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Motion by curvature of planar networks, II

ANNIBALE MAGNI, CARLO MANTEGAZZA AND MATTEO NOVAGA

Abstract. We prove that the curvature flow of an embedded planar network
of three curves connected through a triple junction, with fixed endpoints on the
boundary of a given strictly convex domain, exists smooth as long as the lengths
of the three curves stay far from zero. If this is the case for all times, then the
evolution exists for all times and the network converges to the Steiner minimal
connection between the three endpoints.

Mathematics Subject Classification (2010): 53C44 (primary); 35K55, 53A04
(secondary).

1. Introduction

We are interested in the long-time behavior of the evolution by curvature of a triod,
that is, a network of three planar curves meeting at a common point (called triple
junction) with equal angles (the so-called Herring condition) and with fixed end-
points on the boundary of a given convex domain in the Euclidean plane.

As for the mean curvature flow, this evolution can be regarded as the gradient
flow of the Length functional. In this respect, the Herring condition naturally arises
from the variational interpretation of the flow and corresponds to the local stability
of the triple junction.

An important motivation for this study is due to the appearance of this evolu-
tion in several models of materials science for the motion of grain boundaries in a
polycrystalline material or, more generally, of two–dimensional multiple phase sys-
tems (see [7, 16, 17] and references therein). Another more theoretical motivation
comes from the fact that this is possibly the simplest evolution by curvature of a
nonsmooth set. Indeed, while the mean curvature flow of a smooth submanifold is
deeply, even if not completely, understood, the evolution of generalized submani-
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folds admitting singularities, for instance a varifold, has not been studied too much
in detail after the seminal work by K. Brakke [8] (see also [10, 11] for an alterna-
tive approach based on an implicit variational scheme introduced by J. Almgren,
J. Taylor and L. Wang in [2] and, independently, by S. Luckhaus and T. Sturzen-
hecker in [28]), we mention anyway the works of T. Ilmanen [22] and K. Kasai and
Y. Tonegawa [25].

The mathematical analysis of this flow started in [9] (see also [26]), where
short-time existence and uniqueness of a smooth flow has been established, and
continued in [30] where the authors proved that, at the first singular time, either
the curvature blows up or the length of one of the three curves goes to zero on a
sequence of times. Extending the analysis performed by G. Huisken for the mean
curvature flow (see [19] and references therein), they could also rule out certain
kinds of singularities, namely the so–called Type I singularities, corresponding to a
specific blow–up rate of the curvature at the singular time. A significant difficulty
of this analysis is the lack of a maximum principle, due to the presence of the triple
junction, which requires new arguments in order to estimate geometric quantities
such as the curvature and its derivatives.

In this paper we complete the program started in [30] and we prove that no
singularity can arise during the evolution of a triod, independently of the type of
singularity. More precisely, our main result is the following.

Theorem 1.1. For any smooth, embedded, initial triod T0 in a strictly convex set
� ⇢ R2, with fixed endpoints P1, P2, P3 2 @�, there exists a unique smooth evo-
lution by curvature of T0 which at every time t is a nondegenerate smooth embed-
ded triod Tt in �, in a maximal time interval [0, T ). Moreover, either the inferior
limit of the length of one of three curves of the triod Tt goes to zero as t ! T , or
T = +1 and Tt tends as t ! +1 to the unique Steiner triod connecting the three
fixed endpoints.

Our strategy is based on the analysis of the blow–up of the flow at a given point,
independently of the behavior of the curvature. Using some ideas presented in [23]
(see also [29]), which are based on Huisken’s monotonicity formula (see [19]), we
are able to classify all the possible blow–up limits. It turns out that the only ad-
missible configurations are a straight line, a halfline or a flat unbounded triod (see
Proposition 2.19). As none of them arises from a singular point of the flow, we
obtain our main result. A fundamental ingredient in our analysis are the interior
regularity estimates of K. Ecker and G. Huisken (see [12]), which we combine with
the estimates on the curvature and its derivatives obtained in [30].

One difficulty in this classification is to show that the possible limits necessar-
ily have multiplicity one. This follows from a geometric argument proposed in [18]
(see also [20]) and extended in [30] to the case of a triod, consisting in estimating
from below a kind of “embeddedness measure”, which is strictly positive when no
self-intersections are present and showing that it is monotonically increasing for an
evolving triod. We underline that it is not clear to us how to obtain a similar bound
for a general network (with multiple triple junctions), since the analogous quantity
is no longer monotone if there are more than two triple junctions.
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Recently, T. Ilmanen, A. Neves and F. Schulze announced a comprehensive
analysis of the evolution by curvature of a general network with several multiple
(not only triple) junctions, with any angles between the concurring edges. This
would clearly include and greatly generalize our work.

In the preliminary paper [24], the authors prove a local regularity result stating
that, if the Gaussian density is bounded away from two and the network has no
loops in an open set A, then the evolution of the network is smooth in A.

Independently of such a result, this paper deals with the simpler situation of a
single triod with fixed endpoints, in a strictly convex domain. Our goal is simply
to show that singularities cannot happen in this special case, hence completing the
program started in [30]. We point out that our method cannot be directly extended to
the case of a network with more than two triple junctions, due to the aforementioned
main difficulty in showing that the blow–ups at the singular points have multiplicity
one.

2. Definitions and preliminary results

Definition 2.1. Let � 2 R2 be a smooth open set and T = [
3
i=1�

i the union
of three embedded (at least C2), regular (i.e. �x 6= 0 for all x 2 [0, 1]) curves
� i : [0, 1] ! �. Let Pi 2 @�, for i 2 {1, 2, 3}, be three distinct points. We say
that T is a triod in � if:

• � i (x) 2 @� if and only if x = 1, for all i 2 {1, 2, 3};

• O = � i (0) for all i 2 {1, 2, 3};

• � i (x) = � j (y) for i, j 2 {1, 2, 3} and x, y 2 [0, 1] if and only if x = y = 0 or
i = j and x = y;

• � i (1) = Pi for all i 2 {1, 2, 3};

•

P3
i=1

� ix (0)
|� ix (0)|

= 0.

Under these conditions, we will call O the 3-point of the triod T and Pi the end-
points of the triod T.

For a given “initial” triod T0 = [
3
i=1�

i , we consider the following motion by
curvature (see [9] and [30]).

Definition 2.2. We say that the one-parameter family of triods Tt = [
3
i=1� (·, t)

evolves by curvature (staying embedded) in the time interval [0, T ), with T > 0, if
the three family of curves � i : [0, 1] ⇥ [0, T ) ! � are at least of class C2 in the
first variable and of class C1 in the second one, and satisfy the following quasilinear
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parabolic system,
8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

� ix (x, t) 6=0 regularity
� i (x, t) 2 @� iff x = 1 intersection with @� only

at the endpoints
� i (x, t) 6=� i (y, t) if x 6= y simplicity
� i (x, t)=� j (y, t) , x, y=0 if i 6= j intersection only

at the 3-pointP3
m=1

�mx (0,t)
|�mx (0,t)| =0 angles of 120 degrees

at the 3-point
� i (1, t) = Pi fixed endpoints condition
� i (x, 0) = � i (x) initial data
� it (x, t) =

� ixx (x,t)
|� ix (x,t)|

2 motion by curvature

(2.1)

for every x, y 2 [0, 1], t 2 [0, T ) and i, j 2 {1, 2, 3}.
To denote a flow we will often write simply Tt instead of making explicit the

curves � i which compose the triods. Moreover, it will be also useful to describe a
triod as a map F : T ! � from a fixed standard triod T in R2, composed of three
unit segments from the origin in the plane, forming angles of 120 degrees. In this
case we will still denote with O the 3-point of T and with Pi the three endpoints of
such standard triod.

The evolution then will be given by a map F : T ⇥ [0, T ) ! �, constructed
naturally from the curves � i , so Tt = F(T, t).

