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Obstructions to finite dimensional cohomology
of abstract Cauchy-Riemann complexes

JUDITH BRINKSCHULTE AND C. DENSON HILL

Abstract. Let M be a compact abstract CR manifold of arbitrary CR codimen-
sion. Under certain conditions on the Levi form we prove the infinite dimension-
ality of some global cohomology groups of M .
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1. Introduction

Although there is a sizeable literature concerning various questions about CR em-
beddable CR manifolds, there appears to be very few results about the cohomology
of abstract CR manifolds. We consider a C1 smooth compact orientable abstract
CR manifold of type (n, k).

Here an abstract CR manifold of type (n, k) is a triple (M, HM, J ), where M
is a smooth real manifold of dimension 2n + k, HM is a subbundle of rank 2n of
the tangent bundle T M , and J : HM ! HM is a smooth fiber-preserving bundle
isomorphism with J 2 = �Id. We also require that J be formally integrable; i.e.
that we have h

T 0,1M, T 0,1M
i

⇢ T 0,1M

where
T 0,1M = {X + i J X | X 2 0(M, HM)} ⇢ 0(M, CT M),

with 0 denoting smooth sections.
The CR dimension of M is n � 1 and the CR codimension is k � 1.
We denote by HoM = {⇠ 2 T ⇤M | hX, ⇠i = 0,8X 2 H⇡(⇠)M} the charac-

teristic conormal bundle of M . Here ⇡ : T M �! M is the natural projection. To
each ⇠ 2 Ho

pM , we associate the Levi form at ⇠ :

Lp(⇠, X) = ⇠
⇣⇥
J X̃ , X̃

⇤⌘
= d ⇠̃(X, J X) for X 2 HpM

Received January 17, 2014; accepted in revised form April 28, 2014.
Published online February 2016.



344 JUDITH BRINKSCHULTE AND C. DENSON HILL

which is Hermitian for the complex structure of HpM defined by J . Here ⇠̃ is a
section of HoM extending ⇠ and X̃ a section of HM extending X .

We denote by @M the tangential Cauchy-Riemann operator on M . The as-
sociated cohomology groups of @M acting on smooth forms will be denoted by
H p,q(M), 0  p  n + k, 0  q  n. For more details on the @M complex, we
refer the reader to [6] or [7].

Our results are as follows.

Theorem 1.1. Let M be a compact orientable abstract CR manifold of type (n, k).
Assume that there exists a point p0 2 M and a characteristic conormal direction
⇠ 2 Ho

p0M such that the Levi form Lp0(⇠, ·) has q negative and n � q positive
eigenvalues. Then for 0  p  n + k, the following holds: Either H p,q(M)
or H p,q+1(M) is infinite dimensional, and either H p,n�q(M) or H p,n�q+1(M) is
infinite dimensional.

This result is proved in Section 2. Although here we are proving the infinite
dimensionality of certain (global) cohomology groups of M , our argument follows
the pattern of M. Nacinovich [11], where the emphasis was on demonstrating the
absence of the (local) Poincaré lemma.

The following two theorems are consequences of Theorem 1.1. The simple
arguments proving them are given at the end of Section 2.

Theorem 1.2. Let M be a compact orientable abstract CR manifold of type (n, 1).
Assume that at each point x 2 M , there exists a characteristic conormal direction
⇠ 2 Ho

x (M) such that Lx (⇠, ·) has q negative and n � q positive eigenvalues. If
moreover 2q 6= n � 1, then H p,q(M) is infinite dimensional; and if 2q 6= n + 1,
then H p,n�q(M) is infinite dimensional for 0  p  n + 1.

Theorem 1.3. Let M be a compact orientable abstract CR manifold of type (n, k)
with n even. For q =

n
2 we assume that at each point x 2 M and every characteris-

tic conormal direction ⇠ 2 Ho
x (M) \ {0} the Levi form Lx (⇠, ·) has q negative and

q positive eigenvalues. Then H p,q(M) is infinite dimensional for 0  p  n + k.

In the case where M is CR embedded in some ambient complex manifold,
related local and global results have been discussed in [1–3] and [7].

2. Proofs of the theorems

Our proof of Theorem 1.1 relies on a well-known construction for CR embedded
CR manifolds at a point where there exists a characteristic conormal direction such
that the associated Levi form has exactly q negative and n � q positive eigenval-
ues. For the reader’s convenience, we now sketch this construction in the case of a
hypersurface in Cn+1.

