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A closer look at mirrors and quotients of Calabi-Yau threefolds

GILBERTO BINI AND FILIPPO F. FAVALE

Abstract. Let X be the toric variety (P1)4 associated with its four-dimensional
polytope 1. Denote by X̃ the resolution of the singular Fano variety Xo associ-
ated with the dual polytope 1o. Generically, anticanonical sections Y of X and
anticanonical sections Ỹ of X̃ are mirror partners in the sense of Batyrev. Our
main result is the following: the Hodge-theoretic mirror of the quotient Z associ-
ated to a maximal admissible pair (Y,G) in X is not a quotient Z̃ associated to an
admissible pair in X̃ . Nevertheless, it is possible to construct a mirror orbifold for
Z by means of a quotient of a suitable Ỹ . Its crepant resolution is a Calabi-Yau
threefold with Hodge numbers (8, 4). Instead, if we start from a non-maximal
admissible pair, in the same case, its mirror is the quotient associated to an ad-
missible pair.

Mathematics Subject Classification (2010): 14J32 (primary); 14J33, 14M25
(secondary).

1. Introduction

Let T be a Calabi-Yau threefold, i.e., a compact Kähler manifold with trivial canon-
ical bundle and no holomorphic 1-forms. As an example, take a generic anticanoni-
cal section Y of a smooth toric Fano fourfold X . Following Batyrev’s seminal article
([2]), there exists a mirror partner of Y , which is given as follows. The toric fourfold
X is associated with a polytope in four-dimensional real space. The dual polytope
yields another toric variety Xo, which is in general not smooth. Take a toric resolu-
tion X̃ associated to a maximal projective subdivision of the fan of Xo. A generic
anticanonical section Ỹ of X̃ is a mirror partner of a generic anticanonical section
of X . Here by a mirror partner we mean only a Hodge-theoretic mirror partner, i.e.,
the relevant Hodge numbers of Y and Ỹ are interchanged, namely:

h1,1(Y ) = h2,1(Ỹ ), h1,1(Ỹ ) = h2,1(Y ).
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Let G be a finite group of automorphisms of X that acts freely on Y . It is easy to
check that Z := Y/G is a Calabi-Yau threefold with non-trivial fundamental group.
It is natural to ask whether, for each pair (Y,G), there exists a finite group G̃ ⇢

Aut(X̃) such that Z̃ := Ỹ/G̃ is a mirror partner of Z - at least Hodge-theoretically.
In Section 4, we give a negative answer to the question above if the groups act

with the highest possible order. More precisely, let X = (P1)4 and consider pairs
(Y,G), where Y is a Calabi-Yau threefold in X and G is a finite group of automor-
phisms of X that acts freely on Y with the maximum possible order. These pairs
were first investigated in ( [5]), where they are called maximal admissible pairs.
For each of them there exists a Calabi-Yau threefold Z = Y/G with non-trivial
fundamental group and relevant Hodge numbers (h1,1, h1,2) = (1, 5). A (Hodge-
theoretic) mirror partner of Z should have

h1,1(Z̃) = 5, h1,2(Z̃) = 1 (1.1)

and height 6, where the height is defined as the sum of the two Hodge numbers
above.

In this setting, X is the toric Fano fourfold associated with the hypercube. Its
dual is the 16-cells (or hyperoctahedron) that yields a singular toric variety. If we
take a maximal projective subdivision of the hypercube, we have a smooth toric
variety, which is not Fano because the anticanonical bundle is semi-ample and not
ample; however, this resolution is crepant. In other words, an anticanonical section
Ỹ of the resolution is a smooth Calabi-Yau that is a mirror of Y .

In order to find subgroups of Aut(X̃), we recall the structure of the automor-
phism group of a toric variety (cf. [12]). This is given by the combinatorics of the
fan, as well as by the dense torus in X̃ . The former yields a unique possible group
in order to satisfy (1.1); the latter helps us to describe all possible families of finite
groups acting on Ỹ . None of them acts without fixed points; furthermore, the fixed
locus is the union of some curves. Therefore, a mirror - if it exists - cannot be found
in this way. Of course, the quotients by the groups described above have finite quo-
tient singularities, and there exists a mirror Calabi-Yau orbifold that satisfies (1.1).

If we take a crepant resolution of this orbifold, we get a smooth Calabi-Yau
manifold with height 12 and (h1,1, h1,2) = (8, 4). This is a mirror partner (at
least Hodge-theoretically) of a quotient in [4], which is a Calabi-Yau manifold with
cyclic fundamental group of order four: see Remark 5.2.

Finally, in Section 6, we prove that it is indeed possible to find Hodge-theoretic
mirror pairs by taking quotients associated to admissible pairs in X and in X̃ if
the admissible pair in X is not maximal. More precisely, we construct three pairs
(Zi , Z̃i ) of Hodge-theoretic Calabi-Yau mirrors with Zi associated to an admissible
pair in X and Z̃i associated to an admissible pair in X̃ .

ACKNOWLEDGEMENTS. Part of this work is included in the second named author’s
Ph.D thesis. We are grateful to the anonymous referee of the thesis for suggestions
and helpful remarks, especially on the chapter related to the material presented here.
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2. Automorphisms of resolutions of the toric dual of (P1)4

Let X be (P1)4. X is a Fano fourfold and it is the toric variety associated to the
polytope in 4-dimensional real space1 = [�1, 1]4, the hypercube. The fan6 of X
is spanned by the faces of the dual polytope 1o of 1, i.e., the 16-cells that can be
realized as the convex hull of the points {± ei }i=1,...,4, where ei form the canonical
basis of R4.

Figure 2.1. A representation of a hypercube and its dual: the 16-cells.

As shown in [4] and [5], there exists a group G 2 Aut(X) of order 16 and a smooth
and G-invariant anticanonical section Y of X such that G acts freely on Y .

