
C

kgk2Ḣ1  Ce�3!
�t .

Combining with (5.61), we deduce

kgk2Ḣ1 +

�����
mX
j=1

⇢0

j Z j + @t g

�����
2

L2
 e�2!

+t . (5.65)

Since for k = 1 . . .m, ⇢0

k =

R
Ek(

Pm
j=1 ⇢

0

j Z j + @t g), we obtain |⇢0

k |  Ce�!+t ,
and thus

|⇢k(t)|  Ce�!
+t . (5.66)

Combining (5.64), (5.65) and (5.66) we get (5.63), which concludes the proof of
Proposition 5.6.
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6. Lorentz transformation

In this section we prove that the Lorentz transform of a solution of (1.1) with the
compactness property is well-defined and is a solution of (1.1) with this property.
We consider without loss of generality a Lorentz transformation with a parameter
` which is parallel to Ee1 = (1, 0, . . . , 0). We first need some notations. Let ` 2

(�1,+1). If (s, y) 2 R ⇥ RN we define (t, x) by

(t, x) = �`(s, y) =

✓
s + `y1
p

1� `2
,
y1 + `s
p

1� `2
, y0

◆
, (6.1)

where x 0
= (x2, . . . , xN ), y0

= (y2, . . . , yN ). Thus (s, y) = ��1
` (t, x) =

⇣
t�`x1
p

1�`2
,

x1�`t
p

1�`2
, x 0

⌘
. We recall that the Lorentz transform of a global solution u is defined

by

u`(t, x) = u
✓
t � `x1
p

1� `2
,
x1 � `t
p

1� `2
, x 0

◆
= u

⇣
��1
` (t, x)

⌘
. (6.2)

When u is global in time, u` is well-defined (say, as an element L
2(N+1)
N�2
loc (RN+1))

and, at least in the distributional sense, a solution of (1.1). In this section we prove
that u` is indeed a solution of (1.1) in the usual sense:
Lemma 6.1. Let u be a global, finite-energy solution of (1.1), and ` 2 (�1,+1).
Then u` is a global, finite-energy solution of (1.1).

The conclusion of Lemma 6.1 seems to be folklore knowledge and has been
used in the literature before without any proof that we were aware of. We provide a
proof here to close this apparent gap.

Next consider a solution u = u(s, y) of (1.1) with the compactness property,
and (s�, s+) its maximal interval of existence. Recall that s+ = +1 or s� = �1.
If s+ < 1, then s� = �1 and by [30, Lemma 4.8], there exists y+

2 RN such
that u is supported in the conen

(s, y) 2 (�1, s+) ⇥ RN s.t.
��y � y+

��


��s � s+
��o .

In this case we call y+ the blow-up point of u for positive time, and let

(t+, x+) = �`(s+, y+).

If t� is finite, we define similarly y� the blow-up point of u for negative times, and
let

(t�, x�) = �`(s�, y�).

If s± = ±1 we let t± = ±1. If the solution u is not global in time, we extend it
to R as a function u letting:(

u(s, y) = 0 if s /2 Imax(u)
u(s, y) = u(s, y) if s 2 Imax(u).
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The main result of this section is the following proposition:

Proposition 6.2. Let u be a solution of (1.1) with the compactness property, s±,
y±, t±, x± and u be as above. Let

u`(t, x)=u
✓
t � `x1
p

1�`2
,
x1 � `t
p

1�`2
, x 0

◆
, t 2(t�, t+), x=(x1,x 0)2R⇥RN�1. (6.3)

Then u` is a solution of (1.1) with the compactness property, with maximal interval
of existence (t�, t+).

Remark 6.3. If t+ is finite, then x+ is the blow-up point of u` for positive time. A
similar statement holds for negative times.
Remark 6.4. In this paper, we will only need to apply the Lorentz transformation
to solutions of (1.1) with the compactness property. Let us mention that is always
possible, adapting the argument of this section, to define the Lorentz transform of a
solution which is global in at least one time direction.
Remark 6.5. In Lemma 6.1 and in Proposition 6.2, as well as in all this paper, a
solution of (1.1) is a solution of (1.1) in the sense of Definition 2.1.

6.1. Lorentz transform of global solutions

In this subsection we prove Lemma 6.1. We start with the easier case of scattering
solutions.

Lemma 6.6. Let u be a global solution of (1.1) scattering in both time directions.
Let u` be defined by (6.2). Then u` is a global solution of (1.1), scattering in both
times directions.

We first recall from [30, Lemma 2.2 and Remark 2.3] the following claim:
Claim 6.7. Let h 2 L1(R, L2(RN )), (w0, w1) 2 Ḣ1 ⇥ L2, ` 2 (�1,+1) and

w(t)=cos(t
p

�1)w0+

sin(t
p

�1)
p

�1
w1+

Z t

0

sin
�
(t�s)

p

�1
�

p

�1
h(s) ds, t 2R. (6.4)

Then (w`, @tw`) 2 C0
�
R, Ḣ1 ⇥ L2

�
and there is a constant C` (depending only on

`) such that

sup
t

k(w`(t), @tw`(t)kḢ1⇥L2  C`
�
k(w0, w1)kḢ1⇥L2 + khkL1(R,L2)

�
.

Proof of Lemma 6.6. Since u scatters in both time directions, we get
���|u| 4

N�2 u
���
L1t L2x

= kuk
N+2
N�2

L
N+2
N�2
t L

2(N+2)
N�2

x

< 1.
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By Claim 6.7, (u`,@t u`)2C0
�
R, Ḣ1⇥L2

�
. Furthermore, since u2L

2(N+1)
N�2 (RN+1),

u`2L
2(N+1)
N�2 (RN+1). If (u0,u1)2(C1

0 (RN ))2, it is easy to see that (u`(0),@t u`(0))2
(C1

0 (RN ))2 and that u` satisfies (1.1) in the classical sense, so that u` is a solution
of (1.1) (in the sense of Definition 2.1). In the general case, we will use Claim 2.3
to prove that u` is a solution.