So let S 3 0 be a piece of a smooth real hypersurface inCn+1 such thatL0(⇠, ·)
has q negative and n � q positive eigenvalues for some characteristic conormal
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direction ⇠ . Then we can choose a local real defining function ⇢ of S of the form

⇢(z) = Im
�
zn+1

�
� h(z) with h(z) = O

⇣
|z|2

⌘
.

Here O(|z|`) denotes a term vanishing to order ` at the point z = 0. Moreover, after
a holomorphic change of coordinates, we may assume

h(z) =

qX
↵=1

|z↵|2 �

nX
↵=q+1

|z↵|2 + O
⇣
|z|3

⌘
at 0.

Set

�(z) = �iRe
�
zn+1

�
+ h(z) � 2

qX
↵=1

|z↵|2 �

�
Re

�
zn+1

�
+ ih(z)

�2
.

Then

Re�(z)  �

1
2

 
nX
↵=1

|z↵|2 + (Re(zn+1))2
!

near 0.

For � > 0 we then define the following “peak forms”

f� = e��dz1 ^ . . . ^ dz p ^ dz1 ^ . . . dzq ,

which defines a smooth (p, q)-form on S satisfying @ S f� = 0 (note that Re(zn+1)+
ih is the restriction to S of the holomorphic function zn+1).

Similarly we set

 (z) = iRe
�
zn+1

�
� h(z) � 2

nX
↵=q+1

|z↵|2 �

⇣
Re(zn+1) + ih(z)

⌘2
.

Then we also have

Re (z)  �

1
2

 
nX
↵=1

|z↵|2 + (Re(zn+1))2
!

near 0,

and we define the following “peak forms” of degree (n + 1� p, n � q) on S:

g� = e� dz p+1 ^ . . . ^ dzn+1 ^ dzq+1 ^ . . . ^ dzn.

Again we have @ Sg� = 0.
In the proof of the nonvalidity of the Poincaré lemma for the @ S-operator, the

forms f� and g� play an essential role, because their properties contradict the ex-
istence of certain a priori estimates. Also our proof of Theorem 1.1 is based on
the existence of forms with the analogous properties up to some terms vanishing to
infinite order at the point under consideration.

For more details on the construction of the corresponding functions and forms
in the higher codimensional situation, we refer the reader to the paper [1, page 388].
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Proof of Theorem 1.1. Let us first consider the case q > 0, and assume by con-
tradiction that both H p,q(M) and H p,q+1(M) are finite dimensional. In order to
make the proof as clear as possible, we first assume that k = 1 (CR manifold of
hypersurface type).

By the assumption that H p,q(M) is finite dimensional we get that

@M : C1

p,q�1(M) �! C1

p,q(M)

has closed range. Then Banach’s open mapping theorem implies that there exist a
constant C1 > 0 and an integer m1 > 0 such that for all f 2 @MC1

p,q�1(M) there
exists u 2 C1

p,q�1(M) satisfying @Mu = f and

kuk0  C1k f km1 . (2.1)

Here k · km denotes the usual Cm-norm on C1

·,· (M).
Reasoning as before, the assumption that H p,q+1(M) is finite dimensional im-

plies that there exist a constant C2 > 0 and and integer m2 > 0 such that for all
g 2 @MC1

p,q(M) there exists h 2 C1

p,q(M) satisfying @Mh = g and

khkm1  C2kgkm2 . (2.2)

Using Stokes’ formula, we have for every f = @Mu 2 @MC1

p,q�1(M) and every
g 2 C1

n+1�p,n�q(M) that
Z
M
f ^ g =

Z
M
@Mu ^ g = (�1)p+q

Z
M
u ^ @Mg.

Hence (2.1) implies
����
Z
M
f ^ g

���� . C1k f km1 · k@Mgk0 (2.3)

for every f 2 @MC1

p,q�1(M) and every g 2 C1

n+1�p,n�q(M). Here a . b means
that there exists a constant C > 0 such that a  C · b.

Now let l := dim H p,q(M) < +1, and let � be an open neighborhood of
p0 2 M such that for every point x 2 �, there exists a characteristic conormal
direction ⇠x such that Lx (⇠x , ·) has q negative and n � q positive eigenvalues.

