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General optimal L p-Nash inequalities on Riemannian manifolds

JURANDIR CECCON

Abstract. Let (M, g) be a smooth compact Riemannian manifold of dimension
2  n, let 1 < p and 1  q < p. In this paper, we establish the validity of the
optimal Nash inequality
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and the existence of extremal functions for this optimal inequality.
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1. Introduction and the main result

In 1958, Nash [14] showed the validity of the inequality
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for every function u 2 C1

0 (Rn) and some constant c > 0. This inequality was
used to obtain a priori estimates for parabolic problems. The proof of the validity
of this inequality essentially involves techniques of Fourier-transform. In this paper
we are interested in a Nash inequality involving more general parameters. In order
to study the inequality (1.1) using more general parameters, the Fourier transform
is not appropriate. Thus we will use a combination of Jensen’s inequality and the
entropy inequality, as already observed by Beckner [3], to produce general Nash
inequality.
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We produce therefore the optimal entropy inequality
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The optimal constant L(p, n) was calculated by del Pino and Dolbeault [7] for
1 < p < n and by Gentil [9] for n  p.

Consider u 2 C1

0 (Rn) such that kukL p(Rn) = 1 and 1  q < p. Using
Jensen’s inequality, we find
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When this inequality and (1.2) are coupled together, we obtain
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we obtain the general Nash inequality
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for all functions u 2 C1

0 (Rn) where 1 < p and 1  q < p. The Euclidean optimal
Nash inequality states that, for any function u 2 C1

0 (Rn), we have that
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occurs, where
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is the best possible constant in the above inequality. In particular, we have

L(p, n) � N (p, q, n)

for all p > 1 and n � 2. Making use of an asymptotic argument contained in
Bakry, Coulhon, Ledoux and Sallof-Coste [2] we can check that the optimal entropy
inequality will be achieved through the optimal Nash inequality, particularly

lim
q!p�

N (p, q, n) = L(p, n) .

Thus, Nash’s inequality (1.3) and the entropy inequality (1.2) are intimately related.
These inequalities are important tools which are needed to establish a priori esti-
mates to control the behavior of the solutions. In the famous paper of Nash [14],
the inequality (1.1) and the optimal entropy inequality (1.2) were used as a key
points in obtaining control over estimates of the solution of parabolic equations.
An interesting discussion on the use of methods involving the entropy inequality
and Nash’s inequality for obtaining estimates of ultracontractive semigroups can be
found in Coulhon [6]. Nash’s inequality is also a relevant instrument for studying
the smoothness properties of the Markov semigroup, (see Bakry, Bolley, Gentil and
Maheux [1]).

Our main goal in this work is to study the inequality (1.3) in a Riemannian
context. For this purpose, consider (M, g) a smooth compact Riemannian mani-
fold. Combining inequality (1.3) with a local-to-global-type argument based on the
partition of unity, such as the one made by Druet, Hebey and Vaugon [8], produces
for each "̃ > 0 a constant B"̃, such that✓Z
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for all functions u in the Sobolev space H1,p(M), where dvg and rg denote, re-
spectively, the Riemannian volume element and the gradient operator, for p > 1,
1  q < p and ✓ =
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qp�qn+np . Considering 0 < ⌧  p, by direct computation, for

all u 2 H1,p(M) we have✓Z
M

|u|pdvg

◆⌧
✓p



 
(N (p, q, n)

⌧
p
+ ")

✓Z
M

|rgu|p dvg

◆ ⌧
p

+B"
✓Z

M
|u|pdvg

◆⌧
p
!✓Z

M
|u|qdvg

◆⌧ (1�✓)
✓q

,



438 JURANDIR CECCON

denote this inequality by ⇣
N (N (p, q, n)

⌧
p
+", B"

⌘

where " > 0 can be taken as close to zero as we wish. This inequality shows
that there exist constants A, B 2 R such that N (A, B) is valid for all functions in
H1,p(M). We will use again an adaptation of the ideas in [8] and a local argument
in normal coordinates, to showing that
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⌧
p

 A . (1.4)

Thus we can define the notion of best constant for the Riemannian Nash inequal-
ity. Due to the two constants of present in the Riemannian Nash inequality, the
optimality can be defined in two ways. We follow the more interesting one from
the viewpoint of partial differential equations (PDE’s) (see Hebey [10]). The first
Riemannian L p-Nash best constant is defined by

Aopt = inf{A 2 R : there exists B 2 R such that N (A, B) is valid} .