In [30] the following short-time existence and uniqueness theorem has been
proven.

Theorem 2.3. For any smooth initial triod T0 in a convex set � ⇢ R2, there exists
a unique smooth solution of Problem (2.1) in a maximal time interval [0, T ), with
T > 0. In particular, the evolving triod does not exit the open set � (with the
exception of the three fixed endpoints Pi ).

The goal of this paper is to show the following result which, with the above
theorem, gives Theorem 1.1 in the introduction.

Theorem 2.4. Given a triod F : T ⇥ [0, T ) ! � evolving by curvature, where �
is a strictly convex open subset of R2, either the inferior limit of the length of one
of three curves of the triod Tt goes to zero as t ! T , or T = +1 and Tt tends as
t ! +1 to the unique Steiner triod connecting the three fixed endpoints.

We remark that the first situation can actually happen, for instance, if the trian-
gle formed by the points P1, P2, P3 has one angle larger than 120 degrees. Notice
that the strict convexity of � implies that such a triangle is nondegenerate.
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Along the paper we will make extensive use of the following notation:

⌧ i = ⌧ i (x, t) =
� ix
|� ix |

unit tangent vector to � i ,

⌫i = ⌫i (x, t) = R⌧ i (x, t) = R � ix
|� ix |

unit normal vector to � i ,

O = O(t) = � i (0, t) 3-point of Tt ,

vi = vi (x, t) =
� ixx
|� ix |

2 velocity of the point � i (x, t) ,

�i = �i (x, t) =
h� ixx | ⌧ i i

|� ix |
2 =

h� ixx | � ix i

|� ix |
3 tangential velocity of the point

� i (x, t) ,

ki =ki (x, t)= h� ixx | ⌫i i

|� ix |
2 =h@s⌧

i
| ⌫i i=�h@s⌫

i
| ⌧ i i curvature at the point � i (x, t) ,

where with s we have denoted the arclength parameter on any of the curves and
with R : R2 ! R2 the counterclockwise rotation centered at the origin of R2 of
angle ⇡/2. Furthermore, we set �i = �i⌧ i and ki = ki⌫i , from which it follows
that vi = �i + ki and |vi |2 = (�i )2 + (ki )2. We will also denote by Li the length
of the i–th curve of the triod and by L = L1 + L2 + L3 its global length.

We now state some results which have been proven in [30].

Lemma 2.5. If � is a curve of a triod moving by curvature, which means that

�t =

�xx
|�x |2

= �⌧ + k⌫ ,

then the following commutation rule holds,

@t@s = @s@t + (k2 � �s)@s .

With the help of Lemma 2.5 one gets the following formulas.

Lemma 2.6. For any curve evolving by curvature, there holds

@t⌧ = @t@s� = @s@t� + (k2 � �s)@s� = @s(�⌧ + k⌫) + (k2 � �s)⌧ = (ks + k�)⌫

@t⌫ = @t (R⌧ ) = R @t⌧ = �(ks + k�)⌧

@t k = @t h@s⌧, ⌫i = h@t@s⌧, ⌫i = h@s@t⌧, ⌫i + (k2 � �s)h@s⌧, ⌫i

= @sh@t⌧, ⌫i + k3 � k�s = @s(ks + k�) + k3 � k�s

= kss + ks� + k3

@t� = � @t@x
1

|�x |
= @x

h�x , �t x i

|�x |3
= @x

h⌧, @s(�⌧ + k⌫)i

|�x |
= @x

(�s � k2)
|�x |

= @s(�s � k2) � �(�s � k2) = �ss � ��s � 2kks + �k2 .
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Taking into account the compatibility conditions at the 3-point, we have the follow-
ing:

Lemma 2.7. At the 3-point of a triod Tt evolving as in Problem (2.1), there holds

�i =

ki�1 � ki+1
p

3
ki =

�i+1 � �i�1
p

3
,

where the indices are understood modulo three. Moreover

3X
m=1

km =

3X
m=1

�m = 0 kis + �i ki = k js + � j k j

for every pair i, j 2 {1, 2, 3}.

The key theorem for the analysis of the singularities is the following result [30,
Theorem 3.18].

Proposition 2.8. If [0, T ) is the maximal time interval of existence of a smooth
solution Tt with T < +1 of Problem (2.1), then one of the following possibilities
holds:

• the inferior limit of the length of one curve of Tt tends to zero as t ! T ;
• lim supt!T

R
Tt k

2 ds = +1.

Moreover, if the lengths of the three curves are uniformly bounded away from zero,
then the superior limit is actually a limit.

In the next section we will show that if the lengths of the three curves are
uniformly bounded away from zero, no singularity can develop. We now introduce
the tools and the estimates which we will need.

Let F : T ⇥ [0, T ) ! R2 be a curvature flow for a triod in its maximal
time interval of existence; then a modified form of Huisken’s monotonicity formula
holds. Let x0 2 � and ⇢x0 : R2 ⇥ [0, T ) be the backward heat kernel of R2 relative
to (x0, T ), that is

⇢x0(x, t) =

e�
|x�x0|2
4(T�t)

p

4⇡(T � t)
.

Proposition 2.9 (Monotonicity formula - [30, Proposition 6.4]). For every x0 2

R2 and t 2 [0, T ) the following identity holds

d
dt

Z
Tt

⇢x0(x, t) ds = �

Z
Tt

���� k +

(x � x0)?

2(T � t)

����
2
⇢x0(x, t) ds

+

3X
i=1

⌧
Pi � x0
2(T � t)

, ⌧ i (1, t)
�
⇢x0(P

i , t) .

(2.2)
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Integrating between t1 and t2 with 0  t1  t2 < T we get
Z t2

t1

Z
Tt

���� k +

(x � x0)?

2(T � t)

����
2
⇢x0(x, t) ds dt

=

Z
Tt1

⇢x0(x, t1)ds �

Z
Tt2

⇢x0(x, t2)ds +

3X
i=1

Z t2

t1

⌧
Pi � x0
2(T� t)

, ⌧ i (1, t)
�
⇢x0(P

i, t)dt.

Remark 2.10. Notice that the monotonicity formula for a triod differs from the
standard one because of a boundary term. Thanks to the next lemma, this extra
term will not change to a big extent the blow–up analysis for the curvature motion
of triods.

Lemma 2.11 ([30, Lemma 6.5]). Setting |Pi � x0| = di , for every index i 2

{1, 2, 3} the following estimate holds

����
Z T

t

⌧
Pi � x0
2(T � ⇠)

, ⌧ i (1, ⇠)

�
⇢x0(P

i , ⇠) d⇠

���� 

1
p

2⇡

+1Z
di/

p

2(T�t)

e�y
2/2 dy  1/2 .

As a consequence, for every point x0 2 R2, we have

lim
t!T

3X
i=1

Z T

t

⌧
Pi � x0
2(T � ⇠)

, ⌧ i (1, ⇠)

�
⇢x0(P

i , ⇠) d⇠ = 0 .

Proposition 2.12. If for every x0 2 R2 we define the functions2 : T⇥[0, T ) ! R
as

2(x0, t) =

Z
Tt

⇢x0(x, t) ds ,

then, the limit

b2(x0) = lim
t!T

2(x0, t) = lim
t!T

Z
Tt

⇢x0(x, t) ds

exists and it is finite. Moreover, the map b2 : R2 ! R is upper semicontinuous.

Proof. We consider the function b : R2 ⇥ [0, T ) ! R given by

b(x0, t) =

Z T

t

3X
i=1

⌧
Pi � x0
2(T � ⇠)

���� ⌧ i (1, ⇠)

�
⇢x0(P

i , ⇠) d⇠ .

Lemma 2.11 says that b is uniformly bounded and for every x0 2 R2 we have
limt!T b(x0, t) = 0. Hence, the monotonicity formula (2.2) can be rewritten as

d
dt

�
2(x0, t) + b(x0, t)

�
= �

Z
Tt

���� k +

(x � x0 )?