Let (uk0, u
k
1) 2 (C1

0 (RN ))2 such that

lim
k!1

���⇣uk0, uk1
⌘

� (u0, u1)
���
Ḣ1⇥L2

= 0. (6.5)

Let uk be the solution of (1.1) with initial data
�
uk0, u

k
1
�
. Then by long-time pertur-

bation theory (see [30]), uk is global for large k and

lim
k!1

���uk � u
���
L
2(N+1)
N�2 (RN+1)\L

N+2
N�2

�
R,L

2(N+2)
N�2 (RN )

� = 0. (6.6)

Since

uk � u = cos
⇣
p

�1t
⌘

(uk0 � u0) +

sin
�p

�1t
�

p

�1
(uk1 � u1)

+

Z t

0

sin
�
(s � t)

p

�1
�

p

�1

⇣
|uk |

4
N�2 uk(s) � |u|

4
N�2 u(s)

⌘
ds,

we deduce from (6.6) and Claim 6.7

sup
t2R

���⇣uk` � u`, @t uk` � @t u`
⌘

(t)
���
Ḣ1⇥L2

�!

k!1

0. (6.7)

Since uk` is a solution of (1.1) in the sense of Definition 2.1, and���uk`
���
L
2(N+1)
N�2 (RN+1)

=

���uk���
L
2(N+1)
N�2 (RN+1)

is, by (6.6), uniformly bounded, we get by Claim 2.3 that u` is a solution of (1.1),
concluding the proof.

We next prove Lemma 6.1.

Note that u` is well-defined, as an element of L
2(N+1)
N�2
loc (RN+1).

We denote by (s, y) the time and space variables for u and (t, x) the time and
spaces variable for u`. This variables are related by (6.1). We note that

|x |2 � t2 = |y|2 � s2 (6.8)

and

|s| + |y|  c`(|t | + |x |), |t | + |x |  c`(|s| + |y|), where c` =

s
1+ |`|

1� |`|
. (6.9)
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Step 1. Estimate at infinity. We prove that there exist B > 0 and a scattering
solution v of (1.1) such that

|x | � |t | + B =) u`(t, x) = v(t, x) a.e. (6.10)

Let A > 0 be a large constant. Denote by �A(y) = �
� y
A
�
, where

� 2 C1(RN ), �(y) = 1 if |y| � 1, �(y) = 0 if |y| 

1
2
.

Let
(eu0,eu1) = (�Au0,�Au1).

Let �0 > 0 be the small constant given by the small data theory. We choose A
large, so that k(eu0,eu1)kḢ1⇥L2 < �0. Let eu be the solution of (1.1) with initial
data (eu0,eu1) at s = 0. By the small data theory, eu is a scattering solution of
(1.1). By Lemma 6.6, the Lorentz transformeu` ofeu is a scattering solution of (1.1).
Furthermore, by finite speed of propagation,

eu(s, y)=u(s, y) i.e. ũ`(t, x)=u`(t, x) for almost all (s, y) s.t. |y|� A+|s|. (6.11)

We claim
|x | � c`A + |t | =) |y| � A + |s|. (6.12)

Indeed, by (6.8), (6.9),

|y| � |s| =

|y|2 � s2

|y| + |s|
=

|x |2 � t2

|y| + |s|
�

|x |2 � t2

c`(|x | + |t |)
=

|x | � |t |
c`

,

and (6.12) follows. The desired conclusion (6.10), with v = ũ` and B = c`A,
follows from (6.11) and (6.12). Note that (6.10) implies

Z
R

✓Z
|x |�|t |+B

|u`(t, x)|
2(N+2)
N�2 dx

◆ 1
2
dt < 1. (6.13)

Step 2. Local estimate. Let (T, X) 2 R ⇥ RN . We show that there exist " > 0 and
a scattering solution v of (1.1) such that

|x � X |  " � |t � T | =) u`(t, x) = v(t, x). (6.14)

Indeed, let (S,Y ) = 8�1
` (T, X). Let  2 C1

0 (RN ) such that  (y) = 1 if |y|  1
and  (y) = 0 if |y| � 2. Let (eu0,eu1) =  

⇣
y�Y
⌘

⌘
(u(S, y), @t u(S, y)). Choose

⌘ > 0 small, so that k(eu0,eu1)kḢ1⇥L2  �0 (�0 is again given by the small data
theory). Leteu be the solution of (1.1) with data:

(eu(S), @teu(S)) = (eu0,eu1).
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Theneu is globally defined and scatters. By Lemma 6.6, its Lorentz transformeu` is
a scattering solution of (1.1). Note that by finite speed of propagation,

|y � Y |  ⌘ � |s � S| =) u`(t, x) = eu`(t, x). (6.15)

Furthermore, by (6.9), |y � Y | + |s � S|  c` (|x � X | + |t � T |), and thus

|x � X | 

⌘

c`
� |t � T | =) |y � Y |  ⌘ � |s � S|. (6.16)

The desired conclusion (6.14) follows from (6.15) and (6.16) with v = eu` and
" = ⌘/c`. Again, (6.14) implies

Z T+"

T�"

✓Z
|x�X |"�|t�T |

|u`(t, x)|
2(N+2)
N�2 dx

◆ 1
2
dt < 1. (6.17)

Step 3. End of the proof. Combining Step 1 and 2, we get that (u`, @t u`) 2

C0(R, Ḣ1 ⇥ L2). By (6.13) and (6.17), u` 2 L
N+2
N�2
loc

⇣
R, L

2(N+2)
N�2 (RN )

⌘
. Further-

more, by Steps 1 and 2 and Remark 2.2, u` satisfies @2t u` � 1u` = u5` in the
distributional sense, which (in view of Lemma 2.5) yields the result.