The Fano variety dual to X is associated to the fan spanned by the faces of
1, i.e., the hypercube. Unfortunately, it is a strongly singular variety (at least it is
Gorenstein): indeed, its fan 6o is neither smooth nor simplicial. For example, the
cone whose primitive generators are

(1, 1, 1, 1) (1, 1, 1,�1) (1, 1,�1, 1) (1, 1,�1,�1)

is not simplicial and the same is true for all the cones of dimension 3 and 4. In
order to describe the mirror Calabi-Yau of Y , it is necessary to choose a maximal
projective subdivision 6̃ of6o. By definition, every maximal projective subdivision
fulfills the following conditions:

6̃(1) =

⇣
Z4 \

�
1o�o⌘

\ {0} =

⇣
Z4 \ 1

⌘
\ {0}.

There are 81 integral points in 1: 16 vertices of the hypercube (which correspond
to the rays of 6o), 32 points that are in the middle of an edge, 24 that correspond to
centers of 2-faces (squares), 8 that are centers of one of the 8 cubes of the hypercube.
Finally, we have the center of the hypercube which is the origin. This implies that
every maximal subdivision of 6o will have 80 rays.

Given a toric variety X associated to a fan 6, we recall that its homogeneous
coordinate ring S is the ring C[x⇢ : ⇢ 2 6(1)] with a grading on An�1(X). If
D =

P
⇢ a⇢D⇢ 2 An�1(X), where D⇢ is the toric divisor associated to the ray ⇢,
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Figure 2.2. Integral points in the hypercube.

we define for brevity xD := 5⇢x
a⇢
⇢ . The grading on S is given by the condition

deg
⇣
xD

⌘
= deg

⇣
x E

⌘
() D = E in An�1(X)

and by extending this definition by linearity.
One of the most important things about S is that it only depends on the rays of

the fan6. Different fans with the same rays give the same homogeneous coordinate
ring. We recall that a root of X is a pair (x⇢, xD) such that x⇢ is different from xD
but they have the same degree. For each root it is possible to find a 1-parameter
group of automorphisms of the corresponding toric variety. By definition, another
family of automorphisms of toric varieties are those coming from the torus T . If X is
simplicial, there is only another elementary type of automorphisms, those obtained
by the symmetries of the fan6. We denote this group by Aut(N ,6), where N is the
lattice such that N ⌦ R = R4 is the vector space where the fan lies. For simplicial
varieties there is an exact sequence

1 ! Aut(X)0 ! Aut(X) !

Aut(N ,6)

5i Si
! 1 (2.1)

due to Demazure and Cox (see, for example, [12]). In the sequence, Si is the per-
mutation group on the i-th set of the partition of 6(1) given by the equivalence
relation ⇢1 ⇠ ⇢2 iff deg x⇢1 = deg x⇢2 .

Lemma 2.1. Assume that 6̃ is a maximal projective resolution of 6o and call X̃
the corresponding toric variety. Then, Aut(X̃) is an algebraic group of dimension
4 such that the connected component containing the identity is the torus T , i.e., X̃
has no roots. Moreover, the exact sequence (2.1) becomes

1 ! T ! Aut(X̃) ! Aut(Z4, 6̃) ! 1. (2.2)
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Proof. It suffices to show that there are no roots. Standard facts of toric geometry
imply that the number of roots of a simplicial and Gorenstein variety is given by
the sum over the facets 0 of 1�KX̃

of l⇤(0), i.e., the number of integral points
in 0 that are not on its topological border (see [12]). 6̃ is a maximal projective
subdivision and this implies that the polytope associated to the divisor �KX̃ is the
polytope of Xo. It is easy to see that the 16-cells1 contain no integral points besides
its vertices and the origin. This implies that there are no roots and that the connected
component that contains the identity is the torus.

To prove the second statement, we need to show that for every pair (⇢1, ⇢2) of
distinct indices of rays (for brevity, we will often write ⇢ to mean a ray of a fan or
its primitive generator v⇢), D⇢1 is different from D⇢2 inside A3(X̃). Assume that
(⇢1, ⇢2) is such a pair. Then, by definition, deg x⇢1 = deg x⇢2 and (x⇢1, x

D⇢2 ) =

(x⇢1, x⇢2) is a root. But we have shown that X̃ has no roots so the partition given by
⇠ is trivial. In particular,5i Si is the trivial group.

We have shown that, by changing the projective subdivision, one can change
the part of Aut(X̃) that depends on the automorphism group of the fan. This depends
strongly on how much the subdivision is invariant under the hyperoctahedral group
B4, i.e. the automorphisms group of the hypercube and of the fan spanned by its
faces. In particular, Aut(Z4, 6̃) will be a subgroup of B4.

An example of maximal projective subdivision that preserves the full symme-
try of the hypercube has, as maximal cones, the cones spanned by a flag in the
hypercube. By a flag we mean a tetrahedron with one vertex on the center of one of
the 8 cubes of 1 (call it C), another vertex on the center of a 2-face of C (denote
the face by F), the third vertex on an edge E of F and the final vertex on one of the
two end-points of F , i.e. on a vertex of the hypercube. The set of such flags covers
the hypercube and two flags meet only along a lower dimensional face of the two
tetrahedra. This implies that the set of the cone spanned by the flags generate a fan
with 384 facets (one for each flag). By construction, the set of the primitive gener-
ators of each maximal cone - the vertices of a flag in the hypercube - is a Z-basis
for Z4. This implies that the resolution is smooth and is a maximal subdivision of
6o. It is also easy to see that the corresponding toric variety is projective by con-
structing an explicit support function iteratively. We will call this subdivision the
flag subdivision of Xo.

