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Bubble tower solutions for a supercritical elliptic problem in RN

WENJING CHEN, JUAN DÁVILA AND IGNACIO GUERRA

Abstract. We consider the problem
(

�1u + u = u p + �uq u > 0 in RN

u(z) ! 0 as |z| ! 1

where p = p⇤
+ ", with p⇤

=
N+2
N�2 , while 1 < q < N+2

N�2 if N � 4, and
3 < q < 5 if N = 3, � > 0, and " is a positive parameter. We prove that for
" > 0 small enough, the problem has a solution with the shape of a tower of
bubbles.

Mathematics Subject Classification (2010): 35J61 (primary); 35B33, 35J08
(secondary).

1. Introduction

We are interested in the elliptic equation
(

�1u + u = u p + �uq u > 0 in RN

u(x) ! 0 as |x | ! 1,
(1.1)

where N � 3, � > 0 and 1 < q < p. This problem arises in the study of standing
waves of a nonlinear Schrödinger equation with two power-type nonlinearities, see
for example Tao, Visan and Zhang [28].
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If p = q, equation (1.1) reduces to(
�1u + u = u p u > 0 in RN

u(x) ! 0 as |x | ! 1

(1.2)

after a suitable scaling.
Thanks to the classical result of Gidas, Ni and Nirenberg [15], solutions of

(1.1) and (1.2) are radially symmetric about some point, which we will assume is
always the origin.

It is well known that problem (1.2) has a solution if and only if 1 < p < N+2
N�2 .

Existence was proved by Berestycki and Lions [2], while non-existence follows
from the Pohozaev identity [26]. Uniqueness also holds and was fully settled by
Kwong [16], after a series of contributions [4, 17, 21–24]. See also Felmer, Quaas,
Tang and Yu [10] for further properties.

Concerning (1.1), the work of Berestycki and Lions [2] is still applicable if
1 < q < p < N+2

N�2 , and one obtains existence of a solution. If p, q �
N+2
N�2 there is

no solution, again from the Pohozaev identity.
Recently, Dávila, del Pino and Guerra [5] proved that uniqueness does not hold

in general for (1.1) if 1 < q < p < N+2
N�2 . More precisely if N = 3, the authors

obtained at least three solutions to problem (1.1) if 1 < q < 3, � > 0 is sufficiently
large and fixed, and p < 5 is close enough to 5.

Let us mention some contributions to the question of existence for (1.1) when
one exponent is subcritical and the other one is critical or supercritical. If 1 < q <
p =

N+2
N�2 in (1.1), Alves, de Morais Filho and Souto [1] proved:

• when N � 4, there exists a nontrivial classical solution for all � > 0 and 1 <
q < N+2

N�2 ;
• when N = 3, there exists a nontrivial classical solution for all � > 0 and
3 < q < 5;

• when N = 3, there exists a nontrivial classical solution for � > 0 large enough
and 1 < q  3.

Moreover, Ferrero and Gazzola [11] proved that for q < N+2
N�2  p, there exists �̄ >

0, such that if � > �̄, then (1.1) has at least one solution, while for q < N+2
N�2 < p,

there exists 0 < � < �̄ such that if � < �, then there is no solution.
In this paper, we are interested in multiplicity of solutions of (1.1), and for this

we take an asymptotic approach, that is, we consider(
�1u + u = u p + �uq u > 0 in RN

u(z) ! 0 as |z| ! 1,
(1.3)

where p = p⇤
+", with p⇤

=
N+2
N�2 , � > 0 and " > 0 are parameters, and q satisfies

1 < q <
N + 2
N � 2

if N � 4, 3 < q < 5 if N = 3. (1.4)

Our result can be stated as follows:
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Theorem 1.1. Let � > 0 and let q satisfy (1.4). Given an integer k � 1, there exists
"0 > 0 such that for any " 2 (0, "0), there is a solution u"(z) of problem (1.3) of
the form

u"(z)=(N (N�2))
N�2
4

kX
j=1

"
�[( j�1)+ 1

p⇤�q ]

(3⇤

j )
�

N�2
2

✓
1+"�

4
N�2 [( j�1)+

1
p⇤�q ]

(3⇤

j )
�2

|z|2
◆N�2

2
(1+o(1)), (1.5)

where the constants 3⇤

j > 0, for j = 1, 2, . . . , k, can be computed explicitly and
depend on k, N , q.

The expansion (1.5) is valid if 1C "
2

N�2 [(i�1)+
1

p⇤�q ]

 |z|  C"
2

N�2 [(i�1)+
1

p⇤�q ],
with some i 2 {1, 2, . . . , k}, and o(1) ! 0 uniformly as " ! 0 in this region.

The solutions described in this result behave like a superposition of “bub-
bles” of different blow-up orders centered at the origin, and hence have been called
bubble-tower solutions. By bubbles we mean the functions

wµ(z) = ↵N
µ

N�2
2

(µ2 + |z|2)
N�2
2

, with ↵N = (N (N � 2))
N�2
4 , (1.6)

where µ > 0, which are the unique positive solutions (except translations) of

�1w = w p⇤

in RN .

k = 1

k = 2

p

u(0) = u ∞

p∗ λ

u(0) = u ∞

0

k = 1

k = 2

Figure 1.1. Left: u(0) vs. p for � large and fixed. Right: u(0) vs. � for p = p⇤
+ ",

" > 0 small and fixed.

Based on numerical simulations we present bifurcation diagrams for solutions of
(1.3) where q satisfies (1.4). In Figure 1.1 (left) we show the bifurcation diagram
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as a function of p for a fixed large �, and in Figure 1.1 (right) we show the diagram
as a function of � for p = p⇤

+ ", " > 0 small and fixed. In both diagrams we
observe branches of solutions, with the upper part having unbounded solutions as
" ! 0 or � ! 1. We believe that the solutions constructed in Theorem 1.1 are
located on these upper branches, and are shown in the diagrams for the cases of 1
and 2 bubbles.

Bubble-tower solutions were found by del Pino, Dolbeault and Musso [6] for
a slightly supercritical Brezis-Nirenberg problem in a ball, and after that have been
studied intensively [3, 7–9, 13, 14, 18–20, 25]. In particular we mention the work of
Campos [3] who considered the existence of bubble-tower solutions to a problem
related to ours:

(
�1u = u p⇤

±"
+ uq u > 0 in RN

u(z) ! 0 as |z| ! 1

with N
N�2 < q < p⇤

=
N+2
N�2 , N � 3.

