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Two-sided non-collapsing curvature flows

BEN ANDREWS AND MAT LANGFORD

Abstract. It was recently shown that embedded solutions of curvature flows
in Euclidean space with concave (convex), degree one homogeneous speeds are
interior (exterior) non-collapsing [6]. These results were subsequently extended
to hypersurface flows in the sphere and hyperbolic space [11]. In the first part
of the paper, we show that locally convex solutions are exterior non-collapsing
for a larger class of speed functions than previously considered; more precisely,
we show that the previous results hold when convexity of the speed function
is relaxed to inverse-concavity. We note that inverse-concavity is satisfied by a
large class of concave speed functions [4]. Thus, as a consequence, we obtain
a large class of two-sided non-collapsing flows, whereas previously two-sided
non-collapsing was only known for the mean curvature flow. In Section 3, we
demonstrate the utility of two sided non-collapsing with a straightforward proof
of convergence of compact, convex hypersurfaces to round points. The proof of
the non-collapsing estimate is similar to those of the previous results mentioned,
in that we show that the exterior ball curvature is a viscosity supersolution of the
linearised flow equation. The new ingredient is the following observation: Since
the function which provides an upper support in the derivation of the viscosity
inequality is defined on M ⇥ M (or T M in the ‘boundary case’), whereas the
exterior ball curvature and the linearised flow equation depend only on the first
factor, we are privileged with a freedom of choice in which second derivatives
from the extra directions to include in the calculation. The optimal choice is
closely related to the class of inverse-concave speed functions.
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1. Introduction

We consider embedded solutions X : Mn
⇥ [0, T ) ! Nn+1

� of curvature flows of
the form

@t X (x, t) = �F(x, t)⌫(x, t) , (CF)
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where Nn+1
� is the complete, simply connected Riemannian manifold of constant

curvature � 2 {�1, 0, 1} (that is, either hyperbolic space Hn+1, Euclidean space
Rn+1, or the sphere Sn+1), ⌫ is a choice of normal field for the evolving hypersur-
face X , and the speed F is given by a smooth, symmetric, degree one homogeneous
function of the principal curvatures i of X which is monotone increasing with re-
spect to each i . Equivalently, F is a smooth, monotone increasing, degree one
homogeneous function of the Weingarten mapW of X . Moreover, we will always
assume that F is normalised such that F(1, . . . , 1) = 1; however, this is merely a
matter of convenience – all of the results hold, up to a recalibration of constants, in
the un-normalised case.

The interior and exterior ball curvatures of a family of embeddings X : Mn
⇥

[0,T )!Rn+1 with normal ⌫ are, respectively, defined by k(x,t) :=supy 6=x k(x,y,t)
and k(x, t) := infy 6=x k(x, y, t), where

k(x, y, t) :=

2 hX (x, t) � X (y, t), ⌫(x, t)i
||X (x, t) � X (y, t)||2

. (1.1)

Equivalently, k(x, t) (respectively k(x, t)) gives the curvature of the largest region
in Rn+1 with totally umbilic boundary that lies on the opposite (respectively same)
side of the hypersurface X (M, t) into which ⌫(x, t) points, and touches the hy-
persurface at X (x, t) (with sign determined by ⌫) [6, Proposition 4]. Therefore,
for a compact, convex embedding with outward normal, they are, respectively, the
curvature of the largest enclosed and smallest enclosing spheres which touch the
embedding at X (x, t). It follows that max  k and min � k.

The interior and exterior ball curvatures (introduced by the authors and Mc-
Coy in [6]) are motivated by work of Sheng and Wang [23] who, via a detailed
analysis of singularities, were able to prove that compact embedded solutions of
the mean curvature flow in Euclidean space are interior non-collapsing: There ex-
ists a constant K0 < 1 such that the inequality k  K0H holds at all points
and times. Motivated by this result, the first author found an elementary maximum
principle proof of the interior non-collapsing estimate, which, in addition, yields an
analogous exterior non-collapsing estimate [5]. Interior and exterior non-collapsing
estimates were proved for large classes of Euclidean flows by the authors and Mc-
Coy [6]: We found that embedded, positive (F > 0) solutions of (CF) are inte-
rior non-collapsing when the speed is a concave function of the Weingarten map
and exterior non-collapsing when the speed is a convex function of the Weingarten
map [6]. It was subsequently shown that non-collapsing estimates also hold when
the ambient space is either the sphere or hyperbolic space [11]: Considering the
sphere Sn+1 as the embedded submanifold {X 2 Rn+2

: hX, Xi = 1} of Rn+2, and
hyperbolic space Hn+1 as the embedded submanifold {X 2 Rn+1,1

: hX, Xi = �1}
of Minkowski space Rn+1,1, the function k may be formally defined by (1.1), ex-
cept that now we take h · , · i and || · || to be the inner product and induced norm on,
in the case of the sphere, Rn+2, and, in the case of hyperbolic space, the spacelike
vectors in Rn+1,1. Then, if F is a concave function of the curvatures, there exists
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K0 > 0 such that

k
F

�

1
⌘

 K0e�2�⌘t ,

and, if F is a convex function of the curvatures, there exists k0 2 R such that

k
F

�

1
⌘

� k0e�2�⌘t ,

where ⌘ > 0 depends on bounds for the derivative of F . In this article, we extend
the exterior non-collapsing estimate to flows by a larger class of speeds; namely,
those by inverse-concave speeds:
Definition 1.1. Let 0+ denote the positive cone in Rn: 0+ := {z 2 Rn

: zi >
0 for all i}. A function f : 0+ ! R is called inverse-concave if the function
f⇤ : 0+ ! R defined by f⇤

⇣
z�11 , . . . , z�1n

⌘
:= f (z1, . . . , zn)�1 is concave.