6.2. Lorentz transform of nonglobal solutions with the compactness property

Recall that a solution with the compactness property is global in at least one time
direction. We treat the case of solutions that are global backward in time, an ana-
loguous result holds for solutions that are global forward in time.
Lemma 6.8. Let u be a solution with the compactness property. Assume that the
maximal interval of existence of u is of the form (�1, s+) with s+ 2 R. Let
y+, t+, x+, u be as in the introduction of Section 6. Define u` by (6.3). Then u` is
a solution of (1.1), with maximal interval of existence (�1, t+), and such that

supp u` ⇢

n
(t, x) 2 RN+1 s.t. t < t+ and

��x � x+

��


��t � t+
�� o.

The proof is very close to the proof of Lemma 6.1 and we will only sketch it. To
deal with the fact that the solution is not global in time, we will need the following
technical claim:
Claim 6.9. Let u be as in Lemma 6.8. Leteu be a globally defined, scattering solu-
tion of (1.1). Let S 2 (�1, s+).
(a) Let Y 2 RN and assume

(eu, @teu)(S, y) = (u, @t u)(S, y) if |y � Y | < ".

Let D = D(S,Y, ") =

�
(s, y) 2 R ⇥ RN s.t. |y � Y | < " � |s � S|

 
. Then

(s+, y+) /2 D and

(s, y) 2 D =) eu(s, y) = u(s, y). (6.18)
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(b) Let A > 0 and assume

(eu, @teu)(S, y) = (u, @t u)(S, y) if |y| > A.

Let D0
= D0(S, A)=

�
(s, y)2R ⇥ RN s.t. |y|> A + |s � S|

 
. Then (s+,y+) /2

D0 and
(s, y) 2 D0

=) eu(s, y) = u(s, y). (6.19)

Proof. We prove only (6.9). The proof of (6.9) is very similar.
If s+ > S + ", then D ⇢ (�1, s+) ⇥ RN and u = u on D. The conclusion

(6.18) follows immediately by finite speed of propagation.
Assume S < s+  S + ". By finite speed of propagation,

⇣
(s, y) 2 D and s < s+

⌘
=) eu(s, y) = u(s, y) = u(s, y). (6.20)

Sinceeu scatters, we have keuk
L
2(N+1)
N�2 (D)

<1 and thus by (6.20) kuk
L
2(N+1)
N�2 (D\{s<s+})

<

1. By the finite-time blow-up criterion, kuk
L
2(N+1)
N�2 (|y�y+

|<|s�s+|)
= +1. Thus

(s+, y+) /2 D. We deduce that

8' 2 C1

0 (D), ('u,'@t u) 2 C0(R, Ḣ1 ⇥ L2).

By (6.20) and a continuity argument,

8y 2 RN , (s+, y) 2 D =) eu(s+, y) = u(s+, y) = 0. (6.21)

By finite speed of propagation,eu(s, y) = 0 if (s, y) 2 D and s � s+. The proof is
complete.

Proof of Lemma 6.8. Step 1. We first notice that

supp u` ⇢

n
(t, x) 2 (�1, t+) ⇥ RN s.t. |x � x+

|  |t � t+|

o
. (6.22)

Indeed
supp u ⇢

n
(s, y) 2 R ⇥ RN s.t. |y � y+

|  |s � s+|

o
.

By (6.8),
|x � x+

|  |t � t+| () |y � y+

|  |s � s+|,

and the claim follows from the definition of u`.

Step 2. Let T < t+, X 2 RN . We prove that there exist " > 0 with " < t+ � T ,
and a scattering solution v of (1.1) such that

|x � X | < " � |t � T | =) u`(t, x) = v(t, x).
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As in Step 2 in the proof of Lemma 6.1, we let (S,Y ) = ��1
` (T, X). We distinguish

three cases.

Case 1: S > s+. In this case (S,Y ) is not in the support of u, or equivalently
(T, X) is not in the support of u`. Thus u` = 0 in a neighborhood of (T, X) and
the conclusion of Step 2 is obvious.

Case 2: S = s+. We cannot have Y = y+ (which would imply T = t+, contradict-
ing our assumptions). Thus again (S,Y ) is not in the support of u, which implies
that (T, X) is not in the support of u`. Again, the conclusion of Step 2 is obvious.

Case 3: S < s+. Then (u(S), @t u(S)) = (u(S), @t u(S)) 2 Ḣ1 ⇥ L2. The same
arguments as in Step 2 of the proof of Lemma 6.1 (using Claim 6.9) yields the
desired conclusion. We omit the details.

Step 3. Conclusion of the proof. By Step 1, for all t in (�1, t+), (u`(t), @t u`(t))
is compactly supported. By Step 2,

(u`, @t u`) 2 C0((�1, t+), Ḣ1 ⇥ L2) and u` 2 L
N+2
N�2
loc

⇣
(�1, t+), L

2(N+2)
N�2 (RN )

⌘
.

Again (using Remark 2.2), u` satisfies @2t u`�1u` = |u`|
4

N�2 u` in the distributional
sense on (�1, t+). Thus by Lemma 2.5, u` is a solution of (1.1) on (�1, t+).
The fact that (�1, t+) is the maximal time of existence of u` follows from the
inclusion (6.22) of Step 1.

