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The L2-Alexander invariant detects the unknot

FATHI BEN ARIBI

Abstract. In this article, we present some of the properties of the L2-Alexander
invariant of a knot defined in [6], some of which are similar to those of the clas-
sical Alexander polynomial. Notably we prove that the L2-Alexander invariant
detects the trivial knot.

Mathematics Subject Classification (2010): 57M25 (primary); 57M27 (sec-
ondary).

1. Introduction

In 1923, Alexander introduced the first polynomial invariant of knots. It was noth-
ing short of a revolution, since this invariant was easy to compute and powerful
enough to distinguish most of the tabulated prime knots. However, the Alexander
polynomial is not a complete invariant, not even among prime knots. In particular
it does not detect the unknot.

In 1976, Atiyah laid the foundations of the theory of L2-invariants. The idea
is roughly the following: algebraic topology has many invariants that involve finite
dimensional vector spaces and linear maps; by doing similar processes with infinite
dimensional Hilbert spaces - like `2(G) where G is a group - and operators on these
spaces, we obtain the so-called L2-invariants.

In the nineties, Carey-Mathai, Lott, Lück-Rothenberg, and Novikov-Shubin
developed the theory of L2-torsions, an L2-analog of the Reidemeister torsion the-
ory.

Finally, in 2006, Li and Zhang introduced the L2-Alexander invariant, an ana-
log of the Alexander polynomial, and proved its relation with the L2-torsion of the
knot exterior.

In this article, we prove that the L2-Alexander invariant for knots detects the
unknot, in the following theorem.
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Theorem 1.1 (Main theorem). Let K be a knot in S3. The L2-Alexander invariant
of K is trivial, i.e.

⇣
t 7! 1

(2)
K (t)

⌘
= (t 7! 1), if and only if K is the trivial knot.

This theorem is proven by using the well-known fact (see [9]) that a knot ex-
terior either has nonzero Gromov norm or is a graph manifold, and that in this
second case the knot is obtained from the trivial knot by connected sums and ca-
blings. In the first case, a theorem of Lück helps us conclude, and the second case
is treated with help from the following connected sum and cabling formulas for the
L2-Alexander invariant.

Theorem 1.2.

(1) The L2-Alexander invariant is multiplicative under the connected sum of knots.
(2) The L2-Alexander invariant satisfies the following cabling formula:

if S is the (p, q)-cable knot of companion knot C , then

1
(2)
S (t) = 1

(2)
C (t p)max(1, t)(|p|�1)(|q|�1).

These results were previously announced in [1].
The article is organized as follows: Section 2 reviews some well-known facts

about knots, groups, and L2-invariants, Sections 3 and 4 prove the first and second
parts of Theorem 1.2, Section 5 proves Theorem 1.1. Section 6 deals with the
proof of the technical Proposition 2.2. Finally in section 7 we mention some open
questions and research directions about the invariant.

ACKNOWLEDGEMENTS. I would like to thank my advisor Jérôme Dubois, who
taught me all about L2-invariants and always showed me the right mathematical
direction to explore.

I am also very grateful to the referee for helpful comments.

2. Preliminaries

2.1. From knots to group presentations

We choose an orientation for S3. All knots will be assumed oriented, and considered
up to (orientation-preserving) isotopy in S3. A link with c 2 N components will be
called a c-link.

Let K be an oriented knot in S3, and V (K ) an open tubular neighbourhood
of K . The exterior of K is MK = S3 \ V (K ) and is a compact 3-manifold with
toroidal boundary. We fix a base point pt in MK . The orientation of MK comes
from the one of S3, and does not depend on the orientation of K .

Besides, since K is oriented, there are, up to isotopy, unique simple closed
curves µK and �K on the 2-torus @MK = @V (K ) such that µK bounds a disk in
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V (K ) and �K is homologous to K in V (K ). We choose an orientation for these two
curves such that the linking number betweenµK and K and the intersection number
between µK and �K are both+1. We call (µK , �K ) a preferred meridian-longitude
pair for K . Here we have used the notations and definitions of [11].

Let us now consider the knot group GK = ⇡1(MK , pt). We will call meridian
loops the elements of GK that are the homotopy classes of meridian curves. The
abelianization of GK is the infinite cyclic group. There are therefore exactly two
surjective group homomorphisms from GK to Z. We will write ↵K : GK ! Z the
one that sends meridian loops to 1. Note that this choice depends on the orientation
of K .

When considering a group presentation P = hg1, . . . , gk |r1, . . . , rli, it is usual
to assimilate the combinatoric (k+ l)-tuple and the generated group. In this article,
we will use the first convention, and we would denoteGr(P) the quotient of the free
group F[g1, . . . , gk] by its normal subgroup generated by the free words r1, . . . , rl .
We will say that a group G admits the presentation P = hg1, . . . , gk |r1, . . . , rli
when G is isomorphic to Gr(P), and we will assume that this isomorphism is
implicit, or equivalently that we implicitly knowwhich elements ofG are associated
to g1, . . . , gk .

For instance, the well-known Wirtinger process takes a regular diagram D of a
knot K and gives a deficiency one group presentation P of the knot group GK , and
the generators of P all implicitly correspond to meridian loops in GK ; therefore
they are all sent to the same image 1 by the abelianization homomorphism ↵K .

Let p and q be relatively prime integers, and let V be a solid torus with a
preferred meridian-longitude system (and thus an oriented core). The knot T (p, q)
on the boundary @V of V will denote the knot that wraps around V q times in the
meridional direction and p times in the longitudinal direction; it will be called the
(p, q)-torus knot.

2.2. Satellite knots

Since we will use satellite and cable knots somewhat intensively in Section 4 and
Section 6, we recall some definitions and fix some notations. We use the notations
of [4, Section 4].

Let C be a non-trivial knot in S3 (it will be called the companion knot).
We consider P a knot inside an open solid torus TP , TP being also embedded

in S3 (P will be called the pattern knot). We choose an orientation for the core of
TP . We assume that P meets every meridional disk of TP . We let nP 2 Z denote
the linking number between P and a preferred meridian curve of @TP (assumed to
be positively oriented with the orientation of the core of TP ). Note that preferred
longitude curves of TP have zero linking number with the core of TP and follow the
same direction.

Let TC be an open tubular neighbourhood of C (its core having the same orien-
tation as C). Notice that a preferred longitude curve of TC has zero linking number
with C . Thus the homotopy class in GC of such a curve is sent to zero by the
abelianization ↵C .
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Figure 2.1. The (2,�1)-cabling of the trefoil knot.

Let hPC : TP ! TC be an orientation-preserving homeomorphism between the two
solid tori. We also assume that hPC sends a preferred meridian-longitude pair of
TP to a preferred meridian-longitude pair of TC .

Then SC,P := hPC(P) is a knot in S3 and is called the satellite knot of com-
panion C and pattern P .

