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Pencil-type line arrangements of low degree:
classification and monodromy

ALEXANDRU DIMCA, DENIS IBADULA AND DANIELA ANCA MACINIC

Abstract. The complete classification of (3, 3)-nets and of (3, 4)-nets with only
double and triple points is given. Up to lattice isomorphism, there are exactly 3
effective possibilities in each case, and some of these provide new examples of
pencil-type line arrangements. For arrangements consisting of  14 lines and
having points of multiplicity  5, we show that the non-triviality of the mon-
odromy on the first cohomology H1(F) of the associated Milnor fiber F implies
the arrangement is of reduced pencil-type. In particular, the monodromy is deter-
mined by the combinatorics in such cases.

Mathematics Subject Classification (2010): 52C35 (primary); 14C21, 58K10
(secondary).

1. Introduction

Let A be an arrangement of d lines in P2C, not contained in a pencil of lines,
given by Li = 0, for i = 1, d, where Li are linear forms. We denote by M the
complement of the set of lines ofA in P2C. Let F be the affine surface in C3 given
by Q = 1, with Q = 5i Li , the Milnor fiber of the arrangement A, that comes
endowed with the monodromy action h : F ! F , where h(x) = exp(2⇡ i/d) · x .

It is an interesting open question whether the monodromy operator h1:H1(F)!
H1(F) is combinatorially determined, i.e. determined by the intersection lattice
L(A).

Assume for the moment that the line arrangementA has only double and triple
points. Then it is known that h1 : H1(F) ! H1(F) is trivial unless d = 3m for
some integer m � 1, and then only the eigenvalues 1, ✏ = exp(2⇡ i/3) and ✏2 are
possible, see for instance [6, Corollary 6.4.15].
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Even in this special case, it is not known even whether the first Betti number
b1(F) is determined by the combinatorics. However, in a recent paper [14], A.
Libgober has followed the approach started in [3] and has shown that if h1 6= Id,
then necessarily A is a (reduced) pencil-type arrangement, i.e. there is a pencil
aQ1 + bQ2 of curves of degree m in P2C such that if we set Q3 = Q1 + Q2 then
Q = Q1 · Q2 · Q3. We say also in such a case that A is a (3,m)-net. In the case
m = 3, an elementary proof of Libgober’s result is given below in Proposition 3.3,
in order to prepare the reader for the more complex, but similar proof of Theorem
3.8.

The main results of this paper are as follows.
In Section 2 we give the complete classification of (3, 3)-nets, see Theorem

2.2, and of (3, 4)-nets with only double and triple points, see Theorem 2.5. Up
to lattice isomorphism, there are exactly 3 effective possibilities in each case, and
some of these provide new examples of pencil-type line arrangements.

The proofs depend on the description given by Urzúa [24] (see also Stip-
ins [21]) of the (3, q)-nets for q = 3 and q = 4. In both these papers, the clas-
sification of nets considers only the realisation of the multiple points given by the
Latin squares, while here we take into account all multiple points of the correspond-
ing arrangement.

In Section 3, using a technique inspired from [16], we show that for arrange-
ments of  14 lines in P2C with points of multiplicities  5, the non-triviality
of h1 implies that the arrangement is of reduced pencil-type, see Theorem 3.8. In
particular, this shows that the monodromy is determined by the combinatorics in
all such cases. This result is the best possible as far as only reduced pencils are
considered: indeed, there is a line arrangement A with |A| = 15 and having only
points of multiplicity  6, where the non-triviality of h1 comes from the existence
of a non-reduced pencil, alias a multinet, see Remark 3.7.

A final point on notation: M denotes the complement of the line arrangement
in this Introduction and in Section 3, and a (Latin square) matrix in Section 2.

2. Classification of (3,3) and (3,4) nets

Definition 2.1. Let A = A1 [A2 [A3 be a (3, q)-net (see [26, Definition 1.1]).
We call mixed triple points the points of A that appear as intersections of three
lines, one inA1, one inA2, and one inA3. This is exactly the set of base points of
the corresponding pencils, i.e. it is given by Q1 = Q2 = 0.

We need to recall the relation between (3, q)-nets and Latin squares.
A Latin square is a q⇥q matrix filled with q different symbols, each occurring

exactly once in each row and exactly once in each column. The symbols in our case
are the numbers {1, 2, . . . , q}. Latin squares are multiplication tables of finite quasi-
groups. IfA = A1[A2[A3 is a (3, q)-net, then the q2 mixed triple points are en-
coded by a q⇥q Latin square (see, for instance, [21]). First choose an order for the
lines on each of the subarrangements A1,A2,A3. Say, A j = {L j

1, L
j
2, . . . , L

j
q},
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for 1  j  3. Then, the element at the intersection of the row k and column l in
the corresponding Latin square is the label ↵(k, l) 2 {1, 2, . . . , q} of the line in A3
that passes through the intersection L1k \ L2l , i.e. L

1
k \ L2l \ L3↵(k,l) 6= ;.

Since we are interested in the realisation of the arrangement A as a curve, the
ordering on the lines inside a subarrangement, and respectively the ordering of the
subarrangements, are not relevant. Accordingly, one may define an equivalence re-
lation on the set of q ⇥ q Latin squares. The equivalence class (referred further as
main class, as in [24]) of a Latin square M contains all the Latin squares obtained
by rearranging the rows, columns or symbols of M (this corresponds to reorder-
ing the lines inside the subarrangements Ai ), respectively by permuting the sets of
rows, columns and symbols among them (this corresponds to reordering the labels
{1, 2, 3} of the subarrangements A1, A2, A3). An inventory of main classes of
Latin squares for q  6 is given in [24, Section 4]; it follows immediately that, up
to lattice isomorphism, there is only one (3, 2)-net.

We follow the cases q = 3 and q = 4.
Let us consider first the case q = 3, when there is a unique main class of Latin

squares (see for instance [12]), represented by:

M :=

1 2 3
3 1 2
2 3 1

(2.1)

Theorem 2.2. LetA = A1[A2[A3 be an arrangement of 9 lines in P2C defined
by a (3, 3)-net. Then exactly one of the following situations holds:

(1) If A has only triple points (i.e. no double points and 12 triple points: 9 mixed
triple points and one triple point in each subarrangementAi , for i = 1, 3), then
A is lattice isomorphic to an arrangement of equation (x3 � y3)(y3 � z3)(x3 �

z3) = 0 (the Ceva arrangement).
(2) If A has 9 double points (and thus the only triple points are the 9 mixed triple

points), then A is lattice isomorphic to the Hesse arrangement (A is the union
of three singular fibers out of the four singular fibers of the Hesse pencil a(x3+

y3 + z3) + bxyz).
(3) If A has 6 double points (and thus 10 triple points: 9 mixed triple points and a

triple point in one of the subarrangements), then, up to a lattice isomorphism,
the lines of A are given by: L1 = (y), L2 = ( 1b x + y + z), L3 = ( b

b�1 x + z),
L4 = (x), L5 = (x + by + z), L6 = (by + z), L7 = (x + b(1 � b)y),
L8 = (x + y + z), L9 = (z), b 2 C \ {0, 1, ✏}, ✏3 = �1.

