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Asymptotics and regularity of flat solutions
to fully nonlinear elliptic problems

DISSON DOS PRAZERES AND EDUARDO V. TEIXEIRA

Abstract. In this work we establish local C2,↵ regularity estimates for flat so-
lutions to non-convex fully nonlinear elliptic equations provided the coefficients
and the source function are of class C0,↵ . For problems with merely continuous
data, we prove that flat solutions are locally C1,Log-Lip.
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1. Introduction

The goal of this paper is to obtain optimal estimates for flat solutions to a class of
non-convex fully nonlinear elliptic equations of the form

F(X, D2u) = G(X, u,ru). (1.1)

Under continuous differentiability with respect to the matrix variable and appro-
priate continuity assumptions on the coefficients and on the source function, we
present a Schauder type regularity result for flat solutions, namely for solutions
with small enough norm, |u| ⌧ 1.

The nonlinear operator F : B1 ⇥ Sym(n) ! R is assumed to be uniformly
elliptic, namely, there exist constants 0 < �  3 such that for any M, P 2 Sym(n),
with P � 0 and all X 2 B1 ⇢ Rn there holds

�kPk  F(X,M + P) � F(X,M)  3kPk. (1.2)

Under such condition it follows as a consequence of the Krylov-Safonov Harnack
inequality that solutions to the homogeneous, constant coefficient equation

F(D2h) = 0 (1.3)
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are locally of class C1,↵ , for some 0 < ↵ < 1. Under appropriate hypotheses on
G : B1 ⇥ R ⇥ Rn

! R, the same conclusion is obtained, i.e., viscosity solutions
are of class C1,↵ . Thus, insofar as the regularity theory for equation of the form
(1.1) is concerned, one can regard the right hand side G(X, u,ru) as an ↵̃�Hölder
continuous source, f (X). Therefore, within this present work, we choose to look at
the right-hand side G(X, u,ru) simply as a source term f (X), and equation (1.1)
will be written as

F(X, D2u) = f (X). (1.4)
Regularity theory for heterogeneous equations (1.4) has been a central target of
research for the past three decades. While a celebrated result due to Evans and
Krylov assures that solutions to convex equations are classical, i.e., C2,↵ for some
↵ > 0, the problem of establishing continuity of the Hessian of solutions to general
equations of the form (1.3) challenged the community for over twenty years. The
problem has been settled in the negative by Nadirashvili and Vladut, [8, 9], who
exhibit solutions to uniform elliptic equations whose Hessian blows-up.

In view of the impossibility of a general existence theory for classical solu-
tions to all fully nonlinear equations (1.3), it becomes a central topic of research the
study of reasonable conditions on F and on u as to assure that the Hessian of the
solution is continuous. In such perspective the works [6] and [2] on interior C2,↵
estimates for a particular class of non-convex equations are highlights. A decisive
contribution towards Hessian estimates of solutions to fully nonlinear elliptic equa-
tions was obtained by Savin in [10]. By means of a robust approach, Savin shows
in [10] that small solutions are classical, provided the operator is of class C2 in all
of its arguments.

Inspired by problems of the form (1.1), in the present work we obtain regularity
estimates for flat solutions to heterogeneous equation (1.4), under continuity condi-
tions on the media. We show that if X 7! (F(X, ·), f (X)) is ↵-Hölder continuous,
then flat solutions are locally C2,↵ . In the case ↵ = 0, namely when the coeffi-
cients and the source are known to be just continuous, we show that flat solutions
are locally C1,Log-Lip.

The proofs of both results mentioned above, which are going to be stated prop-
erly in Theorem 2.2 and Theorem 2.3 respectively, are based on a combination of
geometric tangential analysis and perturbation arguments inspired by compactness
methods in the theory of elliptic PDEs.

We conclude this introduction explaining the heuristics of the geometric tan-
gential analysis behind our proofs. Given a fully nonlinear elliptic operator F , we
look at the family of elliptic scalings

Fµ(M) :=

1
µ
F(µM), for µ > 0.