We choose l different points p1, . . . , pl inside �, all different from p0. More-
over, we choose cut-off functions � j , j = 0, . . . , l, with � j ⌘ 1 near p j , such that
the � j ’s have disjoint supports. For each 0  j  l, we then make the following
construction:

Choose local coordinates z1 = x1 + i xn+1, . . . , zn = xn + i x2n, x2n+1 for M
so that p j becomes the origin. By the formal Cauchy-Kowalewski procedure, we
can find smooth complex valued functions ' = ('1, . . . ,'n+1) in an open neigh-
borhood U of 0 with each 'i (0) = 0, d'1 ^ . . . ^ 'n+1 6= 0 in U , and such that
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@M'i vanishes to infinite order at 0. Then ' : U �! Cn+1 gives a smooth local
embedding M̃ = '(U) of M into Cn+1. On M̃ there is the CR structure induced
from Cn+1; it agrees to infinite order at 0 with the original CR structure on M . In
particular M̃ is a smooth real hypersurface in Cn+1 which is strictly q-convex and
strictly (n � q)-concave with respect to the induced CR structure. As explained
in the paragraphs preceeding this proof this means that after possibly shrinking U ,
there are smooth complex valued functions � j and  j on U with @M� j and @M j
vanishing to infinite order at 0 satisfying

Re� j  �

1
2
|x |2 on U, (2.4)

Re j  �

1
2
|x |2 on U (2.5)

and
� j +  j = �2|x |2 + O

⇣
|x |3

⌘
(2.6)

(one constructs the corresponding functions � and  on M̃ and considers the pull-
back under '.)

Moreover, T ⇤M is spanned by forms

!1 = dz1 + O
�
|x |1

�
, . . . ,!n = dzn + O

�
|x |1

�
,

!1 = dz1 + O
�
|x |1

�
, . . . ,!n = dzn = O

�
|x |1

�
,

✓ = dx2n+1 + O
�
|x |1

�

which are d-closed to infinite order at 0 (here, of course, 3T 0,1M is spanned by
!1, . . . ,!n). Following again [1] or [7], by the geometric condition on the Levi-
form of M wemay also assume that @M� j^!1^. . .^!q and @M j^!q+1^. . .^!n
vanish to infinite order at 0.

For each real � > 0 we now define

f �j = � j e�� j!1 ^ . . . ^ !p ^ !1 . . . ^ !q .

This is a smooth (p, q)-form on M . Moreover the properties of � j imply that
@M( f �j ) is rapidly decreasing with respect to � in the topology of C1(M) as �
tends to infinity. Indeed, by (2.4) the function exp(�� j ) , and any derivative of it
with respect to x , is rapidly decreasing as � ! +1, while all other terms, and their
derivatives with respect to x , have only polynomial growth in �.

We also set

g�j = � j e� j!p+1 ^ . . . ^ !n ^ ✓ ^ !q+1 ^ . . . ^ !n.

Then, arguing as before, @M(g�j ) is rapidly decreasing with respect to � in the topol-
ogy of C1(M) as � tends to infinity.
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Next, we solve @Mu�j = @M f �j with an estimate���u�j
���
m1

 C2
���@M f �j

���
m2

, (2.7)

using (2.2). Hence ku�jkm1 is rapidly decreasing with respect to �. Defining f̃ �j =

f �j � u�j , we obtain a smooth, @M -closed (p, q)-form on M .
Since dimH p,q(M) = l, there exist constants c�0 , . . . , c

�
l , not all equal to zero,

such that
c�0 f̃

�
0 + . . . + c�l f̃

�
l 2 Im@M .

To get a contradiction, we are going to use the estimate (2.3) with f =

Pl
j=0 c�j f̃

�
j

and g =

Pl
j=0 c

�
j g�j . We have

Z
M
f ^ g=

Z
M

 
lX
j=0

c�j f̃
�
j

!
^

 
lX
j=0

c�j g
�
j

!

=

Z
M

 
lX
j=0

c�j
⇣
f �j � u�j

⌘!
^

 
lX
j=0

c�j g
�
j

!

=

lX
j=0

���c�j
���2
Z
M
f �j ^ g�j �

Z
M

lX
i, j=0

c�i c
�
j u
�
i ^ g�j .