2(T � t)

����
2
⇢x0(x, t) ds  0 ,
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hence, being nonincreasing and bounded from below, the functions
�
2(·, t)+b(·, t)

�
pointwise converge on all R2 when t ! T . Since we have seen that b(·, t) point-
wise converge to zero everywhere, the limit b2(x0) exists for every x0 2 R2. As
the convergence of the continuous functions

�
2(·, t) + b(·, t)

�
to b2 : R2 ! R is

monotone nonincreasing, this latter is upper semicontinuous.

We now introduce the rescaling procedure of Huisken [19].
For a fixed x0 2 R2, let eFx0 : T ⇥ [�1/2 log T,+1) ! R2 be the map

eFx0(p, t) =

F(p, t (t)) � x0
p

2(T � t (t))
t(t) = �

1
2
log (T � t) .

Then the rescaled triods are given by eTx0,t =

Tt (t)�x0
p

2(T�t (t)) and they evolve according
to the equation

@

@t
eFx0(p, t) =ev(p, t) +

eFx0(p, t) ,

where

ev(p, t) =

v(p, t (t))
p

2(T � t (t))
=
ek +

e� =
ek⌫ +

e�⌧ and t (t) = T � e�2t .

Notice that we did not put the “tilde” over the unit tangent and normal, since they
do not change under rescaling. We will often write eO(t) =

eFx0(0, t) for the 3-point
of the rescaled triodeTx0,t, when there is no ambiguity on the point x0. The rescaled
curvature evolves according to the following equation

@tek =
ek�� +

ek�e� +
ek3 �

ek ,

which can be obtained by means of the commutation law

@t@� = @� @t + (ek2 �
e�� � 1)@� ,

where we denoted by � the arclength parameter for eTx0,t.
By a straightforward computation (see [19] and [30, Lemma 6.7]) we have the

following rescaled version of the monotonicity formula.

Proposition 2.13 (Rescaled monotonicity formula). Let x0 2 R2 and set e⇢(x) =

e�
|x |2
2 . For every t 2 [�1/2 log T,+1) the following identity holds

d
dt

Z
eTx0,t

e⇢(x) d� = �

Z
eTx0,t

|
ek + x?

|
2e⇢(x) d� +

3X
i=1

D ePix0,t
��� ⌧ i (1, t (t))E e⇢(ePix0,t)
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where ePix0,t =
Pi�x0

p

2(T�t (t)) . Integrating between t1 and t2 with �1/2 log T  t1 

t2 < +1 we get
Z t2

t1

Z
eTx0,t

|
ek + x?

|
2e⇢(x) d� dt =

Z
eTx0,t1

e⇢(x) d� �

Z
eTx0,t2

e⇢(x) d� (2.3)

+

3X
i=1

Z t2

t1

D ePix0,t
��� ⌧ i (1, t (t))E e⇢(ePix0,t) dt .

Then, we have the analog of Lemma 2.11.

Lemma 2.14 (Lemma 6.8 in [30]). For every index i 2 {1, 2, 3} the following es-
timate holds ����

Z
+1

t

D ePix0,⇠
��� ⌧ i (1, t (⇠))

E e⇢(ePix0,⇠ ) d⇠

���� 

p
⇡/2 .

Then, for every x0 2 R2,

lim
t!+1

3X
i=1

Z
+1

t

D ePix0,⇠
��� ⌧ i (1, t (⇠))

E e⇢(ePix0,⇠ ) d⇠ = 0 .

Before showing the key proposition about the blow-up limits of the flow at a singu-
larity, we need some technical lemmas.

Lemma 2.15 (Second statement in Lemma 6.10 in [30]). For every ball BR cen-
tered at the origin of R2, we have the following estimates with a constant CR inde-
pendent of x0 2 R2 and t 2 [�1/2 log T,+1)

H1(eTx0,t \ BR)  CR .

Definition 2.16. We say that a sequence of triods converges in the Cr
loc topology

if, after reparametrizing all their curves with the arclength, they converge in Cr on
every compact set of R2. The definition of convergence in Wn,p

loc is analogous.
Given the smooth flow Tt = F(T, t), we consider two points p = F(x, t) and

q = F(y, t) belonging to Tt and we define 0p,q to be the geodesic curve contained
in Tt connecting p and q. Then we let Ap,q to be the area of the open region Ap,q
in R2 enclosed by the segment [p, q] and the curve 0p,q , as in the figure.

If the region Ap,q is not connected, we let Ap,q be the sum of the areas of its
connected components (see Figure 1).

We consider the function 8t : T ⇥ T ! R [ {+1} defined as

8t (x, y) =

8><
>:

|p�q|
2

Ap,q if x 6= y,
4
p

3 if x and y coincide with the 3-point O of T,
+1 if x = y 6= O.
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P 1

p

Ap,q

p,q

O

P 3

Ω

q P 2

Γ

Figure 1.

Since Tt is smooth and the 120 degrees condition holds, it is easy to check that 8t
is a lower semicontinuous function. Hence, by the compactness of T, the following
infimum is actually a minimum

E(t) = inf
x,y2T

8t (x, y)

for every t 2 [0, T ).
If the triod Tt has no self-intersections we have E(t) > 0, the converse is

clearly also true. Moreover, E(t)  8t (0, 0) = 4
p

3 always holds, thus when
E(t) > 0 the two points (p, q) of a minimizing pair (x, y) can coincide if and only
if p = q = O . Eventually, since the evolution is smooth, it is easy to see that the
function E : [0, T ) ! R is continuous.

Proposition 2.17 (Theorem 4.6 in [30]). If� is strictly convex, there exists a con-
stant C > 0 depending only on T0 such that E(t) > C > 0 for every t 2 [0, T ).
Hence, the triods Tt remain embedded in all the maximal interval of existence of
the flow.

Lemma 2.18. If � is strictly convex, the function

E(T) = inf
p,q2T
p 6=q

|p � q|
2

Ap,q
,

defined on the class of C1 triods without self-intersections (bounded or unbounded
and with or without end points or 3-points), is upper semicontinuous with respect
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to the C1loc convergence. Moreover, E is dilation and translation invariant. Con-
sequently, every C1loc limit T1 of a sequence of rescaled triods eTt has no self-
intersections, has multiplicity one (outside the endpoints and the 3-point if present),
and satisfies E(T1) > C > 0 where the constant C is given by Proposition 2.17.

Proof. The dilation–translation invariance and the upper semicontinuity of the func-
tion E are straightforward, by the C1loc convergence. This latter obviously implies
the final statement of the theorem once we show the embeddedness and the multi-
plicity one properties.

Suppose that a sequence of rescaled triods eTtj converges to some limit T1.
If this latter has a transversal self-intersection, the triods of the approximating se-
quence must definitively have self-intersections too, but this contradicts Proposi-
tion 2.17. By the same reason, T1 cannot contain loops and a self-intersection at
the 3-point is impossible. Similarly, we can exclude a self-intersection at an end-
point. Indeed, T1 can contain an endpoint Pi

1
only if we rescale the evolving

triods around one of the endpoints Pi , hence the convexity of � implies that T1

lies in a halfspace and the only way a self-intersection at Pi
1
can appear is that the

limit curve starting at Pi
1
is tangent to another limit piece of a curve of T1. As

we assumed that the lengths of the curves are uniformly bounded below away from
zero, then either T1 contains a loop (as it is connected), or a piece of the limit triod
containing Pi