For the proof of Theorem 1.1, we consider a variation of the so-called Emden-
Fowler transformation:

v(x) =

✓
p⇤

� 1
2

◆ 2
p⇤�1

r
2

p⇤�1 u(r),

with

r = |z| = e�
p⇤�1
2 x , x 2 (�1,+1).

Then finding a radial solution u(r) to (1.3) corresponds to solving the problem
8>><
>>:
L0(v) = ↵"e"xv p

⇤
+"

+ ��Ne�(p⇤
�q)xvq in (�1,+1)

v(x) > 0 for x 2 (�1,+1)

v(x) ! 0 as |x | ! 1

(1.7)

where

L0(v) = �v00

+ v +

✓
2

N � 2

◆2
e�

4
N�2 xv (1.8)

is the transformed operator associated to �1 + I , and ↵", �N are constants, see
(2.5).

Under the Emden-Fowler transformation the bubbles wµ take the form

W (x � ⇠) =

✓
4N
N � 2

◆ N�2
4
e�(x�⇠)

⇣
1+ e�

4
N�2 (x�⇠)

⌘
�

N�2
2 (1.9)
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with µ = e�
2

N�2 ⇠ , and solve
8>><
>>:
W 00

� W + W p⇤

= 0 in (�1,+1)

W 0(0) = 0

W (x) > 0, W (x) ! 0 as |x | ! 1.

In Section 2, we build an approximate solution to (1.7) as a sum of suitable pro-
jections of the transformed bubbles W centered at 0 < ⇠1 < . . . < ⇠k with
⇠1 ! 1. After the study of the linearized problem at the approximate solution
in Section 3, and solvability of a nonlinear projected problem in Section 4, we per-
form a Lyapunov-Schmidt reduction procedure as in [3, 12, 18]. Then the problem
becomes to find a critical point of some functional depending on 0 < ⇠1 < . . . < ⇠k .
This is done in Section 5 where Theorem 1.1 is proved.

From the technical point of view, one difficulty is due to the form of the lin-
earized operator. As r ! 1 dominates �1 + I (or L0 as x ! �1 after the
change of variables) while near the regions of concentration the important part of
the linearization is 1 + p⇤w

p⇤
�1

µ . This is taken into account in the norm we use
for the solutions of linearized problem, and it is more naturally written for the func-
tions after the Emden-Fowler transformation. This is different from many previous
works, but is already contained in [5].

2. The first approximate solution

In this section, we build the first approximate solution to (1.3). In order to do this,
we introduce Uµ as the unique solution of the following problem

8<
:

�1Uµ +Uµ = w
p⇤

µ in RN

Uµ(z) ! 0 as |z| ! 1

(2.1)

where wµ are the bubbles (1.6). We write Uµ(z) = wµ(z) + Rµ(z). Then Rµ(z)
satisfies

�1Rµ(z) + Rµ(z) = �wµ(z) in RN , Rµ(z) ! 0 as |z| ! 1.

We have the following result, whose proof is postponed to the Appendix:

Lemma 2.1. If 0 < µ  1 then:

(a) 0 < Uµ(z)  wµ(z) , for z 2 RN ;

(b) Uµ(z)  Cµ
N�2
2 |z|�(N+2), for |z| � R, where R is a large but fixed positive

number;
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(c) Given any small µ > 0, we have

|Rµ(z)|  C
µ

N�2
2

|z|N�2 for N � 3, |z| � 1 (2.2)

|Rµ(z)|  C

8>>><
>>>:

µ�
N�6
2 for N � 5

µ log 1µ for N = 4

µ
1
2 for N = 3

|z| 

µ

2
(2.3)

|Rµ(z)|  C

8>>>>><
>>>>>:

µ�
N�6
2

1

(1+ |
z
µ |
2)

N�4
2

for N � 5

µ log
1
|z|

for N = 4

µ
1
2 for N = 3

µ

2
 |z|  1. (2.4)

We define the following Emden-Fowler transformation

v(x) = T (u(r)) =

✓
p⇤

� 1
2

◆ 2
p⇤�1

r
2

p⇤�1 u(r), r = |z| = e�
p⇤�1
2 x

with x 2 (�1,+1). Using this transformation, finding a radial solution u(r) to
problem (1.3) corresponds to solving problem (1.7), where

↵" =

✓
p⇤

� 1
2

◆
�

2"
p⇤�1

, �N =

✓
p⇤

� 1
2

◆ 2(p⇤�q)
p⇤�1

. (2.5)

Define V⇠ (x) = T (Uµ)(r), with r = e�
p⇤�1
2 x , µ = e�

2
N�2 ⇠ . Then V⇠ (x) is the

solution of the problem
(
L0V⇠ (x) = W (x � ⇠)p

⇤ in (�1,+1)

V⇠ (x) ! 0 as |x | ! 1.

Note that L0 is the transformed operator associated to �1+ I d and given in (1.8).
We write V⇠ (x) = W (x � ⇠) + R⇠ (x), where W is given in (1.9) and R⇠ (x) =

T (Rµ)(r). By the Emden-Fowler transformation and as a consequence of Lemma
2.1, we have the following estimates:

Lemma 2.2. For ⇠ > 0 we have:

(a) 0 < V⇠ (x)  W (x � ⇠) = O(e�|x�⇠ |) for x 2 R;
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(b) The inequality

V⇠ (x)  Ce
N+6
N�2 xe�⇠ holds for � 1 < x  �

N � 2
2

log R, (2.6)

where R > 0 is a fixed large number as in Lemma 2.1;
(c) For N � 3 there is a positive constant C such that

|R⇠ (x)|  C

(
e�|x�⇠ | if x  0

e�|x�⇠ |e�
2

N�2 min{x,⇠} if x � 0.

