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Allen-Cahn approximation of mean curvature flow
in Riemannian manifolds I,

uniform estimates

ADRIANO PISANTE AND FABIO PUNZO

Abstract. We are concerned with solutions to the parabolic Allen-Cahn equation
in Riemannian manifolds. For a general class of initial conditions we show non-
positivity of the limiting energy discrepancy. This in turn allows us to prove
an almost monotonicity formula (a weak counterpart of Huisken’s monotonicity
formula) which gives a local uniform control of the energy densities at small
scales.

These results will be used in [41] to extend previous important results from
[31] in Euclidean space, showing convergence of solutions to the parabolic Allen-
Cahn equations to Brakke’s motion by mean curvature in Riemannian manifolds.

Mathematics Subject Classification (2010): 53C44 (primary); 35B25, 35B45
(secondary).

1. Introduction

We are concerned with the Allen-Cahn equation

@t u" = 1u" �

1
"2

f (u") in M ⇥ (0,1) , (1.1)

completed with the initial condition

u" = u"0 in M ⇥ {0} . (1.2)

Here " > 0 is a small parameter, M is an N -dimensional Riemannian manifold
with Ricci curvature bounded from below, 1 is the Laplace-Beltrami operator on
M , the function f is the derivative of a potential F with two wells of equal depth at
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u = �1 and at u = 1. To be specific, we will always assume for simplicity that f
satisfies

(H0)

8>>><
>>>:

(i) f = F 0, with F 2 C1(R), F even ;

(ii) f (0) = f (±1) = 0 , f < 0 in (0, 1) , f > 0 in (1,1),
f 0(0) < 0, f 0(±1) > 0 ;

(iii) F > 0 in R \ {±1}, F(±1) = 0 ;

(iv) min[↵,1) F 00 > 0, for some ↵ 2 (0, 1) .

A typical example is

F(u) =

1
2
(1� u2)2, f (u) = 2u(u2 � 1) .

We set
f"(u) :=

1
"2

f (u) , F"(u) :=

1
"2
F(u) .

Observe that problem

@t u" = 1u" �

1
"2

f (u") in RN
⇥ (0,1) , (1.3)

u" = u"0 in RN
⇥ {0}, (1.4)

which corresponds to problem (1.1)-(1.2) in the special case M = RN , has been
the object of detailed investigations in order to describe formation and evolution
of interfaces (approximatively) driven by their mean curvature. Indeed, it is well-
known that the term f" forces the solution u" to problem (1.3)-(1.4) to problem to
take values 1 or �1, as " ! 0+; moreover, the interface that separates the two
regions of RN

⇥ (0,1) in which u" converges to 1 or �1, say the region where
{|u"| < 1

2 }, is a set of thickness of order " that in the limit as " ! 0 approximatively
moves by mean curvature flow as long as time varies. A large number of papers
have been devoted to this type of results, using several methods. Without any claim
for completeness, we mention [1, 3, 8–15, 23–25, 31, 38, 42, 43]; observe that also
similar questions have been addressed also for the stationary equation (see, e.g.,
[29, 36, 39, 40]) and for systems (see, e.g., [6, 33]). For a comprehensive account
of literature on this subject, also containing the description of main results obtained
and various methods used, we refer the reader to [43] and references therein. In this
connection, note that in the literature several notions of mean curvature flows have
been considered (see, e.g., [4, 5, 13, 19–23,32,37,43]).

In the sequel, before describing the results of the present paper, we limit our-
selves to recalling those established in [31]; moreover, in general, we shall briefly
explain the line of arguments followed there to obtain them.

An important role is played by the one-dimensional standing wave q" for (1.3),
for which there hold:

q"rr (r) � f"(q"(r)) = 0 , r 2 R , (1.5)
q"r > 0, q"(0) = 0, lim

r!+1

q"(r) = 1, lim
r!�1

q"(r) = �1 . (1.6)
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Concerning initial conditions, as model case one usually considers well-prepared
data, i.e. in the form:

u"0(x) := q"
�
d̃(x,60)

�
(x 2 M) , (1.7)

where d̃(·,60) is the signed distance from the smooth boundary 60 of a bounded
domain E0 ⇢ RN , defined by

d̃(x,60) := d(x,60) if x 2 E0 , d̃(x,60) := �d(x,60) if x 2 RN
\ E0 ,

possibly regularizing the signed distance far away from the initial interface 60.
In [31] it is proved that when " > 0 is sufficiently small and u" solves problem

(1.3)-(1.4), the energy density

dµ"t :=

⇢
"

2
|ru"|2 +

1
"
F(u")

�
dx,

satisfies both a Brakke’s and a Huisken’s type formula, in analogy to Brakke’s in-
equality and Huisken’s monotonicity formula for a family {6t }t�0 of hypersurfaces
ofRN that evolve by mean curvature flow. However, such formulas for dµ"t involve
a new term: the discrepancy Radon measure

d⇠"t :=

⇢
"

2
|ru"|2 �

1
"
F(u")

�
dx .

A crucial point in [31] is to show that

d⇠"t  0 for all t � 0, " > 0 . (1.8)

This inequality, following [36] in the stationary case, is deduced from the inequality
��
rr"(x, t)

��
 1 for all x 2 RN , t � 0, (1.9)

where r" : RN
⇥ (0,1) is the function defined by

u"(x, t) = q"
�
r"(x, t)

�
for all x 2 RN , t > 0.

Note that, by hypothesis (1.7) on initial conditions u"0, inequality (1.9) is satisfied
for all x 2 RN and t = 0, since x 7! d̃(x,60) is 1-Lipschitz. Then by maximum
principle, applied to a certain parabolic equation satisfied by z := |rr"|2, it is
obtained for all x 2 RN , t > 0.

As a consequence of Huisken’s type monotonicity formula and (1.8), there
holds

d
dt

Z
RN
 (x, t)dµ"t (x)  0 , (1.10)
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i.e., monotonicity of the function t 7!

R
RN  (x, t)dµ"t (x); here, for each fixed

y 2 RN , s > 0,

 (x, t) ⌘  (x, t; y, s) :=

e�
|x�y|2
4(s�t)

[4⇡(s � t)]
N�1
2

for all x 2 RN , 0  t < s ; (1.11)

observe that this function  is, up to a multiplicative factor
p

4⇡(s � t), exactly the
backward heat kernel in dimension N .

Next it is shown that then there are a Radon measure µt onRN and a sequence
{"n} ⇢ (0,1), "n ! 0 as n ! 1 such that, for every t > 0, µ

"n
t converges

as Radon measure on RN to µt for all t � 0 as n ! 1. These measures are
shown to be (N � 1)-rectifiable, as a consequence of density bounds derived from
(1.10). Finally, Brakke’s inequality for dµt is obtained from the corresponding
approximate ones valid for dµ"t .

The aim of this paper and of [41] is to generalize the results in [31] recalled
above, to the case of solutions u" to problem (1.1)-(1.2) on Riemannian manifolds.
We always assume that there exists � 2 R such that

Ric(X, X) � �hX, Xi for all X 2 TxM, x 2 M ; (1.12)

here Ric denotes the Ricci tensor on M . Note that for M = RN , we have � = 0;
for the hyperbolic space HN , � = �(N � 1); for the sphere SN , � = N � 1 (see
Subsection 2). Indeed, in these cases (1.12) holds with the equality sign.

Observe that, under the assumption on the Ricci curvature, we can apply com-
parison principle for (1.1)-(1.2), obtaining uniqueness of solutions. In addition,
we can treat not only well-prepared initial conditions, but also quite general initial
conditions. Hence our results with M = RN extend those in [31] in this respect.

Note that while mean curvature flow has been investigated also on Rieman-
nian manifolds (see, e.g. [2, 27, 28, 30]), to the best of our knowledge, the question
of approximation of mean curvature flow via Allen-Cahn equation on Riemannian
manifolds has not been addressed. On the other hand, the connection between the
stationary Allen-Cahn equation and minimal hypersurfaces has been widely studied
e.g. in [16,39] and [40].

Now, we outline results that will be shown in the present paper and we briefly
mention the content of [41]. For any " > 0, define the energy density

dµ"t :=

⇢
"

2
|ru"|2 +

1
"
F(u")

�
dV(x), (1.13)

u" being a solution to equation (1.1) and dV the volume element on M . For dµ"t we
shall prove Brakke’s andHuisken’s type formulas (see Lemma 5.2, and respectively,
Lemma 5.7). Also in this case, they contain the discrepancy Radon measure

d⇠"t :=

✓
"

2
|ru"|2 �

1
"
F(u")

◆
dV(x) .