3. Choosing the group

To compute the invariants of the action of a subgroup of Aut(X̃) on the cohomology
of X̃ , it is sufficient to consider the action of its projection on Aut(Z4, 6̃); in fact, T
acts trivially. Let K be a subgroup of B4 and assume that a K -invariant subdivision
has been chosen. Call Ỹ the generic element of |� KX̃ | that is a smooth Calabi-Yau
that it is the mirror of Y . Assume moreover that Ỹ is G̃-invariant with G̃  Aut(X̃)

1 Recall that 1o
= Ch({± e1,± e2,± e3,± e4}).
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Figure 2.3. The fan of the hypercube has 8 maximal cones. In the picture we show
the slice of the subdivision of the cone corresponding to the cube with center (1, 0, 0, 0)
with the plane x1 = 1. On the left, one of its 64 tetrahedra (each tetrahedron corresponds
to one of the maximal cones of the flag subdivision).

such that the image of G̃ in Aut(Z4, 6̃) is K . Since X̃ is simplicial (i.e., it has only
orbifold singularities), the Picard group has finite index in A3(X̃). This implies that
A3(X̃) ⌦ Q = Pic(X̃) ⌦ Q = PicQ(X̃). Consider the exact sequence

0 // Z4
↵ // Z6̃(1)

:=

L
⇢26̃ Z � // A3(X̃) // 0 (3.1)

where ↵(m) = (< v⇢,m >)⇢ and �((a⇢)⇢) =

P
⇢ a⇢D⇢ . By tensorizing with Q,

we obtain the exact sequence

0 // Q4 ↵ // Q80 � // PicQ(X̃) // 0 , (3.2)

from which we deduce that PicQ(X̃) has dimension 76.
Since Ỹ ⇢ X̃ , there is a map from PicQ(X̃) to PicQ(Ỹ ). By standard facts

in toric geometry (see, for instance, [8]), the kernel of this map is generated by
the classes D⇢ of divisors associated to edges of (1o)o = 1 spanned by integral
vectors, which are in the interior of some facets of1. In our case,1 is the hypercube
and the toric divisors in the kernel are the ones corresponding to the centers of the 8
cubes of1. Therefore, the dimension of the kernel is 8. Consider the exact sequence

0 // Ker // PicQ(X̃) // PicQ(Ỹ ) // 0 . (3.3)

If we take the invariant subspaces in (3.3), we obtain the exact sequence (see, for
instance, [15])

0 // KerK // PicQ(X̃)K // PicQ(Ỹ )K // 0 (3.4)

that allows us to calculate the invariant part of PicQ(Ỹ ). Since Ỹ is a smooth Calabi-
Yau, we have H2(Ỹ , C) = H1,1(Ỹ ). We then need to search for a group K of order
16 such that the dimension of PicQ(Ỹ )K is 5. It is necessary that K has order 16
because we also want �(Ỹ/|K |) to be 8.
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Up to conjugacy, the group B4 has exactly 37 subgroups of order 16. By means
of a computer search, we can compute the dimension of the vector spaces in the
previous exact sequence. The following table summarizes these results. For each

GAP Index (Q4)K (Q80)K PicQ(X̃)K KerK PicQ(Ỹ )K

1 14 0 15 15 4 11
2 14 0 15 15 2 13
3 3 0 9 9 2 7
4 11 0 10 10 2 8
5 3 0 9 9 2 7
6 2 0 8 8 2 6
7 11 0 10 10 2 8
8 3 0 9 9 1 8
9 3 0 10 10 2 8
10 11 0 12 12 2 10
11 10 0 11 11 3 8
12 3 0 9 9 2 7
13 10 0 11 11 2 9
14 13 0 8 8 1 7
15 11 0 10 10 1 9
16 11 0 11 11 3 8
17 14 0 15 15 3 12
18 6 0 6 6 1 5
19 11 0 12 12 3 9
20 11 0 14 14 3 11
21 3 0 10 10 2 8
22 11 0 12 12 2 10
23 4 0 8 8 2 6
24 11 0 11 11 2 9
25 11 0 12 12 3 9
26 11 0 12 12 1 11
27 8 0 7 7 1 6
28 7 0 9 9 1 8
29 3 0 10 10 1 9
30 11 0 13 13 3 10
31 11 0 11 11 3 8
32 11 0 13 13 3 10
33 11 1 17 16 4 12
34 11 1 17 16 3 13
35 11 0 13 13 2 11
36 11 0 11 11 2 9
37 11 0 13 13 2 11

group we specify also the GAP Index2 by which it is possible to identify the isomor-
phism class of the group from the GAP database. For example, the group relative to
line 7 of the table, has GAP index 11 that corresponds to D8 ⇥ Z2.

2 GAP stands for “Groups, Algorithms, Programming" and is a software for computational dis-
crete algebra. It has a database for finite groups of order less than or equal to 2000 (except 1024).
For example, groups of order 16 are identified by a pair (16, x) where x is a progressive number.
The GAP Index of a group of order 16 is x .
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As it is possible to see from the table, there is only one group (up to conjugacy)
such that h1,1(Ỹ ) = 5. This group has GAP index 6 and it is isomorphic to a partic-
ular semidirect product of Z8 and Z2, which is denoted by M16 with the following
presentation

M16 =

n
g, h | g8 = h2 = Id h�1gh = g5

o
.

By direct inspection, one checks that B4 has exactly 6 subgroups isomorphic to M16
and they are all conjugated. Then the following result holds.

Proposition 3.1. Assume that 6̃ is a maximal projective subdivision of6 such that
X̃ = X6̃ admits a smooth anticanonical section Ỹ and a group G̃ with h1,1(Ỹ/G̃) =

5. Then 6̃ must have a M16-symmetry.

In what follows, 6̃ is a maximal projective subdivision of 6o that has a M16-
symmetry. Without loss of generality, we can assume

hg, hi :=: K  Aut(Z4, 6̃)

with

g =

2
64
0 �1 0 0
0 0 0 �1

�1 0 0 0
0 0 1 0

3
75 h =

2
64
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

3
75 . (3.5)

It will be useful to observe that M16 has three involutions, namely (g4, g4h, h), and
that they generate a subgroup of order 4 isomorphic to Z2 � Z2. Moreover, among
the 3 involutions, only g4 has square roots (that are g2 and g6). Recall that we need
a group G̃ of order 16 such that its projection on Aut(Z4, 6̃) is K . Now we will
describe all such groups G̃.