Define Z⇠ (x) := @⇠V⇠ (x) = @⇠W (x � ⇠) + @⇠ R⇠ (x). Note that @⇠W (x � ⇠) =

O(e�|x�⇠ |) and

@⇠W (x � ⇠) = �

2
N � 2

µT
�
@µwµ(r)

�
,

Z⇠ (x) = �

2
N � 2

µT
�eZµ(r)

�
with eZµ(z) = @µUµ(z), (2.7)

@⇠ R⇠ (x) = �

2
N � 2

µT
�
@µRµ(r)

�
. (2.8)

Then from (6.1), (2.8) and Lemma 2.2 (c), we have for N � 3,

|@⇠ R⇠ (x)|  C

(
e�|x�⇠ | if x  0

e�|x�⇠ |e�
2

N�2 min{x,⇠} if x � 0.

Therefore Z⇠ (x) = O(e�|x�⇠ |) for 8 x 2 R. Moreover, from (6.2) and (2.7), we
find

|Z⇠ (x)|  Ce
N+6
N�2 xe�⇠ , for � 1 < x  �

N � 2
2

log R,

for a fixed large R > 0.
Let ⌘ > 0 be a small but fixed number. Given an integer number k, let 3 j , for

j = 1, . . . , k, be positive numbers satisfying

⌘ < 3 j <
1
⌘
. (2.9)

Set

µ1 = "
2

(N+2)�(N�2)q31 and µ j = "
2

N�2 ( j�1)+
2

(N+2)�(N�2)q3 j (2.10)
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for j = 2, . . . , k. We observe that µ j+1
µ j

= "
2

N�2 3 j+1
3 j

for j = 1, . . . , k � 1. Define

k points in R as µ j = e�
2

N�2 ⇠ j for j = 1, . . . , k. Then we have 0 < ⇠1 < ⇠2 <
. . . < ⇠k and8<

:
⇠1 = �

1
p⇤

�q log " �
N�2
2 log31

⇠ j � ⇠ j�1 = � log " �
N�2
2 log 3 j

3 j�1
j = 2, . . . , k.

(2.11)

Set

Wj = W (x � ⇠ j ), R j = R⇠ j (x), Vj = Wj + R j , V =

kX
j=1

Vj . (2.12)

Looking for a solution of (1.3) of the form u =

Pk
j=1Uµ j +  corresponds to

finding a solution of (1.7) of the form v = V + �, where V is given by (2.12) and
� = T ( ) is a small term. We can rewrite problem (1.7) as a nonlinear perturbation
of its linearization, namely,

8>><
>>:
L"(�) = N (�) + E in (�1,+1)

�(x) > 0 for x 2 (�1,+1)

�(x) ! 0 as |x | ! 1

(2.13)

where

L"(�) = L0(�) � ↵"(p⇤

+ ")e"xV p⇤
+"�1� � �q�Ne�(p⇤

�q)xV q�1�,

N (�) = ↵"e"x
h
(V + �)p

⇤
+"

� V p⇤
+"

� (p⇤

+ ")V p⇤
+"�1�

i

+ ��Ne�(p⇤
�q)x

h
(V + �)q � Vq

� qV q�1�
i

and

E = ↵"e"xV p⇤
+"

� L0(V ) + ��Ne�(p⇤
�q)xV q

= ↵"e"xV p⇤
+"

�

kX
j=1

W p⇤

j + ��Ne�(p⇤
�q)xV q

where L0 is defined by (1.8).

3. The linear problem

In order to solve problem (2.13), we first consider the following problem: given
points ⇠ = (⇠1, . . . , ⇠k), find a function � such that for certain constants
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c1, c2, . . . , ck 8>>>><
>>>>:

L"(�) = N (�) + E +

kP
j=1

c j Z j in (�1,+1)

lim
|x |!1

�(x) = 0R
R Z j� = 0 8 j = 1, . . . , k

(3.1)

where Z j (x) = Z⇠ j (x) = @⇠ j V⇠ j (x) for j = 1, 2, . . . , k.
To solve (3.1), it is important to understand its linear part, thus we consider the

following problem: given a function h, find � such that
8>>>><
>>>>:

L"(�) = h +

kP
j=1

c j Z j in (�1,+1)

lim
|x |!1

�(x) = 0R
R Z j� = 0, 8 j = 1, . . . , k

(3.2)

for certain constants c j .
We now analyze invertibility properties of the operator L" under the orthogo-

nality conditions. Let � satisfy

0 < � < min
⇢
q � 1, 1,

(N + 2)(2q � 1)
N + 6

,
3q � p⇤

2

�
. (3.3)

We define a real number M as follows:

M =

8><
>:
0 if 1 �

4
N � 2

+ �

max{0, � } if 1 

4
N � 2

+ �
(3.4)

where � satisfies
 
1�

✓
4

N � 2
+ �

◆2!
e�

4
N�2� = �

1
2

✓
2

N � 2

◆2
.

We define the following norms for functions �, h defined on R:

k�k⇤ = sup
x�M

e�( 4
N�2+� )xe�⇠1 |�(x)| + sup

x2R

 
kX
j=1

e�� |x�⇠ j |

!
�1

|�(x)| (3.5)

khk⇤⇤ = sup
x2R

 
kX
j=1

e�� |x�⇠ j |

!
�1

|h(x)|.
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The choice of norm here is motivated by the presence of 2 regimes in the solution
of the linearized problem. Near the concentration points ⇠ j we have a right-hand
side of the form |h(x)|  Ce�� |x�⇠ j | and near these points the dominant terms in
the linear operator L" are

��00

+ � � ↵"(p⇤

+ ")e"xV p⇤
+"�1�,

so we can expect the solution � to be controlled by |�(x)|  Ce�� |x�⇠ j |. For
x  0 the dominant part of the linear operator is

⇣
2

N�2

⌘2
e�

4
N�2 x�. Since the

right-hand side is controlled by e�� |x�⇠1|, we can control � using as supersolution
e(

4
N�2+� )xe��⇠1 . Actually this will be a supersolution for the whole linear operator

for x  �M , where M is defined in (3.4).
The main result in this section is solvability of problem (3.2).