6.3. Continuity of the Lorentz transformation in the energy space

We next prove the following continuity fact:

Lemma 6.10. Let {un}n be a sequence of non-zero solutions of (1.1). Let Imax(un)
be the maximal interval of existence of un and assume 0 2 Imax(un). Assume
furthermore the following uniform compactness property: there exist µn(s) and
yn(s) (defined for n 2 N, s 2 Imax(un)), such that the set

K =

⇢⇣
µ
N/2�1
n (s)un (s, µn(s) · +yn(s)) , µ

N/2
n (s)@sun (s, µn(s) · +yn(s))

⌘
,

for n 2 N, s 2 Imax(un)
�

has compact closure in Ḣ1 ⇥ L2. Let (u0n, u1n) = (un(0), @t un(0)). Assume that
there exists (u0, u1) 2 Ḣ1 ⇥ L2 such that

lim
n!1

k(u0n, u1n) � (u0, u1)kḢ1⇥L2 = 0. (6.23)

Let u be the solution of (1.1) such that (u, @t u)(0) = (u0, u1). Then
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a. u has the compactness property.
b. If ` 2 (�1,+1) and t 2 Imax(u`), then t 2 Imax(un`) for large n and

lim
n!1

k(un`, @t un`)(t) � (u`, @t u`)(t)kḢ1⇥L2 = 0.

Proof of Lemma 6.10. Proof of point (a).
It is classical. We give a proof for the sake of completeness. We fix s 2

Imax(u).
By (6.23) and the continuity of the flow of (1.1), s 2 Imax(un) for large n and

lim
n!1

k(un(s), @sun(s)) � (u(s), @su(s))kḢ1⇥L2 = 0. (6.24)

Let
v0n(y) = µ

N/2�1
n (s)un (s, µn(s)y + yn(s)) ,

v1n(y) = µ
N/2
n (s)@sun (s, µn(s)y + yn(s)) .

(6.25)

Note that (v0n, v1n) 2 K for all n. Since K is compact and the un’s are not identi-
cally zero so that (0, 0) /2 K , we obtain in view of (6.24) that there exists a constant
C0(s) such that

8n, |yn(s)| + µn(s) + 1/µn(s)  C0(s).

We can extract subsequences, so that (yn(s), µn(s)) converges, as n ! 1 to some
(y(s), µ(s)) 2 RN

⇥ (0,+1). Passing to the limit in (6.25), we deduce, in view
of (6.24)⇣

µN/2�1(s)u (s, µ(s) · +y(s)) , µN/2(s)@su (s, µ(s) · +y(s))
⌘

2 K ,

concluding the proof.
Proof of Point (b). We first prove:
Claim 6.11. Let {un}n , u, be as in Lemma 6.10. Assume furthermore

Imax(u) = (�1, s+), for s+ 2 (0,+1).

Let y+ be the blow-up point of u at time s+. Let s 2 Imax(u), and " > 0. Then if
un is global for large n,

lim
n!1

Z
|y�y+

|>|s�s+|+"
|run(s)|2 + (@t un(s))2 dy = 0.

If un is not global for large n and y±

n is the blow-up point of un at time s±n , then
(s±n , y±

n ) /2 {|y � y+
| > |s � s+| + "} and

lim
n!1

Z
|y�y+

|>|s�s+|+"
|run(s)|

2
+ (@t un(s))

2 dy = 0.
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Proof. Let ⌘ such that 0 < ⌘  " and s < s+ � ⌘. Let s0 = s+ � ⌘. Let
(eun0,eun1) = �

⇣
y�y+

2⌘

⌘
(un(s0), @t un(s0)), where � 2 C1(RN ), and �(y) = 1

if |y| � 1, whereas �(y) = 0 if |y|  1/2. Since (u(s0, y), @t u(s0, y)) = 0 if
|y � y+

| � ⌘, we have

lim
n!1

k(eun0,eun1)kḢ1⇥L2 = 0.

and thus
lim
n!1

k(eun(s), @seun(s))kḢ1⇥L2 = 0. (6.26)

By Claim 6.9 (or simply finite speed of propagation if un is global),

|y � y+

| � 2⌘ + |s � s0| =) eun(s, y) = un(s, y).

Since s < s0, we have 2⌘+|s�s0| = 2⌘+s0�s = ⌘+|s+�s|, and the conclusion
of the claim follows from (6.26).

We can assume, without loss of generality, that we are in one of the following
three cases: un is global for large n; Imax(un) is of the form (�1, s+n ), where
s+n 2 R for large n; or Imax(un) is of the form (s�n ,+1), where s�n 2 R for large
n.
Step 1. We prove that there exists T 2 Imax(u`) such that T 2 Imax(un`) for large n.

If (un)n is global for large n, then un` is global for large n and the result is
obvious.

Assume that Imax(un) is of the form (�1, s+n ) for large n, and denote by y+

n
the blow-up point of un at s = s+n . Then

Imax(un`) =

�
�1, t+n

�
, t+n =

s+n + `y+

n1
p

1� `2
.

Since un has the compactness property, we deduce

supp (u0n, u1n) ⇢

�
|y � y+

n |  s+n
 

⇢

�
|y+

n | � s+n  |y|
 
.

Since (u0n, u1n) converges in Ḣ1 ⇥ L2 to (u0, u1) 6= (0, 0), we deduce that there
exists a constant M > 0 such that

8n, |y+

n |  M + s+n . (6.27)

As a consequence

t+n =

s+n + `y+

n1
p

1� `2
�

(1� |`|)s+n � |`|M
p

1� `2
� �

|`|M
p

1� `2
. (6.28)

If the domain of existence of u is of the form (�1, s+) with s+ < 1, then the
domain of existence of u` is of the form (�1, t+) and any T < min

⇣
t+,� |`|M

p

1�`2

⌘
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satisfies the desired property. If u is global, we can take any T < �
|`|M

p

1�`2
. Finally,

if the domain of existence of u is of the form (s�,+1), then by standard long-time
perturbation s+n ! +1, and thus by (6.28), t+n ! +1. Any T > t� satisfies the
conclusion of Step 1.

If the maximal domain of existence of un is of the form (s�n ,+1) for large n,
the proof is identical and we omit it.
Step 2. We prove that there exists B > 0 such that

lim
n!1

Z
|x |�B

|run`(T, x) � ru`(T, x)|2 + (@t un`(T, x) � @t u`(T, x))2 dx = 0.