Proof. The proof is based on the description of the realization space for (3, 3)-nets
from [24] (see also [21]). While this realization result takes into account just the
pattern of the mixed triple points, we also look at the multiple points inside each
subarrangement Ai . Unless otherwise stated, from now on isomorphism between
two line arrangements means lattice isomorphism.
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If A has only triple points, since (3, 3)-nets are defined by a single class of
Latin squares, we have only one isomorphism class of arrangements, represented
by the Ceva arrangement.

Likewise, if A has only double points apart from the mixed ones, then again
we have only one isomorphism class of arrangements, represented by the Hesse
arrangement described in the theorem.

In [24, Section 4] Urzúa gives a set of equations for the lines of a realizable
(3, 3)-net, with coefficients in a two parameter space: L1 = (y), L2 = (1c x+ y+z),
L3 = ( b

b�1 x+z), L4 = (x), L5 = (x+cy+z), L6 = (by+z), L7 = (x+c(1�b)y),
L8 = (x + y + z), L9 = (z) with b, c 2 C \ {a f ini te number of elemements}
(including, for instance, b, c 6= 0, 1). A direct linear algebra computation using
these equations shows, on one hand, that it is impossible to have arrangements A
with 11 triple points and, on the other hand, that (3, 3)-nets with 10 triple points do
exist.

It is not difficult to see that all (3, 3)-nets with 10 triple points are isomor-
phic, by taking into account the fact that if we permute the labels {1, 2, 3} of the
subarrangements the Latin square M from (2.1) remains unchanged.

Example 2.3. An example of (3, 3)-net with 10 triple points is the Pappus arrange-
ment (the configuration described by the Pappus hexagon theorem, as in [2, Figure 6
(b)]). Equations for the lines of this arrangement are given in [2, Table 5].

Note that the arrangement that realizes the classical configuration (93)1 from
[22, Example 10.9] (having 9 triple points), to which the author refers also as Pap-
pus arrangement, is a different arrangement (the above Pappus arrangement can be
seen as a degeneration of a family of (93)1 arrangements, in which three double
points collapse to yield a triple point).
Remark 2.4. A sharper form of Theorem 2.2 can be obtained using the classifi-
cation of the realization spaces of line arrangements of up to 9 lines in [17] (see
also [25, Theorem 3.9]), since any two arrangements contained in the same con-
nected component of the realization space are lattice isotopic. Recall that two
arrangements are called lattice isotopic if they are connected by a one-parameter
family of arrangements with constant intersection lattice.

The Ceva arrangement contains as a subarrangement a MacLane arrangement
(described in [22, Example 10.7]), hence any two realizations of Ceva are either
in the same connected component of the realization space (hence lattice isotopic)
or one of them is in the same connected component of the realization space as the
conjugate of the other.

The (3, 3)-nets with precisely 9 triple points are actually lattice isotopic (see
for instance [25, Proposition 3.7] and [2, Proposition 4.6]), since only one of the
three possible combinatorial types of arrangements, described in [11, Theorem
2.2.1] (see also [2, Figure 5]), corresponds to a net, and its realization space is
connected.

One can also see that (3, 3)-nets with 10 triple points are lattice isomorphic
using [2, Proposition 4.8], since only one of the two combinatorial types given



LINE ARRANGEMENTS: CLASSIFICATION AND MONODROMY 253

there can be a net. It follows that a (3, 3)-net with 10 triple points is combinatorially
equivalent to the Pappus arrangement. Hence (3, 3)-nets with 10 triple points are
lattice isotopic, by [17, Theorem 3.15]).

Consider now the case of (3,4)-nets. Then there are two main classes of Latin
squares (see [12]), with representatives:

M1 :=

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

M2 :=

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

(2.2)

For each one of them, we have a realization space (as arrangements of hyperplanes
in P2C) of strictly positive dimension ([24], [21]). We give a classification of the
(3, 4)-nets having only double and triple points. Since the Latin squares give the
intersection pattern of mixed triple points, it remains to test the existence of arrange-
ments with only double and triple points inside each of the subarangementsAi .

It is easy to observe that, when A is a reduced pencil, there are two possible
configurations for the lines in the subarrangements A j : we say that A j is of type
(i) ifA j has a triple point, and of type (i i) otherwise.

Theorem 2.5. Let A = A1 [ A2 [ A3 be an arrangement of 12 lines in P2C
defined by a (3, 4)-net via a Latin square Mj , j 2 {1, 2}, and having only double
and triple points. Then, for each j , exactly one of the following situations holds:

(1) All the subarrangements Ai , i 2 {1, 2, 3}, are of type (ii), A having 16 triple
points;

(2) All the subarrangements Ai , i 2 {1, 2, 3}, are of type (i), A having 19 triple
points;

(3) Two of the subarrangements Ai are of type (ii) and the third one is of type (i),
A having 17 triple points.

Moreover, the number of triple points classifies the arrangements up to isomor-
phism, that is, each of the above situations is represented by a unique lattice iso-
morphism class of the arrangementA.

Proof. A straightforward but lengthy computation, (even taking into account the
symmetries) partly done by MAPLE, using the description of the realisability space
of (3, 4)-nets given in [24], shows both the existence of examples for each item in
the list and disproves the existence of an arrangement A that has a triple point in
two out of three subarrangements Ai , i 2 {1, 2, 3}. Obviously the arrangements
described in (1) are all lattice isomorphic.

Let us discuss now the second case. AssumeA has a triple point in each of the
subarrangements Ai ,2 {1, 2, 3}. In fact, a (partly MAPLE assisted) computation
using the equations (with coefficients having three degrees of freedom) of the lines
of a realizable (3, 4)-net given in [24, Section 4] shows that, assuming there are
triple points in two of the subarrangements Ai , there must be a triple point in the
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third subarrangement. Consider first that the arrangement A is associated to the
Latin square M1.