ALLEN-CAHN APPROXIMATION OF MEAN CURVATURE FLOW, I 313

For a general class of initial conditions, without supposing that u"0 are somehow
well-prepared, we prove that

lim sup
"!0+

sup
(x,t)2Q

⇠"t (x)  0 , (1.14)

for each compact subset Q ⇢ M ⇥ (0,1). To do this, we slightly improve an ele-
mentary but very clever idea from [35] and [29]. Observe that in [29] the stationary
problem in bounded domains of RN is addressed. Moreover, suitably localizing the
argument from [35], it is shown that the positive part of ⇠" is bounded, uniformly
with respect to ".

However, for well-prepared initial conditions u"0 also an alternative strategy
can be used. In fact, in Section 4 we prove for properly well-prepared initial condi-
tions an asymptotic control of discrepancy, by methods similar to those used in [31].
However, some differences from [31] occur, for the presence of the general Rieman-
nian metric on M , which we describe below.

As a consequence, instead of q", it is convenient to consider the one-dimen-
sional profile h", which is the solution, for any " > 0, to problem

8<
:

1
'

�
'h0

"

 
0

= f"(h") in (0, 1)

h"(0) = 0, h"(1) = 1 ,

(1.15)

(see Subsection 4.1) where ' : [0, 1] ! (0,1) is an increasing convex smooth
function such that '(0) � 1,'0(0) = 0 that will be chosen to balance some cur-
vature effects. We still denote by h" the odd reflection of the solution of (1.15).
Indeed, note that the ordinary differential equation in (1.15), for the choice ' ⌘ 1,
coincides with that solved by q" but for technical reasons it is more convenient to
consider (1.15) on a bounded interval. As a preliminary step we shall prove that
(see Subsection 4.1)

lim sup
"!0

sup
⌧2(0,1)

"

⇢
1
2
h0

"(⌧ )
2
� F"

�
h"(⌧ )

��
 0 , (1.16)

exploiting the fact that (1.15) is now solved in a bounded interval.
Concerning the initial conditions u"0, well-prepared data will be now of the

form (see Subsection 4.2):

u"0(x) := h"
⇣
9
�
d̃(x,60)

�⌘
(x 2 M) , (1.17)

where E0 ⇢ M is an open bounded subset with smooth boundary60 := @E0. Now,
d(x,60) is the Riemannian distance of x 2 M to 60, while the signed distance
d̃(x,60) is defined accordingly and 9(·) is a suitable smoothed and 1-Lipschitz
truncation of the identity, which makes u"0 constant far from 60, where the distance
function is possibly singular.
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Define the function z" : M ⇥ [0,1) ! R by

u"(x, t) := h"
�
z"(x, t)

� �
x 2 M, t � 0

�
. (1.18)

Under the assumption

|rz"(x, 0)|  1 for all x 2 M , (1.19)

which clearly follows if (1.17) holds, and
✓
'0

'

◆
0

� 2max{��, 0} in (0, 1) , (1.20)

we shall prove that (see Subsection 4.3)

|rz"(x, t)|  1 for all x 2 M, t � 0 . (1.21)

Indeed, note that, in view of (1.19) and (1.20), we can infer that w̃ ⌘ 1 is a super-
solution to a certain parabolic equation solved by |rz"|2. Hence, from maximum
principle we can prove that (1.21) holds true. This argument fails, if ' ⌘ 1 and
� < 0, because of the presence of an extra term related to the Ricci curvature; so,
we cannot consider q" instead of h", e.g. when M = HN , and this is the reason
why we have to introduce the profile h" defined in (1.15). As a consequence of
(1.16)-(1.21) we have (1.14) for any Q ⇢ M ⇥ [0,1).

Note that both for general initial conditions and for well prepared initial condi-
tions we cannot prove that the discrepancy term is nonpositive, as occurred in (1.8)
in the Euclidean space. However, condition (1.14) will play the same role as (1.8)
has in the case M = RN .

Then, in Section 5 from Huisken’s type equality for the density energy and
(1.14) we obtain the following inequality (see Theorem 5.8)

d
dt

Z
M
�(x, t)dµ"t 

C3
p

s � t

Z
M
�(x, t)dµ"t + C4 +

C5
p

s � t
(1.22)

for all 0 < t0  t < s, for some positive constants C3,C4,C5 = C5(T0) indepen-
dent of ". Inequality (1.22) is a natural counterpart on a manifold of the monotonic-
ity formula (1.10) but, due to the presence of extra terms, (1.22) does not imply
monotonicity for the function t !

R
M �(x, t)dµ"t (x).

Here, for any fixed reference point (y, s) 2 M⇥(0,1), �(x, t) ⌘ �(x, t; y, s)
is a suitable kernel, which replaces (1.11). It depends explicitely on the Riemannian
distance d(x) = d(x, y) for x, y 2 M as follows

�(x, t) = ⇣̂ (d2(x))(s � t)�
N�1
2 e�

d2(x)
4(s�t) , (1.23)

furthermore, in constrast with the case of RN , it has a suitably small compact sup-
port in space due to the cut-off function ⇣̂ . As a consequence, it allows us to control



ALLEN-CAHN APPROXIMATION OF MEAN CURVATURE FLOW, I 315

the behavior of dµ"t only at small scales. For this reasons, we shall refer to (1.22)
as a local almost monotonicity formula. This choice of the kernel is very natural,
since, up to the cut-off and the factor

p

s � t , is nothing but the leading order term
in the expansion of the backward heat kernel on the manifold M with pole at (y, s)
for short times. It would be very interesting to find a more precise localized mono-
tonicity formula for the Allen-Cahn equation on a manifold containing no error
term. It should be analouge to the one in [31] for RN but local as the celebrated
formula in [18] for the mean curvarure flow, still in RN .

As a consequence of (1.22) we obtain, for all 0  t0 < t < s,

G(t)  e
C3
2 (

p

s�t0�
p

s�t)⇥G(t0) + C4(t � t0) + C5(
p

s � t0 �

p

s � t)
⇤
, (1.24)

where
G(t) :=

Z
M
�(x, t)dµ"t (0  t < s)

and this is precisely the inequality needed to have uniform density bounds for the
measures µ"t at small scales. We conclude Section 5 giving some useful compact-
ness properties for the solutions u" both in L1loc and in the space of functions of
bounded variation.

Finally, let us mention that, out of its independent interest, inequality (1.24)
will be used in [41] to prove that there exist a Radon measure µt on M and a
sequence {"n} ⇢ (0,1), "n ! 0 as n ! 1 such that, for every t > 0, µ

"n
t

converges as Radon measure on M to µt for all t � 0 as n ! 1. Moreover, µt
will be (N � 1)-rectifiable and they will satisfy the Brakke’s inequality, i.e. they
will be a generalized solution of the mean curvature flow in the sense of varifolds
with the surface measure on 60 as initial data.

2. Preliminaries from differential geometry

In this section we recall some basic facts and notations from Riemannian Geometry,
that will be used in the sequel and in [41], too (for more details see, e.g., [26, 34]).

Let M be an N -dimensional Riemannian manifold, equipped with a metric
tensor g. For any given point x 2 M , let TxM be the tangent space at x , T M
be the tangent bundle, T ⇤

x M be the cotangent space at x , T ⇤M be the cotangent
bundle, 0(T M) denote the vector space of smooth sections of T M , i.e. the smooth
vector fields on M . In local coordinates {x1, . . . , xN }, we have a natural local
basis

n
@
@x1 , . . . ,

@
@xN

o
for T M . The metric tensor g = gi j dxi ⌦ dx j is represented

by a smooth matix-valued function gi j = g
⇣
@
@xi ,

@
@x j

⌘
, so that locally the inner

Riemannian product h·, ·i is given by

hX,Y i := gi j XiY j , (2.1)

where the vectors X = Xi @
@xi , Y = Y i @

@xi belong to the tangent space TxM (see
[7]). The induced geodesic distance between any two points x, y 2 M will be
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indicated by d(x, y). For any x0 2 M, r > 0 let Br (x0) :=

�
x 2 M | d(x, x0) <

r
 
. The gradient ru of a function u 2 C1(M) is given by

�
ru
�i

:= gi j @u
@x j (i =

1, . . . , N ) , so that du(X) = hX,rui for any X 2 0(T M) .
Recall that for any vector field Y 2 0(T M) there exists a unique smooth

function on M , denoted by divY , such that the following identity holds:
Z
M
� divY dV = �

Z
M

hY,r�i dV

for all � 2 C1c (M). Furthermore, in local coordinates divY =
1

p

ḡ
@
@xk

�p
ḡY k

�
,

where ḡ := det (gi j ).
The Laplace-Beltrami operator on M is given by

1 = div �r =

1
p

ḡ
@

@xi

✓p
ḡgi j

@

@x j

◆
.

