Finite groups with many metacyclic subgroups

Adolfo Ballester-Bolinches and John Cossey

Abstract

The aim of this paper is to characterise the finite non-nilpotent groups in which every 2 -generator subgroup is metacyclic.

Mathematics Subject Classification (2010): 20D10 (primary); 20D20 (secondary).

1. Introduction

The recovery of information about the structure of a finite group from information about its subgroups has a long history. Here we will be concerned with the influence of 2-generator subgroups on the structure of a finite group. If a group has 2-generator subgroups in a class \mathcal{X} which is subgroup-closed and minimal non-\mathcal{X}-groups are 2 -generator then the group is in \mathcal{X}. This is true for the classes of soluble [8, 14], supersoluble [6] and nilpotent [9, Satz III.5.2] groups. Minimal non-metacyclic p-groups (p a prime) have been classified by Blackburn [2, Theorem 3.2]. These groups are all 3-generator and so the class of groups with all 2generator subgroups metacyclic contains non-metacyclic groups. For convenience, we denote the class of finite groups with 2-generator subgroups metacyclic by \mathcal{M}. Note that \mathcal{M} is a subgroup and quotient closed class.

For odd primes p, the classification of p-groups in \mathcal{M} is easy. If $G \in \mathcal{M}$, then G can not contain a non-abelian section of order p^{3} and exponent p, since such a section is not metacyclic. It then follows by [13, Lemma 2.3.3] that G is a modular group. Conversely it follows from [13, Theorem 2.3.1] that a modular p-group has all 2-generator subgroups metacyclic. Mann [12] showed that the class of monotone 2 -groups coincides with the class of 2 -groups in \mathcal{M}. These groups have been classified by Crestani and Menegazzo [3] and we refer the reader to that paper for details.

Received January 24, 2014; accepted in revised form July 14, 2014.
Published online February 2016.

Our aim here is to complete the classification of finite groups in \mathcal{M} by classifying all the non-nilpotent finite groups in this class.

If p is a prime, we denote a Sylow p-subgroup of a group G by G_{p} and if π is a set of primes we denote a Hall π-subgroup by G_{π}.

Theorem 1.1. A non-nilpotent group G has 2-generator subgroups metacyclic if and only if
(i) G is supersoluble and metabelian, with Sylow subgroups modular for odd primes and monotone groups for the prime 2,
(ii) $N=G^{\mathfrak{N}}$ (the nilpotent residual of G) is abelian (and $\neq 1$) and so $G=N H$, $N \cap H=1$ for every Carter subgroup H of G,
(iii) H acts on N as power automorphisms and if π is the set of primes dividing N then H_{p} is cyclic if $p \in \pi$ and $H_{\pi^{\prime}} / C_{H_{\pi^{\prime}}}(N)$ is cyclic.
(iv) If $q \in \pi^{\prime}, x \notin C_{H_{q}}(N)$ and $y \in C_{H_{q}}(N)$ then $K=\langle x, y\rangle=U\langle x\rangle$ with U cyclic, normal in K and contained in $C_{H}(N)$.

We will need the following result, essentially due to Gaschütz: the version here is due to Lucchini and Tamburini [11]. Let $d(G)$ denote the minimum number of generators of a supersoluble group G and for each isomorphism type of chief factor A (as G-module) let $\delta_{G}(A)$ denote the number of complemented chief factors of G isomorphic to A in a fixed chief series and let $\Omega(G)$ denote the set of nonisomorphic complemented chief factors.

Lemma 1.2. With the notation above

$$
d(G)=\max _{A \in \Omega(G)} h_{G}(A)
$$

where $h_{G}(A)=\left(\delta_{G}(A)+1-\theta_{G}(A)\right)$ and $\theta_{G}(A)=1$ if A is a trivial G-module, and $\theta_{G}(A)=0$ otherwise.