Using the equations of the lines given in [24], we have identified 16 possi-
ble configurations for the triple points of A (only the placement of non-mixed
triple points may vary). For instance, if the triple point inside A1 is given by
the intersection of the lines (L1, L2, L3), then 4 configurations are obtained by
varying the lines passing through the triple point in A2, as follows. If the triple
point in A2 is the intersection of (L5, L6, L7), then one gets in A3 the triple point
(L10, L11, L12); if the triple point inA2 is the intersection of (L5, L6, L8), then one
gets inA3 the triple point (L9, L10, L11); if the triple point inA2 is the intersection
of (L5, L7, L8), then one gets in A3 the triple point (L9, L10, L12); respectively,
if the triple point in A2 is the intersection of (L6, L7, L8), then one gets in A3 the
triple point (L9, L11, L12). The 12 remaining configurations appear when we vary
the lines through the triple point in A1. We show that all 16 arrangements (config-
urations) A are lattice isomorphic. The first 4 arrangements can be obtained one
from another by re-labelling the lines inside the subarrangements A2 and A3 by a
permutation by some power � i , 1  i  3, of the cycle � := (1234), the same
power for bothA2 andA3.

The same property holds for the other three sets of 4 configurations. So we
are left, up to lattice isomorphism, to 4 configurations. Since M1 is symmetric in
A1, A2 (i.e. replacing the lines by columns in the same order leaves the square un-
changed), it follows easily that all configurations are isomorphic (just define lattice
isomorphisms that permute the subarrangementsA1 andA2).

The M2 case is treated similarly.
When (3) happens, we notice that, as lattice isomorphism type, there is no dis-

tinction between an arrangement A with the non-mixed triple point in the arrange-
ment Ai and an arrangement A with the non-mixed triple point in the arrangement
A j , j 6= i . The proof of this claim uses as before the symmetries that appear in the
Latin square Mi , i = 1, 2, and an appropriate re-labelling of the lines. First we
show that we may assume without losing the generality that the triple point is inA1.
Notice that both Latin squares M1 and M2 are symmetric inA1 and A2. Moreover,
the second Latin square is symmetric with respect to all the sub-arrangements Ai ,
so in this case one can assume that the triple point is, for instance, inA1. In the M1
case, we still need to find a lattice isomorphism between an arbitrary arrangement
A0

= A0

1 [A0

2 [A0

3 with the triple point inA0

3 and an arrangement with the triple
point inA1.

It is enough to re-label some of the lines in A0 as follows: Li $ Li+8 for
i = 1, . . . , 4 and L6 $ L8, to obtain an arrangement with a triple point in A1
and the pattern of mixed triple intersection points described by M1 (that is, the
representative of the class as presented in (2.2), not some other Latin square in its
main class).

It remains to be seen that any two arrangements with a non-mixed triple point in
A1 are isomorphic. This triple point may appear as the intersection of (L1, L2, L3),
(L1, L2, L4), (L1, L3, L4) or respectively (L2, L3, L4). So there are a priori 4
types of arrangements A to consider. We show that all are lattice isomorphic to an
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arrangement where the triple point is given by the intersection of (L1, L2, L3).
Assume A has the mixed triple points given by M1. For instance, the ar-

rangement with the triple point (L1, L2, L4), via a re-label of its lines in A1 and
A3 by the rule Li $ L� (i), Li+8 $ L� (i+8), i = 1, . . . , 4, gives an arrange-
ment with the triple point (L1, L2, L3) and the pattern of mixed triple points un-
changed. Similarly, if the arrangement has the triple point (L1, L3, L4), (respec-
tively (L2, L3, L4)), the lines in A1 and A3 may be re-labelled by the rule Li $

L� 2(i), Li+8 $ L� 2(i+8), i = 1, . . . , 4, (respectively Li $ L� 3(i), Li+8 $

L� 3(i+8), i = 1, . . . , 4), to give arrangements with the triple point (L1, L2, L3) and
the pattern of mixed triple points given by the Latin square M1.

IfA has the mixed triple points given by M2, a similar argument applies.

We give a series of examples of arrangements realizable overQ illustrating all
the situations from the above theorem.
Example 2.6. IfA is associated to a Latin square of type M1:
(1) The arrangement L1 = (y), L2 = (10x + y + z), L3 = (10x + 76y + 43z),

L4 = (5x + z), L5 = (x), L6 = (40x + 19y + 40z), L7 = (175x + 10y +

43z), L8 = (2y + z), L9 = (10x � y), L10 = (x + y + z), L11 = (175x +

76y + 43z), L12 = (z) has no other triple point besides the 16 mixed triple
points. All intersection points in each subarrangement Ai are double. Thus, the
arrangement has 6 · 3 = 18 double points.

(2) The arrangement L1 = (y), L2 = (�x + y + z), L3 = (2x + 4y + 3z),
L4 = (�x + z), L5 = (x), L6 = (x + 2y + z), L7 = (�x + y + 3z),
L8 = (2y + z), L9 = (�x � y), L10 = (x + y + z), L11 = (�x + 4y + z),
L12 = (z) has three triple points (besides the 16 mixed triple points), one in each
subarrangementAi : L1 \ L2 \ L4, L5 \ L6 \ L8, L9 \ L10 \ L12. Thus, in this
arrangement there are 9 double points, 3 double points in each subarrangement
Ai .

(3) The arrangement L1 = (y), L2 = (�2x + y + z), L3 = (�2x + 4y + z), L4 =

(5x+z), L5 = (x), L6 = (8x�25y+8z), L7 = (13x�2y+z), L8 = (2y+z),
L9 = (10x + 5y), L10 = (x + y + z), L11 = (13x + 4y + z), L12 = (z) has
one triple point (besides the 16 mixed triple points) in the subarrangement A2:
L5 \ L7 \ L8. All the other intersection points are double. Hence, there are 15
double points.

IfA is associated to a Latin square of type M2:
(1) The arrangement L1 = (y), L2 = (2x + y + z), L3 = (12x + 15y + 13z),

L4 = (12x + z), L5 = (x), L6 = (4x + 5y + 4z), L7 = (24x + 12y + 13z),
L8 = (3y+ z), L9 = (12x�3y), L10 = (x+ y+ z), L11 = (24x+15y+13z),
L12 = (z) has only double points (3 in each subarrangementAi ) besides the 16
mixed triple points.

(2) The arrangement L1 = (y), L2 = (x + 5y + 5z), L3 = (�2x � 8y + z),
L4 = (2x + 5z), L5 = (x), L6 = (x + 4y + z), L7 = (4x + 10y � 5z),
L8 = (�2y+ z), L9 = (2x +10y), L10 = (x + y+ z), L11 = (4x +40y�5z),
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L12 = (z) has three triple points besides the 16 mixed triple points, one in each
subarrangementAi : L1 \ L2 \ L4, L5 \ L7 \ L8, respectively L9 \ L10 \ L11
and 9 double points, 3 double points in each subarrangementAi .