1
has multiplicity two, coming from the “collapsing” of two pieces

of curve in the sequence of rescaled triods. We saw that the first case is impossi-
ble, then the second one is excluded by the argument below, which deals with the
multiplicity of the limit set. The only other possible self-intersections of the limit
set can happen at self-tangency points. By the C1loc convergence, in a sufficiently
small ball of radius R around any of such points x 2 R2, definitively, for every
rescaled triodeTtj , there must be some number of curves which are “pieces” ofeTtj ,
such that they are all disjoint, all graphs on the tangent line L to T1 at x and all
converging to the same limit C1 graph T1 \ BR . Considering two of such pieces
of curves, say � 1j and � 2j , we take the point p j and q j which are the intersections
of the orthogonal line to L at x and the two curves. By hypotheses, the distance
d j between p j and q j goes to zero. Moreover, as every rescaled triod is connected
there must be a geodesic curve (in the entire rescaled triod) connecting such two
points. This means that the open regionAp j ,q j is well defined and its area Apj ,q j is
larger than the area S j contained between the two curves–graphs � 1j and � 2j in BR .
Hence we get E(eTtj )  d2j /S j . If we now rescale the ball BR by a factor 1/d j , the
two curves � 1j , � 2j converge, as j ! 1, to two straight lines parallel to L . As the
distance between the rescaled of the points p j , q j is one, the distance between this
two straight lines is also one. As the function E is dilation invariant and the rescal-
ing of the region between the two curves in BR converges to a half–strip in R2, we
conclude that lim j!1 S j/d2j = +1, hence E(eTtj ) ! 0 which is a contradiction,
by Proposition 2.17.
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We can now show the following result, which is analogous to the (stronger)
one for Type I singularities proved in [30, Proposition 6.16].
Proposition 2.19. Assume that the lengths of the three curves of the triods Tt are
uniformly bounded away from zero during the evolution.

For every x0 2 R2 and every subset I of [�1/2 log T,+1) with infinite
Lebesgue measure, there exists a sequence of rescaled times t j ! +1, with
t j 2 I, such that the sequence of rescaled triodseTx0,tj converges in the C1loc topol-
ogy to a limit set T1 which, if not empty, is one of the following:
• a straight line through the origin with multiplicity one (in this case b2(x0) = 1);
• an infinite flat triod centered at the origin with multiplicity one, except its 3-point
(in this case b2(x0) = 3/2);

• a halfline from the origin of multiplicity one, except the origin (in this caseb2(x0) = 1/2).
Moreover, the L2 norm of the curvature in every ball BR 2 R2 along such a se-
quence goes to zero, as j ! 1.

For every sequence of rescaled triods Tx0,tj converging at least in the C1loc
topology to a limit eT1, as t j ! +1, we have

lim
j!1

1
p

2⇡

Z
eTx0,tj

e⇢ d� =

1
p

2⇡

Z
T1

e⇢ d� =
b2(x0) . (2.4)

Proof. Assume that we have a sequence of rescaled triods eTx0,tj converging in the
C1loc topology to a limit T1, as t j ! +1. Since by Lemma 2.18 the limit must
be embedded with multiplicity one, the convergence on every compact subset of
R2 implies that the Radon measures H1 eTx0,tjl weakly

?–converge in R2 to the
Radon measure H1 T1. Moreover, as in the proof of Proposition 6.20 in [30],
we can pass to the limit in the following Gaussian integral:

lim
j!1

1
p

2⇡

Z
eTx0,tj

e⇢ d� =

1
p

2⇡

Z
T1

e⇢ d� .

Consequently,
1

p

2⇡

Z
eTx0,tj

e⇢ d� =

Z
Tt (tj )

⇢x0(x, t (t j )) ds = 2(x0, t (t j )) !
b2(x0) ,

as j ! 1 and equality (2.4) follows.
We now show the first statement.

Setting t1 = �1/2 log T and letting t2 go to +1 in the rescaled monotonicity
formula 2.3, by Lemma 2.14 we get

+1Z
�1/2 log T

Z
eTx0,t

|
ek + x?

|
2e⇢ d� dt < +1 ,
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then, a fortiori, Z
I

Z
eTx0,t

|
ek + x?

|
2e⇢ d� dt < +1 .

Being the last integral finite and being the integrand a non-negative function on
a set of infinite Lebesgue measure, we can extract within I a sequence of times
t j ! +1, such that

lim
j!+1

Z
eTx0,tj

|
ek + x?

|
2e⇢ d� = 0 .

It follows that, for every ball of radius R inR2, the triodseTx0,tj have curvatures uni-
formly bounded in L2(BR). Moreover, by Lemma 2.15, for every ball BR centered
at the origin of R2 we have the uniform bound H1(eTx0,tj \ BR)  CR , for some
constants CR independent of j 2 N. Then, reparametrizing all the triods with ar-
clength, we obtain curves with uniformly bounded first derivatives (from above and
below away from zero by the assumption on the lengths) and with second deriva-
tives in L2loc. By standard compactness arguments (see [19,27]), the sequenceeTx0,tj
of reparametrized triods admits a subsequence eTx0,tjl which converges weakly in
W 2,2
loc and also in the C

1
loc topology, to a (possibly empty) set T1. If the point

x0 2 R2 is distinct from all the endpoints Pi , then T1 has no endpoints, since they
go to infinity along the rescaled flow. If x0 = Pi , the set T1 has a single endpoint
at the origin of R2. As we have already pointed out, by Lemma 2.18, the limit set
(if not empty) has no self-intersections and multiplicity one, moreover, if a 3-point
is present then the angles are of 120 degrees by the convergence of the curves in
C1loc. Since the integral functional

eT 7!

Z
eT

|
ek + x?

|
2e⇢ d�

is lower semicontinuous with respect to this convergence (see [31]), the limit T1

distributionally satisfies k
1

+ x?
= 0. In principle, the limit set is composed by

curves inW 2,2
loc , but from the relation k1

+x?
= 0, it follows that k

1
is continuous,

since the curves are C1loc. By a bootstrap argument, it is then easy to see that the T1

is actually smooth. Such a limit set is an unbounded triod or curve with at most one
endpoint (depending on the choice of the point x0), moreover, by Lemma 2.18, (if
not empty) it has no self-intersections. As the relation above implies k1 = �hx | ⌫i

at every point x 2 T1, repeating the argument of Lemma 5.2 in [30], if a triod
is present, it must be centered at the origin of R2 and this excludes the presence
of an endpoint at the same time. Indeed, in such case, it must be x0 = P1 (for
instance) and any blow–up must be contained in a half space (since the triod does
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not “escape” the convex set � during the evolution) which is clearly impossible
for a triod. Thus, by the same relation, the classification Lemmas 5.2, 5.3, 5.4 and
Proposition 5.5 in [30], we can conclude that in any case the curvature of the limit
set is zero everywhere and that T1 is among the sets in the statement.

Since on every ball BR the sequence of rescaled triods eTx0,tj can converge (in
the C1 topology) only to a limit set with zero curvature, satisfying x?

= 0 and

lim
j!1

Z
eTx0,tj \BR

|
ek + x?

|
2 d� = 0 ,

as the term x? is continuous in the C1loc convergence, we actually have that

lim
j!1

Z
eTx0,tj \BR

ek2 d� = 0 .

Finally, the values of b2(x0) in the statement are obtained through a computation by
means of formula (2.4).

Lemma 2.20. There exists the limit x0 = limt!T O(t), and corresponds to the
unique point x0 2 � such that b2(x0) = 3/2. Moreover, the set of rescaled times

Ix0 =

n
t 2 [�1/2 log T,+1) such that | O(t (t)) � x0| �

p
2(T � t (t))

o

has finite Lebesgue measure.

Proof. We first show that b2(·) can be equal to 3/2 only at one point in�. Assuming
that b2(x0) =

b2(y0) = 3/2, we let

Ix0 =

n
t 2 [�1/2 log T,+1) such that | O(t (t)) � x0| �

p
2(T � t (t))

o
,

Iy0 =

n
t 2 [�1/2 log T,+1) such that | O(t (t)) � y0| �

p
2(T � t (t))

o

and we claim that both have finite Lebesgue measure. Indeed, if the Lebesgue
measure of Ix0 is not finite, we haveZ

Ix0

Z
eTx0,t

|
ek + x?

|
2e⇢ d� dt < +1 .