(2.8)

Note that for the third equality, we have used that the � j ’s have disjoint supports.
We are now going to estimate the term on the right of (2.8). We haveZ
M
f �j ^ g�j =

Z
M
�2j e

�(� j+ j )!1 ^ . . . ^ !n ^ ✓ ^ !1 ^ . . . ^ !n

=

Z
M

n
�2j e

�(�2|x |2+O(|x |3)

+ O(|x |)
o
dz1 ^ . . . ^ dzn ^ dz1 ^ . . . ^ dzn ^ dx2n+1.

Making the change of variables y =

p

�x , and afterwards changing the name of y
back to x , we getZ

M
f �j ^ g�j = ��n� 1

2

⇢Z
M
�2j

✓
x

p

�

◆
e�2|x |

2
+O(�

�
1
2 )dz1 ^ . . .

^ dzn ^ dz1 ^ . . . ^ dzn ^ dx2n+1 + O(��
1
2 )

�
.

Therefore we obtain ����
Z
M
f �j ^ g�j

���� � c��n� 1
2 (2.9)

for some constant c > 0.
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Also we can use (2.7) to get
�����
Z
M

lX
i, j=0

c�i c
�
j u
�
i ^ g�j

����� .
lX
j=0

���c�j
���2 sup

i, j

⇣
ku�i k0 · kg�j k0

⌘

.
lX
j=0

���c�j
���2 sup

i, j

⇣��@M f �i
��
m2

·

��g�j ��0
⌘

.

Now k@M f �i km2 is rapidly decreasing with respect to �, whereas kg�j k0 is of poly-
nomial growth with respect to �, hence we get

�����
Z
M

lX
i, j=0

c�i c
�
j u
�
i ^ g�j

����� 

lX
j=0

���c�j
���2 ��n�1

for sufficiently large �. Combining this with (2.9), we get

����
Z
M
f ^ g

���� �

c
2

lX
j=0

���c�j
���2 ��n� 1

2 (2.10)

for sufficiently large �.
On the other hand, using (2.3), we can estimate

R
M f ^ g as follows:

����
Z
M
f ^ g

����  C1k f km1 · k@Mgk0

.
lX
j=0

���c�j
���2 sup

i, j

⇣�� f̃ �j ��m1 ·

��@Mg�j ��0
⌘

.
lX
j=0

���c�j
���2 sup

i, j

⇣�� f �j ��m2+1 ·

��@Mg�j ��0
⌘

.

Since k f �j km2+1 is of polynomial growth in � whereas k@Mg�j k0 is rapidly decreas-
ing with respect to �, we get that

����
Z
M
f ^ g

���� .
lX
j=0

���c�j
���2 ��n�1.

This contradicts (2.10) and therefore proves that either H p,q(M) or H p,q+1(M)
has to be infinite dimensional.

Now, replacing ⇠ by�⇠ , it also follows that either H p,n�q(M)or H p,n�q+1(M)
is infinite dimensional.
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For q = 0, the statement is essentially Boutet de Monvel’s result [4]: in this
case, M is strictly pseudoconvex at p0. If H p,1(M) was finite dimensional, then
in particular the range of @M was closed in C1

p,1(M). But then one can construct
infnitely many linearly independent CR functions on M as in [4].

Also, the Levi-form Lpo(�⇠, ·) has n > 0 negative and 0 positive eigenvalues.
By what already proved, we therefore know that H p,n(M) is infinite dimensional
(note that H p,n+1(M) is always zero).

If k > 1, the proof is essentially as before, with Cn+1 replaced by Cn+k . The
crucial point is to observe that the approximate CR embedding M̃ in Cn+k , which
now has real codimension k, is contained in a hypersurface which is strictly q-
convex and strictly (n � q)-concave. Then ⇠ corresponds to + or – the conormal to
the hypersurface at p0. As before, this gives us the existence of smooth functions
� j and  j with the same properties that were essential in the proof for k = 1.

Proof of Theorem 1.2. The theorem follows immediately from Theorem 1.1. In-
deed, it suffices to note that the assumptions on M imply that the classical condi-
tions Y (q+1) and Y (n�q+1) are satisfied. Hence the @M -complex is 12 -subelliptic
in degree (p, q+1) and (p, n�q+1) (see [5, Theorem 5.4.9]), hence H p,q+1(M)
and H p,n�q+1(M) are finite dimensional.