(3) The arrangement L1 = (y), L2 = (3x + y + z), L3 = (3x � y + 5z), L4 =

(3x+ z), L5 = (x), L6 = (3x� y+3z), L7 = (9x+3y+5z), L8 = (�2y+ z),
L9 = (3x + 2y), L10 = (x + y + z), L11 = (9x � y + 5z), L12 = (z) has only
one triple point L1 \ L2 \ L4 besides the 16 mixed triple points and 15 double
points (3 double points in the subarrangementA1 and 6 double points in each of
the subarrangementsA2 andA3).

Remark 2.7. Although one can easily produce examples of (3, 5)-nets that have at
most triple points, a complete classification by the lattice isomorphism type is work
in progress by the authors.

3. Nets and monodromy

When necessary, we may look atA as an essential central arrangement in C3. This
does not affect the definition of the associated Milnor fiber, which is our object of
focus for this section. In this context, we make a brief inventory of some useful
definitions and results.

Let A⇤

k(A) be the Orlik-Solomon algebra with coefficients over the field k of
the arrangement A. By definition, A1k(A) is freely generated by {aH }H2A. Let
! :=

P
H aH , and denote by µ! the multiplication by ! in A⇤

k(A). The Aomoto
complex associated to ! is the cochain complex:

�
A⇤

k(A), µ!

�
=

n
A⇤

k(A)
µ!

�! A⇤+1
k (A)

o
⇤�0

, (3.1)

If k = Fp, set

�qp(A) := dimk Hq(A⇤

k(A), µ!) for q � 0 . (3.2)

the Aomoto-Betti numbers.
It is well known that we have an equivariant decomposition, consequence of

the order d geometric monodromy of the Milnor fiber:

H1(FA, Q) =

M
m|d

✓Q[t]
8m

◆bm(A)

, (3.3)

where 8m is the mth cyclotomic polynomial and the exponents bm(A) depend on
m andA; see for instance [13,18]. WhenA has only double and triple points, then
bm(A) 6= 0 implies that either m = 1 or m = 3. One has bm(A) = 0 for m > 1
when m does not divide d = |A| or if there are no points in A of multiplicity a
multiple of m. In particular h1 = Id when d is a prime number, see [5].



LINE ARRANGEMENTS: CLASSIFICATION AND MONODROMY 257

The exponents bm(A) are connected by modular inequalities to the Aomoto-
Betti numbers, via local coefficients cohomology of the complement. To state them,
let T(M) = Hom(⇡1(M), C⇤) be the affine torus parametrizing the rank one local
systems on the hyperplane complement M of A. When m|d, with d = |A|, we
denote by ⇢(m) = 1/m 2 T(M) the rank one local system whose monodromy
about each line L 2 A is �(m) = exp(2⇡ i/m).

Recall the following inequality, playing a key role in the proofs below.

Theorem 3.1 ([4, 20]). Assume M is the complement of a central arrangement A
and ⇢ = 1/ps a rational equimonodromical local system on M with p prime and
s � 1, and denote b1(M, 1/ps) := dim H1(M,⇢ C). Then

b1(M, 1/ps)  �1p(A).

On the other hand one knows that bm(A) = b1(M, 1/m), hence bm=ps (A) has
�1p(A) as upper bound. If X 2 L(A) is an arbitrary element in the intersection
lattice of an arbitrary arrangementA, denote by mX the number of hyperplanes that
contain X , that is mX = #{H 2 A| X ✓ H} and let AX be the subarrangement of
A consisting of all hyperplanes that contain X .

The next lemma reduces the computation of �1p(A) to solving a system of
linear equations.

Lemma 3.2 ([15, Lemma 3.3]). LetA be an arbitrary central arrangement and p
a prime. ⌘ =

P
H2A ⌘HaH 2 A1Fp

(A) is a 1-cocycle for (3.1) if and only if one
has X

H�X
⌘H = 0, i f p | mX , (3.4)

or
⌘H = ⌘K , 8 H 6= K 2 AX , i f p - mX , (3.5)

for every rank 2 element X 2 L(A).

By the above Lemma 3.2, the computation of �1p(A) resumes to solving a
system S with Fp coefficients of linear equations, with variables labelled by the
lines of A. The equations are in one-to-one correspondence to the multiple points
of A. A solution for S is precisely the set of coefficients in Fp of an arbitrary 1-
cocycle ⌘ of the complex (3.1). Hence Lemma 3.2 helps us compute the dimension
of the space of 1-cocycles of the complex (3.1) (that is, the dimension of the space
of solutions of S). It is easy to see that the dimension of the space of 1-coboundaries
of the same complex (3.1) is 1.

We call a solution (aH )H2A of S constant if there exists a 2 Fp such that
aH = a, for all H 2 A, and non-constant otherwise. We will call aH 2 Fp the
weight associated to the line H .

Proposition 3.3. Let A ⇢ P2C be an arrangement with |A|  9 such that A has
only double and triple points and the monodromy operator h1 : H1(F) ! H1(F)
is not trivial. Then the arrangementA is composed of a reduced pencil.
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Proof. The above discussion shows that h1 6= Id implies that d = |A| is divisible
by 3, i.e. d = 3, or d = 6, or d = 9. We give the details only for the case d = 9
since the other two cases are very simple and similar.

We make a discussion on the number of double points of the arrangement.
AssumeA = {L1, . . . , L9} has no double points (henceA has 12 triple points).

The rigidity of this configuration will lead us to the conclusion thatA is isomorphic
to the Ceva arrangement. Since all the hyperplanes (lines) intersect each other, then
each line contains 4 triple points. One may assume that L1 \ L2 \ L3, L1 \ L4 \

L7, L1 \ L5 \ L8, L1 \ L6 \ L9 are the triple points on L1.
Let us look now at the triple points on L2. L2 \ L7 must be a triple point, and

the third line that contains this point may be one of the following: L5, L6, L8, L9.
Without loosing generality, one may assume that L2 \ L5 \ L7 is the triple point.
We search the third line passing through the triple point L2 \ L8. It can be either
L4 or L6 (or L9, but this is reducible to the L6 case, modulo a re-labelling 6 $ 9).
If L2 \ L8 would be on the line L4, then this would force L2 \ L6 to be on the line
L9, contradiction to the fact that L1 \ L6 \ L9 is a triple point. Then necessarily
L2 \ L6 \ L8 is a triple point, and this forces the existence of the triple point
L2\L4\L9. Now, the triple point L4\L8 can only be on the line L3. Successively,
we conclude that the line L9 must pass through the triple point L7 \ L8, then L6
must pass through the triple point L3 \ L7. Finally, we necessarily must have the
triple points L3 \ L5 \ L9 and L4 \ L5 \ L6. But this describes exactly the lattice
of the Ceva arrangement.