Our main result may now be stated as follows:

Theorem 1.2. Let f : 0+ ! R be a smooth, symmetric function which is ho-
mogeneous of degree one and monotone increasing in each argument. Let X be a
solution of (CF) with speed given by F = f (1, . . . , n), where i are the principal
curvatures of X . Then, if f is inverse-concave, X is exterior non-collapsing; that
is:

(1) If Nn+1
= Rn+1, then, for all (x, t) 2 M ⇥ [0, T ),

k(x, t)
F(x, t)

� inf
M⇥{0}

k
F

;

(2) If Nn+1
= Sn+1 and tr (Ḟ)  ⌘, then, for all (x, t) 2 M ⇥ [0, T ),

k(x, t)
F(x, t)

�

1
⌘

� inf
M⇥{0}

✓
k
F

�

1
⌘

◆
e�2⌘t ;

(3) If Nn+1
= Hn+1 and tr (Ḟ) � ⌘, then, for all (x, t) 2 M ⇥ [0, T ),

k(x, t)
F(x, t)

�

1
⌘

� inf
M⇥{0}

✓
k
F

�

1
⌘

◆
e2⌘t ,

where Ḟ is the derivative of F with respect to the Weingarten map.

In particular, combining Theorem 1.2 with the previous non-collapsing results [6,
11], we find that solutions of flows in spaceforms by concave, inverse-concave
speed functions are both interior and exterior non-collapsing. We note that con-
cave speed functions satisfy tr (Ḟ) � 1, so in that case we may take ⌘ = 1 in case
(3) of Theorem 1.2.
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We note that, for speeds defined on the positive cone, inverse-concavity is im-
plied by convexity. Moreover, the class of admissible speeds which are both con-
cave and inverse-concave is surprisingly large, including, for example, the degree
one homogeneous roots of ratios of the elementary symmetric polynomials [4].

Two-sided non-collapsing has many useful consequences; for example, for
uniformly convex hypersurfaces we obtain uniform pointwise bounds on the ra-
tios of principal curvatures and a uniform bound on the ratio of circumradius to
in-radius. We will show, in Section 3, how this leads to a new and simple proof
that compact, convex hypersurfaces shrink to round points under flows by con-
cave, inverse-concave speeds [4] (in particular, this applies to the mean curvature
flow, yielding a new and simple proof of Huisken’s theorem [20]). Moreover, one-
sided non-collapsing can also provide useful information; for example, interior non-
collapsing rules out certain ‘collapsing’ singularity models, such as products of the
Grim Reaper solution of the curve shortening flow with Rn+1. For flows by con-
vex speeds, exterior non-collapsing is sufficient to obtain a bound on the ratio of
circumradius to in-radius, and the proof of convergence of locally convex initial
hypersurfaces to round points [2] is also simplified.

ACKNOWLEDGEMENTS. The authors wish to express their thanks to Chen Xuzhong
and YongWei for their helpful comments and suggestions on earlier versions of this
work.

2. Proof of Theorem 1.2

We first extend (cf. [6]) k( · , · , t) to a continuous function on a compact manifold-
with-boundary, bM . As a set, bM := (M ⇥ M \ D) t SM , where D := {(x, x) :

x 2 M} is the diagonal submanifold and SM is the unit tangent bundle with respect
to the metric at time t . The manifold-with-boundary structure is defined by the
atlas generated by all charts for (M ⇥ M) \ D, together with the charts bY defined
by bY (z, s) :=

�
exp(sY (z)), exp(�sY (z))

�
for s sufficiently small, where Y is a

chart for SM . The extension is then given by setting k(x, y, t) := W(x,t)(y, y) for
(x, y) 2 S(x,t)M .

We also recall some useful notation from [5] and [6]; namely, we define

d(x, y, t) := ||X (x, t) � X (y, t)|| and w(x, y, t) :=

X (x, t) � X (y, t)
||X (x, t) � X (y, t)||

,

and use scripts x and y to denote quantities pulled back to M⇥M by the respective
projections onto the first and second factor. With this notation in place, k may be
written as

k =

2
d2

hdw, ⌫x i .

Theorem 1.2 is a direct consequence of the following proposition:
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Proposition 2.1. If the flow speed F is inverse-concave, then the exterior ball cur-
vature k is a viscosity supersolution of the equation

@t u = L u +

⇣
|W|

2
F � � tr (Ḟ)

⌘
u + 2� F , (2.1)

where L := Ḟ i jrir j , hu, viF := Ḟ i jviv j , and |W|
2
F := Ḟ i jW2

i j .

We note that the speed function satisfies the equation

@t F = L F +

⇣
|W|

2
F + � tr (Ḟ)

⌘
F

under the flow [3].

