Finite groups with many metacyclic subgroups

ADOLFO BALLESTER-BOLINCHES AND JOHN COSSEY

Abstract. The aim of this paper is to characterise the finite non-nilpotent groups in which every 2-generator subgroup is metacyclic.

Mathematics Subject Classification (2010): 20D10 (primary); 20D20 (secondary).

1. Introduction

The recovery of information about the structure of a finite group from information about its subgroups has a long history. Here we will be concerned with the influence of 2-generator subgroups on the structure of a finite group. If a group has 2-generator subgroups in a class \mathcal{X} which is subgroup-closed and minimal non- \mathcal{X} -groups are 2-generator then the group is in \mathcal{X} . This is true for the classes of soluble [8, 14], supersoluble [6] and nilpotent [9, Satz III.5.2] groups. Minimal non-metacyclic *p*-groups (*p* a prime) have been classified by Blackburn [2, Theorem 3.2]. These groups are all 3-generator and so the class of groups with all 2generator subgroups metacyclic contains non-metacyclic groups. For convenience, we denote the class of finite groups with 2-generator subgroups metacyclic by \mathcal{M} . Note that \mathcal{M} is a subgroup and quotient closed class.

For odd primes p, the classification of p-groups in \mathcal{M} is easy. If $G \in \mathcal{M}$, then G can not contain a non-abelian section of order p^3 and exponent p, since such a section is not metacyclic. It then follows by [13, Lemma 2.3.3] that G is a modular group. Conversely it follows from [13, Theorem 2.3.1] that a modular p-group has all 2-generator subgroups metacyclic. Mann [12] showed that the class of monotone 2-groups coincides with the class of 2-groups in \mathcal{M} . These groups have been classified by Crestani and Menegazzo [3] and we refer the reader to that paper for details.

Received January 24, 2014; accepted in revised form July 14, 2014. Published online February 2016. Our aim here is to complete the classification of finite groups in \mathcal{M} by classifying all the non-nilpotent finite groups in this class.

If p is a prime, we denote a Sylow p-subgroup of a group G by G_p and if π is a set of primes we denote a Hall π -subgroup by G_{π} .

Theorem 1.1. A non-nilpotent group G has 2-generator subgroups metacyclic if and only if

- (i) *G* is supersoluble and metabelian, with Sylow subgroups modular for odd primes and monotone groups for the prime 2,
- (ii) $N = G^{\mathfrak{N}}$ (the nilpotent residual of \hat{G}) is abelian (and $\neq 1$) and so G = NH, $N \cap H = 1$ for every Carter subgroup H of G,
- (iii) *H* acts on *N* as power automorphisms and if π is the set of primes dividing *N* then H_p is cyclic if $p \in \pi$ and $H_{\pi'}/C_{H_{-'}}(N)$ is cyclic.
- (iv) If $q \in \pi'$, $x \notin C_{H_q}(N)$ and $y \in C_{H_q}(N)$ then $K = \langle x, y \rangle = U \langle x \rangle$ with U cyclic, normal in K and contained in $C_H(N)$.

We will need the following result, essentially due to Gaschütz: the version here is due to Lucchini and Tamburini [11]. Let d(G) denote the minimum number of generators of a supersoluble group G and for each isomorphism type of chief factor A (as G-module) let $\delta_G(A)$ denote the number of complemented chief factors of G isomorphic to A in a fixed chief series and let $\Omega(G)$ denote the set of nonisomorphic complemented chief factors.

Lemma 1.2. With the notation above

$$d(G) = \max_{A \in \Omega(G)} h_G(A)$$

where $h_G(A) = (\delta_G(A) + 1 - \theta_G(A))$ and $\theta_G(A) = 1$ if A is a trivial G-module, and $\theta_G(A) = 0$ otherwise.

2. The proof of Theorem 1

Suppose first that $G \in \mathcal{M}$.

(i) Since metacyclic groups are supersoluble, we have that G is supersoluble ([6]). We defer the proof that G is metabelian until later. The structure of the Sylow subgroups is covered by the remarks above.