For the remaining case, whenA has at least one double point, we need to recall
the inequality from 3.1. By hypothesis, b3(A) = b1(M, 1/3) > 0, hence by 3.1
one has �13(A) � 1.

The computation of �13(A) resumes to solving over F3 the system S of lin-
ear equations, with variables labelled by the lines of A. Since �13(A) � 1, the
dimension of the space of solutions of the system S associated to A is at least 2,
so S admits a non-constant solution (aL)L2A. We show that this implies that A
is a reduced pencil. From now on we consider the weights associated to a fixed
non-constant solution of S.

The converse of this claim, i.e. the fact that a line arrangement defined by a
(3, 3)-net (that is, composed of a reduced pencil, by the terminology of [8]) has
a non-trivial h1 is a known result also (see [9, Theorem 3.1]). This implies that
b3(A) = b1(M, 1/3) > 0, hence a reduced pencil necessarily has �13(A) � 1.

AssumeA has at least one double point. The number of double points is divis-
ible by three, so, in this case, A must have at least three double points. Moreover,
any line that contains a double point, contains in fact at least two double points,
since |A| = 9. We consider here two different cases.

(1) Assume no line in A contains more than two double points. Take a line L1 that
contains two double points, say L1 \ L2, L1 \ L3. We show that L2 \ L3 cannot
be a triple point.

Assuming the contrary, there is a line L4 such that L2 \ L3 \ L4 is a triple
point. Let a1, a2, a3, a4 be the weights (for the considered non-constant solution)
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of L1, L2, L3, L4. From (3.4), (3.5) we have a := a1 = a2 = a3 = a4. Moreover,
by our initial assumption, since L1 already contains two double points, L1 \ L4
must be a triple point, so through the intersection L1 \ L4 passes another line L5,
of corresponding weight a5 = a, by (3.4). Choose a line L6 of weight b 6= a. Then
Li \ L6 must be triple points, for all i = {1, . . . , 5}. So there is a subset of lines
{K1, . . . , K5} ⇢ A such that {K1, . . . , K5} \ {L1, . . . , L5} = ;, otherwise by (3.4)
we would get a + a + b = 0, hence a = b. But this amounts to the existence of at
least 11 lines inA, contradiction to |A| = 9.

Hence L1, L2, L3 intersect one another in double points. Denote by a1, a2, a3
the weights (for the considered non-constant solution) of L1, L2, L3. From (3.5)
we get a := a1 = a2 = a3. We can choose a line L4 with associated weight b1,
and b1 6= a. If L4 meets any of the lines L1, L2, L3 in a double point, then, by
(3.5), we get b1 = a. Otherwise, L4 must intersect each of the lines L1, L2, L3 in
triple points. So, there are three new lines L7, L8, L9, with corresponding weights
c1, c2, c3 such that (L1, L4, L7), (L2, L4, L9) and (L3, L4, L8) intersect in triple
points. By (3.4) we have that c := c1 = c2 = c3 and a + b + c = 0. If any of
the intersections L1 \ L8 and L1 \ L9 would be a double point then a = b = c.
Otherwise, all intersections corresponding to couples of weights (ai , c j ) must be
triple points. Then through the intersection L1 \ L8 passes another line, which
must be different from L4. Denote this new line by L5. By (3.4), the weight b2
corresponding to L5 satisfies the equation a1 + b2 + c2 = 0, hence b := b1 = b2.
By a similar argument the intersection L1 \ L9 contains a line L6 different from L4
and L5. If L6 would coincide with any of the lines of weights a or c then we would
get a = b = c. Otherwise, L6 must be different from any Li , i 6= 6, and have
corresponding weight b3 = b.

So A = {L1, . . . , L9} and we have up to now the following triple points:
L1\ L4\ L7, L2\ L4\ L9, L3\ L4\ L8, L1\ L6\ L9, L1\ L5\ L8. If any of
the intersections of lines corresponding to couples of weights (ai , b j ), (ai , c j ) or
(bi , c j ), for i, j 2 {1, 2, 3} would be double points, then we would have a = b = c.
Otherwise, we have the triple points L3\L5\L9, L3\L6\L7, L2\L6\L8, L2\
L5 \ L7. For instance, let us explain in detail why should the point L3 \ L5 \ L9
exist. We know that L5 \ L9 cannot be a double point, since this would imply
b = c = a. Moreover, the third line that passes through this point must a line of
weight a, otherwise we obtain once again b = c = a. In conclusion, L5 \ L9 is a
triple point, and the third line that contains this point must be L1, L2 or L3. On the
other hand, the existence of the triple points L2 \ L4 \ L9 and L1 \ L6 \ L9 forces
this line to be L3, hence the triple point L3 \ L5 \ L9.

The existence of the other three triple points (L3\L6\L7, L2\L6\L8, L2\
L5 \ L7) bears a similar argument.

In conclusion, in this case, in order to have the space of solutions of S of
dimension at least 2, A needs to be a (3, 3)-net, with A1 = {L1, L2, L3}, A2 =

{L4, L5, L6}, A3 = {L7, L8, L9}. We already assumed that A1 contains only
double points. As for the remaining subarrangements, it follows from Theorem 2.2
one can have either double points in both A2 and A3, or double points in one of
them and a triple point in the remaining subarrangement.
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(2) Assume A has three collinear double points, say on a line L1 2 A. Denote by
L2, L3, L4 the lines that realize these double points by intersecting L1. Then, since
all the other lines inA intersect L1 and |A| = 9, there must be another line L5 that
intersects L1 in a double point. By (3.5), the weights a1, . . . , a5 corresponding to
the lines L1, . . . , L5 are equal. Denote by a their common value. Take an arbitrary
line L6 2 A, different from the previous ones, of weight b 6= a. If L6 would
intersect any of the lines L1, . . . , L5 in a double point, then we would get a =

b, contradiction. Otherwise, one may assume that L6 intersects all of the lines
L1, . . . , L5 in triple points. A triple point of type Li \L j \L6, for i, j 2 {1, . . . , 5}
would lead, by (3.4), to a = b, again contradiction. So the only possibility for
S to have a solution space of dimension at least 2 would be that L6 to intersect
the lines L1, . . . , L5 in triple points of type Ki \ Li \ L6, i 2 {1, . . . , 5}, with
{L1, . . . , L6} \ {K1, . . . , K5} = ;, but this contradicts the fact that |A| = 9.