By (1.4), we have
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+ ", B") is valid for all " > 0, it follows that
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We note that the first Riemannian L p-Nash best constant is independent of the ge-
ometry of M . From this constant which we can define the first optimal Riemannian
L p-Nash inequality as follows: there exists a constant B 2 R such that, for any
u 2 H1,p(M),
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We should note that the validity of this inequality is not evident because when we
make A ! Aopt the constant B = B(A) could diverge to infinity.

Independently, the validity of optimal Riemannian L p-Nash inequalities has
been widely discussed in some special cases over the last few years. The optimal
Nash inequality N (N (p, q, n)

⌧
p , B) with ⌧ = p = 2 and q = 1 was obtained for

some B by Humbert in [11]. Later, Brouttelande [4] proved Nash’s inequality for
⌧ = p = 2 and 1  q < p. Recently Ceccon-Montenegro [5] proved Nash’s
inequality for 1 < p = ⌧  2 and 1  q < p. In this paper, we extend the validity
of optimal inequality N (N (p, q, n)

⌧
p , B) for p > 2.
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Theorem 1. Let (M,g) be a smooth, compact Riemannian manifold without bound-
ary of dimension n � 2 and let 1  q < p. If 0 < ⌧  min{p, 2}, then
N (N (p, q, n)

⌧
p , B) is always valid for some B.

In view of this theorem, we can define the second Riemannian L p-Nash best
constant by
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o
.

Since the non-zero constant functions belong to the Sobolev space H1,p(M), the
constant Bopt satisfies

Bopt � |M|
�
⌧
n , (1.5)

where |M| denotes the volume of M .
A non-zero function in H1,p(M) satisfying the equality N (N (p, q, n)

⌧
p , Bopt)

is called an extremal function. The extremal functions for the Riemannian Nash
inequality in the case where ⌧ = p = 2 and q = 1 were studied by Humbert [12].
In this work, Humbert found that the existence of extremal functions depends on
the geometry of the Riemannian manifold (M, g). However, when ⌧ < 2 we have
the existence of extremal functions regardless of the geometry of the Riemannian
manifold (M, g).
Theorem 2. Let (M, g) be a smooth, compact Riemannian manifold without
boundary of dimension n � 2 and let 1  q < p. If 0 < ⌧  p and ⌧ < 2.
Then N (N (p, q, n)

⌧
p , Bopt) admits an extremal function.

2. Proof of Theorem 1

The proof of Theorem 1 proceeds by contradiction. So, for each ↵ positive in N,
suppose one has
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Our goal will be to use the method of Lagrange multipliers for the functional J↵;
this method requires that the functional J↵ is of class C1. Thus we will consider two
situations: assume first q > 1. By using standard arguments, we find a maximizer
ũ↵ 2 E of J↵ , i.e.

J↵(ũ↵) = ⌫↵ = sup
u2E

J↵(u) . (2.2)
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When q = 1, note that the functional J↵ is not of class C1. In this case, we imitate
an idea of Humbert [11].

Define, for each " > 0, the functional
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It is clear that J↵," is of class C1. Choose now a sequence ("↵) such that "↵ ! 0 as
↵ ! 1, so that
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As usual, the preceding inequality leads to a maximizer ũ↵ 2 E of J↵,"↵ . From now
on, the arguments are similar in the two cases q > 1 and q = 1 by working with
the functionals J↵ and J↵,"↵ in each case. Thereby, we will focus our attention only
on the case q > 1.
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We now highlight two important consequences of the Euler-Lagrange equation.
Note that taking ũ↵ as test function in (2.3), we have

⌫↵  kũ↵k
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kũ↵k

⌧
✓
L p(M)kũ↵k
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so that
N (p, q, n)  ��1

↵ . (2.5)

We also have, by (2.4), that ↵A
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The proof of this theorem consists of three steps:
1)We will show that the sequence of normalized functions u↵ has a point of explo-
sion when ↵ ! 1. Hence u↵ will concentrate around its point of maximum, this
will be made precise in Subsection 2.1.
2) The concentration established in Subsection 2.1 will be used to obtain a global
and uniform estimate for the sequence u↵ . Besides, the speed with which u↵ tends
to zero is of exponential type. This will be studied in Subsection 2.2.
3) In Subsection 2.3 we will use an appropriate test function to combine the optimal
Euclidean inequality involving u↵ with the Euler-Lagrange equation satisfied by
u↵ . This will lead to a comparison between ku↵kLq (M) and a piece of ku↵kL p . This
comparison, due to the speed with which the sequence u↵ goes to zero (Subsection
2.2), will generate a contradiction. With this the proof of Theorem 1 is concluded.
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Applying the Moser’s iterative scheme, for p  n see ( [13] or [15]), or Morrey’s
inequality, for p > n, to this last equation, we see that for ↵ large enough and � > 1
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In particular,
' 2 Lq(Rn) \ L p(Rn) . (2.12)
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In order to rewrite this inequality in a suitable format, we first remark that
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where we have used the definition of A↵ and Young’s inequality. Then, using (2.6)
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◆