This is a continuous family of operators preserving the ellipticity constants of the
original equation. If F is differentiable at the origin (recall that, by normalization
F(0) = 0), then indeed

Fµ(M) ! @Mi j F(0)Mi j , as µ ! 0.
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In other words, the linear operator M 7! @Mi j F(0)Mi j is the tangential equation
of Fµ as µ ! 0. Now, if u solves an equation involving the original operator F ,
then uµ :=

1
µu is a solution to a related equation for Fµ. However, if in addition it

is known that the norm of u is at most µ, then it amounts to saying that uµ is a nor-
malized solution to the µ-related equation, and hence we can access the universal
regularity theory available for the (linear) tangential equation by compactness meth-
ods. In the sequel we transport such good limiting estimates towards uµ, properly
adjusted by the geometric tangential path used to access the tangential linear elliptic
regularity theory. Similar reasoning has been recently employed in [11–13,15].

The paper is organized as follows. In Section 2 we state all the hypotheses,
mathematical set-up and notions to be used throughout the whole paper. In that sec-
tion we also state properly the two main Theorems proven in the work. In Section 3
we rigorously develop the heuristics of the geometric tangential analysis explained
in the previous paragraph. The proof of C2,↵ estimates, Theorem 2.2, will be deliv-
ered in Section 4. Two applications of such a result will be discussed in Section 5.
Theorem 2.3 will be proven in Section 6.

2. Hypotheses and main results

Let us start off by discussing the hypotheses, set-up and notation used in this article.
For B1 we denote the open unit ball in the Euclidean space Rn . The space of n ⇥ n
symmetric matrices will be denoted by Sym(n). By modulus of continuity we mean
an increasing function$ : [0,+1) ! [0,+1), with$ (0+) = 0.

Hereafter we shall assume the following conditions on the operator F : B1 ⇥

Sym(n) ! R and f : B1 ! R:

(H1) There exist constants 0 < �  3 such that for any M, P 2 Sym(n), with
P � 0 and all X 2 B1, there holds

�kPk  F(X,M + P) � F(X,M)  3kPk. (2.1)

(H2) F(X,M) is differentiable with respect to M and for a modulus of continuity
! there holds

kDMF(X,M1) � DMF(X,M2)k  !(kM1 � M2k), (2.2)

for all (X,Mi ) 2 B1 ⇥ Sym(n).
(H3) For another modulus of continuity ⌧ , there holds

|F(X,M) � F(Y,M)|  ⌧ (|X � Y |) · kMk, (2.3)
| f (X) � f (Y )|  ⌧ (|X � Y |), (2.4)

for all X,Y 2 B1 and M 2 Sym(n).
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The following normalization condition will also be enforced hereafter in this
paper:

F(0, 0n⇥n) = f (0) = 0 (2.5)

though such hypothesis is not restrictive, as one can always reduce the problem as
to verify that.

Condition (H1) concerns the notion of uniform ellipticity. Under such a struc-
tural condition, the theory of viscosity solutions provides an appropriate notion of
weak solutions to such equations.

Definition 2.1. A continuous function u 2 C0(B1) is said to be a viscosity sub-
solution to (1.4) in B1 if whenever one touches the graph of u from above with a
smooth function ' at X0 2 B1 (i.e. ' � u has a local minimum at X0), there holds

F(X0, D2'(X0)) � f (X0).

Similarly, u is a viscosity supersolution to (1.4) if whenever one touches the graph
of u from below by a smooth function � at Y0 2 B1, there holds

F(Y0, D2�(Y0))  f (Y0).

We say u is a viscosity solution to (1.4) if it is a subsolution and a supersolution of
(1.4).

Condition (H2) fixes a modulus of continuity ! to the derivative of F . The
regularity estimates proven in this paper depend upon !. Condition (H3) sets the
continuity of the media. When ⌧ (t) ⇡ t↵ , 0 < ↵ < 1, the coefficients and the
source function are said to be ↵-Hölder continuous. In such a scenario we prove
that flat solutions are locally of class C2,↵ – a sharp Schauder type of estimate for
non-convex fully nonlinear equations.