If P is a torus knot T (p, q) (naturally defined on the boundary of a solid sub-
torus of TP ), then we call SC,P a cable knot, or the (p, q)-cable of C . In this case
nP = p. Figure 2.1 gives an example of SC,P when C is the trefoil knot and P
is the torus knot pattern T (2,�1). The orientations are not marked but should be
clear.

2.3. Connected sum, cabling, and groups

Here we state some useful results about how the connected sum and cabling opera-
tions affect the knot groups.

The following proposition is a consequence of the Seifert-van Kampen theo-
rem. The detailed proof can be found in [2, Proposition 7.10].
Proposition 2.1. Let K1, K2 be two knots and K their connected sum. We let
G1,G2,G denote their respective knot groups. Then G1 and G2 have Wirtinger
presentations P1 = hx1, . . . , xk |r1, . . . , rk�1i, P2 = hy1, . . . , yl |s1, . . . , sl�1i such
that

P =

D
x1, . . . , xk, y1, . . . , yl |r1, . . . , rk�1, s1, . . . , sl�1, xk y�1

l

E
is a Wirtinger presentation of G.

We give a detailed proof of the following proposition in Section 6. Note that
this result can be found in a different flavour in [2, Section 4.12].
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Proposition 2.2. Let us consider the (p, q)-cable knot S of companion C .

(1) There exists PC = ha1, . . . , ak |r1, . . . , rk�1i a Wirtinger presentation of GC
such that

PS =

D
a1, . . . , ak, x, �|r1, . . . , rk�1, x pa

�q
k ��p, ��1W (ai )

E

is a presentation of GS , with x and � the homotopy classes of the core and a
longitude of TC , and W (ai ) a word in the a1, . . . , ak .

(2) Furthermore, ↵S(x) = q, ↵S(�) = 0 and ↵S(ai ) = p, for i = 1, . . . , k.

Both following propositions are consequences of [8, Theorem 4.3], and will be
useful for induction properties. Note that the proof of Proposition 2.4 also uses [2,
Proposition 3.17].

Proposition 2.3. If K is the connected sum of the knots K1 and K2, and G,G1,G2
are their respective groups, then there are injective group homomorphisms G1 ,!
G and G2 ,! G.

Proposition 2.4. If S is the satellite knot obtained from the companion C and the
pattern P , then there is an injective group homomorphism GC ,! GS .

2.4. Fox calculus

Let P =

⌦
g1, . . . , gk

�� r1, . . . rl ↵ be a presentation of a finitely presented group G.
If w is an element of the free group F[g1, . . . , gk] on the generators gi , we let w
denote the element of G that is the image of w by the composition of the quotient
homomorphism (quotient by the normal subgroup hr j i generated by r1, . . . , rl ) and
the implicit group isomorphism between this quotient Gr(P) and G. To simplify
the notations in the sequel, we will often write an element of G a instead of a when
there is no ambiguity. We write the corresponding ring morphisms similarly: if
w 2 C

⇥
F[g1, . . . , gk]

⇤
then its quotient image is written w 2 C[G].

The Fox derivatives associated to the presentation P are the linear maps

@

@gi
: C

⇥
F[g1, . . . , gk]

⇤
�! C

⇥
F[g1, . . . , gk]

⇤

for i = 1, . . . , k, defined by induction in the following way:

@

@gi
(1) = 0,

@

@gi
(g j ) = �i, j ,

@

@gi
(g�1

j ) = ��i, j g�1
j

(where �i, j is 1 when i = j and 0 when i 6= j) and for all u, v 2 F[g1, . . . , gn],
@

@gi
(uv) =

@

@gi
(u) + u

@

@gi
(v).
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We call FP =

✓⇣
@r j
@gi

⌘◆
16i6k,16 j6l

2 Mk,l(C [G]) the Fox matrix of the

presentation P .
Let us assume l = k � 1, i.e. P has deficiency one. For i = 1, . . . , k,

FP,i 2 Mk�1,k�1(C [G]) is defined as the matrix obtained from FP by deleting its
i-th row.

We will sometimes use the following notation, to “remember the coordinates”:

FP =

0
BB@

r1 . . . rl
x1
...

 ✓
@r j
@gi

◆!
i, j

xk

1
CCA

2.5. L2-invariants

Let G be a countable discrete group (a knot group, for example). In the following,
every algebra will be a C-algebra.

Consider the vector space C[G] =

L
g2G Cg (which is also an algebra) and

its scalar product: *X
g2G

�gg,
X
g2G

µgg

+
:=

X
g2G

�gµg.

The completion of C[G] is `2(G) :=

nP
g2G �gg | �g 2 C,

P
g2G |�g|

2 < 1

o
,

the Hilbert space of square-summable complex functions on the group G.
We denote B(`2(G)) the algebra of operators on `2(G) that are continuous (or

equivalently, bounded) for the operator norm.
To any h 2 G we associate a left-multiplication Lh : `2(G) ! `2(G) defined

by

Lh

 X
g2G

�gg

!
=

X
g2G

�g(hg) =

X
g2G

�h�1gg

and a right-multiplication Rh : `2(G) ! `2(G) defined by

Rh

 X
g2G

�gg

!
=

X
g2G

�g(gh) =

X
g2G

�gh�1g.

Both Lh and Rh are isometries, and therefore belong to B(`2(G)).
We will use the same notation for right-multiplications by elements of the com-

plex group algebra C[G]:

RPk
i=1 �i gi

:=

kX
i=1

�i Rgi 2 B
⇣
`2(G)

⌘
.
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We will also use this notation to define a right-multiplication by a matrix A with
coefficients in C[G], p rows and q columns, in the following way:

If A =

�
ai, j

�
16i6p,16 j6q 2 Mp,q(C[G]), then

RA :=

�
Rai, j

�
16i6p,16 j6q 2 B

⇣
`2(G)�q; `2(G)�p

⌘
.

We write N (G) the algebraic commutant of {Lg; g 2 G} in B(`2(G)). It will be
called the von Neumann algebra of the group G.

Let us remark that Rg 2 N (G) for all g in G.
The trace of an element � ofN (G) is defined as

trN (G)(�) := h�(e), ei

where e is the neutral element of G. This induces a trace on the Mn,n(N (G)) for
n � 1 by summing up the traces of the diagonal elements. We will write this new
trace trN (G) as well.

We will call a finitely generated HilbertN (G)-module any Hilbert space V on
which there is a left G-action by isometries, and such that there exists a positive
integer m and an embedding � of V into

Lm
i=1 `

2(G) (an embedding meaning
here a linear isometrical injective G-equivariant map, where the left G-action onLm

i=1 `
2(G) is by left-multiplication coordinate by coordinate).