lim
�!1

lim
↵!1

 R
M uq↵⌘

q
↵,� dvgR

M uq↵ dvg

! p(1�✓)
✓q

.

(2.17)
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Let

X = lim
�!1

lim
↵!1

✓
N (p, q, n) A↵

Z
M

|rgu↵|p⌘p↵,�dvg

◆
,

Y = lim
�!1

lim
↵!1

R
M uq↵⌘

q
↵,�dvgR

M uq↵dvg

and
Z = lim

�!1

lim
↵!1

Z
M
up↵⌘

p
↵,�dvg .

The inequalities (2.16) and (2.17) may be rewritten as
8<
:
✓X + (1� ✓)Y  Z

Z  X✓Y
p(1�✓)
q .

(2.18)

By (2.11), one also has Z > 0, so that X,Y > 0. The assertion (2.7) follows readily
once one has proved that Z = 1. By Young’s inequality, (2.18) immediately yields

8<
:
X✓Y 1�✓  Z

Z  X✓Y
p(1�✓)
q

These two inequalities produce

X✓Y 1�✓  X✓Y
p(1�✓)
q ,

which implies that Y = 1 because p(1�✓)
q � 1+ ✓ > 0.

On the other hand, using (2.10), we have

Z
M\B(x↵,� A

1
p
↵ )
u p↵ dvg  ku↵k

p�q
L1(M)A

n(p�q)

p2
↵

R
M\B(x↵,� A

1
p
↵ )
uq↵ dvg

R
M uq↵ dvg

 c

R
M\B(x↵,� A

1
p
↵ )
uq↵ dvg

R
M uq↵ dvg

.

This estimate coupled together with Y = 1, allows to conclude that

lim
�!1

lim
↵!1

Z
M\B(x↵,� A

1
p
↵ )
u p↵ dvg = 0 .

Therefore, because Z  1, it follows that Z = 1.
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2.2. Uniform estimation

For any constant � > 0 there exists a constant c� > 0, independent of ↵, such that

dg(x, x↵)�u↵(x)  c�A
�
p�

n
p2

↵ (2.19)

for all x 2 M and ↵ > 0 large enough.
Suppose, by contradiction, that the above assertion is false. Then, there exist

�0 > 0 and y↵ 2 M such that f↵(y↵) ! 1 as ↵ ! 1, where

f↵(x) = dg(x, x↵)�0u↵(x) A
�

�0
p +

n
p2

↵ .

Assume, without loss of generality, that f↵(y↵) = k f↵kL1(M). From (2.10), we
have

f↵(y↵)  c
u↵(y↵)

ku↵kL1(M)
dg(x↵, y↵)�0ku↵k

�0 p
n
L1(M)  cdg(x↵, y↵)�0ku↵k

�0 p
n
L1(M) ,

so that
dg(x↵, y↵)ku↵k

p
n
L1(M) ! 1 . (2.20)

Next, for any fixed � > 0 and " 2 (0, 1), we show that

B(y↵, "dg(x↵, y↵)) \ B
✓
x↵, �ku↵k

�
p
n

L1(M)

◆
= ; (2.21)

for ↵ > 0 large enough. Clearly, this assertion follows from

dg(x↵, y↵) � �ku↵k
�

p
n

L1(M) + "d(x↵, y↵) .

The above inequality is equivalent to

(1� ")dg(x↵, y↵)ku↵k
p
n
L1(M) � � ,

which is clearly satisfied, since dg(x↵, y↵)ku↵k
p
n
L1(M) !1 as ↵!1 and 1�">0.