Proof of Proposition 2.1. Consider, for an arbitrary point (x0, t0) 2 M ⇥ [0, T ), an
arbitrary lower support funtion � for k at (x0, t0); that is, � is C2,1 on a backwards
parabolic neighbourhood P := Ux0 ⇥ (t0�", t0] of (x0, t0) and �  k with equality
at (x0, t0). Then we need to prove that the differential inequality

@t� � L � +

⇣
|W|

2
F � � tr (Ḟ)

⌘
� + 2� F

holds at (x0, t0).
We note that k(x, y, t) � k(x, t) � �(x, t) for all (x, y, t) 2

bM ⇥ [0, T )
such that (x, t) 2 P , and, since k is continuous and bM is compact, we either have
k(x0, t0) = k(x0, y0, t0) for some y0 2 M \ {x0}, or k(x0, t0) =W(x0,t0)(y0, y0) for
some y0 2 S(x0,t0)M . We consider the former case first.

The interior case
We first suppose that infM k(x0, · , t0)< k(x0,y0,t0) for all boundary points (x0,y0)
of bM . In that case, we have 1(x0, t0) > k(x0, t0) = k(x0, y0, t0) for some y0 2

M \ {x0} and k(x, y, t) � k(x, t) � �(x, t) for all (x, t) 2 P and all y 2 M \ {x}.
In particular, we have the inequalities

@t (k � �)  0 ,

and bL (k � �) � 0
(2.2)

at (x0, y0, t0) for any elliptic operator bL on M ⇥ M . We would like bL to project
to L on the first factor. This leads us to consider operators of the form bL =

Ḟ i jx r@xi+3i p@y pr@x j+3 j q@yq , where 3 is any n ⇥ n matrix.
We note that, in both of the cases � = ±1, the ambient Euclidean/Minkowskian

derivative decomposes into tangential and normal components as D = D � g ⌦ ⌫,
where D, g, and ⌫ are, respectively, the induced connection, metric, and outer/
future-pointing normal of Nn+1

� with respect to its embedding. Using the fact that
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h⌫, ⌫i = � and that the ambient position vector is normal to Nn+1
� , a straightforward

computation yields

(@xi + 3i
p@y p )k =

2
d2
⇣⌦

@xi � 3i
p@

y
p, ⌫x � kdw

↵
+

D
dw,W x

i
p@xp

E⌘
. (2.3)

If we choose the coordinates {xi }ni=1 and {yi }ni=1 to be orthonormal coordinates
(with respect to the induced metric g at time t0) centred at x0 and y0 respec-
tively, then a further straightforward computation using the vanishing of (2.3) at
(x0, y0, t0) and the Codazzi equation yields

r@x j+3 j q@yq r@xi+3i p@y p k

=

2
d2
n ⌦

�W x
i j⌫x � ��i j Xx + 3i

p3 j
q �W y

pq⌫y + ��pq Xy
�
, ⌫x � kdw

↵
+

D
@xi � 3i

p@
y
p,W x

j
q@xq

E
� (@x j + 3 j

q@yq )k
⌦
@xi � 3i

p@
y
p, dw

↵
� k

D
@xi � 3i

p@
y
p, @

x
j � 3 j

q@
y
q
E
+

D
@xj � 3 j

q@
y
q ,W x

i
p@xp

E
+

⌦
dw,rW x

i j � �W x
i j Xx �W x

i
rW x

r j⌫x
↵

� (@xi + 3i
p@y p )k

D
@xj � 3 j

q@
y
q , dw

E o

(2.4)

at the point (x0, y0, t0).
Next, noting that the normal satisfies Dt⌫ = Dt⌫ + � FX = grad F + � FX ,

we compute

@t k =

2
d2
� ⌦

�Fx⌫x + Fy⌫y, ⌫x � kdw
↵
+ hdw, grad Fx + � FXx i

�
. (2.5)

Combining (2.4) and (2.5), we obtain⇣
@t �

bL ⌘
k =

2
d2
n D
Fy⌫y � Ḟ i jx 3i

p3 j
q �W y

pq⌫y + ��pq Xy
�
, ⌫x � kdw

E

+ k Ḟi jx
D
@xi � 3i

p@
y
p, @

x
j � 3 j

q@
y
q
E
�2Ḟ i jx

D
@xj � 3 j

q@
y
q ,W x

i
p@xp

E

+ � tr (Ḟx ) hXx , ⌫x � kdwi + 2� Fx hXx , dwi

o

+

4
d2
Ḟ i jx r@xi+3i p@y p k

D
@xj � 3 j

q@
y
q , dw

E
+ |W x

|
2
Fk

at the point (x0, y0, t0).
We now note that the vanishing of the y-derivatives at an off-diagonal

extremum y0 2 M of k(x0, ·, t0) determines the tangent plane to X at y0:

Lemma 2.2 ([6, 11]). Suppose that a point (x, y, t) is an off-diagonal extremum of
k; that is, y 6= x is an extremum of k(x, · , t). Then

span
�
@xi � 2

⌦
@xi , w

↵
w
 n
i=1 = span

�
@
y
i
 n
i=1

at (x, y, t), where {@xi }
n
i=1 and {@

y
i } are bases for TxM and TyM respectively.
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Proof of Lemma 2.2. We may assume that {@xi }
n
i=1 and {@

y
i }
n
i=1 are orthonormal.

Then {@xi � 2
⌦
@xi , w

↵
w}

n
i=1 is also orthonormal; note also that ||⌫x � kdw|| = 1.