The von Neumann dimension of such a finitely generated HilbertN(G)-module
V is defined as the trace of the projection:

dimN (G)(V ) = trN (G)(pr�(V )) 2 R>0,

where

pr�(V ) :

kM
i=1

`2(G) !

kM
i=1

`2(G)

is the orthogonal projection onto �(V ). The von Neumann dimension does not
depend on the embedding of V into the finite direct sum of copies of `2(G).

IfU and V are finitely generated HilbertN (G)-modules, we will call f : U !

V a morphism of finitely generated Hilbert N (G)-modules if f is a linear G-
equivariant map, bounded for the respective scalar products of U and V .

Let us now write a little about induction. Let i : H ,! G be an injective
group homomorphism. To simplify notations, we will also call i the inducted alge-
bra homomorphism on C[H ] and matrices over C[H ], and the isometric injection
on `2(H). Let M be a finitely generated Hilbert N (H)-module. Then, according
to [7, Section 1.1.5], we can construct an induction covariant functor i⇤ from the cat-
egory (finitely generated Hilbert N (H)-modules, morphisms of finitely generated
Hilbert N (H)-modules) to (finitely generated Hilbert N (G)-modules, morphisms
of finitely generated HilbertN (G)-modules), such that i⇤(`2(H)) = `2(G).
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The following properties of this induction functor will be used in this paper:

Proposition 2.5.

(1) Let w 2 C[H ] and Rw : `2(H) ! `2(H) be the corresponding right mul-
tiplication. Then i⇤Rw = Ri(w). A similar result stands for matrices over
C[H ].

(2) Let f : M ! N be a morphism of finitely generated Hilbert N (H)-modules.
If f is injective (respectively surjective), then i⇤ f : i⇤M ! i⇤N is also injec-
tive (respectively surjective).

(3) If M is a finitely generated HilbertN (H)-module, then

dimN (G)(i⇤M) = dimN (H)(M).

Remark 2.6. For any � 2 N (H), i⇤� is in N (G), because commuting with the
left multiplications is the same as being equivariant for the group action.

2.6. The Fuglede-Kadison determinant

Let G be a finitely generated group and U, V be two finitely generated Hilbert
N (G)-modules. Let f : U ! V be a morphism of finitely generated Hilbert
N (G)-modules. The spectral density of f is the map � 2 R>0 7! F( f )(�) defined
by:

F( f )(�) := sup
�
dimN (G)(L)|L 2 L( f, �)

 
where L( f, �) is the set of finitely generated Hilbert N (G)-sub-modules of U on
which the restriction of f has a norm smaller than or equal to �.

Let us remark that F( f )(�) is monotonous and right-continuous, and thus de-
fines a measure dF( f ) on the Borel set of R>0 solely determined by the equation
dF( f )(]a, b]) = F( f )(b) � F( f )(a) for all a < b.
Remark 2.7. Note that L( f, 0) is the set of finitely generated Hilbert N (G)-sub-
modules of ker( f ), and F( f )(0) = dimN (G)(ker( f )).

For any � > k f k, L( f, �) is the set of finitely generated Hilbert N (G)-sub-
modules of U , and F( f )(�) = dimN (G)(U).
Remark 2.8. For all �, F( f )(�) = F( f ⇤ f )(�2) = F(| f |)(�) where f ⇤ f : U !

U is a positive operator and | f | is its square root.
We can thus think with positive operators and observe that dF( f ) measures

the “density of eigenvalues”. If � is atomic then dF( f )(�) is the von Neumann
dimension of the eigenspace associated to �.
Definition 2.9. The Fuglede-Kadison determinant of f is defined by:

detN (G)( f ) := exp
✓Z

1

0+
ln(�) dF( f )(�)

◆

if
R

1

0+ ln(�) dF( f )(�) > �1 ; if not, detN (G)( f ) = 0.
When

R
1

0+ ln(�) dF( f )(�) > �1, we say that f is of determinant class.
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Here are several properties of the determinant we will use in the rest of this
paper (see [7] for more details and proofs).

Proposition 2.10.

(1) detN (G)(0 : U ! V ) = 1.
(2) For every nonzero complex number �, detN (G)(� Id`2(G)) = |�|.
(3) For all f, g morphisms of finitely generated HilbertN (G)-modules,

detN (G)

✓✓
f 0
0 g

◆◆
= detN (G)( f ) · detN (G)(g).

(4) Let f : U ! V and g : V ! W be morphisms of finitely generated Hilbert
N (G)-modules. Assume that f has dense image and g is injective. Then

detN (G)(g � f ) = detN (G)(g) · detN (G)( f ).

(5) Let f1 : U1 ! V1, f2 : U2 ! V2, f3 : U2 ! V1 be morphisms of finitely
generated Hilbert N (G)-modules. If f1 has dense image and f2 is injective,
then

detN (G)

✓✓
f1 f3
0 f2

◆◆
= detN (G)( f1) · detN (G)( f2).

(6) Let i : H ,! G be an injective group homomorphism. Let M and N be two
finitely generated HilbertN (H)-modules and f : M ! N be a map of finitely
generated HilbertN (H)-modules. Then

detN (G)(i⇤( f )) = detN (H)( f ).

Remark 2.11. If f : U ! V is a morphism of finitely generated Hilbert N (G)-
modules that have the same von Neumann dimension, then (see [7, Lemma 1.13])
f is injective if and only if f has dense image.

Therefore, when dealing with “square” operators, the property “has dense im-
age” can be replaced by “is injective” in the assumptions of Proposition 2.10 (4)
and (5).

Proposition 2.12. Let g 2 G be of infinite order, let t 2 C, then Id�t Rg is injective
and

detN (G)(Id�t Rg) = max(1, |t |).

The proof of this proposition can be found in [6, Proposition 3.2, Remark 3.3].
It was pointed to us by the referee that the value of the determinant can also be
computed as a direct consequence of [7, Example 3.22].
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2.7. The L2-Alexander invariant

Let K ⇢ S3 be a knot, GK its knot group, and P =

⌦
g1, . . . , gk

�� r1, . . . rk�1↵ a
Wirtinger presentation of GK .

For t 2 C⇤ we define the algebra homomorphism:

 K ,t :

0
@ C[GK ] �! C[GK ]X

g2GK

cg · g 7�!

X
g2GK

cg · t↵K (g)
· g

1
A

and we also call  K ,t its induction to any matrix ring with coefficients in C[GK ].
Think of it as a way of “tensoring by the abelianization representation” .

We say that (P, t) has Property I if R K ,t (FP,1) : `
2(GK )k�1 ! `2(GK )k�1 is

injective.

Definition 2.13. Let K be a knot, let P be aWirtinger presentation of its knot group
GK , and let t 2 C⇤.

If (P, t) has Property I then the L2-Alexander invariant of K for the presen-
tation P at t is written 1(2)

K ,P(t) and is defined as:

1
(2)
K ,P(t) := detN (GK )

�
R K ,t (FP,1)

�
2 [0,1[.