As before, call T the maximal torus inside X̃ . Recall that T is an open dense
subset of X̃ and that we can write it as the toric affine patch corresponding to the
cone {0} of 6̃, i.e., it has a realization inside X̃ given by

X{0} = Spec
⇣
C
h
{0}_ \ Z4

i⌘
= Spec

⇣
C
h
x±1
1 , x±1

2 , x±1
3 , x±1

4

i⌘
.

Choose coordinates (�i ) on T such that the action of the torus on T = X{0} is given
by

T ⇥ X{0} �! X{0}
((�i )i , (xi )i ) 7! (�i xi )i .

In coordinates, for every � 2 T one has

� : (x1, x2, x3, x4) 7! (�1x1, �2x2, �3x3, �4x4) .

The action of K on the points of X{0} can be deduced from that on the coordinates.
For example, consider g 2 K whose action on the lattice Z4 = N = M_ is
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described by the matrix in (3.5). The action of its dual g_
: N_

! N_ is described
by the transpose of the matrix in (3.5): it is a permutation on the set {± e_i }i . Here,
we denote by ei the elements of the standard Z-basis of N and e_i its dual. Now,
recall that the coordinates x±1

i on the torus are, by definition, of the form �± e_i .
This allows us to deduce the action of g (as of any other element of Aut(Z4, 6̃)) on
the torus. Thus the description of the action of g and h on T (which will be denoted
again by g and h) are

g : (x1, x2, x3, x4) 7!

✓
1
x2

,
1
x4

,
1
x1

, x3
◆

h : (x1, x2, x3, x4) 7!

✓
x1,

1
x2

,
1
x3

, x4
◆

.

Two generators of the group that projects on K are of the form {�� h, µ� g}, where
�, µ 2 T . By direct inspection, one can check that h� � h, µ � gi is isomorphic to
M16 if and only if the following conditions are satisfied:

8>>><
>>>:

�21 = �24 = 1,
�1�3µ1µ4/(µ2µ3) = 1,
µ2µ3/(�3�4µ1µ4) = 1,
�1µ1µ2/(�2µ3µ4) = 1,
�2�4µ3µ4/(µ1µ2) = 1,

(3.6)

that is to say, 8><
>:

�21 = 1,
�2 = �1µ1µ2/(µ3µ4),
�3 = µ2µ3/(�1µ1µ4),
�4 = �1.

(3.7)

Thus, we have 2 families (one for each choice of �1 2 {±1}) of groups the satisfy
our requirements. If one takes ⌫ 2 T to be (m�1

1 c�12 , c2,m4m�1
2 c�12 ,m�1

2 c�12 ) with
c2 = m�1

1 m�1
2 m3m4 then

⌫�1
� (� � h) � ⌫ = (�1, �1, �

�1
1 , ��1

1 ) � h,

⌫�1
� (µ � g) � ⌫ = g,

with �21 = 1 so, up to conjugacy, there are only two subgroups of Aut(X̃) that
project themselves on K :

L1 := hg, hi and L2 := hg, (�1,�1,�1,�1) � hi .

Define h1 := h and h2 := (�1,�1,�1,�1) � h, so that Li = hg, hi i.
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4. Anticanonical Li -invariant sections and fixed loci

In this section, we analyse invariant sections and their relation with the fixed lo-
cus of L1 and that of L2. For most of the section, the toric variety is any maximal
projective resolution X̃ that has the M16-symmetry described before. For more de-
tails about fixed points we will, however, restrict ourselves to considering the flag
resolution defined at the end of Section 2.

First, we will analyse the invariant space of anticanonical sections of L1 and
L2. By standard toric geometry, H0(X̃ ,�KX̃ ) has dimension equal to |Z4 \ 1o

|.
Moreover, from this set it is possible to write down an explicit basis for the space in
the coordinates of the torus X{0} (which we will identify with T ). More precisely,
given a divisor D in a projective toric variety X constructed from a polytope in a
lattice M , there is an isomorphism between H0(X, D) and the set

L(D) :=

M
m21D\M

xm · C,

where 1D is the polytope associated to the divisor D, we denote by xi the coordi-
nates of the torus and xm is a shorthand for5i xmi

i .
In our case, since 6̃ is a maximal projective subdivision, one has 1�KX̃

=

1o, the 16-cells. The integral points of 1o, i.e. the points of the set 1o
\ Z4, are

the coordinate points, their opposite and the origin. Hence there are 9 indipendent
anticanonical sections and

H0(X̃ ,�KX̃ ) ' L(1o) =

(X
i
ai xi +

X
i
bi
1
xi

+ c

)
.

From this description, it is also easy to describe the invariant subspaces with respect
to the actions of L1 and L2.

We will write V (i)
a,b to denote a subspace of H

0(X̃ ,�KX̃ ) such that g(v) = av
and hi (v) = bv for every v 2 V (i)

a,b. By direct computation, we obtain

H0(X̃ ,�KX̃ ) = V (1)
1,1 � V (1)

�1,1 � V (1)
i,1 � V (1)

�i,1 � W (1),

H0(X̃ ,�KX̃ ) = V (2)
1,1 � V (2)

1,�1 � V (2)
�1,�1 � V (2)

i,�1 � V (2)
�i,�1 � W (2),

where W (i) is a subspace that does not contain any invariant subspace of dimension
1. Apart from V (1)

1,1 which has dimension 2, every other subspace of the form V (i)
a,b

has dimension 1.