(ii) Since G is supersoluble the nilpotent residual N of G is nilpotent of odd order. Let p be a prime. Suppose that the Sylow p-subgroup M of N is non-trivial, and let K be a Hall p'-subgroup of G. We show that all G-chief factors of $M/\Phi(M)$ are isomorphic as K-modules. Assume this is not true and let A/B be a G-chief factor such that $\Phi(M) \le B < A \le M$, all G-chief factors between M and A are K-isomorphic and A/B is not K-isomorphic to any G-chief factor between A and M. Suppose that A is a proper subgroup of M. Then M/B is an elementary abelian non-cyclic *p*-group and every *G*-chief factor between *B* and *M* is non-central in *G*. By [7, Theorem A. 11.5], *M/B* is a semisimple *K*-module. Let *C/B* be a *G*-chief factor below *M* such that $A \cap C = B$. Write D = AC. Since $K/C_K(A/B)$ and $K/C_K(C/B)$ are both cyclic and $C_K(A/B) \cup C_K(C/B) \neq K$ we can find an element $k \in K$ such that $C_K(A/B)\langle k \rangle = C_K(C/B)\langle k \rangle = K$. Then *A/B* and *C/B* are non-isomorphic as $\langle k \rangle$ -modules. We now have $D\langle k \rangle/B$ a 2-generator group by Lemma 1. Since $(D\langle h \rangle/B)' = C/B$ is not cyclic, this group is not metacyclic, a contradiction. Assume now that M = A. Then $\Phi(M)$ is a proper subgroup of *B* and there exists a normal subgroup *Z* of *G* such that B/Z and M/B are two non-central chief factors of *G* which are not *K*-isomorphic. Then M/Z is 2-generated. Arguing as above, there exists an element $h \in K$ such that $C_K(M/B)\langle k \rangle = C_K(B/Z)\langle h \rangle = K$ and $M\langle h \rangle/Z$ is a 2-generated group which is not metacyclic, a contradiction. Therefore, all *G*-chief factors of $M/\Phi(M)$ are isomorphic as *K*-modules and, by [1, Lemma 2.1.3], *K* acts as power automorphisms on $M/\Phi(M)$.

Suppose that M is non-abelian. By [13, Lemma 2.3.33], there exist characteristic subgroups R and S of M such that $\Phi(M) \leq S < R$ and $[R, Aut(M)] \leq S$. In particular, every G-chief factor between $\Phi(M)$ and M is central in G. This is not possible. Hence M is abelian. It now follows from [5, Lemma 2] (see also [1, Lemma 3.3.39]) that all chief factors of G contained in M are isomorphic as G-modules. By [1, Lemma 2.1.3], p'-elements of G act on M as power automorphisms.

Since N is abelian it is complemented by every Carter subgroup H of G [7, Theorem IV.5.18].

(iii) Let N_p and H_p be Sylow *p*-subgroups of *N* and *H* respectively. If both N_p and H_p are non-trivial, we show that H_p is cyclic and acts on N_p as power automorphisms. To see this suppose first that H_p is non-cyclic. Since *p* is odd, H_p contains an elementary abelian subgroup $U = \langle u, v \rangle$ of order p^2 . Let $Z = \langle z \rangle \leq N_p$ be a minimal normal subgroup of *G*. Since then $Z \leq Z(G_p) \cap N_p$ we have $V = \langle u, v, z \rangle$ elementary abelian of order p^3 . Consider a Hall *p'*-subgroup $H_{p'}$ of *H*. If $h \in H_{p'} \setminus C_H(Z)$ set $K = \langle hu, vz \rangle$. We claim that $V \leq K$. Since *h* and *u* commute, *u* and *h* are both powers of *hu* so that $u, h \in K$. Next $[h, vz] = [h, z] = z^{\alpha}$ and so $z \in K$. This gives $v \in K$ also and so $V \leq K$. We now have *K* is a 2-generator which is not metacyclic, a contradiction. Thus H_p is cyclic. If G_p is abelian then H_p acts as the trivial power automorphism on N_p so we suppose that G_p is non-abelian and $H_p = \langle u \rangle$. Since $G_p = N_p H_p$, N_p is abelian and G_p is a modular group we must have $u \notin Z(G_p)$ and hence acting as a power automorphism on N_p .