Proposition 3.1. There exist positive numbers "0 and C such that if the points 0 <
⇠1 < ⇠2 < . . . < ⇠k satisfy (2.11) then for all 0 < " < "0 and all functions
h 2 C(R; R) with khk⇤⇤ < +1, problem (3.2) has a unique solution � =: T"(h)
with k�k⇤ < +1. Moreover,

k�k⇤  Ckhk⇤⇤ and |c j |  Ckhk⇤⇤. (3.6)

We first consider the simpler problem8>>>><
>>>>:

L0(�) � ↵"(p⇤
+ ")e"xV p⇤

+"�1�=h +

kP
j=1

c j Z j in (�1,+1)

lim
|x |!1

�(x) = 0R
R Z j� = 0 8 j = 1, . . . , k

(3.7)

for certain constants c j , where L0 is defined by (1.8).
Lemma 3.2. Under the assumptions of Proposition 3.1, for all 0 < " < "0 and any
h, � solution of (3.7), we have

k�k⇤  Ckhk⇤⇤ (3.8)
|c j |  Ckhk⇤⇤. (3.9)

Proof. To prove (3.8), by contradiction, we suppose that there exist sequences �n ,
hn , "n and cnj that satisfy (3.7), with k�nk⇤ = 1, khnk⇤⇤ ! 0, "n ! 0. We get a
contradiction by the following steps.
Step 1: cnj ! 0 as n ! +1. Multiplying (3.7) by Zni and integrating by parts
twice, we get

kX
j=1

cnj
Z

R
Znj Z

n
i

= �

Z
R
hn Zni +

Z
R

h
L0(Zni ) � ↵"n (p

⇤

+ "n)e"nx V p⇤
+"n�1Zni

i
�n.

(3.10)
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Note that
R
R Znj Z

n
i = C�i j + o(1), where �i j is Kronecker’s delta. Then (3.10)

defines a linear system in the c0j s which is almost diagonal as n ! 1.
Since Zni (x) = @⇠ni V⇠ni (x) = O(e�|x�⇠ni |), we then have

����
Z

R
hn Zni

����  Ckhnk⇤⇤

Z
R

 
kX
j=1

e�� |x�⇠nj |
!
e�|x�⇠ni |dx

 Ckkhnk⇤⇤

Z
R
e�|y|dy  Ckhnk⇤⇤.

(3.11)

Moreover, Zni satisfy L0(Zni ) = p⇤W p⇤
�1(x � ⇠ni )@⇠ni W (x � ⇠ni ), so we get

����
Z

R

h
L0(Zni ) � ↵"n (p

⇤

+ "n)e"nx V p⇤
+"n�1Zni

i
�n

���� = o(1)k�nk⇤. (3.12)

From (3.10)-(3.12), we obtain

|cnj |  Ckhnk⇤⇤ + o(1)k�nk⇤. (3.13)

Thus lim
n!1

cnj = 0.

Step 2: For any L > 0 and any l 2 {1, 2, . . . , k} we have

sup
x2[⇠nl �L ,⇠nl +L]

|�n(x)| ! 0 as n ! 1. (3.14)

Indeed, supposing not, we assume that there exist L > 0 and some l 2 {1, 2, . . . , k}
such that |�n(xn,l)| � c > 0, for some xn,l 2 [⇠nl � L , ⇠nl + L]. By elliptic
estimates, there is a subsequence of �n converging uniformly on compact sets to a
nontrivial bounded solution �̃ ofL0(�̃) = p⇤W p⇤

�1(x�⇠l)�̃,where ⇠l = lim
n!1

⇠nl .

By nondegeneracy [27], it is well known that �̃ = cZl for some constant c 6= 0.
But taking the limit in the orthogonality condition

R
R Znl �n = 0, we obtain �̃ = 0,

which is a contradiction. Thus (3.14) holds.

Step 3: k�nk⇤ ! 0 as n ! 1. Let us first assume the following claim:
For any L > 0 and j 2 {1, 2, . . . , k} we have

sup
R\[

k
j=1[⇠

n
j �L ,⇠nj +L]

 
kX
j=1

e�� |x�⇠nj |
!

�1

|�n(x)| ! 0 (3.15)

sup
x�M

e�( 4
N�2+� )xe�⇠

n
1 |�n(x)| ! 0, (3.16)

as n ! +1.
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By the definition of k · k⇤ in (3.5), using (3.14), (3.15) and (3.16), we then get
that k�nk⇤ ! 0 as n ! 1.

Now we prove the above claim. We note that

hn +

kX
j=1

cnj Z
n
j  (C0khnk⇤⇤ + o(k�nk⇤))

kX
j=1

e�� |x�⇠nj | with C0 > 0.

For x 2 R\ [
k
j=1 [⇠nj � L , ⇠nj + L] let us define

 ̃n(x) =

0
@C0khnk⇤⇤ + e� L sup

[
k
j=1[⇠

n
j �L ,⇠nj +L]

|�n(x)| + o(k�nk⇤)

1
A kX

j=1
e�� |x�⇠nj |

+%
kX
j=1

e��̄ |x�⇠nj |

with % > 0 small but fixed and 0 < �̄ < � . Then by choosing suitably large L > 0
we get

L0( ̃n(x)) � ↵"n (p
⇤

+ "n)e"nx V p⇤
+"n�1 ̃n(x)

� L0(�n(x)) � ↵"n (p
⇤

+ "n)e"nx V p⇤
+"n�1�n(x).

On the other hand, we have that for any L > 0 and j 2 {1, 2, . . . , k}

 ̃n(⇠
n
j � L) � �n(⇠

n
j � L) and  ̃n(⇠

n
j + L) � �n(⇠

n
j + L).

Moreover, there exists R > 0 large enough, such that  ̃n(R) � �n(R), and
 ̃n(�R) � �n(�R). By the maximum principle, we get

�n(x)   ̃n(x) for x 2 [�R, R]\ [
k
j=1 [⇠nj � L , ⇠nj + L].

Similarly, we obtain �n(x) � � ̃n(x) for x 2 [�R, R]\ [
k
j=1 [⇠nj � L , ⇠nj + L].

Thus
|�n(x)|   ̃n(x) for x 2 [�R, R]\ [

k
j=1 [⇠nj � L , ⇠nj + L].

Letting R ! +1, we get

|�n(x)|   ̃n(x) for x 2 R\ [
k
j=1 [⇠nj � L , ⇠nj + L].

Letting % ! 0, for x 2 R\ [
k
j=1 [⇠nj � L , ⇠nj + L], we have that

|�n(x)|

0
@C0khnk⇤⇤ + e� L sup

[
k
j=1[⇠

n
j �L ,⇠nj +L]

|�n(x)| + o(k�nk⇤)

1
A kX

j=1
e�� |x�⇠nj |.