The above proof gives an elementary argument for a result of Libgober ( [14,
Theorem 1.2]), in the case m = 3 (where d = 3m is the number of lines ofA). The
result states that projective line arrangements with only double and triple points
that have non-trivial monodromy action on the degree 1 cohomology module of the
Milnor fiber must be reduced pencils.

In the final part of this paper we extend Libgober’s result to line arrangements
A with |A|  14, having points of multiplicity  5.

We give now a number of results to be used in the proof of Theorem 3.8.
Unless otherwise specified,A is an arrangement with points of multiplicity up to 5,
having at least a quadruple or a quintuple point (otherwise the result follows from
Libgober’s Theorem).

Lemma 3.4. Let A be such that |A| = 12 and b2(A) 6= 0. Then the system S
with F2 coefficients admits a non-constant solution (aH )H2A 2 F|A|

2 , and there is
a partition Aa tAb of A, |Aa| = |Ab| = 6, such that aH = a, for all H in Aa ,
and aH = b 6= a, for all H inAb.

Proof. The hypothesis b2(A) 6= 0 implies (via Theorem 3.1) that �12 > 0, that is,
the space of solutions of S has dimension at least 2. This means, we have a non-
constant solution (aHi )Hi2A. This solution gives a partition of the set 1, 12 into
{i 2 1, 12 | aHi = a} t {i 2 1, 12 | bHi = b}, b 6= a, and consequently a partition
Aa tAb of the set of lines ofA. We will prove that |Aa| = |Ab| = 6.

Consider the multiple points on a line H 2 Aa . To have a 6= b, each inter-
section point of H to a line in Ab must be a quadruple point, containing two lines
from Aa and two lines from Ab. Hence the lines from Ab intersect H in pairs, so
|Ab| = 2k, |Aa| � k + 1 and 3k + 1  12. The only possible values for k are
1, 2 and 3. It is easy to see that in the first two cases any line in Ab would contain
a multiple point for which the associated equation ((3.4) or (3.5)) would translate
into a = b.

Lemma 3.5. If |A| = 12 and S admits a non-constant solution, then each line of
the arrangement contains exactly 3 quadruple points.
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Proof. In the notation of Lemma 3.4, consider the intersections of a given line L in
A of weight, say, a, by an arbitrary line of weight b 6= a. Unless this intersection
point is a quadruple point formed by lines of weights a, a, b, b we get a = b. This
means the lines of weight b intersect L in pairs, in quadruple points. Since there
are six lines of weight b, there must be exactly three quadruple points on L , each
giving (by (3.5)) an equation of type a + a + b + b = 0.

Let L t K be a partition of the set of lines of an arrangement A. We name
the multiple points of A by the induced partition of their lines. For instance, a
quadruple point in A is called of type (LK LK ) if it is the intersection of two lines
in L and two lines in K.

Lemma 3.6. In the above notation, there is no arrangement A of 14 lines that
admits a partition into two subsets A = L t K such that |L| = 6, |K| = 8 and
each line in L contains exactly 4 quadruple points of type (LK LK ), while each
line in K contains exactly 3 quadruple points of type (LK LK ).

Proof. We find equations for the lines in L, depending in all of 4 parameters. Each
line of type K , containing 3 quadruple points of type (LK LK ) (q.p. for short) will
impose an equation, so we’ll get 8 equations, giving in the end 4 distinct equations.
Then we show that this system has no solution satisfying the imposed conditions.

Step 1. Partition of L into 3 sets
Consider a line L1 2 L. The remaining 5 lines have to determine 4 q.p. on L1, so
there is one of them, call it L2, such that A = L1 \ L2 is a double point (d.p. for
short) of the arrangement. Denote L3 any of the remaining 4 lines in L. Each of
the lines L1 and L2 intersect L3 in q.p. points, so the remaining (unlabelled) 3 lines
produce 2 q.p. on L3. Let L4 denote the line among them such that B = L3 \ L4
is a d.p.. Denote the remaining lines by L5 and L6 and note that C = L5 \ L6 is a
double point.

Step 2. The points A, B,C are collinear
To prove this we use Pascal Hexagon Theorem: if the vertices of a hexagon sit on a
conic, then the intersection of the opposite edges are collinear points.

Our hexagon is the union of the 6 lines in L. The pairs of opposite edges
are (L1, L2), (L3, L4) and (L5, L6). Choose the order L1, L3, L5, L2, L4, L6 (this
does not restrict the generality, see step 4, where all the possible orderings are
considered). Then the vertices are v1 = L1 \ L3, v2 = L3 \ L5, v3 = L5 \ L2,
v4 = L2 \ L4, v5 = L4 \ L6 and v6 = L6 \ L1.

Consider the vertices v1 and v3. Note that there are 2 lines of type K passing
through v1. Any such line will meet again the union of lines in L exactly in two q.p.
constructed above, not situated on the lines L1 or L3. There are only two points of
this type on L5, so one of these lines is the line determined by v1 and v3. Call it K1.
We claim that the third q.p. on K1 is exactly v5. Indeed, the 3 q.p. on K1 should
involve all the 6 lines in L, each occurring exactly once, and this yields our claim.



262 ALEXANDRU DIMCA, DENIS IBADULA AND DANIELA ANCA MACINIC

In exactly the same way we show that there is a line K2 containing the other 3
vertices v2, v4 and v6. The union K1[K2 is the conic allowing us to apply Pascal’s
Theorem.

Step 3. The equations for the lines in L
By throwing the point v6 at infinity, and choosing well the coordinates (x, y) in the
affine plane C2 we can assume the following.

A = (0, 0), B = (b, 0) for b 2 C⇤, b 6= 1 and C = (1, 0).
L1 : x = 0, L2 : y = x , L3 : y = a(x � b) and L4 : y = c(x � b) with

a, c 2 C⇤ and a 6= c, L5 : y = d(x � 1) with d 2 C⇤
\ {1}, d 6= a 6= c and

L6 : x = 1.
Hence the 4 parameters are a, b, c, d.

Step 4. The 4 equations for the 4 parameters
They are obtained as follows. We have to list the partitions of the setL into 3subsets
with cardinal two each, such that L1, L2, resp. L3, L4 and L5, L6 are not in the
same subset. Here is the list, obtaining by considering all the possible circular
ordering of the 6 lines in L such that L1, L2, L3, L4 and L5, L6 are opposite edges.