2. The proof of Theorem 1

Suppose first that $G \in \mathcal{M}$.
(i) Since metacyclic groups are supersoluble, we have that G is supersoluble ([6]). We defer the proof that G is metabelian until later. The structure of the Sylow subgroups is covered by the remarks above.
(ii) Since G is supersoluble the nilpotent residual N of G is nilpotent of odd order. Let p be a prime. Suppose that the Sylow p-subgroup M of N is non-trivial, and let K be a Hall p^{\prime}-subgroup of G. We show that all G-chief factors of $M / \Phi(M)$ are isomorphic as K-modules. Assume this is not true and let A / B be a G-chief factor such that $\Phi(M) \leq B<A \leq M$, all G-chief factors between M and A are K-isomorphic and A / B is not K-isomorphic to any G-chief factor between A and M. Suppose that A is a proper subgroup of M. Then M / B is an elementary abelian
non-cyclic p-group and every G-chief factor between B and M is non-central in G. By [7, Theorem A. 11.5], M / B is a semisimple K-module. Let C / B be a G chief factor below M such that $A \cap C=B$. Write $D=A C$. Since $K / C_{K}(A / B)$ and $K / C_{K}(C / B)$ are both cyclic and $C_{K}(A / B) \cup C_{K}(C / B) \neq K$ we can find an element $k \in K$ such that $C_{K}(A / B)\langle k\rangle=C_{K}(C / B)\langle k\rangle=K$. Then A / B and C / B are non-isomorphic as $\langle k\rangle$-modules. We now have $D\langle k\rangle / B$ a 2-generator group by Lemma 1. Since $(D\langle h\rangle / B)^{\prime}=C / B$ is not cyclic, this group is not metacyclic, a contradiction. Assume now that $M=A$. Then $\Phi(M)$ is a proper subgroup of B and there exists a normal subgroup Z of G such that B / Z and M / B are two non-central chief factors of G which are not K-isomorphic. Then M / Z is 2-generated. Arguing as above, there exists an element $h \in K$ such that $C_{K}(M / B)\langle k\rangle=C_{K}(B / Z)\langle h\rangle=$ K and $M\langle h\rangle / Z$ is a 2 -generated group which is not metacyclic, a contradiction. Therefore, all G-chief factors of $M / \Phi(M)$ are isomorphic as K-modules and, by [1, Lemma 2.1.3], K acts as power automorphisms on $M / \Phi(M)$.

Suppose that M is non-abelian. By [13, Lemma 2.3.33], there exist characteristic subgroups R and S of M such that $\Phi(M) \leq S<R$ and $[R, \operatorname{Aut}(M)] \leq S$. In particular, every G-chief factor between $\Phi(M)$ and M is central in G. This is not possible. Hence M is abelian. It now follows from [5, Lemma 2] (see also [1, Lemma 3.3.39]) that all chief factors of G contained in M are isomorphic as G-modules. By [1, Lemma 2.1.3], p^{\prime}-elements of G act on M as power automorphisms.

Since N is abelian it is complemented by every Carter subgroup H of $G[7$, Theorem IV.5.18].
(iii) Let N_{p} and H_{p} be Sylow p-subgroups of N and H respectively. If both N_{p} and H_{p} are non-trivial, we show that H_{p} is cyclic and acts on N_{p} as power automorphisms. To see this suppose first that H_{p} is non-cyclic. Since p is odd, H_{p} contains an elementary abelian subgroup $U=\langle u, v\rangle$ of order p^{2}. Let $Z=\langle z\rangle \leq N_{p}$ be a minimal normal subgroup of G. Since then $Z \leq Z\left(G_{p}\right) \cap N_{p}$ we have $V=$ $\langle u, v, z\rangle$ elementary abelian of order p^{3}. Consider a Hall p^{\prime}-subgroup $H_{p^{\prime}}$ of H. If $h \in H_{p^{\prime}} \backslash C_{H}(Z)$ set $K=\langle h u, v z\rangle$. We claim that $V \leq K$. Since h and u commute, u and h are both powers of $h u$ so that $u, h \in K$. Next $[h, v z]=[h, z]=z^{\alpha}$ and so $z \in K$. This gives $v \in K$ also and so $V \leq K$. We now have K is a 2-generator which is not metacyclic, a contradiction. Thus H_{p} is cyclic. If G_{p} is abelian then H_{p} acts as the trivial power automorphism on N_{p} so we suppose that G_{p} is nonabelian and $H_{p}=\langle u\rangle$. Since $G_{p}=N_{p} H_{p}, N_{p}$ is abelian and G_{p} is a modular group we must have $u \notin Z\left(G_{p}\right)$ and hence acting as a power automorphism on N_{p}.