Let � 2 C1

0 (RN ), defined by �(y) = 1 for |y| � 1, and �(y) = 0 for |y|  1/2.
Let

(eu0n,eu1n)(y) = �
⇣ y
A

⌘
(u0n, u1n)(y), (eu0,eu1)(y) = �

⇣ y
A

⌘
(u0, u1)(y).

We choose A large, so that

k(eu0,eu1)kḢ1⇥L2 

�0
2

,

where again �0 is given by the small data theory. Then for large n,

k(eu0n,eu1n)kḢ1⇥L2  �0,

andeun is global. By Claim 6.9,
|y| � A + |s| =) un(s, y) = eun(s, y),

and, if un is not globally defined forward in time (respectively backward in time),
|y+

n | < A+|s+n | (respectively |y�

n | < A+|s�n |). Similarly, u = eu for |y| � A+|s|
and, if u is not globally defined forward in time (respectively backward in time),
|y+

| < A + |s+| (respectively |y�
| < A + |s�|). As a consequence (for large n),

|x | � c`A + |t | =) eun`(t, x) = un`(t, x), eu`(t, x) = u`(t, x). (6.29)

By the small data theory,

lim
n!1

keun �euk
L
N+2
N�2 L

2(N+2)
N�2

= 0.

Since
@2t (eun �eu) �1(eun �eu) = |eun| 4

N�2eun � |eu| 4
N�2eu,

and ���|eun| 4
N�2eun � |eu| 4

N�2eu���
L1L2

 Ckeun �euk
L
N+2
N�2 L

2(N+2)
N�2

✓
keunk 4

N�2

L
N+2
N�2 L

2(N+2)
N�2

+ keuk 4
N�2

L
N+2
N�2 L

2(N+2)
N�2

◆
,



796 THOMAS DUYCKAERTS, CARLOS KENIG AND FRANK MERLE

goes to 0 as n ! 1, we obtain by Claim 6.7

sup
t2R

k(eun`(t) �eu`(t), @teun`(t) � @teu`(t))kḢ1⇥L2 �!

n!1

0. (6.30)

The conclusion of Step 2 follows from (6.29) and (6.30).
Step 3. Let X 2 RN . We show that there exists ⌘ > 0 such that

lim
n!1

Z
|x�X |<⌘

|run`(T, x) � ru`(T, x)|2 + |@t un`(T, x) � @t u`(T, x)|2 dx = 0.

We let as usual (S,Y ) = ��1
` (T, X). We distinguish two cases

Case 1: S 2 Imax(u). In this case, S 2 Imax(un) for large n. We let  2 C1

0 (RN )
such that  (y) = 1 if |y|  1 and  (y) = 0 if |y| � 2. Define:

(eu0n,eu1n)(y)= 
✓
y � Y
"

◆
(u0n,u1n)(y), (eu0,eu1)(y)= 

✓
y � Y
"

◆
(u0, u1)(y),

and choose " > 0 so that k(eu0,eu1)kḢ1⇥L2  �0/2. As in Step 2, we get that eu is
global and scattering, thateun is global and scattering for large n and (using Claim
6.9) that

|x � X | 

"

c`
� |t � T | =) eun`(t, x) = un`(t, x) andeu`(t, x) = u`(t, x).

Using as in Step 2 Claim 6.7, we get

sup
t2R

k(eun`(t) �eu`(t), @teun`(t) � @teu`(t))kḢ1⇥L2 �!

n!1

0.

and the conclusion follows.
Case 2: S /2 Imax(u). We assume to fix ideas

Imax(U) = (�1, s+), s+ 2 R, S � s+.

Using that T < t+, we get S+`Y1
p

1�`2
<

s++`y+

1
p

1�`2
and thus S � s+ < `

��Y1 � y+

1
��. As a

consequence, since S � s+,

|Y � y+

| > |S � s+|.

This implies (u, @t u) = (0, 0) close to (S,Y ). Since by Claim 6.11 (un, @t un) ! 0
close to (S,Y ), locally in Ḣ1 ⇥ L2, the result follows.
Step 4. End of the proof. By Steps 2 and 3,

lim
n!1

k(un`(T ), @t un`(T )) � (u`(T ), @t u`(T ))kḢ1⇥L2 = 0.

The conclusion of Lemma 6.10 follows from global in time perturbation theory with
initial time t = T .
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6.4. Preservation of the compactness property by Lorentz transformation

In view of Lemmas 6.1, 6.8, the proof of Proposition 6.2 will be complete once we
prove:

Lemma 6.12. Let u be a non-zero solution of (1.1) with the compactness property.
Then u` has the compactness property.

We will need the following Claim, proved in Appendix C.
Claim 6.13. Let u be a non-zero solution of (1.1) with the compactness property.
Let (s�, s+) = Imax(u). Then there exist µ(s) > 0, and y(s) 2 RN defined for
s 2 (s�, s+) such that

(a) if s� < s < s+,

1
3

Z
|rs,yu(s, y)|2 dy 

Z
+1

y1(s)

Z
RN�1

|rs,yu(s, y)|2 dy0 dy1



2
3

Z
|rs,yu(s, y)|2 dy.

(b) s 7! y1(s) is continuous on (s�, s+).
(c) K =

n⇣
µN/2�1(s)u(s, µ(s) ·+y(s)),µN/2(s)@su(s, µ(s) ·+y(s))

⌘
, s2(s�,s+)

o
has compact closure in Ḣ1 ⇥ L2.

Remark 6.14. Of course in the setting of Claim 6.13 we could also choose y2(s),
y3(s) and µ(s) continuous, but we do not need this fact in the sequel.

Proof of Lemma 6.12. We let y(s), µ(s) and K be as in Claim 6.13. Let (t�, t+)
be the maximal interval of existence of u`.
Step 1. Let t 2 (t�, t+). We show that there exists s = s(t) 2 (s�, s+) such that
t =

s+`y1(s)
p

1�`2
. Let us mention that s(t) is not always unique.