The Levi-Civita connection D of the metric g is given by D @

@xi

@
@x j = 0ki j

@
@xk ,where

0ki j :=

1
2
gkl
✓
@g jl
@xi

+

@gil
@x j

�

@gi j
@xl

◆
(2.2)

are the Christoffel symbols.
We also recall that the Hessian of f 2 C2(M; R) is the symmetric endomor-

phism of T M defined by

Hess f (X) := DX r f for any X 2 0(T M) ,

or its associated symmetric bilinear form on T M defined by

(Hess f )(X,Y ) := X (Y ( f )) � DX Y ( f ) for any X,Y 2 0(T M) .

We have:

(Hess f )(X,Y ) = hDX (r f ),Y i for any X,Y 2 0(T M) .

Also, in local coordinates, there holds

(Hess f )(X,Y ) =

X
i, j=1,N

Xi X j (Hess f )i j ,

where

(Hess f )i j = (Hess f )
✓
@

@xi
,
@

@x j

◆
=

@2 f
@xi@x j

� 0ki j
@ f
@xk

. (2.3)
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In terms of the Hessian, the Laplace-Beltrami operator rewrites as

1 f =

NX
i, j=1

gi j (Hess f )
✓
@

@xi
,
@

@x j

◆
= tr (Hess f ) ;

here and hereafter tr denotes the trace operator (taken fiberwise).
For any y 2 M , denote by inj(y) the injectivity radius at y. In the sequel we

use the next lemma.

Lemma 2.1. Let y 2 M, d(x) := d(x, y) for all x 2 M . For any compact subset
K ⇢ M there exists a constant C > 0 such that if

y 2 K , d(x) 

1
2
inf
y2K

inj(y),

then����12 Hess d2(x)(X, X) � g(X, X)

����  Cd2(x)kXk
2 for any X 2 TxM , (2.4)

and ����121d2(x) � N
����  Cd2(x) . (2.5)

For u, v,� 2 C2(M; R), it is direct to see that:⌦
ru,rhr�,rvi

↵
= (Hess�)(ru,rv) + (Hess v)(ru,r�) . (2.6)

The curvature tensor of the Levi-Civita connection D is given by

R(X,Y )Z := DX DY Z � DY DX Z � D[X,Y ] Z for any X,Y, Z 2 0(T M) ;

in local coordinates, R
⇣
@
@xi ,

@
@x j

⌘
@
@xl = Rkli j

@
@xk , where

Rkli j :=

@0kjl

@xi
�

@0kil
@x j

+ 0kim0
m
jl � 0kjm0

m
il .

The sectional curvature of the plane X ^ Y spanned by the linearly independent
tangent vectors X = Xi @

@xi ,Y = Y i @
@xi 2 TxM is

K (X ^ Y ) :=

hR(X,Y )X,Y i

|X ^ Y |
2 ,

where |X ^ Y |
2

= |X |
2
|Y |

2
� hX,Y i

2 . The Ricci curvature in the direction X =

Xi @
@xi 2 TxM is

Ric(X, X) := g jl
⌧
R
✓
X,

@

@x j

◆
X,

@

@xl

�
;
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the Ricci tensor is
Rik = g jl Ri jkl = Rki ,

where Ri jkl = gim Rmjkl .
Furthermore, recall the Bochner-Weitzenböch formula : for � 2 C2(M; R)

there holds

1
2
1(|r�|

2) = |Hess�|
2
+ hr�,r1�i + Ric(r�,r�) . (2.7)

3. Asymptotic control of discrepancy for general initial conditions

3.1. General initial conditions

Let E0 ⇢ M be an open bounded subset with C2-boundary @E0 = 60. Note that
there exist R0 > 0,C0 > 0 such that

HN�1�60 \ BR(x)
�

 C0!N�1RN�1

for all 0 < R < R0 .
For any " > 0 set

E"(x, t) :=

1
2
|ru"|2 +

1
"2
F(u") (x 2 M, t � 0) ; (3.1)

clearly (see (1.13)),

dµ"t (x) = "E"(x, t)dV(x) (x 2 M, t � 0) . (3.2)

Concerning the initial conditions u"0 (and the corresponding µ"0 ⌘ µ"(·, 0) given by
(1.13)) we always assume the following:

(H1)

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(i) µ"0 ! ↵HN�1
b60 as " ! 0 as Radon measures, for some ↵ � 0 ;

(ii) u"0 ! 2�E0 � 1 as " ! 1 in BVloc(M)weakly� ⇤;

(iii) there exists C0 > 0 such that µ"0(BR(x))
!N�1RN�1  C0

for all x 2 M, 0 < R < R0, 0 < " < 1;
(iv) there exists k0 > 0 such that ku✏0k1  k0 ;

(v) u"0 2 C1(M) and there exists Č > 0 such that for any
0 < " < 1 kru"0k1 

Č
" .

Throughout this section, we will not assume any further structure assumption on
the initial data and, on the contrary, even the previous regularity assumptions both
on 60 and on u"0 could be further relaxed.
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3.2. Global existence and uniqueness results

Concerning existence and uniqueness of solutions to problem (1.1)-(1.2) we state
the next Proposition.

Proposition 3.1. Let the hypotheses (H0), (H1) be satisfied. Then problem (1.1)-
(1.2) admits a unique bounded solution. Moreover, u" 2 C1

�
M ⇥ (0,1)

�
\

C0
�
M ⇥ [0,1)

�
, and

|u"|  k0 for all x 2 M, t > 0 . (3.3)

In addition,

sup
">0

sup
t2(0,1)

"

Z
M
E"dV  C2 (3.4)

where C2 := sup">0 µ"0(M);

t 7!

Z
M
E"(x, t)dV(x) is nonincreasing for t > 0 . (3.5)

Proof. Existence and regularity of solutions can be shown by usual methods, e.g.
solving the corresponding IBV problems on an increasing family of bounded do-
mains with smooth boundary and arguing by local a-priori estimates and compact-
ness. In view of (1.12), from results in [17] uniqueness and comparison principles
for problem (1.1)-(1.2) can be easily deduced. In view of (H0) � (i i), the functions
v̄ ⌘ k0, v ⌘ �k0 are a supersolution and, respectively, a subsolution to problem
(1.1), (1.2). Hence, by comparison principle (3.3) follows. Finally, inequality (3.4)
and the property (3.5) follows passing to the limit in the global energy inequality
on the approximating domains.

Proposition 3.2. Let the hypotheses (H0), (H1) � (iv) be satisfied. Let u" be the
solution to problem (1.1)-(1.2). Then (3.3) holds true. Furthermore, for any com-
pact subset K ⇢ M and for any ⌧ 2 (0, T ) there exists a constant k̃ > 0 such
that

kru"(·, t)kL1(K ) 

k̃
"

for all t 2 (⌧, T ) ; (3.6)

"⇠"(x, t)  k̃ for all x 2 K , t 2 (⌧, T ). (3.7)

Proof. Note that (3.3) can be deduced as in the proof of Proposition 3.1. Moreover,
(3.6) follows by standard parabolic estimates, writing the equation in local coordi-
nates and arguing by scaling. Consequently,(3.7) is obtained, in view of (3.3). The
proof is complete.
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Remark 3.3. For further references, note that from (H1) � (i) and (3.5) it is direct
to see that, for each compact subset K ⇢ M, T > 0, ⌧ 2 [0, T ), there holds:

sup
">0

sup
t2(⌧,T )

"

Z
K
E"dV  C (3.8)

for some constant C > 0 depending on the compact subset K , ⌧ > 0, T > 0, and
independent of " > 0. Indeed, under (H1) � (i) we have

C  C2 , (3.9)

where C2 given in Proposition 3.1 is clearly independent of K , ⌧ > 0, T > 0 in
view of (3.4) and (3.5). However, in the sequel most of the time the arguments will
rely only on (3.8) and we shall not use the property (3.9).

3.3. Asymptotic control of discrepancy

We prove the next result.

Proposition 3.4. Let assumption (H0) hold true. Let {u"} be a family of uniformly
bounded solutions to problem (1.1)-(1.2), i.e. (3.3) is verified. Then (1.14) is satis-
fied.

In order to prove Proposition 3.4 we need some preliminary results.