Hence, since we assumed b2(x0) = 3/2, we can extract a sequence of times t j 2 Ix0
such that the rescaled triods eTx0,tj converge in the C1loc topology to an infinite flat
triod centered at the origin of R2. This is clearly in contradiction with the fact that,
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by construction, every seteTx0,tj \ B1/2 does not contain the 3-point of the rescaled
triod eTx0,tj . We thus proved that Ix0 and Iy0 have finite measure. If the points x0
and y0 are distinct, we have a contradiction, as [t0,+1) \ Iy0 ⇢ Ix0 , if t0 is large
enough and the set [t0,+1) \ Iy0 would have finite Lebesgue measure as well,
which is clearly not possible.

We now see that b2(x0) = 3/2 holds for every point x0 2 � such that there
exists a sequence t j ! T with lim j!1 O(t j ) = x0. This fact, by the compactness
of � and the uniqueness of the point x0, implies the first statement of the lemma.

Fixing any r 2 [0, T ), we definitely have t j > r , hence if O(t j ) ! x0, we get

2(x0, r) + b(x0, r)

=

Z
Tr

e�
|x�x0|2
4(T�r)

p

4⇡(T � r)
ds +

Z T

r

3X
i=1

⌧
Pi � x0
2(T � t)

, ⌧ i (1, t)
�

e�
|Pi�x0|2
4(T�t)

p

4⇡(T � t)
dt

= lim
j!1

⇢Z
Tr

e
�

|x�O(t j )|2

4(t j�r)p
4⇡(t j � r)

ds +

Z t j

r

3X
i=1

*
Pi � O(t j )
2(t j � t)

, ⌧ i (1, t)

+
e
�

|Pi�O(t j )|2

4(t j�t)p
4⇡(t j�t)

dt
�

� lim
j!1

lim
r!t�j

⇢Z
Tr

e
�

|x�O(t j )|2

4(t j�r)p
4⇡(t j�r)

ds+
Z t j

r

3X
i=1

*
Pi�O(t j )
2(t j � t)

, ⌧ i (1,t)

+
e
�

|Pi�O(t j )|2

4(t j�t)p
4⇡(t j�t)

dt
�

= lim
j!1

lim
r!t�j

Z
Tr

e
�

|x�O(t j )|2

4(t j�r)p
4⇡(t j � r)

ds ,

where the inequality follows from Proposition 2.9 and in the last passage we ap-
plied Lemma 2.11 with t j in place of T . Indeed, the monotonicity formula (and
actually all the previous strategy) holds also if T is not the maximal existence time.
Repeating all the argument in the Proposition 2.19 at time t j , we then see that
the last integral inside the limit must be equal to 3/2 (as we are rescaling exactly
around the 3-point O(t j )) and thus the only possible limit of rescaled triods is an
unbounded triod inR2 centered at the origin. Hence, we can conclude that for every
r 2 [0, T ) there holds2(x0, r)+b(x0, r) � 3/2, which, when r ! T , implies thatb2(x0) = 3/2.

In the following, given x 2 R2 and R > 0, we denote by QR(x) the square

QR(x) :=

n
x 2 R2 : |x1 � x1|  R, |x2 � x2|  R

o
.

Proposition 2.21. Suppose that the curve �0 is a graph over he1i in the square
Q2R(x0), and assume that the curve �t \ Q2R(x0) is contained in the horizontal
strip {|x2|  �} for any t 2 [0, ⌧ ), with ⌧ > 0 and 0 < � < R. Then �t \ Q2R(x0)
is a graph over he1i for all t 2 [0, ⌧ ).
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Proof. We claim that the number of intersections of �t with any vertical segment
of the form `x := {x + se2 : x 2 Q2R(x0), s 2 R} \ Q2R(x0) is nonincreasing in
time, hence it is constantly equal to 1 as �0 is a graph in Q2R(x0) over he1i. It then
follows that �t \ Q2R(x0) is a graph over he1i for all t 2 [0, ⌧ ) and the thesis is
proven.

In order to prove the claim, let us assume by contradiction that there exist a
vertical segment ` and a time t � 0 such that the set �t \ ` is a single point for
t 2 [0, t), and has cardinality strictly greater than 1 for a sequence tn # t . In
particular, there exist a point x ⇢ �t \ ` and two sequences xn, yn such that

xn, yn 2 �tn \ `, xn 6= yn and lim
n!1

xn = lim
n!1

yn = x . (2.5)

It follows that �t has a vertical tangent line at x , so that we can write �t \ Q�(x) as
a smooth graph over ` for a suitably small � > 0.

By [13, Theorem 2.1] there exists " > 0 such that �t \ Q �
2
(x) is also a graph

over ` for all t 2 [t, t + "] and, by continuity, at the intersection with @Q �
2
(x)

the curve �t does not intersect `. Then, by the Sturmian theorem of Angenent
in [5, Proposition 1.2] and [4, Section 2] (see [3] for the proof), we have that the
cardinality of �t\` in Q �

2
(x) is nonincreasing in time on [t, t+"], thus contradicting

property (2.5).

Corollary 2.22. Assume that �0 \ B7R(x0) is a graph over he1i, contained in the
horizontal strip {|x2|  R}. Then �t\B2R(x0) is a graph over he1i for all t 2 [0, ⌧ ),
with ⌧ = R2/2. Moreover, letting v = h⌫ | e2i�1, we have

sup
t2[0,⌧ )

sup
�t\BR (x0)

v  C sup
�0\B2R (x0)

v

for some C > 0 independent of R.

Proof. Letting x± = x0 ± 4Re2, by assumption we have that �0 is contained in the
complementary of the set B3R(x+) [ B3R(x�) ⇢ B7R(x0).

By the comparison principle, it follows that �t does not intersect the set
BR(t)(x+) [ BR(t)(x�), with R(t) =

p

9R2 � 2t , for all t 2 [0, 9R2/2). In particu-
lar, �t \Q2R(x0) does not intersect the upper and lower edge of the square Q2R(x0)
if t 2 [0, ⌧ ), with ⌧ = R2/2. Therefore, from Proposition 2.21 it follows that
�t \ Q2R(x0), hence also �t \ B2R(x0), is a graph over he1i for all t 2 [0, R2/2).
The last assertion of the corollary then follows from Theorem 2.3 in [13], noticing
that if �t is the graph of the function u(· , t), then v =

p
1+ |u0

|
2.

We recall the following result [13, Corollary 3.2 and Corollary 3.5].

Proposition 2.23. Suppose that �t is a graph over he1i in BR(x0) for all t 2 [0, ⌧ ).
Then letting ✓ 2 (0, 1) and m � 0, we have

sup
�t\Bp

✓R2�2t
(x0)

tm+1
|@ms k|

2
 Cm,v
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for all t 2 [0, ⌧ ), where the constant Cm,v depends only on m, ✓ and supt2[0,⌧ ) ⇥

sup�t\Bp

R2�2t
(x0) v.

Proposition 2.24. Let �t be as in Proposition 2.23. For all ✓ 2 (0, 1) we have

sup
�t\Bp

✓R2�2t
(x0)

|k|2 

Cv

(1� ✓)2

✓
1
R2

+ sup
�0\BR (x0)

|k|2
◆

(2.6)

for all t 2 [0, ⌧ ), where the constant Cv depends only on supt2[0,⌧ ) sup�t\BR (x0) v.

Proof. Let g = k2'(v2), with '(s) := s(1�cs)�1 and c > 0 to be chosen later, and
let ⌘ = (R2 � |x |2 � 2t)2. By a direct computation as in the proof of Theorem 3.1
in [13], we obtain

(@t � 1) g⌘  �2cg2⌘ � 2
⌦
'v�3

rv + ⌘�1
r⌘,r(g⌘)

↵
+ C(n)

✓⇣
1+

1
cv2

⌘⇣
|x |2 + 2t

⌘
+ R2

◆
g .