Theorem 2.2 (C2,↵ regularity). Let u 2 C0 (B1) be a viscosity solution to

F(X, D2u) = f (X) in B1,

where F and f satisfy (H1)–(H3) with ⌧ (t) = Ct↵ for some 0 < ↵ < 1. There
exists a � > 0, depending only upon n, �,3,!,↵, and ⌧ (1), such that if

sup
B1

|u|  �

then u 2 C2,↵(B1/2) and
kukC2,↵(B1/2)  M · �,

where M depends only upon n, �,3,!, and (1� ↵).
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We should emphasize that the Hölder exponent obtained in Theorem 2.2 is
sharp, as it is the same one from the Hölder continuity of the medium and the
source function f . If f is merely continuous, then even for the classical Poisson
equation

1u = f (X)

solutions may fail to be of class C2. In connection to Theorem 5.1 in [12], in this
paper we show that flat solutions in continuous media are locally of class C1,Log-Lip,
which corresponds to the optimal regularity estimate under such weaker conditions.

Theorem 2.3 (C1,Log-Lip estimates). Let u 2 C0(B1) be a viscosity solution to

F(X, D2u) = f (X) in B1.

Assume (H1)–(H3). Then there exist a � = �(n, �,3,!, ⌧ ) such that if

sup
B1

kuk  �

then u 2 C1,Log�Lip(B 1
2
) and

|u(X) � [u(Y ) + ru(Y ) · (X � Y )]|  �M� · |X � Y |
2 log(|X � Y |),

for a constant M that depends only upon n, �,3,!, and (1� ↵).

3. Geometric tangential analysis

In this section we provide a rigorous treatment of the heuristics involved in the
geometric tangential analysis explained at the end of the Introduction. The next
Lemmas are central for the proof of both Theorem 2.2 and Theorem 2.3.

Lemma 3.1. Let F : B1 ⇥ Sym(n) ! R satisfy conditions (H1) and (H2). Given
0  � < 1, there exists ⌘ > 0, depending only on n, �,3,!, and � , such that if u
satisfies |u|  1 in B1 and solves µ�1F(X, µD2u) = f (X) in B1, for

0 < µ  ⌘, sup
M2Sym(n)

|F(X,M) � F(0,M)|

kMk

 ⌘ and k f kL1(B1)  ⌘,

then one can find a number 0 < � < 1, depending only on n, � and 3, and a
quadratic polynomial P satisfying

µ�1F(0, µD2P) = 0, with kPkL1(B1)  C(n, �,3),

for a universal constant C(n, �,3) > 0, such that

sup
B�

|u � P|  � 2+� .
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Proof. Let us suppose, by contradiction, that the lemma fails to hold. If so, there
would exist a sequence of elliptic operators, Fk(X,M), satisfying hypotheses (H1)
and (H2), a sequence 0 < µk = o(1) and sequences of functions

uk 2 C(B1) and fk 2 L1(B1),

all linked through the equation

1
µk

Fk(X, µk D2uk) = fk(X) in B1, (3.1)

in the viscosity sense, such that

kukk1 1, µk 

1
k
, sup
M2Sym(n)

|Fk(X,M)�Fk(0,M)|

kMk



1
k
and k fkk1 

1
k
; (3.2)

however for some 0 < �0 < 1

sup
B�0

|uk � P| > �
2+�
0 , (3.3)

for all quadratic polynomials P that satisfy

1
µk

Fk(0, µk D2P) = 0.

Passing to a subsequence if necessary, we can assume Fk(X,M) ! F1(X,M)
locally uniformly in Sym(n). From uniform C1 estimates on Fk and the coefficient
oscillation hypothesis in (3.2), we deduce

1
µk

Fk(X, µkM) ! DMF1(0, 0) · M, (3.4)

locally uniformly in Sym(n). Also, by Krylov-Safonov C0,� bounds for equation
(3.1), up to a subsequence, uk ! u1 locally uniformly in B1. Thus, by stability of
viscosity solutions, we conclude

DMF1(0, 0) · D2u1 = 0, in B1. (3.5)

Since u1 solves a linear elliptic equation with constant coefficients , u1 is smooth.
Define

P := u1(0) + Du1(0) · X +

1
2
X · D2u1(0)X.