Lemma 3.5. Let x̄ 2 M, r > 0, t̄ > 4r2. Let �0 = B4r (x̄) ⇥ (t̄ � 4r2, t̄],� :=

Br (x̄) ⇥ (t̄ � r2, t̄]. Assume that, for some C > 0,

sup
0<"<1

ku"kL1(�0)  C. (3.10)

Then, for any �0 2 (0, 2), there exists a constant C0 = C0(�,C, �0) > 0 such that

ku"kL1(�)  1+ C0"�0 for any " 2 (0, 1) . (3.11)

Proof. Fix any �0 2 (0, 2). It suffices to show the thesis with C0 = 1 and " ! 0+.
In fact, as a consequence of this, we can immediately get (3.11), taking possibly a
bigger C0.

Suppose, by contradiction, that there exists a sequence {"n} ⇢ (0, 1) such that
"n ! 0+ as n ! 1 and sup� u"n � 1 + "

�0
n . The case inf� u"n � �1 � "

�0
n can

be treated with obvious modifications; so we do not discuss it in details.
Let�1 := B2r (x̄)⇥ (t̄ � 2r2, t̄]. For any n 2 N select 'n 2 C1(�̄0) such that

'n ⌘ 1+

1
2
"�0n in �,

1 < 1+

1
2
"�0n  'n  1+ C in �0,

'n ⌘ 1+ C in �0 \�1 ;
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moreover, for some C̄ > 0, for all n 2 N,

|r'n| + |Hess('n)| + |@t'n|  C̄ in �0 . (3.12)

Set gn := u"n � 'n, so that

gn  �1 in
h
B4r (x̄) ⇥

n
t̄ � 4r2

oi
[

h
@B4r (x̄) ⇥

⇣
t̄ � 4r2, t̄

ii
.

Furthermore,

sup
�0

gn � sup
�
gn �

1
2
"�0n > 0 .

Then max�̄0 gn = gn(xn, tn) for some (xn, tn) 2 �0 . Thus, using (1.1), the fact
that u"n (xn, tn) > 1, (H0) � (iv) and (3.12) we obtain

0 � 1g(xn, tn) � @t g(xn, tn) = 1u"n (xn, tn) � @t u"n (xn, tn)

+ @t'n(xn, tn) �1'n(xn, tn)

=

F 0(u"n (xn, tn))
"2n

+ @t'n(xn, tn) �1'n(xn, tn)

�

F 0(u"n (xn, tn))
"2n

�

F 0('n(xn, tn))
"2n

+ @t'n(xn, tn) �1'n(xn, tn)

�

F 0((1� s)'n + su"n )
"2n

(xn, tn)
���s=1
s=0

+ @t'n(xn, tn) �1'n(xn, tn)

=

Z 1

0

d
ds

F 0((1� s)'n + su"n )
"2n

(xn, tn)ds + @t'n(xn, tn) �1'n(xn, tn)

=

gn(xn, tn)
"2n

Z 1

0
F 00((1� s)'n + su"n )(xn, tn)ds + @t'n(xn, tn) �1'n(xn, tn)

�

1
2

inf
1<s<1+C

F 00(s)"�0�2n � C̄ .

This is clearly impossible for n 2 N large enough, hence the thesis follows.

Define G(u) := "� (2H0 � u2), so that G > 0, G 00
= �2"� < 0. Set

�"G := "⇠"t � G =

"2

2
|ru"|2 � F(u") � G(u") ,
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where u" is a solution to equation (1.1). Hence, we have:

(1� @t )�
"
G = (1� @t )

"2

2
|ru"|2 � (1� @t )(F + G)

= "2
⇥
|Hess u"(ru",ru")|2 + hru",r1u"i

+ Ric(ru",ru") � hru",r@t u"i
⇤
+ (F 0

+ G 0)@t u"

� div
�
(F 0

+ G 0)ru"
�

= "2
⇥
|Hess u"(ru",ru")|2 + hru",r(1u" � @t u")i

+ Ric(ru",ru")
⇤

+ (F 0

+ G 0)(@t u" �1u") � (F 00

+ G 00)|ru"|2

= "2|Hess u"(ru",ru")|2 + "2 Ric(ru",ru")

�

1
"2

(F 0

+ G 0)F 0

� G 00

|ru"|2 .

(3.13)

Note that
|ru"|2|Hess u"(ru",ru")|2 �

1
4
��
r|ru"|2

��2 . (3.14)

To see this, take any p 2 M and fix an orthonormal frame {Ei }i=1,...,N around p.
Thus,

|ru"|2|Hess u"(ru",ru")|2 =

NX
i=1

|ru"|2|DEi ru
"
|
2

�

NX
i=1

�
hru",DEi ru

"
i

�2
=

1
2

NX
i=1

�
Ei |ru"|2

�2
=

1
4

���r|ru"|2
���2 .

So, (3.14) has been verified. From (3.13), (3.14) and (1.12) we deduce that, when-
ever ru" 6= 0,

"2|Hess u"(ru",ru")|2 �

1
"2|ru"|2

��
r(�"G + F + G)

��2

� 2
F 0

+ G 0

"2|ru"|
ru"

|ru"|
r�"G +

1
"2

(F 0

+ G 0)2,

therefore,

(1� @t )�
"
G � 2

F 0
+ G 0

"2|ru"|

⌧
ru"

|ru"|
,r�"G

�

�

1
"2

(G 0)2 +

1
"2
F 0G 0

+ �|ru"|2"2 � G 00

|ru"|2 .

We summarize these computations in the following:
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Lemma 3.6. Whenever ru" 6= 0, let

A" := (1� @t )�
"
G +

✓
2G 00

"2
� 2�

◆
�"G �

2
"2

(F 0
+ G 0)

|ru"|

⌧
ru"

|ru"|
,r�"G

�
; (3.15)

B" :=

✓
2��

2
"2
G 00

◆
(F + G) +

1
"2

(G 0)2 +

F 0G 0

"2
. (3.16)

Then there holds:
A" � B" . (3.17)

The next result is proved by adapting some techniques used in [29].

Lemma 3.7. Let x̄ 2 M, r > 0, t̄ > 4r2. Let �1 := B2r (x̄) ⇥ [t̄ � 2r2, t̄],� :=

Br (x̄) ⇥ [t̄ � r2, t̄]. Suppose that there exist � 2

h
0, 23

⌘
and C̄ > 0 such that

sup
�1

"⇠"  C̄"� for any 0 < " < 1 . (3.18)

Then, for any � 2

⇣
� , 23 (� + 1)

⌘
, there exists C > 0 such that

sup
�
"⇠"  C"� for any 0 < " < 1 . (3.19)

Proof. Fix any � 2

⇣
� , 23 (� + 1)

⌘
. Define G(u") := "� [2H0 � (u")2] . So, for

some Č > 0, for any 0 < " < 1, �"G  Č"� in �1 . We shall prove that, for
" ! 0+,

sup
�
�"G < "� . (3.20)

Note that from (3.20) it follows that, for some C > 0,

sup
�
�"G  C"� for any 0 < " < 1,

so, (3.19) follows (possibly taking a bigger C > 0), and in turn this inequality
directly yields (3.19), by definition of �"G .

Suppose, by contradiction, that (3.20) is false and that there exists a sequence
{"n} ⇢ (0, 1) such that "n ! 0 as n ! 1 and sup� �

"n
G � "�n .

Choose ' 2 C1

0 (�1) such that 0  '  1,' ⌘ 1 in �. Set �̃"n := �
"n
G +

Č"�n '. Clearly, in
⇥
B2r (x̄) ⇥ {t̄ � 2r2}

⇤
[

⇥
@B2r (x̄) ⇥ (t̄ � 2r2, t̄]

⇤
�̃"n  sup

�1

�
"n
G  Č"� .

Moreover,

sup
�1

�̃"n � sup
�
�̃"n = Č"�n + sup

�
�
"n
G � Č"�n + "�n > Č"�n .
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Therefore, max�̄1 �̃
"n

= �̃"n (xn, tn) for some (xn, tn) 2 �1 .We have:

�̃"n (xn, tn) � Č"�n + "�n > 0,

so

"2n
2

|ru"n (xn, tn)|2�F(u"n (xn, tn)) + G(u"n (xn, tn)) + Č"�n (1� '(xn, tn)) + "�n .