We claim that there exists a constant c > 0 such that

u↵(x)  cu↵(y↵) (2.22)

for all x 2 B(y↵, "dg(x↵, y↵)) and ↵ > 0 large enough. In fact, for each x 2

B(y↵, "dg(x↵, y↵)), we have

dg(x, x↵) � dg(x↵, y↵) � dg(x, y↵) � (1� ")dg(x↵, y↵) .
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Thus,

dg(y↵, x↵)�0u↵(y↵)A
�

�0
p +

n
p2

↵ = f↵(y↵) � f↵(x)

= dg(x, x↵)�0u↵(x)A
�

�0
p +

n
p2

↵

� (1� ")�0dg(y↵, x↵)�0u↵(x)A
�

�0
p +

n
p2

↵ ,

so that

u↵(x) 

✓
1

1� "

◆�0
u↵(y↵)

for all x 2 B(y↵, "dg(x↵, y↵)) and ↵ > 0 large enough. This proves our claim.
Define

h↵(x) = g
✓
expy↵

✓
A
1
p
↵ x
◆◆

 ↵(x) = A
n
p2
↵ u↵

✓
expy↵

✓
A
1
p
↵ x
◆◆

for each x 2 B(0, 2) and ↵ > 0 large enough. From (2.4), it readily follows that

��1
↵ 1p,h↵ ↵ + ↵A

⌧
p
↵  

p�1
↵ +

1� ✓

✓
 q�1
↵ =

1
✓
 p�1
↵ on B(0, 2) . (2.23)

In particular,
Z
B(0,2)

|rh↵ ↵|
p�2

rh↵ ↵ · rh↵� dvh↵  c
Z
B(0,2)

 p�1
↵ � dvh↵

for any positive test functions � 2 C10(B(0, 2)). Thus, by Moser’s iterative scheme
or Morrey’s inequality, one deduces that

A
n
p
↵ u↵(y↵)p  sup

B(0, 14 )
 p
↵  c

Z
B(0, 12 )

 p
↵ dvh↵ = c

Z
B(y↵, 12 A

1
p
↵ )
u p↵ dvg .

By (2.22) and (2.10), we rewrite this last inequality as
✓

ku↵kL1(D↵)
ku↵kL1(M)

◆p
 c

Z
B(y↵, 12 A

1
p
↵ )
u p↵ dvg , (2.24)

where D↵ = B(y↵, "dg(x↵, y↵)).
Let k > 0 be a constant. By (2.10) and (2.20) we obtain that

kA
1
p
↵  "d(x↵, y↵) , (2.25)
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for ↵ large enough. Then, using (2.25), the concentration property (2.7), combined
with (2.21) and k =

1
2 , provides thatZ

B(y↵, 12 A
1
p
↵ )
u p↵ dvg ! 0 .

Then, by (2.24), we obtain

lim
↵!1

ku↵kL1(D↵)
ku↵kL1(M)

= 0 . (2.26)

Consider the function ⌘↵(x) = ⌘(A
�
1
p

↵ dg(x, y↵)), where ⌘ 2 C10(R) is a cut-off
function such that ⌘ = 1 on [0, 12 ], ⌘ = 0 on [1,1) and 0  ⌘  1. Taking u↵⌘p↵
as a test function in (2.4), one has

��1
↵ A↵

Z
M

|rgu↵|p⌘p↵ dvg + ↵A
⌧
p
↵

Z
M
up↵⌘

p
↵ dvg +

1� ✓

✓

R
M uq↵⌘

p
↵ dvgR

M uq↵dvg

=

1
✓

Z
M
up↵⌘

p
↵ dvg + pA↵

Z
M

|rgu↵|p�2u↵⌘p�1↵ rgu↵ · rg⌘↵ dvg .

Now, we will estimate each term on the right-hand side of this inequality. First note
that from (2.10), (2.22) and (2.25), we haveZ

M
up↵⌘

p
↵ dvg  cku↵k

p
L1(D↵)(A

1
p
↵ )n  c

✓
ku↵kL1(D↵)
ku↵kL1(M)

◆p
.

Of course, by Hölder’s and Young’s inequalities����
Z
M

|rgu↵|p�2u↵⌘p�1↵ rgu↵ · rg⌘↵ dvg

����
 "

Z
M

|rgu↵|p⌘p↵ dvg + c"
Z
M

|rg⌘↵|
pu p↵ dvg .

Also, by (2.10), (2.22) and (2.25), it follows that

A↵
Z
M

|rg⌘↵|
pu p↵ dvg  A↵(A

�
1
p

↵ )p
Z
B(y↵,A

1
p
↵ )
u p↵ dvg

 cku↵k
p
L1(D↵)(A

1
p
↵ )n  c

✓
ku↵kL1(D↵)
ku↵kL1(M)

◆p
.