So (3.15) holds.
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For x  �M , with ⇢ > 0 small and C1 > 0 to be chosen later, we define

 n(x) = C1 (C0khnk⇤⇤ + o(k�nk⇤)) e(
4

N�2+� )xe��⇠
n
1 + ⇢e

4
N�2 x .

By the maximum principle, we get

�n(x)   n(x) for x 2 [�R,�M]

if R > 0 is large enough. By a similar argument, we obtain �n(x) � � n(x) for
x 2 [�R,�M]. Thus |�n(x)|   n(x) forx 2 [�R,�M]. Letting R ! +1, we
get |�n(x)|   n(x) for x 2 [�1,�M]. Letting ⇢ ! 0, we have

|�n(x)|  C1 (C0khnk⇤⇤ + o(k�nk⇤)) e(
4

N�2+� )xe��⇠
n
1 for x 2 [�1,�M].

So we obtain that (3.16) holds.
Moreover, estimate (3.9) follows from (3.13) and (3.8).

Proof of Proposition 3.1. From Lemma 3.2, for � and h satisfying (3.2), we have

k�k⇤  C
⇣
khk⇤⇤ + ke�(p⇤

�q)xV q�1�k⇤⇤

⌘

|c j |  C
⇣
khk⇤⇤ + ke�(p⇤

�q)xV q�1�k⇤⇤

⌘
.

In order to establish (3.6), it is sufficient to show that

ke�(p⇤
�q)xV q�1�k⇤⇤  o(1)k�k⇤. (3.17)

Indeed,

ke�(p⇤
�q)xV q�1�k⇤⇤  sup

x�M

 
kX
j=1

e�� |x�⇠ j |

!
�1 ���e�(p⇤

�q)xV q�1�
���

+ sup
x��M

 
kX
j=1

e�� |x�⇠ j |

!
�1���e�(p⇤

�q)xV q�1�
��� (3.18)

:= Q1 + Q2.

Now we estimate Q1 and Q2 respectively. We first have

Q1  C sup
x�M

e� |x�⇠1|
|�(x)|e�(p⇤

�q)xV q�1

 Ce�(q�1)⇠1 sup
x�M

e�( 4
N�2+� )xe�⇠1 |�(x)|.

(3.19)
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For Q2, if �M  x  ⇠1 we have

e�(p⇤
�q)xV q�1



kX
j=1

e�(p⇤
�q)xe�(q�1)|x�⇠ j |

 Ce(2q�p⇤
�1)xe�(q�1)⇠1

 C max
n
e�(p⇤

�q)⇠1, e�(q�1)⇠1
o

.

If x � ⇠1 we have

e�(p⇤
�q)xV q�1



kX
j=1

e�(p⇤
�q)xe�(q�1)|x�⇠ j |

 Ce�(p⇤
�q)x

 Ce�(p⇤
�q)⇠1 .

Thus we find

Q2  C max
n
e�(p⇤

�q)⇠1, e�(q�1)⇠1
o
sup
x��M

 
kX
j=1

e�� |x�⇠ j |

!
�1

|�(x)|. (3.20)

From (3.18), (3.19) and (3.20), we get

ke�(p⇤
�q)xV q�1�k⇤⇤  C max

n
e�(p⇤

�q)⇠1, e�(q�1)⇠1
o

k�k⇤ = o(1)k�k⇤.

So estimate (3.17) holds.
We now prove the existence and uniqueness of a solution to (3.2). Consider

the Hilbert space

H =

⇢
� 2 H1(R) :

Z
R
Z j� = 0, 8 j = 1, 2, . . . , k

�

with inner product

h�, i =

Z
R
(�0 0

+ � )dx .

Then problem (3.7) is equivalent to finding � 2 H such that

h�, i =

Z
R

h
↵"(p⇤

+ ")V p⇤
+"�1� + �q�Ne�(p⇤

�q)xV q�1�

+

✓
2

N � 2

◆2
e�

4
N�2 x� + h

#
 dx (3.21)

for all  2 H . By the Riesz representation theorem, (3.21) is equivalent to solve

� = K (�) + h̃ (3.22)
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with h̃ 2 H depending linearly on h and K : H ! H being a compact operator.
Fredholm’s alternative yields there is a unique solution to problem (3.22) for any h
provided that

� = K (�) (3.23)

has only the zero solution in H . Problem (3.23) is equivalent to problem (3.2)
with h = 0. If h = 0, estimate (3.6) implies that � = 0. This ends the proof of
Proposition 3.1.

We now study the differentiability of the operator T" with respect to ⇠ =

(⇠1, . . . , ⇠k). Consider the Banach space C⇤ = { f 2 C(R) : k f k⇤⇤ < 1}

endowed with the k · k⇤⇤ norm. The following result holds.

Proposition 3.3. Under the assumptions of Proposition 3.1, the map ⇠ 7! T" is
of class C1. Moreover kD⇠T"(h)k⇤  Ckhk⇤⇤ uniformly on the vectors ⇠ which
satisfy (2.11).

Proof. Fix h 2 C⇤ and let � = T"(h) for " < "0. Let us recall that � satisfies
8>>>><
>>>>:

L"(�) = h +

kP
j=1

c j Z j in (�1,+1)

lim
|x |!1

�(x) = 0R
R Z j� = 0 8 j = 1, . . . , k

for certain constants c j . Differentiating the above equation, formally Y = @⇠l� and
d j = @⇠ j c j should satisfy

8>>>><
>>>>:

L"(Y ) = h +

kP
j=1

d j Z j in (�1,+1)

lim
|x |!1

Y (x) = 0R
R Y Z j + �@⇠l Z j = 0 8 j = 1, . . . , k

where

h=↵"(p⇤

+")(p⇤

+"�1)e"xVp
⇤
+"�2Zl�+�q(q�1)�Ne�(p⇤

�q)xV q�2Zl�+cl@⇠l Zl .