4.1. The group L1

The invariant subspace with respect to L1 has dimension 2 and it is generated by

I0 := x1 +

1
x1

+ x2 +

1
x2

+ x3 +

1
x3

+ x4 +

1
x4

and I1 := 1.
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The generic invariant section is then

s :=

1
x1x2x3x4

⇣
ax1x2x3x4 + b

�
x21x2x3x4 + x2x3x4 + x1x22x3x4

+x1x3x4 + x1x2x23x4 + x1x2x4 + x1x2x3x24 + x1x2x3
�⌘ (4.1)

whose zero locus can be proven to be smooth in T for generic values of a and b.
Its closure inside X̃ is an invariant anticanonical section. Let us focus on the fixed
locus of L1 on T . Denote by V4 the subgroup of L1 generated by g4 and h1. As
observed before, it is isomorphic to Z2 � Z2 and consists of all the involutions of
L1 plus the identity. For this reason, the fixed locus of L1 is that of V4. In K , g4
equals to� Id, so g4 acts on T by sending xi to x�1

i . The fixed locus of g4 inside T
consists of those points on the torus with coordinates xi such that

(x1, x2, x3, x4) =

✓
1
x1

,
1
x2

,
1
x3

,
1
x4

◆
,

i.e., the 16 points with xi = ±1. By direct inspection, the generic section s does not
vanish on any of these points.

The fixed points of h1 are those for which

(x1, x2, x3, x4) =

✓
x1,

1
x2

,
1
x3

, x4
◆

,

so they have x2, x3 2 {±1} and x1, x4 free. Every section meets each of the four
component of the fixed locus in a curve that is smooth on T . A similar result is true
for g4h1.

This shows that the generic L1-invariant section meets the fixed locus of L1 in
8 curves and is smooth in T . The elements of L1 that have fixed points (on T ) on
V (s) are only h and g4h because g4 is the only involution that has a square root
and it acts freely. It remains to consider what happens outside T , i.e., on the toric
divisors of X̃ .

Lemma 4.1. Let P be a fixed point of g in X̃ . Then P lies in T .

Proof. If P is a fixed point of g, then it is also a fixed point for g4. The toric variety
X̃ = X6̃ is covered by affine patches X� where � is a facet in 6̃. In particular, there
exists � such that P 2 X� . Call ⌧ the cone that is the image of � by the involution
g4. Being a fixed point, P will also be a point of X⌧ because g4(X� ) = X⌧ . We
have then

P 2 X� \ g4(X� ) = X� \ X⌧ = X�\⌧ .

But g4 acts on Z4 as � Id so ⌧ = g4(� ) = �� . Being � a strictly convex rational
cone one has then � \ (�� ) = {0}. In the end, hence P 2 X�\⌧ = X{0} = T .
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Corollary 4.2. For every maximal projective subdivision X̃ of Xo that admits a
K -symmetry, the automorphism g acts freely on the whole generic invariant anti-
canonical section.

Assume now that X̃ is the flag subdivision. Let us prove that the closure of the
generic V (s) is smooth in the affine patch X� where � is the facet generated by the
flag whose vertices are

(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1).

The dual cone is generated by the following primitive vectors

(1,�1, 0, 0), (0, 1,�1, 0), (0, 0, 1,�1), (0, 0, 0, 1)

so that the C-algebra generated by the semigroup �_
\ Z4 is

C[x1x�1
2 , x2x�1

3 , x3x�1
4 , x4] = C[X1, X2, X3, X4].

The affine coordinates on X� are then {X1, X2, X3, X4}. The relations that allow to
go from the Xi to the coordinates on the torus are8><

>:
x1 = X1X2X3X4
x2 = X2X3X4
x3 = X3X4
x4 = X4.

Making the substitution one has

s · x1 =: S = aX1X2X3X4 + b(X21X
2
2X

2
3X

2
4 + X1X22X

2
3X

2
4+

+ X1X2X23X
2
4 + X1X2X3X24 + X1X2X3 + X1X2 + X1 + 1). (4.2)

We multiply by x1 because, in this way, one does not change the zero locus in T
(in fact x1 is invertible in the coordinate ring of T ) but the substitution allows to
cancel other components that are not in the closure. By direct inspection one sees
that S is (for generic a, b) smooth. This shows that there exists a smooth Calabi-Yau
threefold Ỹ that is L1-invariant (and that is also a mirror for Y ).

As a consequence of a result3 in [14], we deduce that L1 is a symplectic sub-
group of Aut(Ỹ ). In fact g acts freely on Ỹ (by direct check inside the torus and
using the Lemma for the outside) and h is an involution that fixes curves. With this
we are able to complete the proof of the following theorem.

Theorem 4.3. There exists a maximal projective subdivision 6̃ (i.e. the flag subdi-
vision) of 6o and its associated toric variety X̃ , a smooth Calabi-Yau threefold Ỹ
in X̃ and a group G̃  Aut(X̃) (namely L1) such that:

3 If X is a Calabi-Yau threefold and ◆ is a small involution acting on X such that its fixed locus
contains a curve, then ◆ is a symplectic automorphism of X .
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• Ỹ is G̃-invariant and a mirror for Y 2 | � KX |;
• G̃ is symplectic as subgroup of Aut(Ỹ ) and acts with a fixed locus with irre-
ducible components that are curves;

• Z := Ỹ/G̃ is a Calabi-Yau orbifold whose singular locus has pure dimension 1
and it has fundamental group isomorphic to Z4;

• Z is a topological mirror for Y/G, i.e. it has (h1,1(Z), h1,2(Z)) = (5, 1).

Proof. The only thing left is that Z is a topological mirror for Y/G, i.e. we have to
prove that h1,2(Z) = h1,2(Ỹ )G̃ = 1 and that its fundamental group is Z4.

Following Batyrev’s work we have that the space H2,1(Ỹ ) = H1(Ỹ , TỸ ) clas-
sifies the infinitesimal deformations of Ỹ . It has a subspace

H2,1poly(Ỹ )  H2,1(Ỹ ),

which parametrizes the deformation determined by the hypersurfaces Ỹ 2 | � KX̃ |.
The other possible deformations of Ỹ form a subspace of dimension

D :=

X
2o

l⇤(2o)l⇤(2̂o),

where 2o runs over all the faces of 1o of codimension 2 and 2̂o is the face of
1 dual to 2o (see [2]). But 1o is the 16-cells and each face has no points in the
relative interior so D = 0. This shows that all the contribution to H2,1(Ỹ ) comes
from H2,1poly(Ỹ ).