Hence, for any n 2 N,

"2n
2

|ru"n (xn, tn)| � "
1+ �

2
n > 0 . (3.21)

Moreover, r�̃"n (xn, tn) = 0, thus, for some constant C' > 0, for any n 2 N

|r�
"n
G (xn, tn)|  C'"

�
n . (3.22)

We also have

0 � 1�̃"n (xn, tn) � @t �̃
"n (xn, tn) = Č"�n [1'(xn, tn) � @t'(xn, tn)]

+1�
"n
G (xn, tn) � @t�

"n
G (xn, tn),

thus, for any n 2 N,

1�
"n
G (xn, tn) � @t�

"n
G (xn, tn)  C'"

�
n . (3.23)

Let A",B" be defined as in Lemma 3.6. We can find "̄ = "̄(�) > 0 such that for
any 0 < " < "̄ we have G00

"2
� 2� < 0 . For any 0 < " < "̄, using (3.21)-(3.23), we

also have

A"  C̃
h
"
�
n + "

�
n "

�1� �
2

n
�
|F 0(u"n (xn, tn))| + |G 0(u"n (xn, tn))|

�i
;

here and hereafter we always denote by C̃ possibly different constants, indepen-
dent of n and ". On the other hand,

⇣
2��

G00

"2

⌘
(F + G) � 0. Therefore, if

1
2  |u"n (xn, tn)|  1, then

B" � C̃

"
"2�

"2
+

"�

"2
�
|F 0(u"n (xn, tn))| + |G 0(u"n (xn, tn))|

�#
. (3.24)

If |u"n (xn, tn)| 
1
2 ,

B" � C̃
"�

"2
�
min

|s|1/2
F(s)

�
. (3.25)
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If 1  |u"n (xn, tn)|  1+ C"�0 , then

B" � C̃
�1"2� � �2"�+�0

"2
, (3.26)

for some �1 = �1(H0) > 0,�2 = �2(F 00) > 0, for �0 > � fixed.
Clearly, at least one inequality among (3.24), (3.25), (3.26) holds for infinitely

many n 2 N .
Since � < � < 2

3 (� +1), we have � < � +1�
�
2 . So, for n 2 N large enough,

"�n
"2n

� C̃"�n "
�1� �

2
n .

Therefore, when 1
2  |u"n (xn, tn)|  1, for n 2 N large enough, we have "2�n

"2n


C̃"�n , so
"
�2��+2�
n  C̃ . (3.27)

However, � < � < 2
3 (� +1) < 2. Therefore,�2�� +2� < �2�� +

4
3 (� +1) =

�
2
3 +

�
3 < 0. Hence (3.27) is impossible, for n 2 N large enough.

When |u"n (xn, tn)| 
1
2 ,

2 min
|s| 1

2

{F(s)}
"�

"2
 B"  A"  C̃

⇣
"
�
n + "

�
n "

�1� �
2

n
⌘

.

Since � + 1�
�
2 > � , this yields "

�
n
"2n

 C̃"�n , which is again impossible.
When 1  |u"n (xn, tn)|  1+ C"�0 , since � < �0, from (3.26) we have

B" � C̃
"2�n
"2

. (3.28)

Furthermore,
A"  C

⇣
"
�
n + "

�
n "

�1� �
2+�

n
⌘

. (3.29)

As above it is easily seen that (3.28) and (3.29) are in contrast. This completes the
proof.

Proof of Proposition 3.4. Let �0,� be defined as in Lemma 3.7. Moreover, set

�2 := B 3
2 r

(x̄) ⇥ [t̄ �

3
2
r2, t̄] .

By Proposition 3.2, for some C0 > 0,

sup
�1

"⇠"  C0"0 for all 0 < " < 1.
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Thus, for any 0 < � < 2
3 , for some C1 > 0, by Lemma 3.7,

sup
�2

"⇠"  C1"� for all 0 < " < 1 .

Hence, applying once more Lemma 3.7, for any 0 < � < 10
9 , for some C > 0,

sup
�
"⇠"  C"� for all 0 < " < 1 . (3.30)

Now, the conclusion easily follows, choosing 1 < � < 10
9 in (3.30).

4. Asymptotic control of discrepancy for well-prepared initial conditions

In this section we prove an asymptotic control for the discrepancy ⇠", using different
methods from those in Section 3. To this purpose we need to assume that the initial
conditions are properly well prepared (see Subsection 4.2) and the structure of the
initial condition will emerge in the next two paragraphs.

4.1. One-dimensional profile

Now we study problem (1.15), where ' : [0, 1] ! (0,1) is an increasing convex
smooth function such that '(0) � 1 and '0(0) = 0. Let us define the energy

E(h") :=

Z 1

0

✓
1
2
h0

"
2
+ F"(h")

◆
'(⌧ )d⌧ .

By the same arguments as in the proof of Proposition 3.1 in [40] it is possible to
show next

Lemma 4.1. For any " > 0 there exists a unique solution h" to problem (1.15).
Furthermore, h" is increasing and concave in [0, 1], and there holds

E"(h") 

C1
"

, 0 < h0

" 

C1
"

, (4.1)

for some positive constant C1 independent of ".

The following lemma gives the main property of the profile function h".

Lemma 4.2. For any " > 0 let h" be the unique solution to problem (1.15), and
still denote by h" its odd reflection. Then (1.16) holds true.

Proof . Clearly we may assume ⌧ � 0. From (1.15) we get

d
d⌧

✓
1
2
h0

"
2
� F"(h")

◆
= h0

"

⇥
h00

" � F 0

"(h")
⇤

= �

'0

'
h0

"
2

 0 in (0, 1) . (4.2)
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Still denote by ' its even reflection. Since h" is odd and ' is even, '0(⌧ ) > 0 for all
⌧ > 0, from (4.2) we get

"

✓
1
2
[h0

"(⌧ )]
2
� F"(h"(⌧ ))

◆
 "

1
2
[h0

"(1)]
2
+ "

Z 1

|⌧ |

'0

'
h0

"
2ds in (�1, 1) . (4.3)

Furthermore, using (4.1) we have

"

Z 1

0

'0

'
(h0)2ds 

 
"

Z 1

0

(h0)2

'2
ds

! 1
2
 
"

Z 1

0
(h0)2'02ds

! 1
2

 C1

 
"

Z 1

0
('0)2(h0)2ds

! 1
2

.

(4.4)

We shall prove that

|h0

"| 

o(1)
p

"
if ⌧ >

p

" . (4.5)

To this purpose, note that since h" is concave in (0, 1), we have:

0 < h0

"(⌧ ) 

1� h"(k")
p

" � k"
for all ⌧ 2 [

p

", 1] , (4.6)

for each k 2 (0,1) and for " 2 (0, 1) so small that k
p

" < 1. The function
v"(s) := h"(s") (s 2 [0, 1✏ ]) solves v00

" + " '
0(s")
'(s") v0

" = f (v), and it is easy to see that
it converges as " ! 0+ in C2loc(R) to a monotone increasing solution v = v(s) of
equation

v00

� f (v) = 0 in (�1,1) . (4.7)
Now, note that

"2
⇢
1
2
h0

"(⌧ )
2
� F"(h"(⌧ ))

�
= "2

Z 1

⌧

'0(s)
'(s)

h02
" (s)ds+"2

⇢
1
2
h0

"(1)
2
� F"(h"(1))

�
.

In view of the concavity of h", it is easily seen that

"2
⇢
1
2
h0

"(1)
2
� F"(h"(1))

�
! 0 as " ! 0+,

while

"2

�����
Z 1

⌧

'0(s)
'(s)

h02
" (s)ds

�����  C"2E(h")  CC1",

in view of (4.1). Hence, from (4.2) we have

"2
⇢
1
2
h0

"(⌧ )
2
� F"(h"(⌧ ))

�
! 0 as " ! 0+ for any ⌧ 2 [�1, 1] .
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As a consequence,

v0

"(0) = "h0

"(0) !

p
2F(0) > 0 as " ! 0+.

Thus, v0(0) =

p

2F(0) > 0, v is bounded and strictly increasing. Hence, in view
of the well-known classification of bounded solutions to equation (4.7), v(s) ! 1
as s ! 1, and v(s) ! �1 ad s ! �1. Since h"(k") = v"(k) ! v(k) as " ! 0,
this combined with (4.6) gives (4.5).

Observe that, since ' is smooth and '0(0) = 0, there exists C > 0 such that

'0(⌧ )  C⌧ in (0, 1) . (4.8)

Inequalities (4.4), (4.5) and (4.8) yield

"

Z 1

0
('0)2(h0

")
2ds  C"

⇣ Z p

"

0

s2

"2
ds +

Z 1

p

"

o(1)
"

ds
⌘

 C[

p

" + o(1)] ! 0 as " ! 0+ .