Next, observe that the vanishing of @yi k implies
⌦
@
y
i , ⌫x � kdw

↵
= 0

for each i . If � 6= 0, a short computation, using d2 = 2
�
� �

⌦
Xx , Xy

↵ �
, yields

⌦
Xy, ⌫x � kdw

↵
= 0 .

Thus, the orthogonal complement of span{@ yi }
n
i=1 is span{� Xy, ⌫x � kdw}. On the

other hand, one easily computes
⌦
@xi � 2

⌦
@xi , w

↵
w, ⌫x � kdw

↵
= 0

for each i , and, for � 6= 0,
⌦
@xi � 2

⌦
@xi , w

↵
w, Xy

↵
= 0 .

Thus, span{@xi � 2
⌦
@xi , w

↵
w}

?
= span{� Xy, ⌫x � kdw}. The claim follows.

Thus, without loss of generality, we may assume

@
y
i = @xi � 2

⌦
@xi , w

↵
w

at (x0, y0, t0). Note also that, when � 6= 0,

2
d2

hXx , ⌫x � kdwi|(x0,y0,t0) =
2
d2

⌦
Xx � Xy, ⌫x � kdw

↵��
(x0,y0,t0)

=�k(x0, y0, t0).

Finally, observe that (2.3) implies

2
d2
⌦
dw, @xi

↵
= Ri p@x pk ,

where we have defined the (positive definite) map R := (W x
� k I )�1, with I :

TxM ! TxM denoting the identity map.
Using these observations and the vanishing of @yi k, we obtain
⇣
@t �

bL ⌘
k =

⇣
|W x

|
2
F � � tr (Ḟx )

⌘
k + 2� Fx + 2Ḟ i jx @xi k R j

p@x pk

+

2
d2
n
Fy � Fx + Ḟ i jx

⇥
(k�i j �W x

i j )

� 23i
p(k�pj �W x

pj ) + 3i
p3 j

q(k�pq �W y
pq)
⇤o

(2.6)

at any off-diagonal extremum (x0, y0, t0).
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Applying the inequalities (2.2), we obtain

0 �(@t �
bL )(k � �)

� � (@t � L )� +

⇣
|W x

|
2
F � � tr (Ḟx )

⌘
k + 2� Fx + 2Ḟ i jx @i k R j

p@pk

+

2
d2

⇢
Fy � Fx + Ḟ i jx

h
(k�i j �W x

i j ) � 23i
p(k�pj �W x

pj )

+ 3i
p3 j

q(k�pq �W y
pq)
i�

.

It remains to demonstrate non-negativity of the term on the second line for some
choice of the matrix 3. Since we are free to choose the orthonormal basis at y0
such thatW is diagonalised, this follows from the following proposition.

Proposition 2.3. Let f : 0+ ! R be a smooth, symmetric function which is
monotone increasing in each variable and inverse-concave, and let F : C+ ! R
be the function defined on the cone C+ of positive definite symmetric matrices by
F(A) = f (�(A)), where � denotes the eigenvalue map. Then, for any k 2 R, any
diagonal B 2 C+, and any A 2 C+ with k < mini {�i (A)}, we have

0  F(B) � F(A) + Ḟ i j (A) sup
3

h
(k�i j � Ai j ) � 23i

p(k�pj � Apj )

+ 3i
p3 j

q(k�pq � Bpq)
i
.

Proof of Proposition 2.3. Since the expression in the square brackets is quadratic
in3, it is easy to see that the supremum is attained with the choice3 = (A� k I ) ·

(B� k I )�1, where I denotes the identity matrix. Thus, given any A 2 C+, we need
to show that

0  QA(B) := F(B) � F(A)

� Ḟ i j (A)

✓
(A � k I )i j �

h
(A � k I ) · (B � k I )�1 · (A � k I )

i
i j

◆
.

Since B is diagonal and the expression QA(B) is invariant under similarity trans-
formations with respect to A, we may diagonalise A to obtain

QA(B) := f (b) � f (a) � ḟ i (a)

"
(ai � k) �

(ai � k)2

bi � k

#
,

where we have set a = �(A) and b = �(B).
We are led to consider the function qa defined on 0+ by

qa(z) := f (z) � f (a) � ḟ i (a)

"
(ai � k) �

(ai � k)2

zi � k

#
.
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We compute

q̇ia = ḟ i � ḟ i (a)
(ai � k)2

(zi � k)2
,

and

q̈i ja = f̈ i j + 2 ḟ i (a)
(ai � k)2

(zi � k)3
�i j = f̈ i j + 2

ḟ i�i j

zi � k
� 2

q̇ia�i j

zi � k
.

It follows that

q̈i ja + 2
q̇ia�i j

zi � k
= f̈ i j + 2

ḟ i�i j

zi � k
> f̈ i j + 2

ḟ i�i j

zi
� 0 , (2.7)

where the last inequality follows from inverse-concavity of f [4, Corollary 5.4]. We
conclude that the minimum of q is attained at the point z = a, where it vanishes.
This completes the proof.