Proposition 2.14 ( [6], Proposition 3.4). Let P and Q be two Wirtinger presenta-
tions with deficiency one of the same knot groupGK , and let DP ⇢ C⇤ (respectively
DQ) be the set of t such that (P, t) (rerspectively (Q, t)) has Property I.

Then DP = DQ and there is an integer m such that1(2)
K ,Q(t) = 1

(2)
K ,P(t) · |t |m

for all t in DP .

The proof of this proposition is based on a study of Tietze transformations
(described in [12, Section 5]) between Wirtinger presentations and of how the re-
spective associated operators are consequently modified by these transformations.
Roughly speaking, each Tietze transformation corresponds to a composition with
an injective operator, that does not change the injectivity and changes the Fuglede-
Kadison determinant only by a factor of the form |t |m,m 2 Z.
Definition 2.15. Let K be a knot. Let P be any Wirtinger presentation of its knot
groupGK . Let DK be the set of t 2 C⇤ such that (P, t) has Property I (according to
the previous proposition, this does not depend on P). The L2-Alexander invariant
of K at t is written

⇣
t 7! 1

(2)
K (t)

⌘
and is defined as the class of

⇣
t 7! 1

(2)
K ,P(t)

⌘
up to multiplication by (t 7! |t |Z) on the maps from DK to R>0.

It is a knot invariant by the previous proposition.

Remark 2.16. Until now we know of no knots K such that DK 6= C⇤. However
we know that DK always contains at least the entire unit circle, thanks to Theorem
2.20.
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Remark 2.17. Let us remark that we can take FP,i for any i 6= 1 instead of FP,1
in the definition of the invariant, since it simply corresponds to an other Wirtinger
presentation where the generators are permuted.
Example 2.18. Let us compute the invariant for the trivial knot O .

Figure 2.2. A diagram for the unknot.

The “doubly twisted rubber band” knot diagram of Figure 2.2 gives the Wirtinger
presentation P = hg, h|gh�1

i of the unknot group GO (which is isomorphic to Z),
and the associated Fox matrix is FP =

✓
1

�1

◆
.

Therefore for all t in C⇤ , R O,t (FP,1) = � Id : `2(GO) ! `2(GO) has Prop-
erty I and 1(2)

O,P(t) = 1. Thus, the invariant for the trivial knot is the constant map
equal to 1.

The following result is proven for the unit circle in [6, Section 6] and can be
easily extended to C⇤.

Proposition 2.19.

(1) Let K be a knot and P a Wirtinger presentation of GK , and let t 2 C⇤. Then
(P, t) has Property I if and only if (P, |t |) has Property I.

(2) Let K be a knot and t 2 C⇤, such that there is a Wirtinger presentation P with
(P, t) having Property I. Then 1(2)

K (t) = 1
(2)
K (|t |).

We will now always assume t > 0. The L2-Alexander invariant is thus a class of
maps from R>0 to R>0 (up to multiplication by (t 7! tm),m 2 Z).

The following theorem was proven by Lück for the L2-torsion, but, similarly
to Milnor’s proof that the Alexander polynomial can be seen as a Reidemeister
torsion, we can express the L2-Alexander invariant of K as a simple function of a
L2-torsion of MK (see for example [6, Section 5]).

Theorem 2.20 ([7, Theorem 4.6]). If K is a non-trivial knot then the 3-manifold
MK is irreducible and, according to the JSJ-decomposition, splits along disjoint
incompressible tori into pieces that are Seifert manifolds or hyperbolic manifolds.
The hyperbolic pieces M1, . . . ,Mh have all finite hyperbolic volume, and

1
(2)
K (1) = exp

 
1
6⇡

hX
i=1

vol(Mi )

!
= exp

✓
1
6⇡

kMKk

◆

where vol is the hyperbolic volume and k.k is the Gromov norm.
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To conclude this section, let us mention that we do not need to use a Wirtinger
presentation P to compute 1(2)

K (t).

Theorem 2.21 ([5, Theorem 3.5 and Proposition 6.2]).

(1) Let K be a knot, GK its knot group, and P =

⌦
g1, . . . , gk

�� r1, . . . rk�1↵ any
deficiency one presentation of GK . If t > 0 is such that (P, t) has Property

I, then
detN (GK )(R K ,t (FP,1))

max(1, t)|↵K (g1)|�1
does not depend on P , and is equal to1(2)

K ,P(t)

when P is Wirtinger. Thus we will also call this quantity 1(2)
K ,P(t).

(2) If K is the (p, q)-torus knot, then for any t > 0, 1(2)
K (t) is defined and equals

max(1, t)(|p|�1)(|q|�1).

We will use this powerful result to prove the cabling formula in Section 4.
Remark 2.22. This theorem implies that the L2-Alexander invariant is not a com-
plete knot invariant. For example T (2, 7) and T (3, 4) are distinct torus knots but
they both have t 7! max(1, t)6 as their L2-Alexander invariant.

However the L2-Alexander invariant detects if a knot is the unknot, as we will
see in Section 5.

We can also use this theorem to compute the invariant of the mirror image of a
knot.

Proposition 2.23. Let K be a knot in S3 and K ⇤ its mirror image. Let P be a
Wirtinger presentation of GK and let t > 0. Suppose (P, t) has Property I.

Then GK ⇤ admits a group presentation P⇤ naturally obtained from P,(P⇤, t�1)
has Property I and 1(2)

K ⇤(t�1) = 1
(2)
K (t).

Proof. Take a diagram D of K and its image D0 by a planar reflection by a line not
intersecting D. Then D0 is a diagram for K ⇤. Take a base point in R3 above the
plane of the diagrams D and D0.

Each crossing of D corresponds to a crossing of D0 as in Figure 2.3.

Figure 2.3. A crossing of D, its mirror image in D0, and the associated meridian loops.

Let P = hai |r j i be a Wirtinger presentation of GK = ⇡1(S3 \ K ) associated to D.
Its relators are of the form aba�1c�1. As in Figure 2.3, for each generator ai of
P , define Ai a (negatively-oriented) meridian loop of D0, and for r j = aba�1c�1,
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define R j = ABA�1C�1. Then P⇤
= hAi |R j i is a presentation for GK ⇤ = ⇡1(S3\

K ⇤). Note that ↵K ⇤(Ai ) = �1 for all i .
Let � : GK ! GK ⇤ denote the natural group isomorphism sending ai to Ai

and its induction on the associated complex group algebras. Then

C[GK ]

 K ,t
�! C[GK ]

# � # �

C[GK ⇤]

 K⇤,t�1
�! C[GK ⇤]

is a commutative diagram, since  K ⇤,t�1(Ai ) = t Ai for all i .
Suppose (P, t) has Property I, thus R K ,t (FP,1) is injective. Therefore, by

Proposition 2.5 (1), the commutativity of the previous diagram, and Proposition 2.5
(2), in this order,

(�)⇤(R K ,t (FP,1)) = R�( K ,t (FP,1)) = R K⇤,t�1 (�(FP,1)) = R K⇤,t�1 (FP⇤,1)

is injective. Thus (P⇤, t�1) has Property I.
By Theorem 2.21, since P⇤ has deficiency one,

1
(2)
K ⇤(t�1) =

detN (GK⇤ )(R K⇤,t�1 (FP⇤,1))

max(1, t)|↵K⇤ (A1)|�1
= detN (GK⇤ )

�
(�)⇤(R K ,t (FP,1))

�
,

and by Proposition 2.10 (6) we conclude that 1(2)
K ⇤(t�1) = 1

(2)
K (t).