(4.9)

From (4.3), (4.4), (4.5) and (4.9) the conclusion follows. ⇤

4.2. Well-prepared initial conditions

Now we are ready to define well-prepared initial conditions u"0. To be specific, we
assume that the initial conditions u"0 are in the form (1.18). In addition we assume
that u"0 and the corresponding z

"
0 ⌘ z"(·, 0), µ"0 ⌘ µ"(·, 0) given by (1.17), (1.13)

satisfy

(H⇤

1 )

(
(i) (H1) is satisfied ;

(ii) z"(·, 0) 2 C2(M) and |rz"(x, 0)|  1 for all x 2 M .

The construction of such a u"0 is quite standard (see [36], [31]). Since we assume
60 to be smooth (at least C3), there is a small tubular neighboorodU� � 60 of size
4� > 0 such that the distance function d(x,60) is smooth in U� (at least C2). Let
now 9 2 C1(R) an odd increasing function such that 9(s) = s whenever |s| < �,
|9(s)| = 2� for |s| � 4� and such that 9 00

 0 for s > 0. Then it is direct to
see that if d̃(x,60) is the signed distance from 60, then z"(x, 0) = 9(d̃(x,60))
is a globally smooth function (as smooth as the distance is near 60), is constant far
from 60 and the corresponding u"0 given by

u"0(x) = h"
�
9
�
d̃(x,60)

��
,

with h" as in Lemma 4.1, satisfy assumption (H⇤

1 ) above.
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Let F(s) :=

R s
0

p

F(⌧ )d⌧ . We have that u"0 ! u00, and F(u"0) ! F(u00) as
"! 0+, uniformly in M\60 and in L1loc(M); furthermore, for c =

R 1
�1

p

2F(s)ds ,Z
�

✓
"

2
|ru"0|

2
+

F(u"0)
"

◆
dV ! c |ru00|(�) as " ! 0+, for every � b M ,

where |ru00|(�) denotes the total variation of u00 in �, whence F(u"0) ! F(u00) as
" ! 0+ weakly-* in BVloc(M).

Note that if (H0), (H⇤

1 ) are satisfied, then the unique solution to problem (1.1)-
(1.2), which exists by Proposition 5.9, also verifies

�1 < u" < 1 in M ⇥ (0,1) . (4.10)
This follows by the maximum principle, since |u"0|  1. In addition, since we
assume u"0 2 C2(M), parabolic regularity theory also implies ru" 2 C0(M ⇥

[0,1)).

4.3. Asymptotic control of discrepancy

In order to show (1.14) we need to prove preliminarily that (1.21) follows from
(H0), (H⇤

1 ).
Lemma 4.3. Let assumptions (H0), (H⇤

1 ) be satisfied. Let u" be a solution to equa-
tion (1.1); suppose that (1.19) and (1.20) hold true. Then inequality (1.21) is satis-
fied.
Proof. Definew"

:= |rz"|2 , and note that, as already proved above,w"
2 C0(M⇥

[0,1))\C1(M ⇥ (0,1)). From (1.1), (1.12), (2.7), (1.15) and (1.20) we deduce
that

@tw
"

 1w"
� 2|Hess z"|2 � 2�w"

�

f (u")
"2h0

"(z")
hrz",rw"

i

�

w"

"2
(w"

� 1)

f 0(u") � f (u")

h00(z")
(h0(z"))2

�

�

'0

'
(z")hrz",rw"

i �

✓
'0

'

◆
0

(z")w"

 1w"
�

f (u")
"2h0

"(z")
hrz",rw"

i

�

w"

"2
(w"

� 1)

f 0(u") � f (u")

h00(z")
(h0(z"))2

�
in M ⇥ (0,1) .

(4.11)

Thus, w" is a subsolution to the equation

@tw
"

= 1w"
�

f (u")
"2h0

"(z")
hrz",rw"

i

�

w"

"2
(w"

� 1)

f 0(u") � f (u")

h00(z")
(h0(z"))2

�
in M ⇥ (0,1) .

(4.12)
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On the other hand, the function w ⌘ 1 is a solution to equation (4.12). Note that
since (1.12) holds true, from results in [17] (where (1.12) is assumed) comparison
principles can be easily obtained. Hence, from (1.19) and comparison principles
inequality (1.21) follows.

Now we can prove the following:

Proposition 4.4. Let the assumptions of Lemma 4.3 be satisfied. Then

lim sup
"!0+

sup
(x,t)2M⇥(0,1)

⇠"t (x)  0 . (4.13)

Hence, in particular, (1.14) holds true.

Proof. From (4.2) and (1.21), we get

1
2
|ru"|2 � F"(u") =

1
2
[h0

"(z
")]2|rz"|2 � F"(h"(z"))



1
2
[h0

"(z
")]2 � F✏(h✏(z✏)) in M ⇥ (0,1) .

(4.14)

From Lemma 4.2 the conclusion follows.

5. Uniform energy bounds

This section is devoted to proving the local almost monotonicity formula (1.22)
and to derive from a priori estimates some compactness properties of the family of
solutions u" as " ! 0 both in BVloc and in L1loc.

5.1. Local almost monotonicity formula

The argument to prove (1.22) is a modification of the one in [31], localizing the
estimate at suitably small scale so to reabsorbe the perturbation terms coming from
the curved background. This, combined with the locally uniform control of the
positive part of the discrepancy from the previous sections, will give the final result.

First, recall Lemma 6.6 in [32]:

Lemma 5.1. Let ' 2 C2c (M; [0,1)). Then

|r'|
2

'
 2 max

{'>0}
|Hess'| in {' > 0} .

Then, the next lemma will give a a sort of Brakke’s inequality for dµ"t .
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Lemma 5.2. Let u" be a solution to equation (1.1). Let � 2 C2,1x,t (M⇥(0,1); R+)
with supp�(· , t) compact for every t 2 (0,1). Then

d
dt

Z
M
�E"dV(x)dt

=

Z
M

n
(@t� �1�)E" + (Hess�)(ru",ru") � �(@t u")2

o
dV(x) ,

(5.1)

and

d
dt

Z
M
�E"dV(x)dt

=

Z
M

n
(@t� +1�)E" � (Hess�)(ru",ru")

o
dV(x)

+

Z
M

hr�,ru"i2

�
dV(x) �

Z
M
�

✓
@t u" +

hr�,ru"i
�

◆2
dV(x) .

(5.2)

for all t > 0.

Note that the last two integrals in equality (5.2) are well-defined, in view of
Lemma 5.1.

Proof . By (1.1), in M ⇥ (0,1),

�@t E" = �hr@t u",ru"i + �@t u"1u" � �(@t u")2 , (5.3)

and

hr�,rE"i =

1
2
hr�,rhru",ru"ii

� @t u"hr�,ru"i + hru",r�i1u" .

(5.4)

In view of (5.3)-(5.4) we get

�@t E" � hr�,rE"i = �hr@t u",ru"i + �@t u"1u" � �(@t u")2

�

1
2
hr�,rhru",ru"ii

+ @t u"hr�,ru"i � hru",r�i1u" .

(5.5)
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From (5.5), integrating by parts and using (2.6), it follows:

d
dt

Z
M
�E"dV(x) =

Z
M
@t�E"dV(x) +

Z
M

n
hr�,rE"i � �(@t u")2

+ �@t u"1u" + �hr@t u",ru"i �

1
2
hr�,rhru",ru"ii

+ @t u"hr�,ru"i �1u"hr�,ru"i
o
dV(x)

=

Z
M

(@t� �1�)E"dV(x) �

Z
M
�(@t u")2dV(x)

�

Z
M

n1
2
hr�,rhru",ru"ii � hru",rhr�,ru"ii

o
dV(x)

=

Z
M

(@t� �1�)E"dV(x) �

Z
M
�(@t u")2dV(x)

�

Z
M

n1
2
Hess(u")hru",r�i +

1
2
Hess(u")hru",r�i

� Hess(u")(ru",r�) + Hess(�)(ru",ru")
o
dV(x)

=

Z
M

(@t� �1�)E"dV(x) �

Z
M
�(@t u")2dV(x)

+

Z
M
Hess(�)(ru",ru")dV(x) .

Hence (5.1) has been verified. Equality (5.2) can be shown analogously, using

�@t E" + hr�,rE"i = �hr@t u",ru"i + �@t u"1u" � �(@t u")2

+

1
2
hr�,rhru",ru"ii � @t u"hr�,ru"i

+ hru",r�i1u" ,

instead of (5.5). ⇤

Next we are going to choose a precise test function in the formulas obtained
above. The following lemma gives auxiliary identities which will be useful in this
direction.