This completes the proof in the interior case.
The boundary case (cf. [4, Theorem 3.2])
We now consider the case that infM k(x0, ·, t0) occurs on the boundary of bM; that
is, k(x0, t0) = W(x0,t0)(y0, y0) for some y0 2 S(x0,t0)M . Consider the function
K defined on T M ⇥ [0, T ) by K (x, y, t) = W(x,t)(y, y). Then the function
8(x, y, t) := �(x, t)g(x,t)(y, y) is a lower support for K at (x0, y0, t0). In par-
ticular,

@t (K � 8)  0,
and bL (K � 8) � 0

(2.8)

at (x0, y0, t0) for any elliptic operator bL on T M . We require the operator project
toL on the first factor (at least at the point (x0, y0, t0)), which leads us to consider
an operator bL locally of the form bL = Ḟ i jx (@ ix � 3i

p@y p )(@
j
x � 3 j

q@yq ), where
{xi , yi }ni=1 are coordinates for T M near (x0, y0). We choose these coordinates
such that {xi }ni=1 are normal coordinates on M (with respect to gt0) based at x0 and
{yi }ni=1 are the corresponding fibre coordinates (defined by (x, y) = (x, yi@xi ) for
tangent vectors (x, y) near (x0, y0)). Moreover, we may assume that {@xi |x0}ni=1 is
a basis of eigenvectors ofW(x0,t0) with y0 = @x1 |x0 .

Writing locally K � 8 = yk yl(Wkl � gkl), we find

(@xi � 3i
p@y p )(K � 8) = yk yl

�
@xiWkl � @xi� gkl

�
� 23i

p yk
�
Wkp � � gkp

�
.

Thus, at the point (x0, y0, t0), we obtain

0 = (@xi � 3i
p@y p )(K � 8) = riW11 � ri� .
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We next compute

(@xi � 3i
p@y p )(@x j � 3 j

q@yq )(K � 8)

= yk yl
�
@xi @x jWkl � @xi @x j� gkl � @xi� @x j gkl � @x j� @xi gkl � � @xi @x j gkl

�

� 23 j
q yk

�
@xiWkq � @xi� gkq � � @xi gkp

�

� 23i
p yk

�
@x jWkp � @x j� gkp � � @x j gkp

�
+ 23i

p3 j
q �Wpq � � gpq

�
.

At the point (x0, y0, t0), we obtain

bL (K � 8) = L W11 � L �

� 2Ḟ i j
⇥
23i

p �
r jW1p � r jW11�1p

�
(2.9)

� 3i
p3 j

q(Wpq �W11�pq)
⇤
.

Finally, we compute the time derivative

@t (K � 8) = yk yl
�
@tWkl � @t� gkl � � @t gkl

�
,

which at (x0, y0, t0) becomes

@t (K � 8) = @tW11 �W11@t g11 � @t� . (2.10)

Let us recall the evolution equations forW and g [2, 3]:

@tWi j = L Wi j + F̈ pq,rs
riWpqr jWrs � 2W2

i j F

+

⇣
|W|

2
F � � tr (Ḟ)

⌘
Wi j + 2� Fgi j ,

(2.11)

and

@t gi j = � 2FWi j . (2.12)

Putting (2.9) and (2.10) together, and applying the evolution equations (2.11) and
(2.12), and the inequalities (2.8), we obtain

0 � (@t � L )(K � 8) = �(@t � L )� + (|W|
2
F � � tr (Ḟ))� + 2� F

+ F̈ pq,rs
r1Wpqr1Wrs (2.13)

+ 2Ḟ i j3i
p
h
2
�
r jW1p � r jW11�1p

�
� 3 j

q(Wpq �W11�pq)
i

at the point (x0, y0, t0). Note that the term in the last line with p = 1 vanishes.
Using a trick of Brendle [13, Proposition 8] (see also [8, Theorem 7]) we also

obtain r1W11 = 0 at the point (x0, t0):
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Lemma 2.4. r1W11 vanishes at (x0, y0, t0).

Sketch proof of Lemma 2.4. Since 1(x0, t0) = infy 6=x0 k(x0, y, t0), we have

0 Z(x0,y,t0):=2 hX (x0,t0)�X (y,t0), ⌫(x0,t0)i�1(x0,t0) ||X (x0,t0)�X (y,t0)||2

for all y 2 M . In particular, 0  f (s) := Z(x0, � (s), t0) for all s, where � (s) :=

expx0 sy0. It is straightforward to compute 0 = f (0) = f 0(0) = f 00(0), which,
since f � 0, implies that f 000(0) = 0. But a further straightforward computation
yields f 000(0) = 2r1W11.

Applying the following proposition to (2.13) completes the proof.

Proposition 2.5. Let f : 0+ ! R be a smooth, symmetric function which is
monotone increasing in each variable and inverse-concave, and let F : C+ ! R
be the function defined on the cone C+ of positive definite symmetric matrices by
F(A) = f (�(A)), where � denotes the eigenvalue map. If A 2 C+ and y is an
eigenvector of A corresponding to its smallest eigenvalue, then, for any totally sym-
metric 3-tensor T with T (y, y, y) = 0, we have

0 yi y j F̈ pq,rsTipqTjrs + 2Ḟkl sup
3

h
23k

p yi
�
Tilp � yr ysTlrs�iq

�

� 3k
p3l

q(Apq � yr ys Ars�pq)
i

at the matrix A. Moreover, equality holds only if T (v, y, y) = 0 for all v 2 Rn .