(2.27)

Consequently,

A↵
Z
M

|rgu↵|p⌘p↵ dvg + ↵A
⌧
p
↵

Z
M
up↵⌘

p
↵ dvg +

R
M uq↵⌘

p
↵ dvgR

M uq↵ dvg

 c
✓

ku↵kL1(D↵)
ku↵kL1(M)

◆p
.

(2.28)
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On the other hand, the non-sharp Riemannian Nash inequality produces

 Z
B(y↵, 12 A

1
p
↵ )
u p↵ dvg

!1
✓



✓Z
M

(u↵⌘p↵ )p dvg

◆1
✓

 c
✓Z

M
|rgu↵|p⌘p

2
↵ dvg

◆✓Z
M

(u↵⌘p↵ )q dvg

◆p(1�✓)
✓q

+ c
✓Z

M
|rg⌘↵|

pu p↵ dvg

◆✓Z
M

(u↵⌘p↵ )q dvg

◆p(1�✓)
✓q

+ c
✓Z

M
(u↵⌘p↵ )p dvg

◆✓Z
M

(u↵⌘p↵ )q dvg

◆p(1�✓)
✓q

.

(2.29)

Due to (2.27) and (2.28), we can estimate each term a the right-hand side of (2.29).
Indeed, by hypothesis we have p > q � 1, so

✓Z
M

|rgu↵|p⌘p
2
↵ dvg

◆✓Z
M

(u↵⌘p↵ )q dvg

◆ p(1�✓)
✓q

 A↵
Z
M

|rgu↵|p⌘p↵ dvg

 R
M uq↵⌘

p
↵ dvgR

M uq↵ dvg

! p(1�✓)
✓q

 c
✓

ku↵kL1(D↵)
ku↵kL1(M)

◆p(1+ p(1�✓)
✓q )

,

✓Z
M

|rg⌘↵|
pu p↵ dvg

◆✓Z
M

(u↵⌘p↵ )q dvg

◆ p(1�✓)
✓q

 A↵
Z
M

|rg⌘↵|
pu p↵ dvg

 R
M uq↵⌘

p
↵ dvgR

M uq↵ dvg

! p(1�✓)
✓q

 c
✓

ku↵kL1(D↵)
ku↵kL1(M)

◆p(1+ p(1�✓)
✓q )

and because p � ⌧ , we have

✓Z
M

(u↵⌘p↵ )p dvg

◆✓Z
M

(u↵⌘p↵ )q dvg

◆ p(1�✓)
✓q

 A↵
Z
M
up↵⌘

p
↵ dvg

 R
M uq↵⌘

p
↵ dvgR

M uq↵ dvg

! p(1�✓)
✓q

 c
✓

ku↵kL1(D↵)
ku↵kL1(M)

◆p(1+ p(1�✓)
✓q )

.
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Substituting these three estimates in (2.29), one gets
 Z

B(y↵, 12 A
1
p
↵ )
u p↵ dvg

! 1
✓

 c
✓

ku↵kL1(D↵)
ku↵kL1(M)

◆p(1+ p(1�✓)
✓q )

,

so that Z
B(y↵, 12 A

1
p
↵ )
u p↵ dvg  c

✓
ku↵kL1(D↵)
ku↵kL1(M)

◆p(✓+ p(1�✓)
q )

.

Combining this inequality with (2.24), we obtain

1  c
✓

ku↵kL1(D↵)
ku↵kL1(M)

◆p
⇣
�1+✓+ p(1�✓)

q

⌘
.

By definition ✓ < 1 and by hypotesis q < p, so that

�1+ ✓ +

p(1� ✓)

q
= (1� ✓)

✓
p
q

� 1
◆

> 0 ,

but this inequality contradicts (2.26).

2.3. Conclusion of the proof of the Theorem 1

In the sequel, we will perform several estimates by using the uniform estimation.
Let us suppose that the radius of injectivity of M is grater than r > 0 and

let ⌘ 2 C10(R) is a cut-off function as in the previous section, define ⌘↵(x) =

⌘
⇣
dg(x,x↵)

r

⌘
. From the Euclidean Nash inequality (1.3), we have

✓Z
B(0,r)

u p↵⌘
p
↵ dx

◆1
✓

N (p, q, n)
✓Z

B(0,r)
|r(u↵⌘↵)|p dx

◆✓Z
B(0,r)

uq↵⌘
q
↵ dx

◆p(1�✓)
✓q

.

Expanding the metric g in normal coordinates around x↵ , one locally gets⇣
1� cdg(x, x↵)2

⌘
dvg  dx 

⇣
1+ cdg(x, x↵)2

⌘
dvg (2.30)

and
|r(u↵⌘↵)|p  |rg(u↵⌘↵)|p

⇣
1+ cdg(x, x↵)2

⌘
.