Lemma 5.3. Let K ⇢ M be a compact subset, y 2 K , s > 0. Let ⇣̂ 2 C2([0,1))
such that

|⇣̂ |  1 , |⇣̂ 0

|  1 , |⇣̂ 00

|  1 in [0,1) , (5.6)

⇣̂ =

8<
:
1 in [0, R20/4)

0 in [R20,1) ,

(5.7)
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where R0 :=
1
2 infy2K inj(y) . Define

⌘̂(⇢, t) := [(s � t)]�
N�1
2 e�

⇢
4(s�t) (⇢ � 0, 0  t < s) .

Let
⌘(x, t) := ⌘̂

�
d2(x), t

�
(x 2 M, 0  t < s) (5.8)

⇣(x) := ⇣̂ (d2(x)) (x 2 M) .

Then, for all x 2 M, 0  t < s,

r(⌘⇣ )(x, t) = @⇢(⌘̂⇣̂ )(d2(x), t)rd2(x); (5.9)

Hess[(⌘⇣ )](d2(x),t)(X,X)= @⇢⇢(⌘̂⇣̂ )(d2(x), t)
��
hrd2(x), Xi

��2 (5.10)
+@⇢(⌘̂⇣̂ )(d2(x),t)Hess[d2(x)](X,X)

(X 2TxM);

1(⌘⇣ )(x, t) = @⇢⇢(⌘̂⇣̂ )(d2(x), t)|rd2(x)|2 (5.11)
+(@⇢⌘̂⇣̂ )(d2(x), t)1d2(x) ;

(@t +1)(⌘⇣ )(x, t) =

(⌘⇣ )(x, t)
s � t

"
N � 1
2

�

d2(x)
4(s � t)

(5.12)

+

|rd2(x)|2

16(s � t)
�

1
4
1d2(x)

#

+(2@⇢⌘̂@⇢⇣̂ + ⌘̂@⇢⇢⇣̂ )(d2(x), t)|rd2(x)|2

+(⌘̂@⇢ ⇣̂ )(d2(x), t)1d2(x) .

Remark 5.4. It is straightforward to check that

@⇢⌘̂ = �

⌘̂

4(s � t)
, @⇢⇢

⌘̂

16(s � t)2
, (@⇢⌘̂)

2
� ⌘̂@⇢⇢⌘̂ = 0 . (5.13)

Proof of Lemma 5.3. For any x 2 M, 0  t < s we have

r(⌘⇣ )(x, t) = @⇢(⌘̂⇣̂ )(d2(x), t)rd2(x) .

Hence, for any X 2 TxM ,

Hess[(⌘⇣ )](x, t)(X, X) =

⌦
DX r

�
⌘⇣
�
, X
↵
=

⌦
DX

�
@⇢⌘̂⇣̂

��
d2(x), t

�
rd2(x), X

↵
= @⇢⇢

�
⌘̂⇣̂
��
d2(x), t

���⌦X,rd2(x)
↵��2

+ @⇢
�
⌘̂⇣̂
��
d2(x), t

�
Hess

⇥
d2(x)

⇤
(X, X) .
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Passing to the trace we get

1(⌘⇣ )(x, t) = @⇢⇢(⌘̂⇣̂ )(d2(x), t)|rd2(x)|2 + @⇢(⌘̂⇣̂ )(d2(x), t)1d2(x) .

Furthermore,

@t ⌘̂ = �

1� N
2

⌘̂

s � t
+ ⌘̂

✓
�

⇢

4(s � t)2

◆
=

⌘̂

s � t


N � 1
2

�

⇢

4(s � t)

�
. (5.14)

Note that

(@t +1)(⌘⇣ )(x, t) = ⇣(@t +1)⌘(x, t) + 2r⌘(x, t)r⇣(x, t) + ⌘1⇣(x) ; (5.15)

moreover,
r⌘(x, t) = @⇢⌘̂(d2(x), t)rd2(x) , (5.16)

and

1⌘(x, t) = @⇢⇢⌘̂(d2(x), t)|rd2(x)|2 + @⇢⌘̂(d2(x), t)1d2(x) . (5.17)

By (5.15)-(5.17),

(@t +1)⌘(x, t) =

⌘̂

s � t

"
N � 1
2

�

d2(x)
4(s � t)

+

|rd2(x)|2

16(s � t)
�

1
4
1d2(x)

#
,

so
(@t +1)(⌘⇣ )(x, t)

=

(⌘̂⇣̂ )(d2(x), t)
s � t

"
�

1
2

+

d2(x)
4(s � t)

(�1+ |rd(x)|2) +

N
2

�

1
4
1d2(x)

#

+

�
2@⇢⌘̂@⇢⇣̂ + ⌘̂@⇢⇢⇣̂

�
(d2(x), t)|rd2(x)|2 + (⌘̂@⇢ ⇣̂ )(d2(x), t)1d2(x) .

This implies (5.12), since |rd(x)|2  1 . This completes the proof.

In order to proceed we start rewriting some terms in (5.2). Note that

|hr�,ru"i|2

�
� Hess�(ru",ru")

=

|hrd2(x),ru"i|2

⌘⇣
(⇣̂ @⇢⌘̂ + ⌘̂@⇢ ⇣̂ )

2
� (⇣̂ @⇢⌘̂ + ⌘̂@⇢ ⇣̂ )Hess[d2(x)](ru",ru")

� |hrd2(x),ru"i|2(⇣̂ @⇢⇢⌘̂ + 2@⇢⇣̂ @⇢⌘̂ + ⌘̂@⇢⇢⇣̂ )

=

⌘̂⇣̂

4(s � t)
Hess[d2(x)](ru",ru") � ⌘̂@⇢ ⇣̂ Hess[d2(x)](ru",ru")

+ |hrd2(x),ru"i|2

⇣̂ 2(@⇢⌘̂)2 + 2⌘̂@⇢⌘̂⇣̂ @⇢ ⇣̂ + ⌘̂2(@⇢⇣̂ )2

⌘̂⇣̂

� ⇣̂ @⇢⇢⌘̂ � 2@⇢⌘̂@⇢⇣̂ � ⌘̂@⇢⇢⇣̂

�
.
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So, we can infer the following:

Lemma 5.5. Let ⌘ and ⇣ be as in Lemma 5.3, and � := ⌘⇣ . Then

Z
M

"
"
|hr�,ru"i|2

�
� "Hess�(ru",ru")

#
dV(x)

= "

Z
M

⌘⇣

2(s � t)
��
ru"

��2 dV(x)

+ "

Z
M

⌘⇣

2(s � t)


1
2
Hess[d2(x)](ru",ru") �

��
ru"

��2� dV(x)

+ "

Z
M

���hrd2(x),ru"i���2 ⌘
 
@⇢⇣̂

⇣̂
� @⇢⇢⇣̂

!
dV(x)

� "

Z
M
⌘@⇢⇣̂ Hess[d2(x)](ru",ru")dV(x) .

From Lemmas 5.2, 5.3, 5.5, neglecting one negative term we immediately get:

Lemma 5.6. Let � := ⌘⇣ . Then

d
dt

Z
M
�"E"dV(x)

Z
M

�

2(s � t)
⇥
"|ru"|2 � "E"

⇤
dV(x)

+ "

Z
M

�

2(s�t)


1
2
Hess[d2(x)](ru",ru")�|ru"|2

�
dV(x)

+ "

Z
M

�

2(s � t)


N �

1
2
1d2(x)

�
E"dV(x)

+ "

Z
M
E"⌘@⇢⇣̂1d2(x)

+ "

Z
M
E"|rd2(x)|2(2@⇢⌘̂@⇢⇣̂ + ⌘̂@⇢⇢⇣̂ )dV(x)

� "

Z
M
⌘@⇢⇣̂ Hess[d2(x)](ru",ru")dV(x)

+ "

Z
M

|hrd2(x),ru"i|2⌘

 
(@⇢⇣̂ )

2

⇣̂
� @⇢⇢⇣̂

!
dV(x) .

Finally, we single out the discrepancy term and enstimate all the others to obtain
the key result of this section.

Proposition 5.7. Let assumption (H0) be satisfied. Let u" be the solution to prob-
lem (1.1)-(1.2). Suppose that (3.3) and (3.8) with ⌧ = 0 hold true. Let K ⇢ M be
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a compact subset, y 2 K , s > 0. Let � := ⌘⇣ with ⌘ and ⇣ as in Lemma 5.3. Then
for every " 2 (0, 1)

d
dt

Z
M
�(x, t)dµ"t (x) 

1
2(s � t)

Z
M
�"
�
|ru"|2 � E"

 
dV(x)

+

C3
(s�t)1/2

Z
M
�dµ"t (x)+C4 for all 0< t<s

(5.18)

for some positive constants C3 and C4 depending only on K .