Hence, it suffices to analyse the action of L1 on H0(X̃ ,�KX̃ ). But, as we have
seen before,

H0(X̃ ,�KX̃ ) ' L(1o)

and the action of L1 on this space is determined by the permutation of the points in
1o. We have already computed the invariant subspace and it has dimension 2. This
implies that H2,1(Ỹ )L1 = 2� 1 = 1.

In ([6]), it has been calculated the fundamental group of the generic anticanon-
ical section of a Fano fourfold. Only a few of the varieties analysed have non-trivial
fundalmental group and the case which concerns us now, the anticanonical section
in the dual of (P1)4, is not one of those. This shows that Yo is simply connected and
thus the same holds for Ỹ . By the main result of ( [1]), the fundamental group of Ỹ
is isomorphic to the quotient of G̃ by the group generated by the elements whose
fixed locus is not empty. As we have seen the only automorphisms with fixed points
on Ỹ are h1 and g4h1 so the fundamental group of Z is G̃/

⌦
h1, g4h1

↵
' Z4.

4.2. The group L2

In this case, the decomposition of H0(X̃ ,�KX̃ ) does not have invariant spaces of
dimension greater than one that are intersections of eigenspaces of elements of L2.
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So, to each invariant subspace of dimension 1 (there are 5 of those) we associate
an anticanonical section that is L2-invariant. We will see in a moment that none of
these is a mirror for Y : they are all singular.

Consider the subspace V (2)
1,1 . This is spanned by the section

s1,1 = 1

so its zero locus on the torus is empty. The zero locus of the corresponding section
on X̃ is the union of the toric divisors; hence it is not only highly singular, but also
reducible.

The other invariant subspaces are of the form V (2)
ia,�1 for a = 0, . . . , 3. If we

denote by sia,�1 an element that spans V (2)
ia,�1, we can consider the following sec-

tions:

s1,�1 :=

✓
x1 +

1
x1

◆
+

✓
x2 +

1
x2

◆
+

✓
x3 +

1
x3

◆
+

✓
x4 +

1
x4

◆

s�1,�1 :=

✓
x1 +

1
x1

◆
�

✓
x2 +

1
x2

◆
�

✓
x3 +

1
x3

◆
+

✓
x4 +

1
x4

◆

sI,�1 :=

✓
x1 +

1
x1

◆
+ i

✓
x2 +

1
x2

◆
� i

✓
x3 +

1
x3

◆
�

✓
x4 +

1
x4

◆

s�I,�1 :=

✓
x1 +

1
x1

◆
� i

✓
x2 +

1
x2

◆
+ i

✓
x3 +

1
x3

◆
�

✓
x4 +

1
x4

◆
.

One can show that the points of the torus with coordinates

(�1,�1, 1, 1), (1, 1,�1,�1), (�1, 1,�1, 1),

(1,�1, 1,�1), (1,�1,�1, 1), (�1, 1, 1,�1)
are the singular points of V (s1,�1) whereas

(1, 1, 1, 1), (�1,�1,�1,�1), (�1, 1, 1,�1), (1,�1,�1, 1)

are the singular points of V (sia,�1) for a = 1, 2, 3.
This concludes the case of L2. We have also proved a refined version of The-

orem 4.3: indeed, we have also shown that if the pair (Ỹ , G̃) exists for some X̃ , as
in the hypotesis of Theorem 4.3, then G̃ is uniquely determined by its conjugacy
class.

5. Fixed locus of L1 for the Flag resolution

By Theorem 4.3, we have seen that there exists a topological mirror for Y/G and
it is constructed as Z = Ỹ/G̃ for suitable Ỹ and G̃. Furthermore, Z is singular
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and all its deformations have at least the same singularities as Z : we have an equi-
singular family of anticanonical quotients that is the (topological) mirror-family for
Y/G. There is no hope of obtaining a smooth mirror for Y/G from Z . One can
instead consider a crepant resolution. This exists because Ỹ is a smooth Calabi-Yau
threefold and G̃ is a symplectic group. The crepant resolution is again a Calabi-
Yau, it is smooth but it will have different Hodge numbers that are given by the
dimension of the orbifold cohomology of Ỹ/G̃. Now, we will analyse the fixed locus
of the group L1 action on the toric resolution associated to the flag subdivision and
compute the orbifold cohomology for the quotient.

We recall that the fixed locus of L1 on the torus T is given by the union of
the fixed loci of h1 and g4h1. These two elements are the only ones that have non-
empty fixed locus (on Ỹ ). Both are symplectic involutions of Ỹ and have fixed
smooth locus of pure dimension 1. If a curve of Fix(L1) does not intersect T then
it is contained in

Ỹ \

[
⇢

D⇢,

i.e., in the union of the toric divisors (restricted on Ỹ ). Now, we will show that there
are no more curves other than those we have found in T .

Assume that P is a fixed point of h1. The same methods apply also to g4h1.
Call � a maximal cone of 6̃ such that P 2 X� . As we have done in Lemma 4.1, if
⌧ = h(� ) we have

P 2 X� \ X⌧ = X�\⌧ .

In this case, however, it is indeed possible that � \ ⌧ 6= {0} and these are the cases
we have to investigate. All the maximal cones of the flag subdivision have primitive
generators for their rays of the form�

± ei ,± ei ± e j ,± ei ± e j ± ek,± ei ± e j ± ek ± el
 

where {i, j, k, l} = {1, 2, 3, 4}. To have � \ ⌧ 6= {0} it is necessary that ± ei is
fixed by h1. This happens if and only if i 2 {1, 4}. If that is the case, we have two
further cases depending on whether (i, j) is in {(1, 4), (4, 1)} or not. If (i, j) 2

{(1, 4), (4, 1)} then � \ ⌧ is the cone generated by ± ei and ± ei ± e j . In the other
case � \ ⌧ is a ray and has, as primitive generator, the vector ± ei .