Let ⌘ = Y �

kP
i=1

bi Zi , where bi 2 R is chosen such that
R
R ⌘Z j = 0, that is,

kX
i=1

bi
Z

R
Zi Z j =

Z
R
Y Z j =

Z
R
@⇠l�Z j = �

Z
R
�@⇠l Z j . (3.24)
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This is an almost diagonal system, it has a unique solution and we have

|bi |  Ck�k⇤. (3.25)

Moreover, ⌘ satisfies
8>>>><
>>>>:

L"(⌘) = g +

kP
j=1

d j Z j in (�1,+1)

lim
|x |!1

⌘(x) = 0R
R ⌘Z j = 0 8 j = 1, . . . , k

(3.26)

with g = h�

kP
i=1

biL"(Zi ). By Proposition 3.1, there is a unique solution ⌘ = T"(g)

to (3.26) and

k⌘k⇤  Ckgk⇤⇤. (3.27)

Moreover, we have

kgk⇤⇤  Cke"xV p⇤
+"�2Zl�k⇤⇤ + Cke�(p⇤

�q)xV q�2Zl�k⇤⇤

+ kcl@⇠l Zlk⇤⇤ +

kX
i=1

|bi |kL"(Zi )k⇤⇤

 C(k�k⇤ + |cl | + |bi |)  Ckhk⇤⇤,

(3.28)

because |bi |  Ck�k⇤, k�k⇤  Ckhk⇤⇤ and |cl |  Ckhk⇤⇤.
By (3.25), (3.27), (3.28) and kZik⇤  C , we obtain that

k@⇠l�k⇤  k⌘k⇤ +

kX
i=1

|bi |kZik⇤  Ckhk⇤⇤.

Besides, @⇠l� depends continuously on ⇠ in the considered region for this norm.

4. Nonlinear problem

In this section, our purpose is to study the nonlinear problem. We first have:

Lemma 4.1. For k�k⇤  1 we have

kN (�)k⇤⇤  C
⇣
k�k

min{p⇤,2}
⇤

+ k�k
min{q,2}
⇤

⌘
(4.1)

k@�N (�)k⇤⇤  C
⇣
k�k

min{p⇤
�1,1}

⇤
+ k�k

min{q�1,1}
⇤

⌘
. (4.2)
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Proof. By the fundamental theorem of calculus and the definition of k k⇤⇤, we have

kN (�)k⇤⇤

 ↵"(p⇤

+") sup
x2R

 
kX
j=1

e�� |x�⇠ j |

!
�1

e"x
�����
Z 1

0

h
(V + t�)p

⇤
+"�1

� V p⇤
+"�1

i
� dt

�����
+�q�N sup

x2R

 
kX
j=1

e�� |x�⇠ j |

!
�1

e�(p⇤
�q)x

�����
Z 1

0

h
(V + t�)q�1

� Vq�1
i
� dt

�����
=: N1 + N2.

Using

||a + b|q � |a|q |  C

(
|a|q�1

|b| + |b|q if q � 1

min{|a|q�1
|b|, |b|q} if 0 < q < 1

if p⇤
� 2 and for k�k⇤  1, we have

N1  C sup
x2R

 
kX
j=1

e�� |x�⇠ j |

!
�1

e"xV p⇤
+"�2

|�|
2

+C sup
x2R

 
kX
j=1

e�� |x�⇠ j |

!
�1

e"x |�|
p⇤

+"

 Ck�k
2
⇤
+ Ck�k

p⇤
+"

⇤
 Ck�k

2
⇤
.

Similarly, if 1 < p⇤ < 2, we find that N1  Ck�k
p⇤

⇤
. Thus we get N1 

Ck�k
min{p⇤,2}
⇤

. Moreover, by similar computations as N1, we can conclude that
N2  Ck�k

min{q,2}
⇤

. Thus we get (4.1).
If we differentiate N (�) with respect to �, we have

@�N (�) = ↵"(p⇤

+ ")e"x
h
(V + �)p

⇤
+"�1

� V p⇤
+"�1

i

+ ��Nqe�(p⇤
�q)x

h
(V + �)q�1

� Vq�1
i
.

By a similar argument as for kN (�)k⇤⇤, (4.2) holds.

Lemma 4.2. Let � > 0 satisfy (3.3) and 0 < ⇠1 < ⇠2 < . . . < ⇠k satisfy (2.11). If
q satisfies (1.4) then there exist ⌧ 2 (12 , 1) and a constant C > 0 such that

kEk⇤⇤  C"⌧ , k@⇠ Ek⇤⇤  C"⌧ .
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Proof. We have

E = ↵"e"x
⇣
V p⇤

+"
� V p⇤

⌘
+ (↵"e"x � 1)V p⇤

+

0
@V p⇤

�

 
kX
j=1

Wj

!p⇤
1
A

+

0
@
 

kX
j=1

Wj

!p⇤

�

kX
j=1

W p⇤

j

1
A+ ��Ne�(p⇤

�q)xV q

=: E1 + E2 + E3 + E4 + E5.

(4.3)

Estimate of E1: |E1| =

���"↵"e"x R 10 V p⇤
+t" log Vdt

���  C"
kP
j=1

e�� |x�⇠ j |.

Estimate of E2: By the Taylor expansion, we have

|E2| =

�����
 ✓

p⇤
� 1
2

◆
�

2"
p⇤�1

e"x � 1

!
V p⇤

�����
=

 
"x
Z 1

0
et"x dt + O(")e"x

!
V p⇤

 C"| log "|
kX
j=1

e�� |x�⇠ j |.

Estimate of E3: Since

|E3| =

������V
p⇤

�

 
kX
j=1

Wj

!p⇤
������  CV p⇤

�1
kX
j=1

|R⇠ j (x)|.

Thanks to Lemma 2.2, for x  0, we have

|E3|  CV p⇤
�1

kX
j=1

e�|x�⇠ j |
 CV p⇤

�1e�⇠1  C"
1

p⇤�q
kX
j=1

e�� |x�⇠ j |.

For 0  x  ⇠1

|E3|  CV p⇤
�1

kX
j=1

e�|x�⇠ j |e�
2

N�2 min{x,⇠ j }

 C
kX
j=1

e�� |x�⇠ j |

8<
:
"

2
N+2�(N�2)q if N � 4

"
1
5�q if N = 3.

If x � ⇠1, for 0 < � < p⇤
� 1, we have

|E3|  CV p⇤
�1

kX
j=1

e�|x�⇠ j |e�
2

N�2 min{x,⇠ j }

 CV p⇤
�1e�

2
N�2 ⇠1  C"

2
N+2�(N�2)q

kX
j=1

e�� |x�⇠ j |.
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Therefore we get for x 2 R

|E3|  C
kX
j=1

e�� |x�⇠ j |

8<
:
"

2
N+2�(N�2)q if N � 4

"
1
5�q if N = 3.