Proof. By Lemma 3.5 and Lemma 5.6,

d
dt

Z
M
�"E"dV(x) 

1
2(s � t)

Z
M
�d⇠"t + C

Z
M
�
d2(x)
s � t

"E"dV(x)

+ CR0

Z
M
"E"⌘

 
|@⇢⇣̂ | +

|@⇢⇣̂ |

⇣̂
+ |@⇢⇢⇣̂ |

!
dV(x)

+ CR0

Z
M
"E"⌘

 
d2(x)
s � t

|@⇢⇣̂ | + |@⇢⇢⇣̂ |

!
dV(x)



1
2(s � t)

Z
M
�d⇠"t + C

Z
M
�
d2(x)
s � t

"E"dV(x)

+ C̃R0

Z
R0
2 d(x)R0

"E"dV(x) ,

(5.19)

for some positive constants C,CR0, C̃R0 independent of ".
Now, note that
Z
M
�
d2(x)
s � t

"E"dV(x) 

Z
BR0 (y)

�
d2(x)
s � t

"E"dV(x)



Z
BR0\{d(x)> 4ps�t}

⇣⌘
d2(x)
s � t

"E"dV(x)

+

Z
BR0\{d(x)< 4ps�t}

⇣⌘
d2(x)
s � t

"E"dV(x) .

(5.20)

Furthermore, in view of (3.8), there exists a positive constant CK , independent of
", such that

µ"t (K )  CK . (5.21)

We have
Z
BR0\{d(x)< 4ps�t}

⇣⌘
d2(x)
s � t

"E"dV(x) 

C̃
p

s � t

Z
M
�"E"dV(x) ; (5.22)
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moreover, since BR0(y) ⇢ K , from (5.21) we can infer that

Z
BR0\

�
d(x)> 4ps�t

 ⇣⌘d2(x)s � t
"E"dV(x)

 C
Z
BR0\

�
d(x)> 4ps�t

 d2(x)

(s � t)
N+1
2
e�

d2(x)
4(s�t) "E"dV(x)

 C
Z
BR0\

�
d(x)> 4ps�t

 d2(x)s � t
e�

d2(x)
8(s�t)

e�
1

4
p

s�t

(s � t)
N�1
2
"E"dV(x)  C̄K ,

(5.23)

for some positive constants C̃,C, C̄K independent of ".
On the other hand, observe that the functions (x, t) 7! ⌘(x, t) and (x, t) 7!

⌘(x,t)
s�t are bounded in

n
R0
2  d(x)  R0

o
⇥ (0, s)

�
; thus

Z
� R0
2 d(x)R0

 "E"dV(x)  ČK , (5.24)

for some positive constant ČK independent of ".
From (5.19), (5.20)-(5.23) we obtain (5.18), with

C3 = CC̃K , C4 = max
n
CC̄K , C̃R0ČK

o
.

From Lemma 5.7 and the asymptotic control of discrepancy in Proposition 3.4 we
finally deduce the main result of this section.

Theorem 5.8. Let assumption (H0) be satisfied. Let u" be the solution to problem
(1.1)-(1.2). Suppose that (3.3) and (3.8) with ⌧ = 0 hold true. Let K ⇢ M be a
compact subset, y 2 K , s > 0. Let � := ⌘⇣ with ⌘ and ⇣ as in Lemma 5.3. Then
for every 0 < " < 1 inequality (1.22) holds true, for all 0 < t0  t < s, C3,C4
being as in Lemma 5.7, and for some positive constant C5(t0) independent of " and
(y, s). As a consequence, for all 0  t0 < t < s, inequality (1.24) holds true.

Proof. By (1.14), Z
M

�

s � t
⇠"t dV(x) 

C5
p

s � t
, (5.25)

for some positive constant C5, independent of ", y, s. From (5.25) and (5.18) we
can deduce (1.22). Thus (1.24) follows from Gronwall’s inequality.

As a consequence, the next proposition gives uniform density bounds for the
measures µ"t at small scales.
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Proposition 5.9. Let assumption (H0) be satisfied. Let u" be the solution to prob-
lem (1.1)-(1.2). Suppose that (3.3) and (3.8) with ⌧ = 0 hold true. Then, for each
compact subset K ⇢ M ,

(G"1)
Z
M
�y,s(x, t)dµ"t (x)  C for all y 2 K , 0 < t0  t < s ,

for some C = CK > 0, and

(G"2) µ"t (BR(x))  !N�1D0RN�1 for all x 2 K , 0 < R < R̃, t � 0,

for some 0 < R̃ < R0 and D0 = D0(C, R̃) > 0.

Proof. From (1.24) and (3.8) it easily follows (G"1). Observe that, for some 0 <

R̃ < R0,C = C(R̃) > 0, there holds, for all x, y 2 M , 0 < R < R̃, t � 0

1
RN�1�BR(y)(x)  C�y,s(x, t),

whenever s � t = R2. This, combined with (G"1), yields (G"2).

5.2. Further compactness properties

Concerning the family {u"}0<"<1 of solutions to problem (1.1)-(1.2) we have the
next compactness result.

Proposition 5.10. Let assumption (H0) be satisfied. Let {u"}0<"<1 be a family of
solutions to problem (1.1)-(1.2) which is uniformly bounded, i.e. satisfying (3.3),
and such that for each T > 0 and for each compact set K ⇢ M

sup
0<"<1

sup
t2[0,T ]

"

Z
K
E"(x, t)dV  C , (5.26)

for some C = C(K , T ) > 0 independent of ". Set F(s) :=

R s
0

p

F(⌧ )d⌧. Then
there exist a subsequence {F(u"n )} ⇢ {F(u")} and a function v such that

F(u"n ) ! v as n ! 1 , (5.27)

both in C0,↵loc
�
[0,1); L1loc(M)

�
for each 0  ↵ < 1

2 and in BVloc(M⇥(0,1)), and

u"n ! u⇤

:= F�1(v) as n ! 1 , (5.28)

in C0loc
�
[0,1); L1loc(M)

�
.

Moreover, u⇤
2 L1

loc
�
(0,1); BVloc(M)

�
\ BVloc

�
M ⇥ (0,1)

�
,

|u⇤

| = 1 a.e. in M ⇥ (0,1),

and the jump set of u⇤(·, t) is locally (N � 1)- rectifiable for a.e. t > 0.
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Proof. Let T > 0 be fixed and let ' 2 C1

0 (M). By (H0) and (1.1)-(1.2), multiply-
ing (1.1) by '2@t u" and integrating by parts we easily obtain
Z T

0

Z
M
"'2(@t u")2dVdt 

Z T

0

Z
M
"'2(@t u")2dVdt + "

Z
M
'2E"(x, T )dV

 "

Z
M
'2E"(x, 0)dV � 2"

Z T

0

Z
M
'@t u"ru"r'dVdt .

Since |ru"|2  2E"(x, t), applying Young’s inequality and (5.26) with K =

supp' we easily obtain for any ' 2 C1

0 (M) the uniform bound

Z T

0

Z
M
"'2(@t u")2dVdt  C. (5.29)

In addition, in view of (3.3) we also have

|F(u")|  C in M (5.30)

for every " > 0. From (5.26)-(5.30) and Young’s inequality it follows that

kF(u")kL1

�
(0,T );BVloc(M)

�
+ k@tF(u")kL1

�
0,T ;L1loc(M)

�
 C (5.31)

for every " > 0. As a consequence, F(u") is ⇤-weakly compact in BVloc(M ⇥

(0,1)), since T > 0 is arbitrary.
In view of (5.26), (5.30) and the estimate on the time derivative in (5.31) we

can also infer that

kF(u")kC0,1/2
�
[0,T ];L1loc(M)

�
 C(T ) ,

for every " > 0. So, by Ascoli-Arzelà theorem, {F(u")}">0 is compact in
C0,↵loc

�
[0,1); L1loc(M)

�
for each 0  ↵ < 1

2 and the same property with ↵ = 0
clearly holds for {u"}">0 by continuity of F�1. Thus, by a diagonal argument
there exist a subsequence {F(u"n )} ⇢ {F(u")} and a function v such that (5.27)-
(5.28) holds. Moreover, it is direct to see from the uniform bound on the poten-
tial energy in (5.26) that |u⇤

| = 1 a.e. in M ⇥ (0,1), and in turn that u⇤
2

L1

�
(0,1); BVloc(M)

�
\ BVloc(M ⇥ (0,1)). Then the last statement follows

from the rectifiability of the jump set for BV functions.
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