Proof of Proposition 2.5. We first observe that it suffices to prove the claim for
those A 2 C+ having distinct eigenvalues: The expression

Q := 2Ḟkl
h
23k

p yi
�
Tilp � yr ysTlrs�iq

�
� 3k

p3l
q(Apq � yr ys Ars�pq)

i

is continuous in A, and hence the supremum over3 is upper semi-continuous in A;
so the general case follows by taking a sequence of matrices A(k)

2 C+ approaching
A with each A(k) having distinct eigenvalues.

So suppose that A has distinct eigenvalues and let {ei }ni=1 be an orthonormal
frame of eigenvectors of A with e1 = y. Then

Q = 2Ḟkl
h
23k

p �T1lp � Tl11�1q
�
� 3k

p3l
q(Apq � A11�pq)

i
.

Observe that the supremum over3 occurs when3lq =(�q��1)�1T1lq for i, p> 1.
With this choice, we obtain

Q = 2Ḟkl R pqT1kqT1lp ,



554 BEN ANDREWS AND MAT LANGFORD

where Rpq
:= (�p � �1)�1� pq for p, q 6= 1 and zero otherwise. Therefore, it

suffices to prove that
0 

�
F̈ pq,rs

+ 2Ḟ pr Rqs
�
Bpq Brs

for any symmetric B with B11 = 0 with equality only if B1q = 0 for all q. The
expression we want to estimate may be written in terms of the function f as follows
(see, for example, [4, Theorem 5.1]):
�
F̈ pq,rs

+2Ḟ pr Rqs
�
Bpq Brs = f̈ pq BppBqq+

X
p 6=q

ḟ p� ḟ q

�p��q
B2pq+2

nX
p=1, q=2

ḟ p

�q��1
B2pq

= f̈ pq BppBqq + 2
X

p>1, q>1

ḟ p� pq

�p � �1
BppBqq

+

X
p 6=q

ḟ p � ḟ q

�p � �q
B2pq

+ 2
nX
p=2

ḟ 1

�p � �1
B2p1 + 2

X
p>1, q>1,

p 6=q

ḟ p

�q � �1
B2pq .

We first estimate

f̈ pq BppBqq+2
X

p>1,q>1

ḟ p� pq

�p � �1
BppBqq � f̈ pq BppBqq +2

nX
p=2,q=2

ḟ p

�p
� pq BppBqq

=

✓
f̈ pq + 2

ḟ p

�p
� pq

◆
BppBqq � 0 ,

where the final inequality follows from inverse-concavity of f [4, Theorem 2.1].
The remaining terms are
X
p 6=q

ḟ p � ḟ q

�p � �q
B2pq + 2

nX
p=2

ḟ 1

�p � �1
B2p1 + 2

X
p>1, q>1,

p 6=q

ḟ p

�q � �1
B2pq

=

X
p>1, q>1,

p 6=q

✓
ḟ p � ḟ q

�p � �q
+ 2

ḟ p

�q � �1

◆
B2pq + 2

nX
p=2

 
ḟ p � ḟ 1

�p � �1
+

ḟ 1

�p � �1

!
B2p1

�

X
p>1, q>1,

p 6=q

✓
ḟ p � ḟ q

�p � �q
+

ḟ p

�q
+

ḟ q

�p

◆
B2pq + 2

nX
p=2

✓
ḟ p

�p � �1

◆
B2p1 .

The first term is non-negative by inverse-concavity of f [4, Corollary 5.4] and the
second term is clearly non-negative and vanishes only if B1q = 0 for all q > 1.
This completes the proof.

This completes the proof that k is a viscosity supersolution of (2.1).
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Since the speed function satisfies (2.1), the statement of Theorem 1.2 follows
from a simple comparison argument for viscosity solutions (cf. [6, 11]):

Define '(t) := e2�⌘t �infM⇥{t} k/F � 1/⌘
�
, where ⌘ > 0 is such that �⌘ �

� tr (Ḟ); that is, ⌘ � tr (Ḟ) for flows in the sphere, ⌘  tr (Ḟ) for flows in hyperbolic
space, and ⌘ > 0 for flows in Euclidean space. We claim that ' is non-decreasing.
It suffices to prove that k( · , t) �

�
1/⌘ + e�2�⌘t'(t0) � "eL(t�t0)

�
F( · , t) > 0 for

any t0 2 [0, T ), t 2 [t0, T ) and any " > 0, where we have set L := 1 � 2�⌘.
Taking " ! 0 then gives k( · , t) �

�
1/⌘ + e�2�⌘t'(t0)

�
F( · , t) � 0; that is,

'(t) � '(t0) for all t � t0 for any t0. Now, at time t0 we have k(x, t0) ��
1/⌘ + e�2�⌘t0'(t0) � "

�
F(x, t0) � "F(x, t0) > 0. So suppose, contrary to the

claim, that there is a point (x1, t1) 2 M ⇥ [t0, T ) and some " > 0 such that
k(x1, t1) �

�
1/⌘ + e�2�⌘t1'(t0) � "et1�t0

�
F(x1, t1) = 0. Assuming that t1 is the

first such time, this means precisely that the function �(x,t) :=
�
1/⌘+e�2�⌘t'(t0)�

"eL(t�t0)
�
F(x, t) is a lower support for k at (x1, t1). But k is a viscosity supersolu-

tion of (2.1), so that, at the point (x1, t1), � satisfies

0 � �

�
@t � L

�
� +

⇣
|W|

2
F � � tr (Ḟ)

⌘
� + 2� F

=

⇣
2⌘�e�2�⌘t1'(t0) + L"eL(t1�t0)

⌘
F

�

✓
1
⌘

+ e�2�⌘t1'(t0) � "eL(t1�t0)
◆⇣

|W|
2
F + � tr (Ḟ)