3. The L2-Alexander invariant of a composite knot

Let K1 and K2 be knots in S3 and K their connected sum. We prove that the
L2-Alexander invariant of K can be computed from those of its factors. This multi-
plicativity of the invariant can be compared to the classical property of the Alexan-
der polynomial of a composite knot, see for example [2, Proposition 8.14].

Lemma 3.1. Let K be the connected sum of K1 and K2, with G,G1 and G2 their
respective groups.

Then for j = 1, 2 and for all t > 0 we have the commutative diagram

C[G j ]
 K j ,t
�! C[G j ]

# i j # i j
C[G]

 K ,t
�! C[G]

where i j : G j ,! G denotes both the group inclusion of Proposition 2.3 and its
induction on the complex group algebras.
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Proof. Let us take P1, P2 and P like in Proposition 2.1, and t > 0. We have

P1 = hx1, . . . , xk |r1, . . . , rk�1i ,

P2 = hy1, . . . , yl |s1, . . . , sl�1i ,

P =

D
x1, . . . , xk, y1, . . . , yl |r1, . . . , rk�1, s1, . . . , sl�1, xk y�1

l

E
.

These three presentations are Wirtinger presentations, therefore the xi are sent to 1
by ↵K1 as elements of G1 and by ↵K as elements of G, and the same can be said
for the generators y j .

Therefore the diagram is commutative for any g 2 C[G j ] where g is a gener-
ator of P1 or P2. The result follows from the fact that the  .,t and i j are algebra
homomorphisms and that the previous g generate the two group algebras.

Theorem 3.2. Let K be the connected sum of K1 and K2, with G,G1 and G2 their
respective groups, and P, P1, P2 the presentations given by Proposition 2.1.

Let t be any positive number. If we assume that (P1, t) and (P2, t) have Prop-
erty I, then (P, t) has Property I and 1(2)

K (t) = 1
(2)
K1(t)1

(2)
K2(t).

Proof. Let P1, P2 and P be like in Proposition 2.1, and t > 0. We have two injective
group homomorphisms i1 : G1 ,! G and i2 : G2 ,! G by Proposition 2.3.

The values of P, P1, P2 imply that R K ,t (FP ) is written:

0
BBBBBBBBBBBBBBBBBBBBBBBB@

r1 . . . rk�1 s1 . . . sl�1 xk y�1
l

x1 0 . . . 0 0
... R K ,t (i1(FP1,k))

...
...

...

xk�1 0 . . . 0 0

xk ⇤ 0 . . . 0 Id

y1 0 . . . 0 0
...

...
... R K ,t (i2(FP2,l ))

...

yl�1 0 . . . 0 0

yl 0 . . . 0 ⇤ � Id

1
CCCCCCCCCCCCCCCCCCCCCCCCA

(P1, t) has Property I thus R K1,t (FP1,k) is injective (by Remark 2.17). Therefore,by Proposition 2.5 (1), Lemma 3.1 and Proposition 2.5 (2), in this order,

(i1)⇤(R K1,t (FP1,k)) = Ri1( K1,t (FP1,k)) = R K ,t (i1(FP1,k))
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is injective. Similarly, R K ,t (i2(FP2,l )) is injective. Finally, � Id`2(G) is clearly injec-
tive.

Therefore the block trigonal matrix R K ,t (FP,k) is injective, thus, by Remark
2.17, (P, t) has Property I.

Hence by Proposition 2.10 (5) and (2),

detN (G)

�
R K ,t (FP,k)

�
= detN (G)

⇣
R K ,t (i1(FP1,k))

⌘
· detN (G)

⇣
R K ,t (i2(FP2,l ))

⌘
.

Finally,

detN (G)

⇣
R K ,t (i1(FP1,k))

⌘
= detN (G)

⇣
(i1)⇤(R K1,t (FP1,k))

⌘

= detN (G1)
⇣
R K1,t (FP1,k)

⌘

by Lemma 3.1 and Proposition 2.10 (6). We use a similar argument for the second
term, and thus

1
(2)
K (t) = 1

(2)
K1(t)1

(2)
K2(t).

4. The L2-Alexander invariant of a cable knot

Lemma 4.1. Let S be the (p, q)-cable of C , and let GS,GC be their respective
groups. Then for all t > 0 we have the commutative diagram

C[GC ]

 C,t p
�! C[GC ]

# iC # iC
C[GS]

 S,t
�! C[GS]

where iC : GC ,! GS denotes both the group inclusion of Proposition 2.4 and its
induction on the complex group algebras.

Proof. Let us take PC = ha1, . . . , ak |r1, . . . , rk�1i and

PS = ha1, . . . , ak, x, �|r1, . . . , rk�1, x pa
�q
k ��p, ��1W (ai )i

like in Proposition 2.2. Let t > 0.
Proposition 2.2 (2) tells us that every ai is sent to 1 by ↵C as an element of GC

and is sent to p by ↵S as an element of GS .
Therefore the diagram is commutative for any ai 2 C[GC ] where ai is a gen-

erator of PC . The lemma follows from the fact that  C,t p ,  S,t and iC are algebra
homomorphisms and that the ai generate C[GC ].
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Lemma 4.2. Let G be a discrete countable group, let g 2 G of infinite order, let p
be a positive integer and let t > 0. Then Id+t Rg + . . . + t (p�1)Rgp�1 is injective
and

detN (G)

⇣
Id+t Rg + . . . + t (p�1)Rgp�1

⌘
= max(1, t)p�1.

Proof. Let R = Id+t Rg+. . .+t (p�1)Rgp�1 . We have (Id�t Rg)�R = Id�t p Rgp .
By Proposition 2.12, Id�t p Rgp is injective, therefore R is injective.

Both Id�t Rg and R are injective, therefore, by Proposition 2.10 (4),

detN (G)

�
Id�t p Rgp

�
= detN (G)

�
Id�t Rg

�
· detN (G) (R) .