1. (L1, L3), (L5, L2), (L4, L6) 2.(L1, L3), (L6, L2), (L4, L5);
3. (L1, L4), (L5, L2), (L3, L6) 4. (L1, L4), (L6, L2), (L3, L5);
5. (L1, L5), (L3, L2), (L6, L4) 6. (L1, L5), (L4, L2); (L6, L3)
7. (L1, L6), (L3, L2), (L5, L4) 8. (L1, L6), (L4, L2), (L5, L3).

Since there are 8 K -lines and the 3 q.p. on each such line give a partition of the
lines in L as described before, each partition corresponds to 3 q.p. which should be
on a K -line. However, due to the converse of the Pascal’s Hexagon Theorem, the 8
triplets give rise to only 4 distinct equations.

Indeed, if we write that the 3 points corresponding to the first partition v1, v3,
v5 are collinear , then we get by Pascal’s Theorem that the 3 points corresponding
to the 8-th partition (which are nothing else but the vertices v2, v4, v6 in Step 2)
are also collinear.

A simple analysis shows that the 4 independent equations come from the first
4 partitions above. The corresponding equations are the following:

ab � bdc + dc � d = 0; (3.6)

(abc � cd)(1� b) � bc + d = 0; (3.7)

ad � abd + bc � d = 0; (3.8)

abd � ad � ab2c � ab + d + abc = 0. (3.9)

It is easy to check that the system given by the equations (3.6) , (3.7) , (3.8) and
(3.9) has no solution.
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Remark 3.7. In [8, Remark 1.3], the first author gives an example of an arrange-
ment consisting of 15 lines having points of multiplicity 6, which satisfies h1 6= Id,
but it is not composed of a reduced pencil. This shows that the next result is optimal.

Theorem 3.8. Let A ⇢ P2C be an essential line arrangement with |A|  14
such that A has points of multiplicity up to 5. Assume the monodromy operator
h1 : H1(F) ! H1(F) is not trivial. Then A is a either a reduced (3, q  4)-
net or a reduced (4, 3)-net. In particular, the non-triviality of the monodromy h1 :

H1(F) ! H1(F) is detected by the combinatorics for such line arrangementsA.
Proof. We give details only for the cases |A| = 12 and |A| = 14. The other cases
that may need a proof (|A| 2 {6, 8, 9, 10}) may be treated in a similar manner,
but are much simpler to analyse. These two cases we consider are very different: in
the case |A| = 12 we get (3, 4) or (4, 3) nets, while the case |A| = 14 is shown to
be impossible.

Assume |A| = 12. Notice that, since we are dealing only with points of
multiplicity up to 5, by [16, Theorem 3.13] we have that bm(A) = 0,8m 6=

2, 3, 4. Then the non-triviality of the monodromy implies that one of the exponents
b2(A), b3(A), b4(A), in the formula (3.3) is non-zero. By Theorem 3.1, b2(A) and
b4(A) have �12 as upper bound, while b3(A) has �13 as upper bound. We will show
that �12 > 0 impliesA is a (4, 3)-net, while �13 > 0 impliesA is a (3, 4)-net.

For the rest of the proof we use the same method and notation as in second part
of the proof of Proposition 3.3, that is we use the key Lemma 3.2. As explained
before, the computation of �1p(A), p = 2, 3, comes down to solving a system
S of linear equations over Fp, with variables in one-to-one correspondence with
the lines of A and one equation for each multiple point in A (the equations are
described by Lemma 3.2). The dimension of the space of solutions for S is equal to
�1p + 1.

There are two cases to consider.
Case (1) b3(A) > 0. Then �13 > 0, hence the system S with F3 coefficients admits
a non-constant solution (aH )H2A.

IfA has only points of multiplicity 2 and 3, the claim follows from [14, Theo-
rem 1.2].

Otherwise, we may assume that there is a point of multiplicity 4 or 5.
Case (1.1) Assume there are 4 lines L1, L2, L3 and L4 in A that intersect in a
quadruple point. If we denote aLi := ai , i 2 1, 4, the corresponding weights, from
(3.5) we get a := a1 = a2 = a3 = a4. Since the chosen solution is non-constant,
one can choose a new line K1 of weight b1, b1 6= a.

If K1 meets any of the lines L1, L2, L3 or L4 in a double, quadruple or quintu-
ple point, then, by (3.5), we would get b1 = a, which is impossible. It follows that
the line K1 must intersect each of the lines L1, L2, L3 and L4 in triple points. But
through a such triple point could not pass two lines with the corresponding weight
equal to a or to b1 (because a + a + b1 = 0 or a + b1 + b1 = 0 would imply
b1 = a). Hence, there exist other four lines T1, T2, T3 and T4 of weights c1, c2, c3
respectively c4 such that (Li , K1, Ti ), intersect in triple points for all i 2 1, 4.
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Note that the lines T1, T2, T3 and T4 are four different lines because otherwise
one of them would meet K1 in two distinct points. By (3.4) we have that ai + b1 +

ci = 0, for all i 2 1, 4, and thus c1 = c2 = c3 = c4 = �a � b1 =: c. Note also
that c 6= a and c 6= b1.

Let us look next at the intersection point between L1 and T2. Since a 6= c,
this intersection point does not have multiplicity 2, 4 or 5. It will be then a triple
point. But through this intersection point could not pass any Li (otherwise, by (3.4),
a+ c+ a = 0 and thus a = c, impossible) or K1 (because L1 could not meet K1 in
two distinct points). It follows then that through the intersection point between L1
and T2 passes a new line K2 which should obviously have weight b2 = b1 =: b.

Analogously, one can prove that (L1, T3,K3) and (L1, T4,K4) are triple points,
where K3 and K4 are new lines which should have weights b3 = b4 = b. Moreover,
the lines K1, K2, K3 and K4 are distinct (otherwise, one of them would intersect L1
in two different points).

Hence, we have obtained a partition of the arrangement A into 3 subarrange-
ments Ai , i = 1,3, with A1 composed of the lines L1, L2, L3 and L4, A2 com-
posed of the lines Ki , i = 1, 4 and A3 composed of the lines Ti , i = 1, 4. Inside
each of these three subarrangements one may have double, triple or quadruple inter-
section points. Moreover, through the intersection point between an arbitrary line
fromAi and an arbitrary line fromA j , for i, j 2 1, 3, i 6= j must pass exactly one
line from the third subarrangement Ak, k 2 1, 4, k 6= i 6= j , otherwise we would
get a = b = c. But this is just the description of a (3, 4)-net.