Since ku1k  1, it follows from C3 estimates on u1 that

sup
Br

|u1 � P|  Cr3,
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for a constant C that depends only upon the dimension n and the ellipticity con-
stants, � and 3. Thus, if we select

� :=

1��

r
1
2C

,

a choice that depends only on n, �, 3 and � , we readily have

sup
B�

|u1 � P| 

1
2
� 2+� ,

Also, from equation (3.5), we obtain

DMF1(0, 0) · D2P = 0

which implies that
|µ�1

k Fk(0, µk D2P| = o(1).
Now, since Fk is uniformly elliptic in B1 ⇥ Sym(n) and Fk(0, 0) = 0, it is possible
to find a sequence of real numbers (ak) ⇢ R with |ak | = o(1), for which the
quadratic polynomials

Pk := P + ak |X |
2

do satisfy
µ�1
k Fk(0, µk D2Pk) = 0.

Finally we have, for any point in B� and k large enough,

sup
B�

|uk � Pk |  |uk � u1| + |u1 � P| + |P � Pk |



1
5
� 2+�

+

1
2
� 2+�

+ |ak |� 2

< � 2+� ,

which contradicts (3.3). Lemma 3.1 is proven.

In the sequel, we transfer the geometric tangential access towards a smallness
condition of the L1 of the solution.

Lemma 3.2. Let F satisfy (H1) and (H2) and 0  ↵ < 1 be given. There exist a
small positive constant � > 0 depending on n, �,3, ↵, and a constant 0 < � < 1
depending only on n, �,3, (1� ↵) such that if u is a solution to (1.4),

kukL1(B1)  �, sup
M2Sym(n)

|F(X,M) � F(0,M)|

kMk

 �3/2 and k f kL1(B1)  �3/2,

then one can find a quadratic polynomial P satisfying

F(0, D2P) = 0, with kPkL1(B1)  �C(n, �,3) (3.6)
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for a universal constant C(n, �,3) > 0, and

sup
B�

|u � P|  � · � 2+↵

Proof. Define the normalized function v = ��1u. We immediately check that

��1F(X, �D2v) =

f (X)

�
.

If ⌘ is the number from Lemma 3.1, we choose � = ⌘2 and the Lemma follows.

4. C2,↵ estimates in C0,↵ media

In this section we show that if the coefficients and the source are ↵-Hölder contin-
uous, then flat solutions are locally of class C2,↵ , i.e., we assume

⌧ (t) . Ct↵, (4.1)

for some 0 < ↵ < 1 and C > 0, where ⌧ is the modulus of continuity of the coef-
ficients and the source function appearing in (2.3) and (2.4). Under such condition,
we aim to show that flat solutions are locally of class C2,↵ .

The idea of the proof is to employ Lemma 3.2 in an inductive process as to
establish the aimed C2,↵ estimate for flat solutions under an appropriate smallness
regime for the oscillation of the coefficients and the source function.

Lemma 4.1. Let F , f and u be as in the hypotheses of Lemma 3.2. Then there
exists a � = �(n, �,3,!) > 0 such that, if

sup
B1

|u|  � and ⌧ (1)  �3/2,

then u 2 C2,↵ at the origin and

|u � (u(0) + ru(0) · X +

1
2
Xt D2u(0)X)|  C · �|X |

2+↵,

where C > 0 depends only upon n, �,3,! and (1� ↵).

Proof. The proof consists in iterating Lemma 3.2 in order to produce a sequence of
quadratic polynomials

Pk =

1
2
Xt Ak X + bk · X + ck with F(0, D2Pk) = 0, (4.2)

that approximates u in a C2,↵ fashion, i.e.,

sup
B

�k

|u(X) � Pk(X)|  �� (2+↵)k . (4.3)
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Furthermore, we aim to control the oscillation of the coefficients of Pk as8<
:

|Ak � Ak�1|  C��↵(k�1)

|bk � bk�1|  C�� (1+↵)(k�1)

|ck � ck�1|  C�� (2+↵)(k�1)
(4.4)

where C > 0 is universal and � and � are the parameters from Lemma 3.2. The
proof of existence of polynomials Pk verifying (4.2), (4.3) and (4.4) will be de-
livered by induction. The case k = 1 is precisely the statement of Lemma 3.2.
Suppose now we have verified the kth step of induction, i.e., there exists a quadratic
polynomial Pk satisfying (4.2), (4.3) and (4.4). We define