Assume that � \ ⌧ = C(e1). In this case C(e1)_ = C(e_1 ,± e_2 ,± e_3 ,± e_4 )
and

C[C(e1)_ \ Z4] = C[x1, x±1
2 , x±1

3 , x±1
4 ].

The conditions to be satisfied by the coordinates of a fixed point of h1 inside XC(e1)
are x2, x3 = ±1. If we define ✏2 = ±1 and ✏3 = ±1 such that xi = ✏i for i = 2, 3,
the equations for the fixed locus of h1 on Ỹ (restricted to XC(e1)) are

a✏2✏3x1x4 + b(✏2✏3(x21x4 + x1x24 + x1 + x4) + 2(✏2 + ✏3)x1x4) = 0.

For each choice of ✏2, ✏3 we have, generically, a smooth and irreducible curve that
is not contained in the locus x1 = 0. Our interest in this fact is justified because
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Figure 5.1. The cube with center (1, 0, 0, 0), a tetrahedron and its image with respect
to h1 in two cases: the right one when � \ h(� ) = {0} and the second when � \ h(� ) =

C(e1).

the points of XC(e1) with x1 6= 0 are exactly the points of the torus. If we want to
find new components for Fix(L1), we have to search in the locus x1 = 0. We have
then shown that there are no other components of Fix(L1) in XC(e1). The projection
of L1 on Aut(Z4, 6̃) acts transitively on ± ei so this shows that there are no more
components of the fixed locus on

XC(e1) [ XC(� e1) [ XC(e4) [ XC(� e4).

It remains to consider the case (i, j) 2 {(1, 4), (4, 1)}. In total there are 8 cones in
6̃ with these properties and they are arranged in 2 orbits under the action of M16.
The orbit representatives are

C(e1, e1+ e4) and C(e1, e1� e4).

Assume that �\⌧ = C(e1, e1+ e4). The dual cone isC(e_1 ,± e_2 ,± e_3 ,� e_1 + e_4 )
so that

C
h
C (e1, e1+ e4)_ \ Z4

i
= C

h
x1, x±1

2 , x±1
3 , x4x�1

1

i
:= C

h
w1, w

±1
2 , w±1

3 , w4
i
.

In this affine patch, Ỹ can be described as the zero locus of

s := aw1w2w3w4 + b
�
w21w2w3w

2
4 + w21w2w3w4 + w1w

2
2w3w4

+ w1w2w
2
3w4 + w1w2w4 + w1w3w4 + w2w3w4 + w2w3

�
.

The action of h1 on these coordinates is given by

h : (w1, w2, w3, w4) 7!

✓
w1,

1
w2

,
1
w3

, w4

◆
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so the fixed locus is given by w2, w3 2 {±1}. These conditions give 4 irreducible
curves that are the closure of the ones we have found in the torus. The same argu-
ment applies when one searches for new components in XC(e1,e1 � e4).

In conclusion, h1 has a fixed locus composed of 4 irreducible curves and none
of them is contained in a toric divisor. The only other element that has fixed points
in L1 is g4h1 but this is conjugated in L1 to h1. This means that none of the compo-
nents of the fixed locus of L1 is containtd in the intersection of Ỹ and a toric divisor.
It is also interesting to note that, by the main result of ( [1]), the fundamental group
of Ỹ is G/

⌦
h1, g4h1

↵
' Z4.

Theorem 5.1. A crepant resolution of Z is a smooth Calabi-Yau manifold with
Hodge numbers (h1,1, h1,2) = (8, 4).

Proof. The formula for the orbifold cohomology of Z = Ỹ/G̃ is the following (for
a reference see [13]):

H p,q
orb (Z) = H p,q(Ỹ )G̃ �

2
4 M
k2CRG̃\{Id}

H p�age(k),q�age(k)(Fix(k)/C(k))

3
5 ,

where CRG̃ is a set whose elements are representants for the conjugacy classes of
G̃, C(k) is the centralizer of k in G̃. We recall that, if X is a complex threefold,
g 2 Aut(X) has finite order and P is a fixed point of g, then, the age of g in P with
respect to the primitive root � of order o(g) is

age(P, �) := (a1 + a2 + a3)/o(g),

where �ai are the eigenvalues of dPg and 0  ai  o(g) � 1.
In our particular case we can simplify the formula a lot because the only ele-

ments with fixed points are h1 and g4h1 and they are conjugated. Being h1 a sym-
plectic involution one has that its age is 1 so the formula becomes

H p,q
orb (Z) = H p,q(Ỹ )G̃ � H p�1,q�1 (Fix(h1)/C(h1)) .

The shifts on the degree mean that we have a contribution to h1,1 = h2,2 equal to
the number of the components of Fix(h1)/C(h1) and a contribution to h1,2 = h2,1
equal to the sum of the genera of the components of Fix(h1)/C(h1).

The centralizer of h1 is the group generated by g2 and h that is abelian and
isomorphic to Z4 � Z2. The action of C(h1) is not faithful; in fact, h1 acts trivially.
This means that Fix(h1)/C(h1) = Fix(h1)/

⌦
g2

↵
.

If, as before, s is the section corresponding to Ỹ , denote by

C±± := V (s, x2 ⌥ 1, x3 ⌥ 1)
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the four components of Fix(L1) \ T . By definition it is clear that they are pairwise
disjoint. We need to understand how g2 acts on them. The action of g2 on the
coordinates is given by

g2 : (x1, x2, x3, x4) 7!