Proof of Theorem 1.3. The assumptions on M imply that M is q-pseudoconcave
(see [6] for the definition), hence the @M -complex is ✏-subelliptic in degree (p, q+

1) for some ✏ > 0 (see [6] for the proof), hence H p,q+1(M) is finite dimensional.
Again the statement then follows from Theorem 1.1.

3. Corollaries and remarks

We would like to emphasize that Theorems 1.1, 1.2, 1.3 are valid for an abstract
CR manifold M , which might possibly be not even locally CR embeddable at any
point. However, it is of some interest to consider the situation where M is globally
CR embedded as a generic CR submanifold of some complex manifold X , and ask
what these theorems imply about the pair (X,M). Then the complex dimension of
X is n+k, and we have the usual Dolbeault cohomology groups H p,q(X), as well as
the Dolbeault-like cohomology groups H p,q(X,I). The latter consists of smooth
@-closed forms on X modulo smooth @-exact forms on X , in which all forms are
required to have zero Cauchy data along the submanifold M . (Think of the real
codimension k of M in X as corresponding to k “time variables".) More precisely,
we consider the sheaf IM of germs of C1 functions on X which vanish on M . Then
we denote by I the sheaf of C1

·,· (X)-modules which is locally generated by IM and
@IM .
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The interpretation of H p,q+1(X,I) is that it is the obstruction to the solvability
of the general inhomogeneous Cauchy problem

(
@u = f on X
u = u0 on M.

(3.1)

Here f is a given smooth @-closed (p, q + 1)-form on X , u0 is a given smooth
@M -closed tangential (p, q)-form on M , and it is assumed that the data { f, u0}
are compatible (see [2, page 350–351]). The desired solution u to the problem
(3.1) should be a smooth (p, q)-form on X . Then the solvability of (3.1) for all
compatible data is equivalent to the vanishing of H p,q+1(X,I). If, for example,
H p,q+1(X,I) is infinite dimensional, it means that there is an infinite dimensional
set of equivalent classes of data for which (3.1) has no solution (see [2]). From
Theorem 1.1 and standard exact sequences, such as the Mayer-Vietoris sequence,
we obtain the following:

Corollary 3.1. With M as in Theorem 1.1, assume X is either compact or Stein.
Then:

(a) Either H p,q+1(X,I) or H p,q+2(X,I) is infinite dimensional;
(b) Either H p,n�q+1(X,I) or H p,n�q+2(X,I) is infinite dimensional.

Proof. If X is compact, then we have dimHr,s(X) < +1 for 0  r, s  n + k,
whereas Hr,s(X) = 0 for 0  r  n + k, 1  s  n + k if X is Stein. Therefore
we may use the following long exact sequence

. . . ! Hr,s(X) ! Hr,s(M) ! Hr,s+1(X,I) ! Hr,s+1(X) ! . . .

and Theorem 1.1 to conclude.

In the special case k=1, we may assume M divides X into complex manifolds-
with-boundary, which we call X� and X+ (the common boundary is, of course, M).
Then, roughly speaking, the cohomology group H p, j+1(X,I) is isomorphic to the
direct sum of H p, j (X�) and H p, j (X+) modulo some global Dolbeault cohomol-
ogy groups of X . Therefore the hypersurface case of Corollary 3.1 then breaks
down into:

(a) At least one of H p,q(X+), H p,q(X�), H p,q+1(X+), H p,q+1(X�) is infinite
dimensional;

(b) At least one of H p,n�q(X+), H p,n�q(X�), H p,n�q+1(X+), H p,n�q+1(X�)
is infinite dimensional.

We should emphasize here that the above corollary requires a hypothesis on M
at only one single point p0 on M and in only one single characteristic conormal
direction ⇠ . This has the following consequence: Suppose M is generically CR
embedded in X , as above, with X either compact or Stein, but that initially no other
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hypotheses are made about M . Then the situation is initially whatever it is. But if
now we make arbitrarily small smooth modifications of M at a few points, we can
produce a modified CR manifold M̃ , such that for the new pair (X, M̃), there is a
plethora of infinite dimensional cohomology groups H p,⇤(X, ˜I).

Note that in Theorems 1.2 and 1.3 the situation is quite different. In those
theorems some hypothesis is needed at each point of M , which puts a much greater
constraint of the “shape" of M , and we are then in a territory that is less novel and
has been much more discussed in the literature.