Since we now have H acts on N_{p} as power automorphisms for each prime in π it then follows from [4, Theorem 2.3.1] that H acts as power automorphisms on N. Since $H_{\pi^{\prime}} / C_{H_{\pi^{\prime}}}\left(N_{p}\right)$ is cyclic for each $p \in \pi$ by [4, Theorem 3.4.1], $H_{\pi^{\prime}} / C_{H_{\pi^{\prime}}}(N)$ is abelian. Since $C_{H_{\pi^{\prime}}}(N)$ is normal in G to show $H_{\pi^{\prime}} / C_{H_{\pi^{\prime}}}(N)$ is cyclic we may assume that $C_{H_{\pi^{\prime}}}(N)=1$. If $H_{\pi^{\prime}}$ is not cyclic it must contain an elementary abelian subgroup U of order q^{2} for some prime $q \in \pi^{\prime}$. It follows from [4, Theorem 3.4.1] that, for any prime $p \in \pi, U / C_{U}\left(N_{p}\right)$ is cyclic and so we can find primes p_{1} and p_{2} in π such that $1<C_{U}\left(N_{p_{i}}\right)=V_{i}<U, i=1,2$
and $V_{1} V_{2}=U$. If W_{i} is a non-trivial cyclic subgroup of $N_{p_{i}}, i=1,2$, then $T=\left(W_{1} \times W_{2}\right) U \cong\left(W_{1} V_{2}\right) \times\left(W_{2} V_{1}\right)$. Clearly $W_{1} \times W_{2}$ is a maximal abelian subgroup of T. Suppose $T=A B$ with A and B cyclic and A normal in T. Then $W_{1} \times W_{2} \leq T^{\prime} \leq A$. Since T / A is cyclic, $W_{1} \times W_{2}$ is a proper subgroup of A, a contradiction. Thus $H_{\pi^{\prime}} / C_{H_{\pi^{\prime}}}(N)$ is cyclic.
(iv) Let $K=\langle x, y\rangle$ be as in the statement of the theorem. Then $K=C_{K}(N)\langle x\rangle$. If $\langle y\rangle$ is normal in K, set $U=\langle y\rangle$ and (iv) is satisfied. Hence suppose that $\langle y\rangle$ is not normal in K. Let $M=\langle m\rangle$ be a cyclic subgroup of N chosen so that $C_{K}(M)=$ $C_{K}(N)$. By (iii) x acts as a non-trivial power automorphism on M. Since $M K$ is generated by $y m$ and $x, M K$ is metacyclic. Thus $M K=S T$ with S cyclic and normal in $M K$ and T cyclic. If $S=\langle s\rangle$ then we may assume that $s=m u$ with $u \in C_{K}(M)$ and $T \leq K$ since $M \leq(M K)^{\prime} \leq S$. Let $U=\langle u\rangle$. Then $K=U T$. If $T=\langle t\rangle$ then $x=t^{\alpha} u^{\beta}$. If α is a multiple of q then $\langle x, y\rangle<K$, a contradiction. We now have $t^{\alpha}=x u^{-\beta}$ and so $K=U\langle x\rangle$, completing the proof of (iv).
(i) continued. If $G \in \mathcal{M}$, then $G=N H$ is a subdirect product of G / N and $\left(N_{p} H\right) / C_{H}\left(N_{p}\right)$ for each prime p dividing $|N|$. It is an easy deduction from the list of 2-groups in \mathcal{M} to see that these groups are metabelian. Since modular p groups are metabelian, we have G / N metabelian. Since $H / C_{H}\left(N_{p}\right)$ is cyclic, $\left(N_{p} H\right) / C_{H}\left(N_{p}\right)$ is metabelian. Hence G is metabelian.

Suppose now that G satisfies the hypotheses (i)-(iv) and let X be a 2-generator subgroup of G. If X is nilpotent then each Sylow subgroup of X is metacyclic and so X is metacyclic. If X is not nilpotent, let $Y=X^{\mathfrak{N}}$. Since $Y \leq N$ and G acts as power automorphisms on N, X acts as power automorphisms on Y. If Y is not cyclic then a Sylow p-subgroup Y_{p} of Y is not cyclic for some prime p and so as X-module $Y_{p} / \Phi\left(Y_{p}\right)$ is the direct product of j isomorphic irreducibles, $j \geq 2$. Now Lemma 1 gives that X has at least $j+1$ generators, a contradiction. Thus Y is cyclic. Let Z be a complement to Y in X. Then Z is a 2 -generator nilpotent subgroup of G and hence is metacyclic. If $\left(Z_{p}, Y_{p}\right) \neq 1$ then it follows from (iii) that Z_{p} is cyclic. Thus if π is the set of primes dividing $|Y|$ we have $Z=S \times T$, where S is a cyclic π-group and T is a metacyclic π^{\prime}-group. If T is cyclic, then Z is cyclic and we are finished. If T is not cyclic and $[T, Y]=1$ then $T=U V$ with U cyclic and normal in T (and hence in Z) and V cyclic. But then $Y U$ is a cyclic normal subgroup of X and $S V$ is cyclic, so that $X=(Y U)(S V)$ is metacyclic, a contradiction.