ũ(X) :=

1
� (2+↵)k (u(� k X) � Pk(� k X)); (4.5)

F̃(X,M) :=

1
� k↵

F(� k X, � k↵ · M + D2Pk). (4.6)

Notice that���DM F̃(X,M) � DM F̃(X, N )
���  !(� k↵kM � Nk)  !(kM � Nk),

that is, F̃ fulfills (H2). It readily follows from (4.3) that ũ satisfies

|ũ|L1(B1)  �.

Moreover, ũ solves

F̃(X, D2ũ) =

1
� k↵

f (� k X) =: f̃ (X)

in the viscosity sense. From ⌧ -continuity of f and the coefficients of F , together
with the smallness condition ⌧ (1)  �3/2, we verify

k f̃ k1  �3/2,

and likewise,

sup
M2Sym(n)

|F̃(X,M) � F̃(0,M)|

kMk

 �3/2.

Applying Lemma 3.2 to ũ gives a quadratic polynomial P̃ satisfying F̃(0,D2 P̃)= 0
for which

|ũ(X) � P̃(X)|  �� 2+↵, for |X |  �.

The (k + 1)th step of induction is verified if we define

Pk+1(X) := Pk(X) + � (2+↵)k P̃(��k X).
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To conclude the proof of the lemma, notice that (4.4) implies that

{Ak} ⇢ Sym(n), {bk} ⇢ Rn, and {ck} ⇢ R

are Cauchy sequences. Let us label the limiting quadratic polynomial by

P1(X) :=

1
2
Xt A1X + b1X + c1,

where Ak ! A1, bk ! b1 and ck ! c1. It further follows from (4.4) that

|Pk(X) � P1(X)|  C�(�↵k
|X |

2
+ � (1+↵)k

|X | + � (2+↵)k) (4.7)

whenever |X |  � k . Finally, for fixed X 2 B� , take k 2 N such that � k+1 < |X | 

� k and conclude, by means of (4.3) and (4.7), that

|u(X) � P1(X)|  C1�� (2+↵)k


C1�
� 2+↵

|X |
2+↵,

as desired.

We conclude the proof of Theorem 2.2 by verifying that if ⌧ (t) = ⌧ (1)t↵ , the
smallness condition of Lemma 4.1, namely

⌧ (1)  �3/2,

is not restrictive. In fact, if u 2 C0(B1) is a viscosity solution to

F(X, D2u) = f (X) in B1, (4.8)

the auxiliary function

v(X) :=

u(µX)

µ2

solves
Fµ(X, D2v) = fµ(X),

where
Fµ(X,M) := F(µX,M) and fµ(X) := f (µX).

Clearly the new operator Fµ satisfies the same assumptions (H1)–(H3) as F , with
the same universal parameters �,3 and !. Note however that

max
⇢
| fµ(X) � fµ(Y )|,

|Fµ(X,M) � Fµ(Y,M)|

kMk

�
 ⌧ (1)µ↵

|X � Y |
↵,

for M 2 Sym(n). Thus if ⌧µ is the modulus of continuity for fµ and Fµ,

⌧µ(1) = ⌧ (1)µ↵.
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Finally, we take

µ := min

(
1,

2↵p
�3

↵
p

⌧ (1)

)
,

where � is the universal number from Lemma 3.2. In conclusion, if u solves (4.8)
and satisfies the flatness condition

kukL1(B1)  � := �µ2,

then Lemma 4.1 applied to v gives C2,↵ estimates for v, which is accordingly trans-
ported to u.

5. Applications

Probably an erudite way of understanding Theorem 2.2 is saying that, if u solves a
fully nonlinear elliptic equation with C↵ coefficients and source, then, if it is close
enough to a C2,↵ function, then indeed u is C2,↵ . This is particularly meaningful in
problems involving some a priori set data.