Thus, by Proposition 2.12, max(1, t p) = max(1, t) · detN (G) (R) and the lemma
follows.

Theorem 4.3. Let S be the (p, q)-cable knot of companion knot C , GS,GC their
respective groups, and t any positive real number.

If there exists Pw a Wirtinger presentation of GC such that (Pw, t p) has Prop-
erty I, then there is a presentation PS of GS such that (PS, t) has Property I, and

1
(2)
S (t) = 1

(2)
C (t p) ·max(1, t)(|p|�1)(|q|�1)

= 1
(2)
C (t p)1(2)

T (p,q)(t).

Proof. Let PC = ha1, . . . , ak |r1, . . . , rk�1i and

PS =

D
a1, . . . , ak, x, �|r1, . . . , rk�1, x pa

�q
k ��p, �W (ai )�1

E
be obtained from the presentation of Proposition 2.2 by re-writing simply the last
relator word (to simplify the following computations).

Remark that PC is a Wirtinger presentation of GC , as is Pw, therefore (PC , t p)
also has Property I, by Proposition 2.14.

Besides, PS is a presentation of deficiency one, thus by Theorem 2.21,1(2)
S (u)

will be equal to 1(2)
S,PS (u) for any u > 0 such that (PS, u) has Property I.

Recall from Proposition 2.2 (2) that ↵S(ai ) = p,↵S(x) = q and ↵S(�) = 0.
The values of PS and PC imply that R S,t (FPS ) is written:

0
BBBBBBBBBBBBBBBB@

r1 . . . rk�1 x pa�q
k ��p �W (ai )�1

a1 0 ⇤

... R S,t (iC (FPC ,k))
...

...

ak�1 0 ⇤

ak ⇤ . . . ⇤ ⇤ ⇤

x 0 . . . 0 T 0

� 0 . . . 0 ⇤ Id

1
CCCCCCCCCCCCCCCCA
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where T = Id+tq Rx + . . . + tq(p�1)Rx p�1 if p is positive, and

T = �t�q Rx�1 � . . . � t�q|p|Rx p

=

⇣
�t�q|p|Rx p

⌘
� (Id+tq Rx + . . . + tq(|p|�1)Rx |p|�1)

if p is negative. In both cases T is injective, by Lemma 4.2 and the fact that�
�t�q|p|Rx p

�
is invertible.

We know (PC , t p) has Property I, thus R C,t p (FPC ,k) is injective, by Remark
2.17. We have the injective group homomorphism iC : GC ,! GS by Proposition
2.4. Therefore, by Proposition 2.5 (1), Lemma 4.1 and Proposition 2.5 (2), in this
order,

(iC)⇤(R C,t p (FPC ,k)) = RiC ( C,t p (FPC ,k)) = R S,t (iC (FPC ,k))

is injective.
Finally Id`2(G) is clearly injective.
Thus the block trigonal square matrix R S,t (FPS ,k) is injective, hence,by Re-

mark 2.17, (PS, t) has Property I. Therefore, by Proposition 2.10 (5) and (2),

detN (GS)

⇣
R S,t (FPS ,k)

⌘
= detN (GS)

⇣
R S,t (iC (FPC ,k))

⌘
· detN (GS) (T ) .

However we have

detN (GS)

⇣
R S,t (iC (FPC ,k))

⌘
= detN (GS)

⇣
(iC)⇤(R C,t p (FPC ,k))

⌘

= detN (GC )

⇣
R C,t p (FPC ,k)

⌘

by Lemma 4.1 and Proposition 2.10 (6).
Besides, from Lemma 4.2, we have

detN (GS)

⇣
Id+tq Rx + . . . + tq(|p|�1)Rx |p|�1

⌘
= max(1, tq)|p|�1,

therefore, by the fact that detN (GS)
�
�t�q|p|Rx p

�
2 tZ and Proposition 2.10 (4),

detN (GS)(T ) is equal to max(1, tq)|p|�1 up to tZ.
Note that for t > 0 and any integer k, max(1, tk) = t

k�|k|
2 max(1, t)|k|, there-

fore max(1, tq)|p|�1 = max(1, t)|q|(|p|�1) up to tZ.
Finally, Theorem 2.21 tells us that

1
(2)
S (t)=

detN (GS)(R S,t (FPS ,k))

max(1, t)|↵S(ak)|�1
=

detN (GC )

⇣
R C,t p (FPC ,k)

⌘
·max(1, t)|q|(|p|�1)

max(1, t)|p|�1
.

Thus we have proven the formula

1
(2)
S (t) = 1

(2)
C (t p) ·max(1, t)(|p|�1)(|q|�1).
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Corollary 4.4. Let K be a knot, �K its inverse knot, and P and P� Wirtinger
presentations of their respective groups. Then for all positive real numbers t , (P, t)
has Property I if and only if (P�, t�1) has Property I, and in this case

1
(2)
�K (t�1) = 1

(2)
K (t).

Proof. Observe that �K is a (�1,m)-cable of K with m any integer, and apply
Theorem 4.3.

5. Detection of the unknot

In [7], Lück (Theorem 4.7 (2)) proves that the pair composed of the L2-torsion
and the Alexander polynomial detects the unknot. We prove a similar result for the
L2-Alexander invariant:
Theorem 5.1. Let K be a knot in S3. The L2-Alexander invariant of K is trivial,
i.e.

⇣
t 7! 1

(2)
K (t)

⌘
= (t 7! 1), if and only if K is the trivial knot.

This seems to confirm that the L2-Alexander invariant can be seen as a gener-
alization of both the L2-torsion (i.e. the Gromov norm) and the Alexander polyno-
mial.

Proof. First, let K0 be an arbitrary knot. If the exterior of K0 has hyperbolic pieces
in its JSJ decomposition, then 1(2)

K0(1) 6= 1, by Theorem 2.20. Therefore, let us
assume K̃ is a knot whose exterior does not have hyperbolic pieces and such that
1

(2)
K̃

= (t 7! 1). Let us prove that K̃ is the unknot.
Besides, [9, Lemma 5.5] tells us that if we call K the class of knots generated

by the unknot, the connected sum operation, and all cabling operations (for all torus
knot patterns), then K̃ 2 K.

Let us prove that for all knots K in the class K, 1(2)
K = (t 7! max(1, t)nK )

where nK is a nonnegative integer.
From Example 2.18, it is true for the unknot and nO = 0. Secondly, if the

property is true for K1 and K2 in K, then, by Theorem 3.2, it is true for their
connected sum K1]K2 and nK1]K2 = nK1 + nK2 . Finally, if the property is true for
C 2 K and S is the (p, q)-cable of C , then it is true for S and nS = |p| · nC +

(|p| � 1)(|q| � 1), by Theorem 4.3.
Observe that nK1]K2 = 0 if and only if nK1 = nK2 = 0, and nS = 0 if and only

if nC = 0 and p = ±1 (i.e. the cabling operation is trivial or the knot inversion).
Therefore, the subclass K0 of knots K 0 in K such that nK 0 = 0 is exactly the class
generated by O , the connected sum, the trivial cabling operation and the reversing
of the orientation of the knot. But this class is reduced to O. Therefore, for K 2 K,
nK = 0 if and only if K = O .