Let f : s 7!
s+`y1(s)
p

1�`2
. Then f is continuous on (s�, s+). We distinguish two

cases.
Case 1. u is global. Then by finite speed of propagation,

lim
R!1

lim sup
t!+1

Z
|x |�t+R

|ru(t, x)|2 + (@t u(t, x))2 dx = 0,

which implies |y(s)|  |s| + M for a large constant M . Thus

lim
s!±1

s + `y1(s)
p

1� `2
= ±1

and the result follows by the intermediate value theorem.
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Case 2. u is not global, say s+ < 1. The maximal interval of existence of u` is
(�1, t+), where t+ =

s++`y+

1
p

1�`2
. As before, we have:

lim
s!�1

s + `y1(s)
p

1� `2
= �1

Let y+ be the blow-up point of u at s = s+. By [30, Proof of Lemma 4.8], y(s) is
bounded as s ! s+. Let {sn}n be a sequence in (s�, s+) that converges to s+, and
such that {y(sn)}n converges in RN . Then (see again [30]) µ(sn) ! 0 as n ! 1

and (extracting subsequences if necessary),
⇣
µN/2�1(sn)u(sn, µ(sn) · +y(sn)), µN/2(sn)@su(sn, µ(sn) · +y(sn))

⌘

converges to a non-zero function as n ! 1. Since the preceding function is sup-
ported in {y 2 RN s.t. |µ(sn)y+ y(sn)� y+

|  |sn �s+|}, we get that y(sn) ! y+

as n ! 1, and thus (since {sn}n is an arbitrary sequence that converges to s+),

lim
s!s+

y(s) = y+.

Thus
lim
s!s+

s + `y1(s)
p

1� `2
= t+,

and the statement follows again from the intermediate value theorem. Step 1 is
complete.
Step 2. We let, for t 2 Imax(u),

�(t) = µ(s(t)), x(t) =

y(s(t)) + `s(t)Ee1
p

1� `2
.

Let

K`=
n
�N/2�1(t)u`(t, �(t) · +x(t)), �N/2(t)@t u`(t, �(t) · +x(t)), t 2 Imax(u`)

o
.

The aim of steps 2 and 3 is to show that K` has compact closure in Ḣ1 ⇥ L2.
Let {tn}n be a sequence in Imax(u`), sn = s(tn) 2 Imax(u). Let

vn(⌧, z) = µN/2�1(sn)u(sn + µ(sn)⌧, y(sn) + µ(sn)z).

Then (extracting subsequences if necessary), there exists (v0, v1) 2 Ḣ1 ⇥ L2 such
that

lim
n!1

k(vn(0), @tvn(0)) � (v0, v1)kḢ1⇥L2 = 0. (6.31)

We let v be the solution of (1.1) with initial data (v0, v1). Recall from Lemma 6.10
that v has the compactness property. In this step we prove that 0 2 Imax(v`). If v is
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global, then v` is global and the result follows. We assume v is not global. To fix
ideas, we assume that

Imax(v) = (�1, S+), S+ > 0.

We denote by Y+ the blow-up point for v at s = S+. We have

supp(v0, v1) ⇢ {|y � Y+

|  S+

}. (6.32)

By the choice of y1(s) in Claim 6.13,
Z
z1�0

|r⌧,zvn(0, z)|2 dz =

Z
y1�y1(sn)

|rs,yu(sn, y)|2 dy

�

1
3

Z
|rs,yu(sn, y)|2 dy =

1
3

Z
|r⌧,zvn(0, z)|2 dz.

Letting n ! 1, we obtain
Z
z1�0

|r⌧,zv(0, z)|2 dz �

1
3

Z
|r⌧,zv(0, z)|2 dz. (6.33)

and similarly
Z
z10

|r⌧,zv(0, z)|2 dz �

1
3

Z
|r⌧,zv(0, z)|2 dz. (6.34)

We prove by contradiction |Y+

1 | < S+. If for example Y+

1  �S+, then y1 >

0 =) y1 � Y+

1 > S+ and (6.32) implies
Z
y1>0

|rs,yv(0, y)|2 dy = 0,

which contradicts (6.33), since v is not identically 0, proving Y+

1 > �S+. Similarly
(using (6.34)), we get Y+

1 < S+. Recalling that

T+(v`) =

S+
+ `Y+

1
p

1� `2
,

we get T+(v`) > 0, which concludes Step 2.

Step 3. By Step 2, 0 2 Imax(v`). By Lemma 6.10, 0 2 Imax(vn`) for large n and

lim
n!1

k(vn`, @tvn`)(0) � (v`, @tv`)(0)kḢ1⇥L2 = 0. (6.35)
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Moreover, letting tn =
sn+`y1(sn)
p

1�`2
, we have x(tn) =

y(sn)+`sn Ee1
p

1�`2
and thus

�N/2�1(tn)u`(tn, �(tn)x + x(tn))

=�N/2�1(tn)u
✓
tn�`(�(tn)x1+x1(tn))

p

1� `2
,
�(tn)x1+x1(tn)�`tn

p

1�`2
,�(tn)x 0

+x 0(tn)
◆

=µN/2�1(sn)u
✓
sn�

µ(sn)`x1
p

1� `2
,y1(sn)+

µ(sn)x1
p

1� `2
, µ(sn)x 0

+y0(sn)
◆

=vn`(0, x)

and similarly,

�N/2(tn)@t u` (tn, �n(tn)x + x(tn)) = @tvn`(0, x).

Combining with (6.35), we get that
⇣
�N/2�1(tn)u`(tn, �(tn)x + x(tn)), �N/2(tn)@t u` (tn, �n(tn)x + x(tn))

⌘

converges in Ḣ1 ⇥ L2 as n ! 1. The proof is complete.