(2.7)

At a point where m(t) := max�t\Bp

R2�2t
(x0) (g⌘) is attained in space, multiplying

inequality (2.7) by ⌘
2c we get

m0(t)
⌘

2c
 �m(t)2 +

C(n)
2c

✓⇣
1+

1
cv2

⌘⇣
|x |2 + 2t

⌘
+ R2

◆
m(t) ,

which yields m0(t)  0 as soon as

m(t) �

C(n)
2c

✓⇣
1+

1
cv2

⌘⇣
|x |2 + 2t

⌘
+ R2

◆
.

Choosing
c =

1
2
inf

t2[0,⌧ )
inf

�t\Bp

R2�2t
(x0)

v�2,

we obtain

cv2 

1
2

 
inf

�t\Bp

R2�2t
(x0)

v�2

!0
@ sup

�t\Bp

R2�2t
(x0)

v2

1
A = 1/2

in �t \ Bp

R2�2t (x0), hence '(v2)  2v2, and the function ⌘g is well defined.
Moreover we have m0(t)  0 whenever

m(t) � 4C(n) R2 sup
�t\Bp

R2�2t
(x0)

v2.
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As '(v) � 1 and ⌘ � (1� ✓)2R4 in Bp

✓R2�2t (x0), it follows that

sup
�t\Bp

✓R2�2t
(x0)

|k|2  (1� ✓)�2R�4 sup
�t\Bp

R2�2t
(x0)

(g⌘)

 (1� ✓)�2 max
⇢
m(0)
R4

,
4C(n)
R2

sup
�t\Bp

R2�2t
(x0)

v2
�

which gives estimate (2.6) as

m(0)  2R4
 

sup
�0\BR(x0)

v2

! 
sup

�0\BR(x0)
|k|2

!
.

3. Proof of Theorem 2.4

The fact that if T = +1 and the lengths of the three curves of a triod moving by
curvature are bounded below away from zero uniformly in time, then the evolving
triod Tt tends as t ! +1 to the unique Steiner triod connecting the three fixed
endpoints is shown in Section 8 of [30].

This section is devoted to excluding finite-time singularities (i.e. T < +1)
for a triod moving by curvature, whose curves have lengths bounded away from
zero from below, uniformly in time. From this fact, Theorem 2.4 follows.

To this aim, we will proceed with an argument by contradiction relying on the
C1loc convergence (with the L

2 norm of the curvature going to zero in every compact
subset of R2) of a sequence of rescaled triods to any of the three singularity models
in Proposition 2.19. The argument is similar in spirit to the one in [29], adapted to
the case of an evolving triod.

To set the notation, let F : T ⇥ [0, T ) ! R2, with T < 1, be a triod moving
by curvature in its maximal time interval of smooth existence. We assume that the
lengths of the three curves of the triod Tt are uniformly bounded below away from
zero and that T < +1. We are going to show that the full L2 norm of the curvature
of the evolving triod stays uniformly bounded up to time T , hence contradicting
Proposition 2.8.

We define the set of reachable points of the flow as

R =

�
x 2 R2

�� there exist pi 2 T and ti % T such that lim
i!1

F(pi , ti ) = x
 
.

Such a set is easily seen to be closed, contained in �, hence compact, and the
following lemma holds.

Lemma 3.1. A point x 2 R2 belongs to R if and only if for every time t 2 [0, T )
the closed ball with center x and radius

p

2(T � t) intersects Tt .
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Proof. One of the two implications is trivial. We have to prove that if x 2 R, then
F(T, t) \ Bp

2(T�t)(x) 6= ;. If x is one of the endpoints, the result is obvious,
otherwise we define the function dx (t) = infp2T |F(p, t) � x |, where, due to the
compactness of T the infimum is actually a minimum and definitely, as t ! T , let
us say for t > tx it cannot be taken at an endpoint, by the assumption x 2 R. Since
the function dx : [0, T ) ! R is locally Lipschitz, we can use Hamilton’s trick to
compute its time derivative and get (for any point q, different by an endpoint, where
at time t the minimum of |F(p, t) � q| is attained)

@t dx (t) = @t |F(q, t) � x | �

hk(q, t)⌫(q, t) + �(q, t)⌧ (q, t), F(q, t) � xi
|F(q, t) � x |

=

hk(q, t)⌫(q, t), F(q, t) � xi
|F(q, t) � x |

� �

1
dx (t)

,

since at a point of minimum distance the vector F(q,t)�x
|F(q,t)�x | is parallel to ⌫(q, t).

Integrating this inequality over time, we get

d2x (t) � d2x (s)  2(s � t) for s > t > tx .

We now use the hypothesis that x is reachable (i.e. limti!T dx (ti ) = 0) and we
conclude

d2x (t) = lim
i!1

[d2x (t) � d2x (ti )]  2 lim
i!1

(ti � t) = 2(T � t) ,

for every t > tx .

As a consequence, when we consider the blow–up of the evolving triods around
points of �, we have a dichotomy among them. Either the limit of any sequence of
rescaled triods is not empty and we are rescaling around a point inR, or the blow–
up limit is empty, since the distance of the evolving triod from the point of blow–up
is too big. Conversely, if the blow up point belongs toR, the above lemma ensures
that any rescaled triod contains at least one point of the closed unit ball of R2.

Fixing any point x0 2 R, by Proposition 2.19 there is a sequence ti % 1 of
rescaled triods such that eTx0,tj converges in the C1loc topology to a nonempty limit
which must be either a straight line, a halfline or an infinite flat triod. Moreover, in
every ball BR 2 R2, the L2 norm of the curvature along such sequence goes to zero
as j ! 1.

We start considering the case when the blow–up limit is a straight line.

Proposition 3.2. If the sequence of rescaled triods eTx0,tj converges to a straight
line, then the curvature of the evolving triod is uniformly bounded for t 2 [0, T ) in
a ball around the point x0.

Proof. Assume that there is a straight line L through the origin of R2 such that
the sequence of rescaled triods eTx0,tj converges to L as j ! 1. Recalling
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Lemma 2.20 this implies that the distance |O(t) � x0| is uniformly bounded from

below, so that there exists i 2 {1, 2, 3} such that the rescaled curves
� it j

p

2(T�t j )
con-

verge to L as j ! 1. In particular, for all M > 1 there exists jM 2 N such that the
curve � it jM

\ B7Mp

2(T�t jM )(x0) is a graph over the line x0 + L . By Corollary 2.22
it follows that � it \ BMp

2(T�t jM )(x0) is also a graph over the line x0 + L for all
t 2 [t jM , t jM + M2(T � t jM )) � [t jM , T ), and its slope vi (with respect to the line
x0 + L) is uniformly bounded by a constant independent of M and t . Therefore,
if M > 2, from Proposition 2.23 (applied with ✓ = 1/2) it follows that the cur-
vature of the curve � it \ BMp

2(T�t jM )(x0) and all its derivatives are bounded for
t 2 [t jM , T ) and we are done.

We then consider the case of a halfline.

Proposition 3.3. If the sequence of rescaled triods eTx0,tj converges to a halfline,
then the curvature of the evolving triod is uniformly bounded for t 2 [0, T ) in a
ball around the point x0.

Proof. By the C1loc convergence of the rescaled flow to the halfline, we can see that
the point x0 must be one of the endpoints of the triod, which we will denote with
P . We now perform a reflexion with center P of the triod and we consider the
motion by curvature of the union of the two (mutually reflected through P) triods
which is still a motion by curvature, now of a network of curves (see [30] for more
details). Since at the endpoint P the curvature vanishes by construction, the point P
stays fixed during the motion of the network and the sequence of rescaled networks
around P = x0 converges in the C1loc topology to a straight line. We can now repeat
the proof of Proposition 3.2 to conclude.