Estimate of E4: If �1 < x 
⇠1+⇠2
2 , we have

|E4| 

������
 

kX
j=1

W (x � ⇠ j )

!p⇤

� W (x � ⇠1)
p⇤

������+
�����
kX
j=2

W (x � ⇠ j )
p⇤

�����

 p⇤

 
kX
j=1

W (x � ⇠ j )

!p⇤
�1 kX

j=2
W (x � ⇠ j ) +

kX
j=2

W (x � ⇠ j )
p⇤

= p⇤

 
kX
j=1

W (x � ⇠ j )

!p⇤
�1�✓  kX

j=1
W (x � ⇠ j )

!✓ kX
j=2

W (x � ⇠ j )

+

kX
j=2

W (x � ⇠ j )
p⇤

with ✓ a positive number satisfying 0 < ✓ < p⇤
� 1� � . Note that

 
kX
j=1

W (x � ⇠ j )

!✓ kX
j=2

W (x � ⇠ j )  C"
1+✓
2 .

Moreover,
kX
j=2

W (x � ⇠ j )
p⇤

 C"
p⇤��
2

kX
j=1

e�� |x�⇠ j |.

Thus

|E4|  C"
1+✓
2

kX
j=1

e�� |x�⇠ j |, for � 1 < x 

⇠1 + ⇠2
2

,

with 0 < ✓ < p⇤
�1�� . Similarly, for ⇠l�1+⇠l2  x 

⇠l+⇠l+1
2 with l = 2, . . . , k�1

and x �
⇠k�1+⇠k

2 we get |E4|  C"
1+✓
2

kP
j=1

e�� |x�⇠ j |. Therefore for x 2 R we have

|E4|  C"
1+✓
2

kX
j=1

e�� |x�⇠ j |, where 0 < ✓ < p⇤

� 1� �.
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The estimate of E5 is similar as the previous ones and we get

|E5|  C max{", "
q��
p⇤�q

}

kX
j=1

e�� |x�⇠ j |.

From (4.3) and the previous estimates, for 0 < ✓ < p⇤
� 1� � , with � satisfying

(3.3), we have

kEk⇤⇤  C

8>><
>>:
max

⇢
"| log "|, "

2
N+2�(N�2)q , "

1+✓
2 , "

q��
p⇤�q

�
if N � 4

max
⇢
"| log "|, "

1
5�q , "

1+✓
2 , "

q��
p⇤�q

�
if N = 3.

Therefore if q satisfies (1.4), we find that there esists ⌧ 2 (12 , 1) such that kEk⇤⇤ 

C"⌧ . Differentiating E with respect to ⇠i for i = 1, 2, . . . , k we have

@⇠i E = ↵"(p⇤

+ ")e"xV p⇤
+"�1@⇠i V � p⇤

kX
j=1

W (x � ⇠ j )
p⇤

�1@⇠i W (x � ⇠ j )

+ ��Nqe�(p⇤
�q)xV q�1@⇠i V .

The proof of estimate for k@⇠ Ek⇤⇤ is similar to that for kEk⇤⇤.

Proposition 4.3. Assume that 0 < ⇠1 < ⇠2 < . . . < ⇠k satisfy (2.11). Then there
exists C > 0 such that for " > 0 small enough there exists a unique solution � =

�(⇠) to problem (3.1) with k�k⇤  C"⌧ for some ⌧ 2 (12 , 1) satisfying Lemma 4.2.
Moreover, the map ⇠ 7! �(⇠) is of class C1 for the k ·k⇤ norm, and k@⇠�k⇤  C"⌧ .

Proof. Problem (3.1) is equivalent to solving the fixed-point problem

� = T"(N (�) + E) =: A"(�).

We will show that the operator A" is a contraction map in a proper region. Set

F� = {� 2 C(R) : k�k⇤  � "⌧ },

where � > 0 will be chosen later.
For � 2 F� , by Lemmas 4.1 and 4.2, we get

kA"(�)k⇤ = kT"(N (�) + E)k⇤  CkN (�)k⇤⇤ + kEk⇤⇤

 C
⇣
�min{p

⇤,2}"min{p
⇤
�1,1}⌧

+ �min{q,2}"min{q�1,1}⌧
+ 1

⌘
"⌧ .

Then we have A"(�) 2 F� for � 2 F� by choosing � large enough but fixed.
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Moreover, for �1,�2 2 F� , we write

N (�1) � N (�2) =

Z 1

0
N 0(�2 + t (�1 � �2))dt (�1 � �2).

By Proposition 3.1 and using (4.2), we find

kA"(�1) � A"(�2)k⇤  CkN (�1) � N (�2)k⇤⇤

 C

 ✓
max
i=1,2

k�ik⇤

◆min{p⇤
�1,1}

+

✓
max
i=1,2

k�ik⇤

◆min{q�1,1}
!

k�1 � �2k⇤

 C"k�1 � �2k⇤

for some  > 0. This implies that A" is a contraction map from F� to F� . Thus
A" has a unique fixed point in F� .

We now consider the differentiability of ⇠ 7! �(⇠). We write B(⇠,�) :=

� � T"(N (�) + E).We first observe that B(⇠,�) = 0. Moreover,

@�B(⇠,�)[✓] = ✓ � T"(✓(@�(N (�)))) ⌘ ✓ + M(✓),

where M(✓) = �T"(✓(@�(N (�)))). By a direct calculation we get

kM(✓)k⇤  Ck✓(@�(N (�)))k⇤⇤  C"k✓k⇤.

So for " > 0 small enough the operator @�B(⇠,�) is invertible with uniformly
bounded inverse in k · k⇤. It also depends continuously on its parameters. If we
differentiate with respect to ⇠ , we have

@⇠ B(⇠,�) = �(@⇠T")(N (�) + E) � T"((@⇠N )(⇠,�) + @⇠ E),

where all these expressions depend continuously on their parameters. The implicit
function theorem yields that �(⇠) is of class C1 and

@⇠� = �(@�B(⇠,�))�1[@⇠ B(⇠,�)]

so that

k@⇠�k⇤  C
�
kN (�)k⇤⇤ + kEk⇤⇤ + k(@⇠N )(⇠,�)k⇤⇤ + k@⇠ Ek⇤⇤

�
 C"⌧ .