Remark 6.15. From the proof of Lemma 6.12, we see that if (u(sn), @t u(sn)) con-
verges, up to scaling and space translation, to (v0, v1) 2 Ḣ1 ⇥ L2, then (u`(tn),
@t u`(tn)) converges (again up to scaling and space translation) to (v`(0), @tv`(0)),
where v is the solution of (1.1) with initial data (v0, v1), and the sequence (tn)n can
be taken as in Step 1 of the proof of Lemma 6.12.

A. Estimates on modulated functions

As in Section 3, we denote by A = (s, a, b, c) an element of RN 0 , where s 2 R,
a, b are in RN and c in R N (N�1)

2 . Recall from (3.2) the definition of Pc.

Lemma A.1. Let  2 S(RN ) and q > 0. Then the function

F : (x, A) 2 RN
⇥ RN 0

7�!

0
@ es/2��� x

|x | � |x |a
���
1
A
q

 

0
B@b +

es Pc(x � |x |2a)��� x
|x | � |x |a

���2
1
CA

can be extended to a C1 function onRN+N 0 . If K is a compact subset ofRN 0 , there
exists a constant CK > 0 such that

8x 2 RN , 8A 2 K , |F(x, A)| + |rAF(x, A)| + |xrx F(x, A)|

+ |xrxrAF(x, A)| + |r
2
AF(x, A)| 

CK
(1+ |x |)q

. (A.1)
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Furthermore
@F
@s

(x, 0) =

q
2
 (x) + x · r (x) (A.2)

@F
@a j

(x, 0) = qx j (x) � |x |2
@ f
@x j

(x) + 2x j x · r (x) (A.3)

@F
@b j

(x, 0) = @x j (x) (A.4)

@F
@c j

(x, 0) = (x`@xk � xk@x`) (x), ⇣(k, `) = j, (A.5)

where ⇣ is introduced before (3.2).

Proof. Note that
��� x
|x | � |x |a

���2 = 1�2 ha, xi+|a|2|x |2, which is> 0 if a 6= x/|x |2.
Thus F can be extended to a smooth function on the open set⇢

(x, A) 2 RN
⇥ RN 0

s.t. x = 0 or a 6=

x
|x |2

�
.

Next, we notice
F(x, A) =

1
|x |q

G
✓

x
|x |2

� a, A
◆

, (A.6)

where
G(y, A) =

eq s/2

|y|q
f
✓
b +

Pces y
|y|2

◆
, G(0, A) = 0.

Obviously, G is smooth away from y = 0. We prove that G 2 C1(RN
⇥ RN 0

).
Let us fix a large M > 0. Let "K > 0 be a small constant, depending on K , to be
specified. Using that f 2 S(RN ), we get, if A 2 K , 0 < |y| < "K ,

|G(y, A)| 

CK ,M

|y|q
���b +

Pces y
|y|2

���q+M 

CK ,M

|y|q
⇣
es |y|
|y|2 � |b|

⌘q+M



CK ,M
|y|q

|y|q+M
= CK |y|M .

As a consequence, G is continuous also at y = 0. Bounding similarly the deriva-
tives of G, we deduce that G is smooth and vanishes at infinite order at y = 0.
Going back to (A.6), we deduce that F is smooth.

We next show the bound on F in (A.1). Since F is continous, it is bounded in
BN (1) ⇥ K . To get a bound for |x | � 1, we use (A.6). Let y =

x
|x |2 � a. If |x | � 1

and A 2 K , then |y|  C 0

K = 1+maxA2K |a|. Let

M 0

K = sup
|y|C 0

K
A2K

|G(y, A)| < 1.
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Then:
|F(x, A)| 

M 0

k
|x |q

, |x | � 1, A 2 K ,

which completes the proof of the bound on F in (A.1). The proof of the bounds on
the derivatives of F in (A.1) is similar and we omit it.

Finally, (A.2),(A.3),(A.4) and (A.5) follow from explicit computations.

As an immediate consequence of Lemma A.1, recalling

⇣
✓�1
A

⌘
⇤

( f )(x)=e
(N+2)s
2

���� x
|x |

�|x |a
����
�(N+2)

f

 
b +

es Pc(x � |x |2a)
1�2ha, xi+|a|2|x |2

!
, f 2 Ḣ1,

we obtain:

Corollary A.2. There exists " > 0 with the following property. Let  2 S(RN ).
Then A 7! (✓�1

A )⇤ is a C1 function from BN 0

(") to H1(RN ). Its derivatives at
A = 0 are given by (A.2), (A.3), (A.4), (A.5) with q = N + 2.

We finally prove the following estimate:

Lemma A.3. Let f 2 S and p � 1. There existC, " > 0 such that for all A 2 RN 0 ,

|A| < " =)

��� f �

⇣
✓�1
A

⌘
⇤

f
���
L p

 C|A|.

Proof. Indeed by the bound on rAF in Lemma A.1, if |A|  ",
���⇣ f �

⇣
✓�1
A

⌘
⇤

f
⌘

(y)
��� 

C
1+ |y|N+2 |A|,

and the Lemma follows, integrating with respect to y.

B. Nonexistence of solutions converging fast to a stationary solution

In this appendix we prove Claim 5.8. By standard long-time perturbation theory,
there exist "0 > 0, M > 0 such that, for all solution v of (1.1), with initial data
(v0, v1) such that

kv0 � SkḢ1 + kv1kL2 = " < "0,

we have

[�1,+1] ⇢ (T�(v), T+(v)) and sup
t2[�1,+1]

�
kv(t) � SkḢ1 + k@tv(t)kL2

�
 M".

By induction, we deduce that for all integers T � 1, if v satisfies

kv0 � SkḢ1 + kv1kL2 = " <
"0
MT ,
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then

[�T,+T ] ⇢ (T�(v), T+(v)) and sup
t2[�T,+T ]

�
kv(t) � SkḢ1 + k@tv(t)kL2

�
 MT ".