If there is no x0 2 R2 with b2(x0) = 3/2, by Propositions 3.2 and 3.3, there
exists a ball around every reachable point in which the curvature of the evolving
triod is uniformly bounded for t 2 [0, T ). As the set of reachable pointsR is com-
pact, it follows that the curvature is uniformly bounded as t ! T < +1, which
is contradiction to Proposition 2.8. Hence, we can assume that at some (unique)
point x0 2 � we have b2(x0) = 3/2 and that the sequence of rescaled triods eTx0,tj
converges to an infinite flat triod T1 centered at the origin. Furthermore, the L2
norm of the curvature of the rescaled triods goes to zero on every compact subset of
R2. By Lemma 2.20 this means that x0 is the limit of the 3-point O(t) as t ! T .
We write T1 = L1 [ L2 [ L3 where the Li ’s are halflines from the origin of R2.

In order to analyze the case of a flat triod arising as a blow–up limit, we need
some preliminary estimates, based on the following Gagliardo–Nirenberg interpo-
lation inequalities (see [1, 6], for instance).

Proposition 3.4 (Proposition 3.11 in [30]). Let � be a smooth regular curve inR2
with finite length L. If u is a smooth function defined on � andm � 1, p 2 [2,+1],



MOTION BY CURVATURE OF PLANAR NETWORKS, II 137

we have the estimates

k@ns ukL p  Cn,m,pk@
m
s uk

�
L2kuk

1��
L2 +

Bn,m,p

Lm�
kukL2

for every n 2 {0, . . . ,m � 1} where

� =

n + 1/2� 1/p
m

and the constants Cn,m,p and Bn,m,p are independent of � .

Lemma 3.5. Let F : T ⇥ [0, T ) ! R2, with T < 1, be a triod moving by
curvature with moving endpoints Qi

: [0, T ) ! � such that the lengths of the
three curves are uniformly bounded from below away from zero by L > 0.
Then, for some constants C1 > 0, C2 > 0, independent of the triod, the following
estimate holds:

d
dt

Z
Tt
k2 dsC1

⇣ Z
Tt
k2 ds

⌘3
+

C2
L

⇣ Z
Tt
k2 ds

⌘2
+2

3X
i=1

ki (kis+�i ki )
����
at the point Qi (t)

.

Proof. Using Lemma 2.6 and integrating by parts (for more details refer to compu-
tations (3.4) and (3.5) in [30]), we get

d
dt

Z
Tt
k2 ds = � 2

Z
Tt
k2s ds +

Z
Tt
k4 ds �

3X
i=1

ki (kis + �i ki )
����
at the 3-point

+ 2
3X
i=1

ki (kis + �i ki )
����
at the point Qi (t)

= � 2
Z

Tt
k2s ds +

Z
Tt
k4 ds + 2

3X
i=1

ki (kis + �i ki )
����
at the point Qi (t)

,

where we applied the “orthogonality” relation (2.10) in [30], saying that the 3-
point contribution above is zero. Letting L to be the minimum of the length of
the three curves of the triod, by Proposition 3.4 (applied to u = k and having set
p = 4, n = 0, m = 1, � = 1/4) and Peter–Paul inequality, for any " > 0 we have
the interpolation estimate

Z
Tt
k4 ds 


C
⇣ Z

Tt
k2s ds

⌘1/8⇣ Z
Tt
k2ds

⌘3/8
+

C
L1/4

⇣ Z
Tt
k2 ds

⌘1/2�4

 C
⇣ Z

Tt
k2s ds

⌘1/2⇣ Z
Tt
k2ds

⌘3/2
+

C
L

⇣ Z
Tt
k2 ds

⌘2

 "

Z
Tt
k2s ds + C1

⇣ Z
Tt
k2 ds

⌘3
+

C2
L

⇣ Z
Tt
k2 ds

⌘2
,

where the constants C1, C2 depend on ". Substituting in the last equation above,
after taking " < 2, we get the thesis.
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We are now ready to prove the main result of the paper.

Proof of Theorem 2.4. Since the subset I of [�1/2 log T,+1) defined by

I = [
1

j=1(t j + log
p
3/2, t j + log

p

3)

has obviously infinite Lebesgue measure, by Proposition 2.19, we can assume that
there exists another sequence of rescaled triods eTx0,etj , with

et j 2 (t j + log
p
3/2, t j + log

p

3)

for every j 2 N, which is alsoC1loc converging to a flat triod (a priori not necessarily
the same one) centered at the origin ofR2 as j ! 1. Indeed, even if the two blow–
up limits are different, they both must be a flat triod, as equality (2.4) must hold for
both of them. Moreover, the L2 norm of the curvature of the modified sequence
of rescaled triods, as well as the one of the original sequence of rescaled triods,
converges to zero on every compact subset ofR2. Finally, passing to a subsequence,
we can also assume that t j andet j (hence, also t j andet j ) are increasing sequences.
Notice that, by means of the rescaling relation t(t) = �

1
2 log (T � t), the condition

et j 2 (t j + log
p
3/2, t j + log

p

3)

reads, for the original time parameter, as

et j 2

✓
2
3
t jM +

1
3
T,
1
3
t jM +

2
3
T
◆

.

Repeating the argument in the proof of Proposition 3.2, for any M large enough
there exists jM such that for all i 2 {1, 2, 3} the curve

� it \ B5Mp

2(T�t jM )(x0) \ BMp

2(T�t jM )(x0)

is a graph over x0 + Li for all t 2 [t jM , T ), with slope (with respect to the line
x0 + Li ) uniformly bounded by a constant Cv independent of M and t 2 [t jM , T )
(here and in the sequel we denote by Cv a generic constant, depending on v, which
may vary from line to line). Moreover, by Lemma 2.20, we can also assume that
the 3-point O(t) in this time interval does not get into the annulus

B5Mp

2(T�t jM )(x0) \ BMp

2(T�t jM )(x0).

By Proposition 2.23, with ✓ < 1/2 < 9/16 +
1
2M2 , it follows that the subsequent

evolution of the curves

� itM \

⇣
B4Mp

2(T�t jM )(x0) \ B2Mp

2(T�t jM )(x0)
⌘

,
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that, with an abuse of notation as we cannot exclude that other parts of Tt get into
the annulus B4Mp

2(T�t jM )(x0) \ B2Mp

2(T�t jM )(x0), we still denote by

� it \

⇣
B4Mp

2(T�t jM )(x0) \ B2Mp

2(T�t jM )(x0)
⌘

,

for i 2 {1, 2, 3}, are smooth evolutions for all t 2 [t jM , T ) and the following esti-
mate holds

|kis(t)|
2



Cv

(t � t jM )2


Cv

(et jM � t jM )2


9Cv

(T � t jM )2
, (3.1)

for all t 2 [et jM , T ), where the constant Cv depends only on the slope with respect
to the line x0 + Li . Since, by Proposition 2.19, the L2 norm of the curvature (in the
rescaled ball eB5M(0)) of the sequence of rescaled triods eTx0,etj , which is given byq

2(T �et j )
Z

Tet j \B5Mp
2(T�t jM )

(x0)
k2 ds ,

converges to zero as j ! 1, the above estimate (3.1) on the derivative of the
curvature, which for the sequence of rescaled triods becomes |

ekis(t j )|  3
p

C ,
implies that the L1 norm of the curvature of the rescalings of the curves

� iet j \

⇣
B4Mp

2(T�t jM )(x0) \ B2Mp

2(T�t jM )(x0)
⌘

,

which is given by

q
2(T �et j )

0
BBB@ sup

Tet j \
�
B4M

p
2(T�t jM )

(x0)\B2M
p
2(T�t jM )

(x0)
⌘ |k|

1
CCCA ,

converges to zero as j ! 1. Since the above argument holds not only for jM but
for every j � jM , fixed any " 2 (0, 1/2), first considering an M > 2 large enough
and then choosing a suitably large jM , we can assume that