⌘

+

✓
1
⌘

+ e�2�⌘t1'(t0) � "eL(t1�t0)
◆
F
⇣
|W|

2
F � � tr (Ḟ)

⌘
+ 2� F

= 2e�2�⌘t1'(t0)F
�
�⌘�� tr (Ḟ)

�
+"eL(t1�t0)F

�
L+2� tr (Ḟ)

�
+

2
⌘
F
�
�⌘�� tr (Ḟ)

�
� "eL(t1�t0) > 0 ,

where we used L := 1� 2�⌘, and �⌘ � � tr (Ḟ) in the last line. This contradiction
proves that � could not have reached zero on [t0, T ), which, as explained above,
proves that ' is non-decreasing. Therefore,
✓
k(x, t)
F(x, t)

�

1
⌘

◆
e2�⌘t

� inf
M⇥{t}

✓
k
F

�

1
⌘

◆
e2�⌘t

=:'(t)�'(0)= inf
M⇥{0}

✓
k
F

�

1
⌘

◆
.

This proves Theorem 1.2.

3. Convex solutions in Euclidean space

We now give an application of non-collapsing to flows of convex hypersurfaces;
namely, we give a new proof that convex hypersurfaces contract to round points
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under the flow (CF) in Euclidean space when the speed is both concave and inverse-
concave. This result was originally proved by the first author via a curvature pinch-
ing estimate [4].

We begin with some background results on fully non-linear curvature flows
(CF). Given smooth, compact initial data on which F is defined, we obtain unique
solutions for a short time [2]. Since we can enclose the initial hypersurface by a
large sphere, which shrinks to a point in finite time, the avoidance principle (see,
for example, [6, Theorem 5]) implies that the maximal time T of existence of the
solution must be finite. For inverse-concave speeds, the non-collapsing estimate
yields a preserved cone of curvatures for the flow, since min � k � k0F . This
implies that the flow is uniformly parabolic, since positive bounds for Ḟ on the
intersection of the preserved cone with the unit sphere {|W| = 1} extend to bounds
on the entire cone. If F is also a concave function, then global regularity of solutions
may be obtained by appealing to the scalar parabolic theory of Krylov-Safanov [22]
and Evans and Krylov [18,21] (cf. [7,9]). We conclude that the solution will remain
smooth until maxM⇥{t} F ! 1 as t ! T .

The key to our proof of the convergence theorem is showing that the nor-
malised interior and exterior ball curvatures improve to unity at a singularity. This
is achieved using a blow-up argument and applying the strong maximum principle.

Theorem 3.1. Suppose F is concave and inverse-concave. Then along any convex
solution X : Mn

⇥ [0, T ) ! Rn+1 of (CF) the following estimates hold:

1 For every " > 0 there exists F" < 1 such that

F > F" ) k  (1+ ")F .

2 For every � > 0 there exists F� < 1 such that

F > F� ) k � (1� �)F .

Proof. Wewill blow the solution up at a point where F is becoming large. Applying
the strong maximum principle, and making use of the gradient term appearing in
(2.1), we find that this limit must be a shrinking sphere, from which the claims
follow. We note that the only auxillary result we require is the fact that the only
closed, convex, embedded hypersurfaces of Rn with F constant are spheres [17].
When F is the mean curvature, this is a well-known theorem of Alexandrov [1].

Suppose the first estimate were false. Then there exists a sequence (xi , ti ) 2

M ⇥ [0, T ) such that F(xi , ti ) ! 1 but kF (xi , ti ) ! (1+ "0), where "0 > 0. By
Theorem 1.2, "0 < 1. Set �i := F(xi , ti ) and consider the blow-up sequence

Xi (x, t) := �i
⇣
X
⇣
x, ��2

i t + ti
⌘

� Xi (xi , ti )
⌘

.

It is easily checked that Xi : Mn
⇥

⇥
��2i ti , 0] ! Rn+1 is a solution of the flow (CF)

for each i . Moreover, for each i , we have maxM⇥[��2i ti ,0]
Fi = Fi (xi , 0) = 1 and
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Xi (xi , 0) = 0. It follows that the sequence Xi converges locally uniformly along a
subsequence to a smooth limit flow X1 : M1⇥(�1, 0] ! Rn+1 (cf. [12,14,15]).

Since the ratio k/F is invariant under rescaling, we have
ki
Fi

(xi , 0) =

k
F

(xi , ti ) � k0 > 0 ,

which implies that the image of each Xi is contained in a compact set. It follows
that the convergence is global, so that M1

⇠
= M .

We now show that k/F must be constant on the limit flow X1; for if not,
by Proposition 2.1 and the strong maximum principle (see, for example, [16]), its
spatial maximum must must decrease monotonically, by an amount L say, on some
sub-interval [t1, t2] of (�1, 0]. But then (passing to the convergent subsequence)
there must exist sequences of times t1,i , t2,i 2

⇥
� �2i ti , 0] with t1,i ! t1 and

t2,i ! t2 such that

L � "  max
M

k
F

⇣
· , ��2

i t1,i + ti
⌘

�max
M

k
F

⇣
· , ��2

i t2,i + ti
⌘

(3.1)

for any " > 0, so long as i is chosen accordingly large. But since �i ! 1, the
right-hand side of (3.1) converges to zero. It follows that supM⇥{t} k/F is inde-
pendent of t . Since M is compact, the space-time supremum of k/F is attained at
an interior space-time point, and we deduce that k/F is constant. Since there is a
sequence of points xi for which ki

Fi (xi , 0) ! (1+ "0), we must have k ⌘ (1+ "0)F
on the limit. In particular, we have 0 ⌘ (@t � L )

�
k � (1+ "0)F

�
. But then, com-

puting as in Proposition 2.1, we find 0 ⌘ rk ⌘ (1 + "0)rF due to Propositions
2.3 and 2.5. But the only closed, convex hypersurfaces of Rn with F constant are
spheres [17], which satisfy k ⌘ F . This contradicts "0 > 0.