Since we now have H acts on N_p as power automorphisms for each prime in π it then follows from [4, Theorem 2.3.1] that H acts as power automorphisms on N. Since $H_{\pi'}/C_{H_{\pi'}}(N_p)$ is cyclic for each $p \in \pi$ by [4, Theorem 3.4.1], $H_{\pi'}/C_{H_{\pi'}}(N)$ is abelian. Since $C_{H_{\pi'}}(N)$ is normal in G to show $H_{\pi'}/C_{H_{\pi'}}(N)$ is cyclic we may assume that $C_{H_{\pi'}}(N) = 1$. If $H_{\pi'}$ is not cyclic it must contain an elementary abelian subgroup U of order q^2 for some prime $q \in \pi'$. It follows from [4, Theorem 3.4.1] that, for any prime $p \in \pi$, $U/C_U(N_p)$ is cyclic and so we can find primes p_1 and p_2 in π such that $1 < C_U(N_{p_i}) = V_i < U$, i = 1, 2 and $V_1V_2 = U$. If W_i is a non-trivial cyclic subgroup of N_{p_i} , i = 1, 2, then $T = (W_1 \times W_2)U \cong (W_1V_2) \times (W_2V_1)$. Clearly $W_1 \times W_2$ is a maximal abelian subgroup of T. Suppose T = AB with A and B cyclic and A normal in T. Then $W_1 \times W_2 \leq T' \leq A$. Since T/A is cyclic, $W_1 \times W_2$ is a proper subgroup of A, a contradiction. Thus $H_{\pi'}/C_{H_{\pi'}}(N)$ is cyclic.

(iv) Let $K = \langle x, y \rangle$ be as in the statement of the theorem. Then $K = C_K(N)\langle x \rangle$. If $\langle y \rangle$ is normal in K, set $U = \langle y \rangle$ and (iv) is satisfied. Hence suppose that $\langle y \rangle$ is not normal in K. Let $M = \langle m \rangle$ be a cyclic subgroup of N chosen so that $C_K(M) = C_K(N)$. By (iii) x acts as a non-trivial power automorphism on M. Since MK is generated by ym and x, MK is metacyclic. Thus MK = ST with S cyclic and normal in MK and T cyclic. If $S = \langle s \rangle$ then we may assume that s = mu with $u \in C_K(M)$ and $T \leq K$ since $M \leq (MK)' \leq S$. Let $U = \langle u \rangle$. Then K = UT. If $T = \langle t \rangle$ then $x = t^{\alpha}u^{\beta}$. If α is a multiple of q then $\langle x, y \rangle < K$, a contradiction. We now have $t^{\alpha} = xu^{-\beta}$ and so $K = U\langle x \rangle$, completing the proof of (iv).

(i) continued. If $G \in \mathcal{M}$, then G = NH is a subdirect product of G/N and $(N_pH)/C_H(N_p)$ for each prime p dividing |N|. It is an easy deduction from the list of 2-groups in \mathcal{M} to see that these groups are metabelian. Since modular p-groups are metabelian, we have G/N metabelian. Since $H/C_H(N_p)$ is cyclic, $(N_pH)/C_H(N_p)$ is metabelian. Hence G is metabelian.

Suppose now that G satisfies the hypotheses (i)-(iv) and let X be a 2-generator subgroup of G. If X is nilpotent then each Sylow subgroup of X is metacyclic and so X is metacyclic. If X is not nilpotent, let $Y = X^{\mathfrak{N}}$. Since $Y \leq N$ and G acts as power automorphisms on N, X acts as power automorphisms on Y. If Y is not cyclic then a Sylow p-subgroup Y_p of Y is not cyclic for some prime p and so as X-module $Y_p/\Phi(Y_p)$ is the direct product of j isomorphic irreducibles, $j \geq 2$. Now Lemma 1 gives that X has at least j + 1 generators, a contradiction. Thus Y is cyclic. Let Z be a complement to Y in X. Then Z is a 2-generator nilpotent subgroup of G and hence is metacyclic. If $(Z_p, Y_p) \neq 1$ then it follows from (iii) that Z_p is cyclic. Thus if π is the set of primes dividing |Y| we have $Z = S \times T$, where S is a cyclic π -group and T is a metacyclic π' -group. If T is cyclic, then Z is cyclic and we are finished. If T is not cyclic and [T, Y] = 1 then T = UV with U cyclic and normal in T (and hence in Z) and V cyclic. But then YU is a cyclic normal subgroup of X and SV is cyclic, so that X = (YU)(SV) is metacyclic, a contradiction.

Thus *T* is not cyclic and not contained in $C_Z(Y)$. From (iii) we have $T/C_T(Y)$ cyclic. We can choose generators *x*, *y* for *T* with $x \notin C_T(Y)$ and $y \in C_T(Y)$. To show this it will be enough to prove it for the Sylow subgroups of *T*. Let T_q be the Sylow *q*-subgroup of *T* and let *a*, *b* be generators of T_q . Since $T_q/C_{T_q}(Y)$ is cyclic we must have either *a* or *b* generates T_q modulo $C_{T_q}(Y)$; suppose *a*. Then for some integer α , $ba^{\alpha} \in C_{T_q}(Y)$. If $x_q = a$ and $y_q = ba^{\alpha}$ then $T_q = \langle x_q, y_q \rangle$. Put $x = \prod_{q \in \pi'} x_q$ and $y = \prod_{q \in \pi'}$. Then $T = \langle x, y \rangle$ with $y \in C_T(Y)$. From (iv) we have T = UV with $U \leq C_T(Y)$ cyclic and normal in *T* and *V*

From (iv) we have T = UV with $U \le C_T(Y)$ cyclic and normal in T and V cyclic. Now UY is cyclic and normal in X, VS is cyclic and X = (UY)(VS) is metacyclic, a final contradiction.