• M > max{1/
p

",C2/"1/3}, where the constant C2
is the one appearing in Lemma 3.5,

•

Z
Tet jM \B5M

p
2(T�t jM )

(x0)
k2 ds 

"p
2(T �et jM )



p

3"p
2(T � t jM )

, (3.2)

• sup
Tet jM \

�
B4M

p
2(T�t jM )

(x0)\B2M
p
2(T�t jM )

(x0)
� k2 "

2(T �et jM )


3"
2(T � t jM )

. (3.3)
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By Proposition 2.24, as M > 2, at the points

� it \

⇣
B 7
2M

p

2(T�t jM )(x0) \ B 5
2M

p

2(T�t jM )(x0)
⌘

,

we have the estimate

|ki (t)|2  Cv

0
BB@ sup

� iet jM \

�
B4M

p
2(T�t jM )

(x0)\B2M
p
2(T�t jM )

(x0)
� |ki |2 +

1
M2(T � t jM )

1
CCA

for all t 2 [et jM , T ), with a constant Cv depending only on the slope of the curve
with respect to the line x0 + Li , which is uniformly bounded. Thus, by the above
estimate (3.3) we get

|ki (t)|2 

Cv

T � t jM

⇣
" +

1
M2

⌘


2Cv"

T � t jM
(3.4)

as we already chose M2 > 1/" above, for all the points of the curve

� it \

⇣
B 7
2M

p

2(T�t jM )(x0) \ B 5
2M

p

2(T�t jM )(x0)
⌘

and times t 2 [et jM , T ). We want to underline once more that the constantC depends
only on the slope of the curve with respect to the line x0 + Li .

It follows that for every t 2 [et jM , T ), all the triods bTt determined by “cutting”
Tt at the new (moving in time) endpoints

Qi (t) = � it \ @B3Mp

2(T�t jM )(x0)

have the lengths of their three curves uniformly bounded away from zero from be-
low and unit tangent vectors at the endpoints Qi (t) which form angles with the
respective velocity vectors @t Qi (t) which are also bounded away from zero, uni-
formly in time, because of the uniform control on the slope of the curves with
respect to the line x0 + Li . This implies that the norm of the curvature |ki (Qi (t))|
at any endpoint Qi (t) controls the norm of the tangential velocity |�i (Qi (t))|, up
to a multiplicative constant Cv (depending only on the slope), uniformly bounded
in time for t 2 [et jM , T ). Then, from estimates (3.1), (3.4), we conclude

���ki (Qi (t))kis(Q
i (t))

��� 

Cv"
1/2

(T � t jM )
3
2

,

���[ki (Qi (t))]2�i (Qi (t))
��� Cv

���ki (Qi (t))
���3 

Cv"
3/2

(T � t jM )
3
2

,
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for every t 2 [et jM , T ), where the constant Cv depends only on the slope of the curve
with respect to the line x0 + Li . Moreover, we can clearly always increase jM as
we like without affecting Cv (this is actually true for every constant depends only
on the slope of the curve with respect to the line x0+ Li ), since, by Proposition 3.2,
as j ! 1, the three curves

� it j \ B5Mp

2(T�t jM )(x0) \ BMp

2(T�t jM )(x0)

converge to a smooth limit. Hence, we can also assume that 2Cv"
1/6 < 1 and

2(C1 + Cv + 1)"1/3 < 1.
At this point we observe that the length of every curve of the triod (being all the

curves graphs in the annulus B3Mp

2(T�t jM )(x0) \ B2Mp

2(T�t jM )(x0)) is bounded
from below by a uniform factor (depending only on the slope v) times M

p
T � t jM .

Then, by means of Lemma 3.5, we now prove an inequality for the time derivative
of the L2 norm of the curvature of the triods bTt which are determined by the three
(moving in time) endpoints Qi (t), for t 2 [et jM , T ). Notice that here the constants
C1 and C2 are “universal”, Cv depends only on the slope of the curve with respect
to the line x0 + Li and we use the two previous inequalities to estimate the terms
coming from the endpoints:

d
dt

Z
bTt
k2 ds C1

⇣ Z
bTt
k2 ds

⌘3
+

C2Cv

M
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+
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⌘3
+

Cv"
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3
2

C1
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bTt
k2 ds

⌘3
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"
1
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T � t jM
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bTt
k2 ds
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+

Cv"
1/2

(T � t jM )
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,

as we chose M > C2/"
1
3 and 2Cv"

1/6 < 1. Then, letting

A(t) := max

(Z
bTt
k2 ds ,

"
1
6p

T � t jM

)
,

it follows
A0(t)  CvA3(t)

for almost every t 2 [et jM , T ), where the constant Cv is given by C1 + Cv + 1.
Integrating this differential inequality and recalling estimate (3.2), implying that

A(et jM )  max

( p

3"p
2(T � t jM )

,
"
1
6p

T � t jM

)


"
1
6p

T � t jM
,
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as " < 1/2, we get

A(t) 

1q
A(et jM )�2 � 2Cv(t �et jM )

,

hence,

A(t) 

"
1
6q

T � t jM � 2Cv"
1
3 (t �et jM )

,

for every t 2 [et jM , T ). As (t �et jM )  (T � t jM ), it follows that the function A(t)
is uniformly bounded on [et jM , T ) as soon as 2Cv"

1
3 < 1, which is satisfied by our

previous assumption on " > 0.
We now notice that the three curves of the triod Tt , connecting respectively

the points Pi and Qi (determined by Tt \
bTt ) cannot get too close to the point

x0 = limt!T O(t) along the flow. Indeed, the parts of these curves in the annulus

B5Mp

2(T�t jM )(x0) \ B3Mp

2(T�t jM )(x0)

are graphs for every t 2 [et jM , T ), while the remaining pieces “outside” at time
t = et jM , by maximum principle, during their subsequent evolution can never get
into the circle of radius

R(t) =

q
16M2(T � t jM ) � 2(t � t jM )

and center x0, also moving by mean curvature in the time interval [et jM , T ) and, as
t ! T , converging to the circle of radius

q
16M2(T � t jM ) � 2(T � t jM ) =

q
(16M2

� 2)(T � t jM ) ,

which is clearly positive as M2 > 2, hence far from the point x0. Consequently,
since the closed subset of the set of reachable points obtained as possible limit
points of these three curves as t ! T is contained in a closed set far from x0, by
Propositions 3.2 and 3.3, we can cover such a set by a finite number of balls where
the curvature of the evolving triod is uniformly bounded during the flow. Being also
the total length of the evolving triods uniformly bounded and being the L2 norm
of the curvature of the “subtriods” bTt , given by the square root of the uniformly
bounded function A(t), we conclude that the full L2 norm of the curvature of the
evolving triodsTt is bounded, in contradiction with Proposition 2.8. This concludes
the proof.

Remark 3.6. We point out that the “regularity” part of the main result of this paper,
namely Theorem 1.1, can be extended with a similar proof to a triod evolving by
curvature with Neumann boundary conditions (the convergence statement does not
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hold in general, as in this case Steiner triods are unstable and possibly nonunique,
see [14, 15, 21]). Moreover, whenever the classification given in Proposition 2.19
holds, the same proof also applies to the evolution of a network with multiple triple
junctions. For instance, this is true for a network without loops and with at most
two triple junctions. Indeed, in this case, Proposition 2.17 still holds and all the
subsequent arguments can be adapted with minor modifications. In this respect, we
take the occasion to underline a mistake in [30, Remark 4.5] (pointed out to us by
T. Ilmanen), where the authors claim that Proposition 2.17 (Theorem 4.6 in [30])
holds for any network (without loops), without any constraint on the number of
triple junctions. Actually, the proof of Proposition 2.17 can be generalized only to
networks in the plane with at most two triple junctions.
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