Let ⌫ > 0 such that e�⌫M < 1. Let u be a solution of (1.1) such that (5.58) holds.
Then for any large integer T

ku(T ) � SkḢ1 + k@t u(T )kL2  Ce�⌫T <
"0
MT .

As a consequence,

sup
t2[0,T ]

ku(t) � SkḢ1 + k@t u(t)kL2 < Ce�⌫T MT
�!

T!+1

0.

We deduce that (u0, u1) = (S, 0) and thus by uniqueness that u ⌘ S.

C. Choice of the translation parameter

In this appendix we prove Claim 6.13. Let µ(s) > 0, ỹ(s) 2 RN such that

eK =

n⇣
µN/2�1(s)u(s, µ(s) · +ỹ(s)), µN/2(s)@su(s, µ(s) · +ỹ(s))

⌘
, s2(s�, s+)

o

has compact closure in Ḣ1 ⇥ L2. Let

8(s, y) =

|rs,yu(s, y)|2R
|rs,zu(s, z)|2 dz

.

Note that 8 is well-defined (since u 6⌘ 0), nonnegative, that s 7! 8(s, ·) is contin-
uous from (s�, s+) to L1(RN ) and that

R
8(s, y) dy = 1 for all s. If s 2 (s�, s+),

the function

Fs : Y1 7!

Z
+1

Y1

✓Z
RN�1

8(s, y) dy0

+

1
3
p

⇡
e�y

2
1

◆
dy1

is strictly decreasing and satisfies

lim
Y1!�1

Fs(Y1) =

4
3
, lim

Y1!+1

Fs(Y1) = 0.

We let y1(s) be the unique element of R such that Fs(y1(s)) =
2
3 . We define

y(s) = (y1(s), ỹ2(s), ỹ3(s)).

Let us prove that y, µ satisfy points (a), (b) and (c).
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Proof of (a).

2
3

=

Z
+1

y1(s)

Z
RN�1

8(s, y) dy0 dy1 +

1
3
p

⇡

Z
+1

y1(s)
e�y

2
1 dy1



Z
+1

y1(s)

Z
RN�1

8(s, y) dy0 dy1 +

1
3
.

Thus
2
3

�

1
3



Z
y1(s)

Z
RN�1

8(s, y) dy0 dy1 

2
3

and (a) follows.

Proof of (b). Let s 2 (s�, s+) and let {sn}n be a sequence in (s�, s+) converging to
s. We have

Z
+1

y1(s)

Z
RN�1

8(s, y) dy0 dy1 +

1
3
p

⇡

Z
+1

y1(s)
e�y

2
1 dy1 =

2
3

=

Z
+1

y1(sn)

Z
RN�1

8(sn, y) dy0 dy1 +

1
3
p

⇡

Z
+1

y1(sn)
e�y

2
1 dy1

Thus

0 =

Z y1(sn)

y1(s)

✓Z
RN�1

8(s, y)dy0

+

1
3
p

⇡
e�y

2
1

◆
dy1

�

Z
+1

y1(sn)

Z
RN�1

(8(sn, y) �8(s, y)) dy0 dy1.

Hence (since 8(s, y) � 0),
�����
Z y1(sn)

y1(s)
e�y

2
1 dy1

�����  3
p

⇡

Z
|8(sn, y) �8(s, y)| dy �!

n!1

0,

which shows that y1(sn) ! y1(s) as n ! 1, concluding the proof of the continuity
of s 7! y1(s).

Proof of (c). We prove that there exists a constant C > 0 such that

8s 2 (s�, s+), ỹ1(s) � Cµ(s)  y1(s)  ỹ1(s) + Cµ(s). (C.1)

If not, we can find a sequence {sn}n in (s�, s+) such that, for example

8n, y1(sn) > ỹ1(sn) + nµ(sn).
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We have Z
y1�n

µN (sn)
��
rs,yu(sn, µ(sn)y + ỹ(sn))

��2 dy
=

Z
z1�ỹ1(sn)+nµ(sn)

��
rs,yu(sn, z)

��2 dz
�

Z
z1�y1(sn)

|rs,yu(sn, z)|2 dz �

1
3

Z
RN

|rs,yu(sn, z)|2 dz,

which gives a contradiction, since by the compactness of the closure of eK , the first
term in the preceding inequalities goes to 0 as n ! 1.

The compactness of K follows easily from (C.1) and the compactness of eK .
We omit the proof.

D. Some space-time estimates

In this appendix we prove Claim 4.8. By Proposition 3.1, (b)

��S�r0,t0��L N+2
N�2 L

2(N+2)
N�2

 C

 Z
+1

�1

✓Z
|x |�r0+|t�t0|

1
|x |2(N+2) dx

◆1/2
dt

! N�2
N+2

 C

 Z 1

(r0 + |t � t0|)
N
2 +2

dt

! N�2
N+2



C
rN/2�1
0

,

which yields the first inequality of the Claim.
By Lemma 3.11,��e�!t Y�r0,t0��L N+2

N�2 L
2(N+2)
N�2

= C

 Z
+1

�1

✓Z
|x |�r0+|t�t0|

|Y |

2(N+2)
N�2 dx

◆ 1
2
e�

N+2
N�2!t dt

! N�2
N+2

 C

 Z
+1

�1

1
(|t � t0| + r0)qN /2

⇣
e�

2(N+2)
N�2 !(r0+|t�t0|)

⌘ 1
2 e�

N+2
N�2!t dt

! N�2
N+2

.

We note that e�
N+2
N�2!|t�t0|� N+2

N�2!t  e�
N+2
N�2!t0 . Hence (using that qN > 2)

��e�!t Y�r0,t0��L N+2
N�2 L

2(N+2)
N�2

 Ce�!(r0+t0)
✓Z

+1

�1

dt
(r0 + |t � t0|)qN /2

◆ N�2
N+2

 Ce�!(r0+t0),

which yields the second inequality of the Claim.
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