Thus T is not cyclic and not contained in $C_{Z}(Y)$. From (iii) we have $T / C_{T}(Y)$ cyclic. We can choose generators x, y for T with $x \notin C_{T}(Y)$ and $y \in C_{T}(Y)$. To show this it will be enough to prove it for the Sylow subgroups of T. Let T_{q} be the Sylow q-subgroup of T and let a, b be generators of T_{q}. Since $T_{q} / C_{T_{q}}(Y)$ is cyclic we must have either a or b generates T_{q} modulo $C_{T_{q}}(Y)$; suppose a. Then for some integer $\alpha, b a^{\alpha} \in C_{T_{q}}(Y)$. If $x_{q}=a$ and $y_{q}=b a^{\alpha}$ then $T_{q}=\left\langle x_{q}, y_{q}\right\rangle$. Put $x=\prod_{q \in \pi^{\prime}} x_{q}$ and $y=\prod_{q \in \pi^{\prime}}$. Then $T=\langle x, y\rangle$ with $y \in C_{T}(Y)$.

From (iv) we have $T=U V$ with $U \leq C_{T}(Y)$ cyclic and normal in T and V cyclic. Now $U Y$ is cyclic and normal in $X, V S$ is cyclic and $X=(U Y)(V S)$ is metacyclic, a final contradiction.

3. Examples

The first two examples show that if a metacyclic q-group acts on a p-group as a group of non-trivial power automorphisms the action plays an important role in whether the extension is metacyclic or not.

Let $N=\langle m\rangle$ be cyclic of order 7 and let H be the nonabelian group of order 27 and exponent 9 , generated by x of order 9 and y of order 3 .

Suppose first that x acts trivially on N and y acts non-trivially on N and let $G=N H$. Then $G=S T$ with $S=N \times\langle x\rangle$ and $T=\langle y\rangle$, with S and T cyclic and S normal in G. Thus G is metacyclic.

Now suppose that y acts trivially on N and X acts non-trivially on N. We then have $C_{H}(N)=\left\langle x^{3}, y\right\rangle$. The unique maximal cyclic normal subgroup of $G=N H$ is $U=\left\langle x^{3}, N\right\rangle$ and G / U is not cyclic. Thus G is not metacyclic.

Since in Theorem 1 the Sylow q-subgroups are modular for q odd, it is tempting to conjecture that x acts as a power automorphism on $C_{H}(N)$. The following example shows this need not be true.

Let $X=\langle x\rangle$ be a cyclic group of order 27 and let $Y=\langle y\rangle \leq \operatorname{Aut}(X)$ with $x^{y}=x^{10}$. Let $N=\langle n\rangle$ be a group of order 7 and let $H=X Y$. Define an action of H on N by $n^{y}=n$ and $n^{x}=n^{2}$. Let $G=N H$. We have $C_{H}(N)=\left\langle x^{3}, y\right\rangle$ and x does not act as a power automorphism on $C_{H}(N)$. However G is metacyclic since $U=N\left\langle y x^{3}\right\rangle$ is a cyclic normal subgroup of G and $U X=G$.

References

[1] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, "Products of Finite Groups", de Gruyter Expositions in Mathematics 53, de Gruyter, Berlin, New York, 2010.
[2] N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. (3) 11, 1961, 1-22.
[3] E. Crestani and F. Menegazzo, On monotone 2-groups, J. Group Theory 15 (2012), 359-383.
[4] C. D. H. Cooper, Power automorphisms of a group, Math. Z. 107 (1968), 335-356.
[5] J. Cossey and Y. Wang, Finite dinilpotent groups of small derived length, J. Austral. Math. Soc. (A) 67 (1999), 318-328.
[6] K. Doerk, Minimal nicht überaufösbare, endliche Gruppen, Math. Z. 91 (1966), 198-205.
[7] K. Doerk and T. Hawkes, "Finite Soluble Groups", De Gruyter Expositions in Mathematics 4, De Gruyter, Berlin, New York, 1992.
[8] P. FLAVELL, Finite groups in which every two elements generate a soluble subgroup, Invent. Math. 121 (1995), 279-285.
[9] B. Huppert, "Endliche Gruppen I", Springer Verlag, Berlin, Heidelberg, New York, 1967.
[10] B. Huppert and N. Blackburn, "Finite Groups II", Springer Verlag, Berlin, Heidelberg, New York, 1982.
[11] A. Lucchini and M. C. Tamburini, Minimal generation of finite soluble groups by projectors and normalizers, Glasg. Math. J. 41 (1999), 303-312.
[12] A. MANN, The number of generators of finite p-groups, J. Group Theory 8 (2005), 317-337.
[13] R. Schmidt, "Subgroup Lattices of Groups", Walter de Gruyter, Berlin, New York, 1994.
[14] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.

Departament d'Àlgebra
Universitat de València
Dr. Moliner, 50
46100 Burjassot (València), Spain
Adolfo.Ballester@uv.es
Department of Mathematics
Mathematical Sciences Institute
Australian National University
Canberra ACT 2601, Australia
John.Cossey@anu.edu.au