In this intermediate section, we comment on two applications of Theorem 2.2.
The first one concerns an improvement of regularity for classical solutions in Hölder
continuous media.

Corollary 5.1 (C2 implies C2,↵). Let u 2 C2(B1) be a classical, pointwise solu-
tion to

F(X, D2u) = f (X)

where F(X, ·) 2 C1(Sym(n)) satisfies (H1)–(H2). Assume further that condition
(H3) holds with ⌧ (t) = Ct↵ for some 0 < ↵ < 1. Then u 2 C2,↵(B1/2) and

kukC2,↵(B1/2)  C
�
n, �,3,↵,!, ⌧ (1), kukC2(B1)

�
.

Proof. We shall prove that u is C2,↵ at the origin. To this end define, for an r > 0
to be chosen soon, v : B1 ! R by

v(X) :=

1
r2
u(r X) �


1
r2
u(0) +

1
r
ru(0) · X +

1
2
Xt D2u(0)X

�
.

We clearly have

v(0) = |rv(0)| = 0 and |D2v(0)|  &(r), (5.1)

where & is the modulus of continuity for D2u. Now, we choose 0 < r ⌧ 1 so small
that

&(r)  cn�,
where cn is a dimensional constant and � is the number appearing in Theorem 2.2.
With such a choice, v is as in the hypotheses of Theorem 2.2, for F̃(X,M) :=

F(r X,M + D2u(0)) and f̃ (X) = f (r X).
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Remark 5.2. We remark that in the proof of Corollary 5.1, we can estimate the
absolute value of v using integral remainders of the Taylor expansion. Thus, the
very same conclusion of that Corollary holds true if we start up only with VMO
condition on D2u. It is also interesting to highlight that Corollary 5.1 implies that
if u is a viscosity solution in B1 of a non-convex, fully nonlinear equation under
hypotheses (H1)–(H3) and if u is C2 at a point p 2 B1, then indeed u is C2,↵ in a
neighborhood of p.

The second application we explore here regards a mild extension of a recent
result due to Armstrong, Silvestre, and Smart [1] on partial regularity for solutions
to uniform elliptic PDEs.

Corollary 5.3 (Partial regularity). Let u 2 C0(B1) be a viscosity solution to
F(D2u) = f (X) where F 2 C1(Sym(n)) satisfies c  Duiu j F(M)  c�1 for
some constant c > 0 and the source function f is Lipschitz continuous. Then,
u 2 C2,1�(B1 \ 6) for a closed set 6 ⇢ B1, with Hausdorff dimension at most
(n � ✏) for a universal ✏ > 0.

Proof. The proof is obtained by following the analysis employed in [1]. The same
conclusion of Lemma 5.2 from [1] follows by noticing that if f 2 C0,1, then

M�

�,3(D2(ue))  C and M+

�,3(D2(ue)) � �C

where

M�

�,3(M) := inf
�InA3In

tr(AM), M+

�,3(M) := sup
�InA3In

tr(AM)

are the Pucci extremal operators. Lemma 7.8 of [4] can still be employed. The very
same conclusion of Lemma 5.3 from [1] also holds true for equations with Lipschitz
sources. Indeed, using the same notation from that Lemma, if Y 2 B 1

2
is such that

there exist M 2 Sym(n), p 2 Rn and Z 2 B(Y, r) such that

|u(X)�u(Z)+ p.(Z � X)+ (Z � X).M(Z � X)| 

1
6
r�1�|Z � X |

3, for X 2 B1,

we define

v(X) =

1
16r2

(u(Z + 4r X) � u(Z) + 4rp · X + 16r2X · MX)

and eF(N ) = F(N � M) � F(�M).

Notice that

eF(X, D2v) = f (Z + 4r X) � F(�M) =
ef (X) 2 C0,1.