Thus,
✓Z

B(0,r)
u p↵⌘

p
↵dx
◆1
✓



✓
A↵N (p, q, n)

Z
M

|rg(u↵⌘↵)|p dvg

+cA↵
Z
M
|rg(u↵⌘↵)|pdg(x,x↵)2dvg

◆ R
B(0,r) u

q
↵⌘

q
↵ dxR

M uq↵ dvg

!p(1�✓)
✓q

.

(2.31)
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On the other hand taking u↵ as a test function in (2.4), and enclosing (2.5), we have

N (p, q, n) A↵
Z
M

|rgu↵|p dvg  1� ↵A
⌧
p
↵ .

Coupling the above inequality together with inequality

|rg(u↵⌘↵)|p  |rgu↵|p⌘p↵ + c|⌘↵rgu↵|p�1|u↵rg⌘↵| + c|u↵rg⌘↵|
p ,

in (2.31), we obtain

✓Z
B(0,r)

u p↵⌘
p
↵ dx

◆1
✓



✓
1� ↵A

⌧
p
↵ + cF↵ + cG↵

+cA↵
Z
B(x↵,r)\B(x↵, r2 )

u p↵dvg

! R
B(0,r) u

q
↵⌘

q
↵dxR

M uq↵dvg

!p(1�✓)
✓q

,

(2.32)

where
F↵ = A↵

Z
M

|rgu↵|p⌘p↵dg(x, x↵)
2 dvg

and
G↵ = A↵

Z
M

|rgu↵|p�1⌘p�1↵ u↵|rg⌘↵| dvg .

We now estimate F↵ and G↵ . Note that by (2.4), taking u↵ as a test function, we
have

A↵
Z
M

|rgu↵|pdvg  �↵  N (p, q, n)�1 .

Using this uniform limitation, Hölder’s inequality, the definition of '↵ and uniform
estimation (2.19), we have

G↵ 

✓
A↵
Z
M

|rgu↵|pdvg

◆ p�1
p
 
A↵
Z
B(x↵,r)\B(x↵, r2 )

u p↵dvg

! 1
p

 c

 
A↵
Z
B(x↵,r)\B(x↵, r2 )

u p↵dg(x, x↵)
pdvg

! 1
p

 c

0
@A2↵

Z
B(0,r A

�
1
p

↵ )\B(0, r A
�
1
p

↵
2 )

' p↵ |x |pdh↵

1
A

1
p

 c�A
2
p
↵

✓Z
Rn

\B(0,1)
|x |p(1��)dx

◆ 1
p

 c A
2
p
↵ ,

(2.33)
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for � sufficiently large and normal coordinates around x↵ . Similarly, we have

A↵
Z
M

|rgu↵|p�1⌘p↵u↵dg(x, x↵) dvg



✓
A↵
Z
M

|rgu↵|pdvg

◆ p�1
p
✓
A↵
Z
B(x↵,r)

u p↵dg(x, x↵)
pdvg

◆ 1
p

 cA
2
p
↵

✓Z
B(0,r A

�
1
p

↵ )
' p↵ |x |pdh↵

◆ 1
p

 c A
2
p
↵

✓
1+

Z
Rn

\B(0,1)
|x |p(1��)dx

◆ 1
p

 c A
2
p
↵ .

(2.34)

Taking u↵d2g⌘
p
↵ as a test function in (2.4), one easily checks that

F↵ = A↵
Z
M

|rgu↵|p⌘p↵dg(x, x↵)
2 dvg

 c
Z
B(x↵,r)

u p↵dg(x, x↵)
2dvg + cA↵

Z
M

|rgu↵|p�1⌘p↵u↵dg(x, x↵) dvg + cG↵ .

Therefore, by (2.33) and (2.34),

F↵  c
Z
B(x↵,r)

u p↵dg(x, x↵)
2 dvg + cA

2
p
↵ .

Applying now the uniform estimation (2.19), one getsZ
B(x↵,r)

u p↵dg(x, x↵)
2 dvg  cA

2
p
↵

✓
1+

Z
B(0,r A

�
1
p

↵ )\B(0,1)
' p↵ |x |2dx

◆

 cA
2
p
↵

✓
1+

Z
Rn

\B(0,1)
|x |2��pdx

◆
 cA

2
p
↵

(2.35)

for � large enough. Consequently,

F↵  cA
2
p
↵ and G↵  cA

2
p
↵ . (2.36)

Using ideas similar to (2.33) for p > 1, we obtain

A↵
Z
B(x↵,r)\B(x↵, r2 )

u p↵dvg  cA↵
Z
B(x↵,r)\B(x↵, r2 )

u p↵dg(x, x↵)
pdvg cA2↵ cA

2
p
↵ .