3. Examples

The first two examples show that if a metacyclic q-group acts on a p-group as a group of non-trivial power automorphisms the action plays an important role in whether the extension is metacyclic or not.

Let $N = \langle m \rangle$ be cyclic of order 7 and let *H* be the nonabelian group of order 27 and exponent 9, generated by *x* of order 9 and *y* of order 3.

Suppose first that x acts trivially on N and y acts non-trivially on N and let G = NH. Then G = ST with $S = N \times \langle x \rangle$ and $T = \langle y \rangle$, with S and T cyclic and S normal in G. Thus G is metacyclic.

Now suppose that y acts trivially on N and X acts non-trivially on N. We then have $C_H(N) = \langle x^3, y \rangle$. The unique maximal cyclic normal subgroup of G = NH is $U = \langle x^3, N \rangle$ and G/U is not cyclic. Thus G is not metacyclic.

Since in Theorem 1 the Sylow q-subgroups are modular for q odd, it is tempting to conjecture that x acts as a power automorphism on $C_H(N)$. The following example shows this need not be true.

Let $X = \langle x \rangle$ be a cyclic group of order 27 and let $Y = \langle y \rangle \leq Aut(X)$ with $x^y = x^{10}$. Let $N = \langle n \rangle$ be a group of order 7 and let H = XY. Define an action of H on N by $n^y = n$ and $n^x = n^2$. Let G = NH. We have $C_H(N) = \langle x^3, y \rangle$ and x does not act as a power automorphism on $C_H(N)$. However G is metacyclic since $U = N \langle yx^3 \rangle$ is a cyclic normal subgroup of G and UX = G.

References

- A. BALLESTER-BOLINCHES, R. ESTEBAN-ROMERO and M. ASAAD, "Products of Finite Groups", de Gruyter Expositions in Mathematics 53, de Gruyter, Berlin, New York, 2010.
- [2] N. BLACKBURN, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. (3) 11, 1961, 1–22.
- [3] E. CRESTANI and F. MENEGAZZO, *On monotone 2-groups*, J. Group Theory **15** (2012), 359–383.
- [4] C. D. H. COOPER, Power automorphisms of a group, Math. Z. 107 (1968), 335–356.
- [5] J. COSSEY and Y. WANG, Finite dinilpotent groups of small derived length, J. Austral. Math. Soc. (A) 67 (1999), 318–328.
- [6] K. DOERK, Minimal nicht überauflösbare, endliche Gruppen, Math. Z. 91 (1966), 198–205.
- [7] K. DOERK and T. HAWKES, "Finite Soluble Groups", De Gruyter Expositions in Mathematics 4, De Gruyter, Berlin, New York, 1992.
- [8] P. FLAVELL, Finite groups in which every two elements generate a soluble subgroup, Invent. Math. 121 (1995), 279-285.
- [9] B. HUPPERT, "Endliche Gruppen I", Springer Verlag, Berlin, Heidelberg, New York, 1967.
- [10] B. HUPPERT and N. BLACKBURN, "Finite Groups II", Springer Verlag, Berlin, Heidelberg, New York, 1982.
- [11] A. LUCCHINI and M. C. TAMBURINI, Minimal generation of finite soluble groups by projectors and normalizers, Glasg. Math. J. 41 (1999), 303–312.
- [12] A. MANN, The number of generators of finite p-groups, J. Group Theory 8 (2005), 317–337.
- [13] R. SCHMIDT, "Subgroup Lattices of Groups", Walter de Gruyter, Berlin, New York, 1994.

[14] J. G. THOMPSON, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. **74** (1968), 383–437.

> Departament d'Àlgebra Universitat de València Dr. Moliner, 50 46100 Burjassot (València), Spain Adolfo.Ballester@uv.es

Department of Mathematics Mathematical Sciences Institute Australian National University Canberra ACT 2601, Australia John.Cossey@anu.edu.au