Indeed, with M as in Theorem 1.2, and X compact, we know from [3, page
805] that it is H p,q(X�) and H p,n�q(X+) that are infinite dimensional. Also
H p, j (X�) is finite for j 6= q and H p, j (X+) is finite for j 6= n � q. So in this
context, given the finiteness theorems proved in [3], what Theorem 1.2 provides us
in most cases is just a new proof of the infinite dimensionality of H p,q(X�) and
H p,n�q(X+). We should also recall from [3] that when 2q 6= n, we therefore have
a good one sided global Cauchy problem in degree q from the X� side, and another
one in degree n � q from the X+ side. Both these Cauchy problems are almost al-
ways solvable. If 2q = n, then we have an almost always solvable Riemann-Hilbert
problem in degree q = n � q.

Now with M as in Theorem 1.3 and X compact, M is a maximally pseudo-
concave generic CR submanifold of X , of codimension k. Theorem 1.3 gives us a
new proof (in the maximally pseudoconcave case) of the infinite dimensionality of
H p,q(M), which is related to [6, Theorem 4.2]. In that situation the global solv-
ability of the inhomogeneous Cauchy problem (3.1) is obstructed by the infinite
dimensional H p,q+1(X,I).

4. Examples

Standard examples of compact hypersurfaces satisfying the assumptions of Theo-
rem 1.2 are the real projective hypersurfaces

M =

n�
z0 : z1 : . . . : zn+1

�
2 CPn+1 | Im

�
z0zn+1

�
=

��z1��1 + . . . +
��zq ��2 �

��zq+1
��2

� . . . �
��zn��2o.

Various other examples of CR manifolds satisfying the assumptions of Theorem
1.2 or Theorem 1.3 have been constructed by C. Medori and M. Nacinovich: They
continued the investigations of Tanaka and developed the algebraic theory of Levi-
Tanaka algebras in order to construct homogeneousCR manifolds of arbitrary codi-
mension k. In [9, Theorem 4.5] they showed that if the Levi-Tanaka algebra g is
semisimple, then the associated homogeneous CR manifold Mg is compact. More-
over, in [10] it was proved that the Levi-form of M is nondegenerate if and only if
the Levi-Tanaka algebra is finite dimensional. A complete classification of semisim-
ple Levi-Tanaka algebras was also given in [10]. So in those examples, we get from
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Theorems 1.2 and 1.3 that for fixed p, one or two cohomology groups are infinite
dimensional, while all others are finite dimensional.

Here is a method to construct compact CR manifolds with at least approxi-
mately half of its cohomology groups being infinite dimensional: we start with a
compact CR manifold M of arbitrary type (n, k), which we assume to be generi-
cally CR embedded into some complex manifold X . Now we cut out a small piece
of M near a given point and glue in a small modification, arranging that q = 0 at
one point, that q = 1 at another point, . . . , and that q = n at still another point (all
happening locally in Cn+k). We denote the modified CR manifold by M̃ . Then,
using Theorem 1.1, we obtain that either H p, j (M̃) or H p, j+1(M̃) must be infinite
dimensional for all j = 0, . . . , n.

It is, however, far more difficult to produce examples of abstract CR structures
having a characteristic conormal direction whose associated Levi-form is nonde-
generate. Examples exist, but they are few. Here we would like to mention the
following example from [8, Theorem 6.16]:

Let Q ⇢ CPn+1, n � 1, be the hyperquadric defined by

Q =

�
z0z0 + z1z1 = z2z2 + . . . + zn+1zn+1

 
.

Then one can find a new CR structure on Q, which is not locally CR-embeddable
at all points of the divisor D = {z0 = 0}. We denote Q with this new CR strucure
by Q̃. The CR structure on Q̃ is such that at each point x 2 M , there exists a
characteristic conormal direction such thatLx (⇠, ·) has 1 negative and n�1 positive
eigenvalues, i.e. Q̃ satisfies the assumptions of Theorem 1.2 with q = 1. In this
situation, Theorem 1.2 yields that if n 6= 3, then H p,1(Q̃) is infinite dimensional,
and if n 6= 1, then H p,n�1(Q̃) is infinite dimensional, 0  p  n + 1. This is a
new result.
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