Thus, applying Theorem 2.2 to v shows that u is C2,1� in B(Y, r). The proof of
Corollary 5.3 follows now exactly as in [1].
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6. Log-Lipschitz estimates in continuous media

In this section we prove Theorem 2.3. Initially we show that under continuity as-
sumption on the coefficients of F and on the source f , after a proper scaling, solu-
tions are under the smallness regime requested by Lemma 3.2, with ↵ = 0. For this
purpose, define

v(X) =

u(µX)

µ2
, Fµ(X,M) := F(µX,M) and fµ(X) := f (µX),

for a parameter µ to be determined. The equation

Fµ(X, D2v) = fµ(X)

is satisfied in the viscosity sense. Now we choose µ so small that

⌧ (µ)  �3/2,

where ⌧ is the modulus of continuity of the media and � > 0 is the number spon-
sored by Lemma 3.2 with ↵ = 0. Define

⌧µ(t) := ⌧ (µt)

and note that

max
⇢
| fµ(X |,

|Fµ(X,M) � Fµ(0,M)|

kMk

�
 ⌧µ(|X � Y |).

Thus,

sup
M2Sym(n)

|Fµ(X,M) � Fµ(0,M)|

kMk

 �3/2 and k fµkL1(B1)  �3/2.

Now if we take
kukL1(B1)  � := �µ2

then
kvkL1(B1)  �.

Estimates proven for v give the desired ones for u.

The conclusion of the above reasoning is that we can start off the proof of
Theorem 2.3 using Lemma 3.2. That is, the proof of the current Theorem begins
with the existence of a quadratic polynomial P1 satisfying F(0, D2P1) = 0 and a
number � > 0 for which the following estimate

sup
B�

|u � P1|  � 2�, (6.1)
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holds, provided � is small enough, depending only on universal parameters. As in
Lemma 4.1, we shall prove by induction the existence of a sequence of polynomials

Pk(X) =

1
2
Xt Ak X + bk X + ck

satisfying F(0, D2Pk) = 0 such that

|u(X) � Pk(X)|  �� 2k for |X |  � k . (6.2)

Moreover, we have the following estimates on the coefficients
8<
:

|Ak � Ak�1|  C�

|bk � bk�1|  C�� (k�1)

|ck � ck�1|  C�� 2(k�1).
(6.3)

The case k = 1 is precisely the conclusion expressed by (6.1). Assume we have
verified the kth step of induction. Define the scaled function and the scaled operator

ũ(X) :=

1
� 2k

(u(� k X) � Pk(� k X)) and F̃(X,M) := F(� k X,M + D2Pk).

Easily one verifies that ũ is a viscosity solution to

F̃(X, D2ũ) = f (� k X) := f̃ (X).

From the induction hypothesis (6.2), ũ is flat, i.e., kũkL1(B1)  �. Also, clearly

sup
M2Sym(n)

|F̃(X,M) � F̃(0,M)|

kMk

 �3/2 and k f̃ kL1(B1)  �3/2.

That is, for ũ it is legitimate to conclude (6.1), thus there exists a quadratic polyno-
mial P̃ with F̃(0, D2 P̃) = 0 and

|ũ(X) � P̃(X)|  �� 2k for |X |  �.

The (k + 1)th step of induction follows by defining

Pk+1(X) := Pk(X) + � 2k P̃(��k X).

In view of the coefficient oscillation control (6.3), we conclude bk converges in Rn

to a vector b1 and ck converges in R to a real number c1. Also

|ck � c1|  C�� 2k, (6.4)
|bk � b1|  C�� k . (6.5)
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The sequence of matrices Ak may diverge; however, we can at least estimate

kAkkSym(n)  kC�. (6.6)

In what follows, we define the tangential affine function

`1(X) := c1 + b1 · X

and estimate, in view of (6.4), (6.5) and (6.6), for |X |  � k ,

|u(X) � `1(X)|  |u(X) � Pk(X)| + |ck � c1|

+ |(bk � b1)||X | + |Ak ||X |
2

 �� 2k + 2C�� 2k + kC�� 2k

 C�(k� 2k).

(6.7)

Finally, for fixed X 2 B� , take k 2 N such that � k+1 < |X |  � k . From (6.7), we
find

|u(X) � `1(X)|  �(C1�) · |X |
2 log |X |,

as desired. The proof of Theorem 2.3 is concluded.
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