Putting this estimate and (2.36) in (2.32), one arrives at

✓Z
B(x↵,r)

u p↵⌘
p
↵ dx

◆ 1
✓



✓
1� ↵A

⌧
p
↵ + cA

2
p
↵

◆ R
B(x↵,r) u

q
↵⌘

q
↵ dxR

M uq↵ dvg

! p(1�✓)
✓q

. (2.37)
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On the other hand, by (2.30) and the mean value theorem, we obtain
✓Z

M
up↵⌘

p
↵ dx

◆ 1
✓

�

✓Z
M
up↵⌘

p
↵dvg � c

Z
M
up↵⌘

p
↵dg(x, x↵)

2dvg

◆ 1
✓

� 1� c
Z
M\B(x↵,r)

u p↵ dvg � c
Z
M
up↵⌘

p
↵dg(x, x↵)

2 dvg

and
 R

B(x↵,r) u
q
↵⌘

q
↵ dxR

M uq↵ dvg

!p(1�✓)
✓q



 R
M uq↵⌘

q
↵ dvg + c

R
M uq↵⌘

q
↵dg(x, x↵)2 dvgR

M uq↵ dvg

!p(1�✓)
✓q



 R
M uq↵⌘

q
↵ dvgR

M uq↵ dvg

!p(1�✓)
✓q

+ c
R
M uq↵⌘

q
↵dg(x, x↵)2 dvgR
M uq↵ dvg

 1+ c
R
M uq↵⌘

q
↵dg(x, x↵)2 dvgR
M uq↵ dvg

.

Replacing these two estimates in (2.37), one gets

↵A
⌧
p
↵  cA

2
p
↵ + c

R
M uq↵⌘

q
↵dg(x, x↵)2 dvgR
M uq↵ dvg

+ c
Z
M
up↵⌘

p
↵dg(x, x↵)

2 dvg + c
Z
M\B(x↵,r)

u p↵ dvg .

By uniform estimate (2.19), compactness of M and taking �p � n = 2, we have
Z
M\B(x↵,r)

u p↵ dvg  c
Z
M\B(x↵,r)

u p↵d(x, x↵)�p dvg  c�A
�p�n
p

↵ = c A
2
p
↵ .

So, by this inequality and (2.35), one concludes that

↵A
⌧
p
↵  cA

2
p
↵ + c

R
M uq↵⌘

q
↵dg(x, x↵)2 dvgR
M uq↵ dvg

. (2.38)

By uniform estimation (2.19) and � greater enough, we obtain
R
M uq↵⌘

q
↵dg(x, x↵)2 dvgR
M uq↵ dvg



R
B(x↵,r) u

q
↵dg(x, x↵)2 dvgR
M uq↵ dvg

= A
2
p
↵

Z
B(0,r A

�
1
p

↵ )
'q↵ |x |

2dh↵

 cA
2
p
↵

✓
1+ c

Z
Rn

\B(0,1)
|x |2��qdx

◆
 c A

2
p
↵ .



454 JURANDIR CECCON

Introducing this inequality in (2.38), we readily deduce that

↵A
⌧
p
↵  c A

2
p
↵ .

Finally, because 0 < ⌧  min{p, 2}, we get at the contradiction

↵  c A
2�⌧
p

↵ .

3. Proof of Theorem 2

By Theorem 1 we have that
✓Z

M
|u|p dvg

◆ ⌧
p✓



 
N (p, q, n)

⌧
p

✓Z
M

|rgu|pdvg

◆⌧
p
+Bopt

✓Z
M

|u|p dvg

◆⌧
p
!✓Z

M
|u|q dvg

◆⌧ (1�✓)
✓q

,

is valid for all u 2 H1,p(M).
Let ↵ > 0 and c↵ = Bopt � ↵�1. Define

J↵(u) =

✓Z
M

|u|p dvg

◆ ⌧
p✓
✓Z

M
|u|qdvg

◆
�
⌧ (1�✓)
✓q

� c↵
✓Z

M
|u|p dvg

◆ ⌧
p

.