Thus, if K̃ is a knot whose exterior does not have hyperbolic pieces and such
that 1(2)

K̃
= (t 7! 1), then K̃ is the unknot. The theorem follows.
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6. Proof of Proposition 2.2

The aim of this section is to give a detailed proof of the following technical result:

Proposition 2.2. Let us consider the (p, q)-cable knot S of companion C .

(1) There exists PC = ha1, . . . , ak |r1, . . . , rk�1i a Wirtinger presentation of GC
such that

PS = ha1, . . . , ak, x, �|r1, . . . , rk�1, x pa
�q
k ��p, ��1W (ai )i

is a presentation of GS , with x and � the homotopy classes of the core and a
longitude of TC , and W (ai ) a word in the a1, . . . , ak .

(2) Furthermore, ↵S(x) = q, ↵S(�) = 0 and ↵S(ai ) = p, for i = 1, . . . , k.

6.1. Group of a torus knot pattern

Let Tint be an open solid torus and Text an open tubular neighbourhood of Tint, thus
a second solid torus. We will draw the torus knot K = T (p, q) on the boundary
of Tint. Let us take pt any point on @Tint r K . It will be the base point for all the
following fundamental groups. Figure 6.1 (where p = 3 and q = 4) should clarify
the notations.

Figure 6.1. The inside and outside tori Tint and Text and the (p, q)-torus knot K .

We want to prove the following result:

Lemma 6.1. Pp,q = hx, y, �|x p = �p yq , �y = y�i is a presentation of
G̃ p,q = ⇡1(Text r K ). Furthermore, the elements of G̃ p,q represented by � and y
are the homotopy classes of a longitude curve and a meridian curve of Text \ Tint,
and x is the homotopy class of the core of Tint.

The following proof has been inspired by the computation of the classical pre-
sentation of torus knot groups (see for example [10, Section 3.C]).
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Proof. We will use the Seifert-van Kampen theorem.
We noteU1 = Textr(TinttK ),U2 = TintrK , W = TextrK , V = @TintrK

and G1,G2,G,G0 their respective fundamental groups (for the same base point pt
in V ).

U1 can be deformed to Text r Tint (by “filling up K ” ), and so it is homotopically
equivalent to a 2-torus. Thus hy, �|y� = �yi is a presentation of G1, where y and
� are the homotopy classes of a natural meridian-longitude system of Text \ Tint, see
Figure 6.2.

Figure 6.2. A natural meridian-longitude system

U2 can be deformed to Tint by a similar process, therefore G2 admits the presenta-
tion hx |�i, where x is the homotopy class of the core of Tint, see Figure 6.3.

Figure 6.3. The generator x , core of Tint

V is homeomorphic to an annulus, thus G0 admits the presentation hz|�i where the
generator z is drawn on Figure 6.4. Note that z follows the direction of the strands,
that is the same as the one of the core if p > 0 and the opposite if p < 0.

The inclusions V ⇢ U1 and V ⇢ U2 induce homotopy maps that send z to x p
and yq�p respectively. We hope the figures make this point clearer.

Thus, by the Seifert-van Kampen theorem, G = G̃ p,q admits the presentation
Pp,q = hx, y, �|x p = �p yq , �y = y�i.
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Figure 6.4. The generator z of G0

6.2. A meridian-longitude system in the group presentation of the pattern

In this subsection we will explain how to obtain in general a group presentation for
GP⇢TP = ⇡1(TP \ P) containing the homotopy classes of a preferred meridian-
longitude pair of TP as generators. This will not help us to prove Proposition 2.2,
but this illustrates that the hypotheses of Lemma 6.3 are not as restrictive as we
could have thought.

The method will use Wirtinger presentations, and thus is not the same as the
one used in Lemma 6.1, but it will work for any pattern P .

Figure 6.5. The pattern seen as one (m,m)-tangle B and m parallel strands

First, notice that we can draw P as m parallel strands (not necessarily going in the
same direction) and a (m,m)-tangle B. See Figure 6.5, where we took m = 2 and
P the Whitehead double pattern.

To compute a presentation of GP⇢TP = ⇡1(TP \ P), we remark that this group
is naturally isomorphic to GPtMP = ⇡1(S3 \ (P t MP)) where MP is a meridian
curve of TP , see Figure 6.6.

Now we can compute a Wirtinger presentation of GPtMP by the well-known
process of the same name (see for example [2, Section 3.B]).

The Wirtinger generators are:

• � the generator for the arc of MP that passes over the m strands, which corre-
sponds naturally to a longitude loop of TP .

• �1, . . . , �m�1 the other generators of MP , listed from the outside to the inside.
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Figure 6.6. The knot P inside TP is the same as the 2-link P t MP inside S3

• a1, . . . , am and a0

1, . . . , a
0

m the generators for the m strands of P , listed from the
outside to the inside, such that a0

i = �ai��1.
• b1, . . . , bk the generators for the arcs strictly inside the tangle B.
Figure 6.7 pictures them partially (as always, the base point is assumed to be above
the diagram).

Figure 6.7. The Wirtinger generators

Note that we can assume that the ai and the a0

i are all distinct, since we can add a
first Reidemeister move twist at each of the 2m points of entrance of P into B.

The relators are:
• r1, . . . , rm+k�1, some words in the ai , a0

i and b j , corresponding to the crossings
inside B.

• a0

i = �ai��1 for the crossings where MP passes over P .
• �1 = ae11 �a

�e1
1 , �2 = ae22 �1a

�e2
2 , . . . , � = aemm �m�1a�em

m for the crossings
where MP passes under P (here ei = ±1 depends on the orientation of the
i-th strand).

Thus GPtMP admits the Wirtinger presentation

Q = hai , a0

i , b j , �↵, �|rl , a
0

i = �ai��1, �1 = ae11 �a
�e1
1 , . . . , � = aemm �m�1a�em

m i,

where i = 1, . . . ,m, j = 1, . . . k, ↵ = 1, . . . ,m � 1 and l = 1, . . . ,m + k � 1.
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A preferred longitude of TP is among the generators of Q, as �. We also want
a meridian loop µ. As shown in Figure 6.7, µ is equal to aemm . . . ae11 . We can thus
write

Q1=
⌧
ai , a0

i , b j , �↵, �, µ
����rl , a

0

i =�ai�
�1, �1=ae11 �a

�e1
1 , . . . , �=aemm �m�1a�em

m ,
µ=aemm . . . ae11

�

an other presentation of GPtMP , that has the form we wanted.
Now we can simplify this presentation and get rid of the generators �↵ .
By substituting �↵ with ae↵↵ �↵�1a�e↵

↵ from ↵ = 1 tom�1 (with the convention
�0 = �), we obtain the simplified presentation

Q2=hai ,a0

i ,b j , �, µ|rl ,a0

i =�ai�
�1,�=(aemm . . . ae11 )�(a�e1

1 . . . a�em
m ),µ=aemm . . . ae11 i

that is equivalent to

Q3 = hai , a0

i , b j , �, µ|rl , a0

i = �ai��1, �µ = µ�, µ = aemm . . . ae11 i.