The proof of the second estimate is similar.

Remark 3.2. We note that, for flows by convex speed functions, where exterior
non-collapsing holds, the proof of the exerior ball estimate goes through. However,
for flows by concave speed functions, where interior non-collapsing holds, the proof
of the interior ball estimate does not go through without some additional condition
(such as a pinching condition) to ensure that the blow-up limit is convex. In fact,
due to the examples constructed by Andrews-McCoy-Zheng [10, Section 5], one
cannot expect such a result to hold in general.

We now prove the convergence result:
Theorem 3.3. Let X : Mn

⇥ [0, T ) ! Rn+1 be a maximal solution of the cur-
vature flow (CF) such that the speed is a concave, inverse-concave function of the
Weingarten map. Then X converges to a constant p 2 Rn+1 as t ! T , and the
rescaled embeddings eX(x, t) :=

X (x, t) � p
p

2(T � t)

converge in C2 as t ! T to a limit embedding with image equal to the unit
sphere Sn .
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Proof of Theorem 3.3. We first apply Theorem 1.2 to show that the solution con-
verges uniformly to a point p 2 Rn+1 in the Hausdorff metric: Observe that
|X (x1, t) � X (x2, t)|  2r+(t) for every x1, x2 2 M and every t 2 [0, T ), where
r+(t) denotes the circumradius of X (M, t) (this is the radius of the smallest ball
in Rn+1 that contains the hypersurface X (M, t)). Since X remains in the compact
region enclosed by some initial circumsphere, it suffices to show that r+ ! 0 as
t ! T . But this follows directly from Theorem 1.2: Since k(x, t) is the curva-
ture of the smallest ball which encloses the hypersurface X (M, t), and touches it at
X (x, t), we have

1
r+

� max
M⇥{t}

k � k0 max
M⇥{t}

F .

But maxM⇥{t} F ! 1.
We now deduce Hausdorff convergence of the rescaled hypersurfaces eX(M, t)

to the unit sphere: By Theorem (3.1), for all " > 0 there is a time t" 2 [0, T )
such that r+(t)  (1 + ")r�(t) for all t 2 [t", T ), where r�(t) is the in-radius
of X (M, t) (the radius of the largest ball enclosed by X (M, t)). By the avoidance
principle the remaining time of existence at each time t is no less than the lifespan
of the shrinking sphere of initial radius r�(t), and no greater than the lifespan of
the shrinking sphere of initial radius r+(t). These observations yield

r�(t) 

p
2(T � t)  r+(t)  (1+ ")r�(t) (3.2)

for all t 2 [t", T ). It follows that the circum- and in-radii of the rescaled solution
approach unity as t ! T . We can also control the distance from the final point p to
the centre pt of any in-sphere of X (M, t): For any t 0 2 [t, T ), the final point p is en-
closed by X (M, t 0), which is enclosed by the sphere of radius

p
r+(t)2 � 2(t 0 � t)

about pt . Taking t 0 ! T and applying (3.2) gives

|p � pt | 

q
r+(t)2 � 2(T � t) 

p
(1+ ")2 · 2(T � t) � 2(T � t)

for all t 2 [t", T ). Thus

|p � pt |
p

2(T � t)


p
(1+ ")2 � 1 . (3.3)

This yields the desired Hausdorff convergence of eX to the unit sphere.
Next we obtain bounds on the curvature of the rescaled flow eX : Non-collapsing

and the inequalities r�(t) 

p

2(T � t)  r+(t) derived above yield

1
p

2(T � t)


1
r�(t)

 min
x2M

k(x, t)

 k0 min
x2M

F 

k0
K0

min
x2M

k(x, t) 

k0
K0

min
x2M

min(x, t) ,
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and

1
p

2(T � t)
�

1
r+(t)

� max
x2M

k(x, t)

� K0 max
x2M

F �

k0
K0
max
x2M

k(x, t) �

K0
k0
max
x2M

max(x, t) .

By a well-known result of Hamilton [19, Lemma 14.2], this also implies conver-
gence of the rescaled metrics, and we obtain the desired C2-convergence.

Remark 3.4. One can obtain C1-convergence in the above theorem by a standard
bootstrapping procedure [20]. Namely, using the time-dependent curvature bounds,
one obtains time-dependent bounds on the derivatives of theWeingarten map (of the
underlying solution of the flow) to all orders from the curvature derivative estimates.
Unfortunately, the resulting estimates do not quite have the right dependence on the
remaining time. The correct dependence can be obtained using the interpolation
inequality (cf. [20, Section 9]). This yields exponential C1-convergence of the
corresponding solution of the normalised flow equation to the unit sphere (cf. [20,
Section 10]). By construction, this yields C1-convergence of the rescaled solution.
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