By definition of Bopt, we have

⌫↵ = sup
u2E

J↵(u) > N (p, q, n)
⌧
p ,

where E = {u 2 H1,p(M) : krgukL p(M) = 1}. This supreme is well defined.
By the observation made in the proof of the Theorem 1, we will present the

proof only in the case q > 1. In the case q = 1 we follow the ideas contained
in [11]. Using standard arguments, we find a maximizer ũ↵ 2 E of J↵ , therefore

J↵(ũ↵) = ⌫↵ = sup
u2E

J↵(u) .

Since J↵ is of class C1, the function ũ↵ satisfies the Euler-Lagrange equation

1
✓
kũ↵k

⌧�p✓
✓

L p(M)kũ↵k
�
⌧ (1�✓)
✓

Lq (M) ũ
p�1
↵

�

(1� ✓)

✓
kũ↵k

⌧
✓
L p(M)kũ↵k

�
⌧ (1�✓)+✓q

✓
Lq (M) ũq�1

↵ � c↵kũ↵k
⌧�p
L p(M)ũ

p�1
↵

= ⌫↵1p,gũ↵,
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where 1p,g = �divg(|rg|
p�2

rg) is the p-Laplace operator of g. Provided that
rg|ũ↵| = ±rgũ↵ almost everywhere, we can assume ũ↵ � 0 and following Tolks-
dorf (see [16]) we have that ũ↵ 2 C1(M). Taking u↵ =

ũ↵
kũ↵kLr (M)

, we find

��1
↵ A↵1p,gu↵ + c↵A

⌧
p
↵ u p�1↵ +

1� ✓

✓
ku↵k

�q
Lq (M)u

q�1
↵ =

1
✓
u p�1↵ on M , (3.1)

where ku↵kL p(M) = 1,

A↵ =

✓Z
M
uq↵ dvg

◆ p(1�✓)
✓q

and
�↵ = ⌫�1

↵ ku↵k
(p�⌧ )(1�✓)

✓
Lq (M) kũ↵k

⌧�p
L p(M) .

Taking a subsequence, we can assume that there exists A 2 R such that

lim
↵!1

A↵ = A .

Then, we have two possibilities:
(i) A = 0 or
(ii) A > 0.
We will show that (i) cannot occur. Otherwise, A = 0 would lead to (2.6) of Theo-
rem 1. Therefore we can follow step by step the proof of Theorem 1 and will regain
the same result as in Section 2.3, that is, we obtain

c↵  c A
2�⌧
p

↵ .

This results in a contradiction, because 0 < ⌧ < 2, c↵ = Bopt � ↵�1, A = 0 and
because of (1.5). Therefore (ii) occurs. Using u↵ as a test function and using, (ii)
and (2.5) in (3.1), we see that there is c > 0 such thatZ

M
|rgu↵|pdvg  c

for all ↵. Since ku↵kL p(M) = 1, up to subsequences u↵ * u0 in H1,p(M). Using
again that ku↵kL p(M) = 1 for all ↵, we have ku0kL p(M) = 1. Furthermore, by
equation (3.1), we have that

Z
M

|rgu↵|p�2rgu↵rghdvg  c
Z
M
up�1↵ hdvg ,

for any test function h � 0. Following the iterative scheme due to Moser, we find
that

sup
x2M

u↵  c ,
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for all ↵. Applying the result of Tolksdorf in (3.1), we have u↵ ! u0 in C1(M).
On the other hand, we know that ũ↵ satisfies
✓Z

M
ũ p↵dvg

◆ ⌧
p✓

�

 
N (p, q, n)

⌧
p

✓Z
M

|rgũ↵|pdvg

◆ ⌧
p

+

✓
Bopt �

1
↵

◆✓Z
M
ũ p↵dvg

◆ ⌧
p
!✓Z

M
ũq↵dvg

◆ ⌧ (1�✓)
✓q

,

and for u↵ =
ũ↵

kũ↵kLr (M)
, we have

1 �

 
N (p, q, n)

⌧
p

✓Z
M

|rgu↵|pdvg

◆ ⌧
p

+ Bopt �
1
↵

!✓Z
M
uq↵dvg

◆ ⌧ (1�✓)
✓q

.

Taking the limit in ↵ in this inequality, we obtain

1 �

 
N (p, q, n)

⌧
p

✓Z
M

|rgu0|pdvg

◆ ⌧
p

+ Bopt

!✓Z
M
uq0dvg

◆ ⌧ (1�✓)
✓q

.

Therefore, u0 is an extremal function for N (N (p, q, n)
⌧
p , Bopt).
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