In conclusion, the group of the pattern knot P inside its solid torus TP admits a
group presentation of the form of Q3. This presentation is simple in the sense that
the generators ai , a0

i , b j and the relators rl can all be read of the diagram of P .
Moreover, Q3 contains a preferred meridian-longitude pair of TP in its generators.
Remark 6.2. This method gives us the (simplified) presentationD

b, �, µ|�µ��1µ�1, b�b��1b�1�µb�1��1
E

for the Whitehead link.

6.3. Group presentation of a satellite knot

The following lemma gives us a group presentation of the satellite knot group when
we know a presentation of the pattern group with a preferred meridian-longitude
pair of the pattern torus among its generators and any presentation of the companion
group.

Lemma 6.3. Let T be a tubular neighbourhood of TC distinct from it. We will take
pt any point in T r TC , it will be the basepoint for all the following fundamental
groups. Notice that GP⇢TP = ⇡1(T \ SC,P) is isomorphic to ⇡1(TP \ P, pt 0)
where pt 0 = h�1

PC(pt).
Suppose there exists PP⇢TP = hb1, . . . , bl�1, �, µ|s1, . . . , sli a presentation

of GP⇢TP where � and µ are the homotopy classes of a longitude curve and a
meridian curve of TP .

Then there exists a presentation PC = ha1, . . . , ak |r1, . . . , rk�1i of GC and a
presentation

PS = ha1, . . . , ak, b1, . . . , bl�1, �, µ|r1, . . . , rk�1, s1, . . . , sl�1, ��1W (ai ), a�1
k µi

of GS = ⇡1(S3 \ SC,P), with W (ai ) a word in the ai , i = 1, . . . , k.
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Proof. We will use the Seifert-van Kampen theorem with the basepoint pt . We
denote W = S3 r SC,P , UC = S3 r TC , UP = T r SC,P , V = T r TC , and
GS,GC ,GP⇢TP ,G0 their respective fundamental groups.

The drawings of Figure 6.8 are meant to represent an angular fraction of the
C-shaped sets, a fraction that contains the “essence of the pattern P” and also the
basepoint pt . They are here to make perfectly clear what W,UC ,UP , V are.

Figure 6.8. The four open sets for the Seifert-van Kampen theorem

We take a Wirtinger presentation PC = ha1, . . . , ak |r1, . . . , rk�1i of

GC = ⇡1(S3 \ C) = ⇡1(S3 \ TC) = ⇡1(UC)

associated to a planar regular diagram projection of C .
We then consider P inside TP . The open set UP = T r SC,P is homotopy

equivalent to TCrSC,P , which is the image of TPrP by the homeomorphism hPC .
Thus ⇡1(UP) = GP⇢TP . Let us denote � a longitude of TP and the corresponding
element of GP⇢TP .

V is homotopy equivalent to a 2-torus, thus G0 = h�0, µ0|�0µ0�
�1
0 µ�1

0 i,
where (µ0, �0) is the homotopy class of a preferred meridian-longitude pair.

V ⇢ UC mapsµ0 to any meridian loop of GC , for instance ak , and �0 toW (ai )
a word in the ai such that W (ai ) is a longitude loop of the knot C .

V ⇢ UP maps µ0 to µ (a meridian loop of @TP that passes around the m
strands), and �0 to �.

Hence, by the Seifert-van Kampen theorem,

P =

D
a1, . . . , ak, b1, . . . , bl�1, �, µ|r1, . . . , rk�1, s1, . . . , sl�1, ��1W (ai ), a�1

k µ
E

is a presentation of GS = ⇡1(W ) = ⇡1(S3 \ SC,P).
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6.4. Details of the proof

Let us prove (1) of the Proposition 2.2.
Let us consider the cable knot S of companion C and pattern T (p, q). There

exists PC =ha1,. . . , ak |r1, . . . , rk�1i a Wirtinger presentation of GC = ⇡1(S3 \C).
Lemma 6.1 and Lemma 6.3 give us the following presentation of GS:

P =

D
a1, . . . , ak, x, y, �|r1, . . . , rk�1, x p y�q��p, y�y�1��1, ��1W (ai ), a�1

k y
E

with b1 being x and µ being y.
Then we can suppress the relation y� = �y because it is equivalent to

akW (ai ) = W (ai )ak which is already true in GC because ak is a meridian loop
of the knot C and W (ai ) is a corresponding longitude loop. Furthermore, we can
replace y by ak in the relators and delete the generator y and the relator a�1

k y.
Therefore

PS =

D
a1, . . . , ak, x, �|r1, . . . , rk�1, x pa

�q
k ��p, ��1W (ai )

E

is a presentation of GS = ⇡1(S3 \ S), with W (ai ) a word in the ai , i = 1, . . . , k.
Furthermore, � is a longitude loop of C and x is the homotopy class of the core

of TC , since it is the image of the core of TP by hPC .
Now let us prove (2):
Since � is a longitude loop of C , its linking number with C is zero, thus its

linking number with S is zero (it is multiplied by p at each crossing during the
cabling process), thus ↵S(�) = 0.

All the ai have the same abelianization as ak , which is equal to y, which is a
meridian loop of @TC and therefore circles p strands. Thus ↵S(y) = p.

Finally, the relation x p y�q��p in GS implies that ↵S(x) = q, which concludes
the proof of Proposition 2.2.

7. Open questions

(1) The L2-Alexander invariant 1(2)
K of a knot K is a class of maps from a subset

DK of R>0 to R>0, up to multiplication by the (t 7! tm), m 2 Z.
We can ask many interesting questions about these maps.
(a) Are they continuous? We know some continuity properties of the Fuglede-

Kadison determinant on invertible operators, but what about the operators
we use here?

(b) Are they everywhere nonzero? Or equivalently, are the operators of deter-
minant class for all t 2 DK ? This question can be related to the Determi-
nant Conjecture (see [7, Chapter 13]).

(c) Are there knots K for which DK is not the whole R>0? This question can
be related to the Strong Atiyah Conjecture (see [7, Chapter 10]).
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(2) Theorem 4.3 gives us a cabling formula for the L2-Alexander invariant. Are
there other L2 satellite formulas?
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