✓
1
x4

, x3,
1
x2

, x1
◆

so g2(C++) = C++, g2(C��) = C�� and g2(C+�) = C�+. It is also of interest
to note that g4(C±⌥) = C±⌥. This means that

Fix(L1)⌦
g2

↵ =

C++⌦
g2

↵ t

C��⌦
g2

↵ t

C+�⌦
g4

↵ =

C++

Z4
t

C��

Z4
t

C+�

Z2

and each of these quotients is free (because g4, and hence g2, does not have fixed
points). By the Riemann-Hurwitz formula we have

g(C++/Z4) =

g(C++) � 1
4

+ 1, g(C��/Z4) =

g(C��) � 1
4

+ 1

and
g(C+�/Z2) =

g(C+�) � 1
2

+ 1.

This, in particular, implies that g(C++) and g(C��) are congruent to 1 modulo 4
and that g(C+�) = g(C�+) is odd. The map ⇡ : Ỹ ! Ỹ/G̃ is finite and it is rami-
fied along 8 curves. These are C++,C��,C�+,C+� (the fixed locus of h1) and the
images of these curves by g (the fixed locus of g4h1). The two fixed loci are inter-
changed by g so the branch locus is given by Fix(h1)/C(h1). We have already seen
that is composed of 3 curves. By writing explicitly the Riemann-Hurwitz formula,
we obtain the following relation:

g(C++) + g(C��) + g(C+�) + g(C�+) = 4.

This, and the arithmetic relations satisfied by g(C±±), allow us to conclude that
each component of the fixed locus and of the branch locus is an elliptic curve. In
conclusion we have

h1,1orb(Z) = 5+ 3 and h1,2orb(Z) = 1+ 3.

To conclude it remains to recall that the orbifold cohomology of a global quotient
of a Calabi-Yau threefold by a finite symplectic group is the cohomology of one of
its crepant resolutions (cf. [16]).

Remark 5.2. In [4], the authors studied a particular Calabi-Yau threefold. We will
briefly recall its construction. First of all, denote by S the complete intersection in
P4 of the following two quadrics:

f = x20 + x21 + x22 + x23 + x24 and g = x20 � i x21 � x22 + i x23 .
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By simple calculation, S is proved to be smooth and a del Pezzo surface of degree
4. Let r and t be the automorphisms of P4 ⇥ P4 such that

(x, y) � r // ((x0 : x1 : �x2 : x3 : �x4), (y0 : y1 : �y2 : y3 : �y4))

[1ex](x, y) � t // ((y0 : y1 : �y2 : �y3 : y4), (x0 : x1 : x2 : x3 : x4)) .

The group G = hr, ti ' Z4 ⇥ Z2 acts on the product W = S ⇥ S. Moreover,
the generic invariant section of the anticanonical bundle of W is smooth and the
fixed locus of G is disjoint from it. Hence, the zero locus T of such a section is a
smooth Calabi-Yau threefold and admits a free action of G. Call H one of the cyclic
subgroups of G of order 4. H acts freely on T as well.

Our interest in such variety is that the quotient T/H is a smooth Calabi-Yau
with Hodge numbers (4, 8). This implies that the Calabi-Yau Z of Theorem 5.1
yields an explicit example of a Hodge-theoretic mirror for T/G. Both these varieties
have the same fundamental group.

6. Hodge theoretic mirrors for some
non-maximal admissible pairs in (P1)4

In the previous section we have seen that if we start from a maximal admissible pair
(Y,G) in X , we are not able to find an admissible pair (Ỹ , G̃) in any X̃ obtained
from a maximal projective subdivision of 6o such that Z = Y/G and Z̃ = Ỹ/G̃
are Hodge-Theoretic mirror Calabi-Yau. If we, instead, start from a non-maximal
admissible pair this is possible in some cases.

We recall that in ( [5]) it is shown that two groups that are part of two admissi-
ble pairs in X are isomorphic if and only if they are conjugated in Aut(X). So there
is no ambiguity in writing (Y, Z8). It is also shown that the quotients associated
to the admissible pairs (Y, Z8), (Y, Z4) and (Y, Z2) in X have respectively Hodge
numbers (1, 9), (2, 18) and (4, 36). For these quotients, each fundamental group is
isomorphic to the group of the admissible pair. We have all the information needed
to prove the following theorem.

Theorem 6.1. Let X̃ denote the flag-resolution of Xo and let Ỹ be a smooth Calabi-
Yau (and thus an hypersurfaces in X̃) that is hgi-invariant (such is the one used
in Theorem 4.3). Then (Ỹ , hgi), (Ỹ ,

⌦
g2

↵
) and (Ỹ , hgi4) are admissible pairs in X̃

whose associated quotients satisfy:

• Z̃0 := Ỹ/ hgi = Ỹ/Z8 has Hodge-pair (9, 1);
• Z̃1 := Ỹ/

⌦
g2

↵
= Ỹ/Z4 has Hodge-pair (18, 2);

• Z̃2 := Ỹ/
⌦
g4

↵
= Ỹ/Z2 has Hodge-pair (36, 4).

In particular, Z̃0, Z̃1 and Z̃2 are respectively Hodge-Theoretic mirrors for the quo-
tients associated to the admissible pairs (Y, Z8), (Y, Z4) and (Y, Z2) in X . Each
pair of mirrors has the same fundamental group.
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Proof. We have already shown that Ỹ is a smooth Calabi-Yau threefold which is
invariant with respect to L1 = hg, h1i and that g, an automorphism of order 8, acts
freely on Ỹ so that

⇣
Ỹ ,

D
g2i

E⌘
is an admissible pair in X̃ for i 2 {0, 1, 2}. To obtain

h1,1(Zi ) = h1,1(Ỹ )

D
g2i

E

we adapt the same strategy as that used in Section 3. Since the action of the group
is free, we get

�(Z̃i ) = 128/
���Dg2i E��� = 16 · 2i

and h1,2(Z̃i ) = h1,1(Zi ) � 8 · 2i . As noted in the proof of Theorem 4.3, Ỹ is simply
connected. The claim about the fundalmental group follows from the fact that the
quotients are free.
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