Case (1.2) The arrangement A does not have quadruple points, hence A contains
at least one quintuple point. The lines involved in that quintuple point are of equal
weight a. Assume we have a line of weight b 6= a. This line must intersect the
a-lines in triple points, so there are 5 lines of weight c such that a+ b+ c = 0, and
another line of weight b. There are however intersection points of a line of weight
a with a line of weight c not contained in any of the two lines of weight b, so we
get a = c, and then a = b = c, contradiction.

Case (2) b3(A) = 0. Then necessarily b2(A) > 0 or b4(A) > 0, any of those
inequalities implying �12 > 0. Hence the system S with F2 coefficients admits a
non-constant solution (aH )H2A 2 F122 .

By Lemmas 3.4, 3.5, six of the weights (aH )H2A are equal to some a 2 F2
and the other six are equal to b 6= a and each line contains exactly three quadruple
points; there are no quintuple points. To simplify the notation, we identify in what
follows the lines and their weights. Take an arbitrary line of weight, say, a1 = a.
As seen before, a1 contains three quadruple points, identified to quadruplets of
weights, say, (a1, a2, b1, b2), (a1, a3, b3, b4) and (a1, a4, b5, b6) with ai = a and
bi = b. The line a1 intersects two more lines a5 = a and a6 = a into either a triple
or two double points. This would suggest a partition ofA into subarrangements, as
such: A1 = {a1, a5, a6}, A2 = {a2, a3, a4}, and two other subarrangements each
containing three of the six lines of type b that are apparent when considering the
multiple points on a b-line.
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To prove that this partition defines a net structure on A it is enough to check
that, if (a1, a5, a6) is not a triple point, then (a5, a6) is a double point; then the
same would apply for (a2, a3, a4) (since the quadruple mixed points on a2 must be
(a2, a5), (a2, a6) and (a2, a1)) and for the b-line subarrangements.

Obviously, (a5, a6) cannot make a triple point with a b-type line, since this
would imply, by (3.5), a = b.

Assume (a5, a6) makes a triple point with another line of type a; one may as-
sume without loosing generality that (a5, a6, a2) is this triple point. In this context,
let us examine the other multiple points on a2. The point at the intersection of a2 to
a3 must be a quadruple point, with two additional lines of type b. However, there
are no possible choices among bi , i = 1, 6 for the lines of type b to pass through the
intersection of a2 to a3. In conclusion, there are no triple points of type (a5, a6, ai ),
with i = 2, 3, 4.

We are left with excluding the case when (a5, a6) is a quadruple point. The
other two lines in this quadruple point must be of type b. Assume, without losing
generality, that (a5, a6, b1, b3) is the quadruple point. As a6 contains three quadru-
ple points, there are two remaining quadruple points to outline.

Assume, for instance, that (a6, a2) and (a6, a3) are the remaining quadruple
points. Then one necessarily gets the quadruple points (a6, a2, b4, b5) (or b6 instead
of b5, but this is a symmetric case) and (a6, a3, b2, b6). It follows that (a5, a2) is a
double point, and so is (a5, a3). But this means that a5 contains three double points
(since (a1, a5) was also a double point), contradiction.

The only other distinct possibility (discarding the symmetries) is for (a6, a3)
and (a6, a4) to form the remaining quadruple points (a6, a3, b2, b5) and (a6, a4, b4,
b6) on a6. Similarly this leads to the conclusion that the line a5 has three double
points, contradiction.

The last claim follows from the fact that for a line arrangement being a net is a
combinatorial property, see for instance [10] or [23].

Finally, we show that an arrangement A with 14 lines cannot have non-trivial
monodromy. Assuming the contrary, for |A| = 14, would imply b2(A) > 0.

Hence, as before, the system SwithZ2 coefficients would admit a non-constant
solution (aH )H2A. This defines a partition ofA into proper subsets LtK such that
aH = a, for all H 2 L and aH = b 6= a, for all H 2 K. This is only possible when
each line in L intersects each line in K in a quadratic point of type (LK LK ).

Counting the quadruple points of type (LK LK ) on an arbitrary line K 2 K,
we get that |L| = 2l and 3l + 1  14, so |L| 2 {2, 4, 6, 8}. There are actually only
three distinct cases, |L| 2 {2, 4, 6}, since |L| = 8 , |K| = 6 and we are back to
the third case.

The first two cases are easily dismissed. Assume |L| 2 {2, 4}, and consider a
line L 2 L. Since |K| � 10, there must be multiple points on L of type (LK ),
(LK K ), (LK KK ) or (LK KKK ). In any case, by Lemma 3.2, we get a = b,
contradiction. In the last case, |L| = 6, we necessarily have 4 quadruple points of
type (LK LK ) on each line in L and 3 quadruple points of type (LK LK ) on each
line inK, otherwise by Lemma 3.2 we would get a = b. It follows from Lemma 3.6
that such an arrangement does not exist.



266 ALEXANDRU DIMCA, DENIS IBADULA AND DANIELA ANCA MACINIC

Remark 3.9. Libgober’s result discussed above, Theorem 3.8 and all the exam-
ples we know so far suggest that the following property (P) holds for hyperplane
arrangement complements.

(P) An equimonodromical rank one local system ⇢(m) for m dividing |A| belongs
to the characteristic variety

V 1(M) =

n
⇢ 2 T(M) | H1(M,⇢ C) 6= 0

o

if and only if there is a strictly positive dimensional irreducible component Wm of
V 1(M) passing through the origin 1 2 T(M) and such that ⇢(m) 2 Wm .

This remark follows from the well known correspondence between the irreducible
components of the characteristic variety V 1(M) passing through the origin and the
pencils on M , see for instance [7] or [23]. In most of the examples we know, one
has in addition

dim H1(M,⇢(m) C) = dim H1(M,⇢ C) = dimWm � 1,

for ⇢ 2 Wm generic. Such an equality implies that the component Wm is unique in
view of Proposition 6.9 in [1].

This equality fails however for the Ceva pencil described in Theorem 2.2 (1).
Using the description of the corresponding resonance variety given in Example 2.14
in [23], we see that in this case there are 4 irreducible components of dimension
two passing through the character ⇢(3) (and through its conjugate). See also Exam-
ple 5.9 in loc.cit.

NOTE ADDED IN PROOF. The recent paper “The Milnor fibration of a hyperplane
arrangement: frommodular resonance to algebraic monodromy”, arXiv:1401.0868,
by S. Papadima and A. I. Suciu, shows that for line arrangements with only double
and triple points the monodromy operator is always combinatorially determined.
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denis@univ-ovidius.ro

Simion Stoilow Institute of Mathematics
P.O. Box 1-764
RO-014700 Bucharest, Romania
anca.macinic@imar.ro