5. The finite-dimensional variational reduction

According to the results of the previous section, our problem has been reduced to
finding points ⇠ = (⇠1, ⇠2, . . . , ⇠k) such that

c j (⇠) = 0 for all j = 1, . . . , k. (5.1)
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If (5.1) holds, then v = V + � is a solution to (1.7), and u =

Pk
j=1Uµ j + is the

solution to problem (1.3) with  = T �1(�).
Define the function I" : (R+)k ! R as I"(⇠) := I"(V + �), where V is

defined by (2.12) and I" is the energy functional of (1.7) defined by

I"(v) =

1
2

Z
+1

�1

(|v0(x)|2 + |v|
2)dx +

1
2

✓
2

N � 2

◆2 Z +1

�1

e�
4

N�2 xv2dx

�

1
p⇤

+ " + 1
↵"

Z
+1

�1

e"x |v|
p⇤

+"+1dx

�

1
q + 1

��N

Z
+1

�1

e�(p⇤
�q)x

|v|
q+1dx .

We have the following fact:

Lemma 5.1. The function V+� is a solution to (1.7) if and only if ⇠ = (⇠1, . . . , ⇠k)
is a critical point of I"(⇠), where � = �(⇠) is given by Proposition 4.3.

Proof. For s 2 {1, 2, . . . , k} we have

@⇠sI"(⇠) = @⇠s (I"(V + �)) = DI"(V + �)[@⇠s V + @⇠s�]

=

kX
j=1

c j
Z

R
Z j [@⇠s V + @⇠s�] =

kX
j=1

c j
✓Z

R
Z j Zsdx + o(1)

◆
,

where o(1) ! 0 as " ! 0 uniformly for the norm k ·k⇤. This implies that the above
relations define an almost diagonal homogeneous linear equation system for the c j .
Thus ⇠ is the critical point of I" if and only if c j = 0 for all j = 1, 2, . . . , k.

Lemma 5.2. The expansion I"(⇠) = I"(V ) + o(") holds as " ! 0, where o(") is
uniform in the C1-sense on the vectors ⇠ satisfying (2.11).

Proof. By the fact that DI"(V + �)[�] = 0 and using the Taylor expansion, we
have

I"(⇠) � I"(V ) = I"(V + �) � I"(V ) =

Z 1

0
D2 I"(V + t�)[�2]tdt

=

Z 1

0
tdt

Z
+1

�1

(N (�) + E)�dx

+(p⇤

+ ")↵"

Z 1

0
tdt

Z
+1

�1

e"x
h
V p⇤

+"�1
� (V + t�)p

⇤
+"�1

i
�2dx

+��Nq
Z 1

0
tdt

Z
+1

�1

e�(p⇤
�q)x

h
Vq�1

� (V + t�)q�1
i
�2dx .
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Since k�k⇤  C"⌧ and kEk⇤⇤  C"⌧ with ⌧ > 1
2 , we get I"(⇠) � I"(V ) =

O("2⌧ ) = o(") uniformly on the points ⇠ which satisfy (2.11).
Moreover, differentiating with respect to ⇠s , we have

@⇠s (I"(⇠) � I"(V )) =

Z 1

0

Z
+1

�1

@⇠s [(N (�) + E)�]tdxdt

+↵"(p⇤

+ ")

Z 1

0
tdt

Z
+1

�1

e"x@⇠s
⇣h
V p⇤

+"�1
� (V + t�)p

⇤
+"�1

i
�2
⌘
dx

+��Nq
Z 1

0
tdt

Z
+1

�1

e�(p⇤
�q)x@⇠s

⇣h
Vq�1

� (V + t�)q�1
i
�2
⌘
dx .

By the fact that k@⇠�k⇤  C"⌧ and k@⇠ Ek⇤⇤  C"⌧ with ⌧ > 1
2 , we deduce that

@⇠s (I"(⇠) � I"(V )) = O("2⌧ ) = o(").

We now consider the energy functional of problem (1.3), which is defined by

J (u) =

1
2

Z
RN

(|ru|2 + u2) �

1
p⇤

+ 1+ "

Z
RN

|u|p
⇤
+1+"

�

�

q + 1

Z
RN

|u|q+1.

By a direct calculation, we have that

I"(V ) =

✓
2

N � 1

◆N�1 1
!N�1

J (U), (5.2)

where V is defined by (2.12), !N�1 is the volume of the unit sphere in RN and
U(z) =

Pk
j=1Uµ j (z) with Uµ j satisfying problem (2.1).

We give the following expansion of J (U), whose proof is in the Appendix.

Lemma 5.3. If (2.9) and (2.10) hold we have the expansion

J (U) = a1 + a2" � '(31, . . . ,3k)" + a3" log " + o(") (5.3)

where

'(31, . . . ,3k) = a43
N+2�(N�2)q

2
1 � a5

kX
i=1

log3i + a6
k�1X
l=1

✓
3l+1
3l

◆ N�2
2

, (5.4)
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and as " ! 0, o(") is uniform in the C1-sense on the 3i ’s satisfying (2.9), and

a1 =

k
N
↵
p⇤

+1
N

Z
RN

1
(1+ |z|2)N

dz,

a2 =

k
(p⇤

+ 1)2
↵
p⇤

+1
N

Z
RN

1
(1+ |z|2)N

dz

�

k
p⇤

+ 1
↵
p⇤

+1
N

Z
RN

1
(1+ |z|2)N

log
↵N

(1+ |z|2)
N�2
2
dz,

a3 =

(N � 2)2

4N

✓
↵
p⇤

+1
N

Z
RN

1
(1+ |z|2)N

dz
◆

⇥

kX
i=1

✓
2(i � 1)
N � 2

+

2
N + 2� (N � 2)q

◆
,

a4 =

�

q + 1

Z
RN

1

(1+ |z|2)
(N�2)(q+1)

2
dz,

a5 =

(N � 2)2

4N

✓
↵
p⇤

+1
N

Z
RN

1
(1+ |z|2)N

dz
◆

,

a6 = ↵
p⇤

+1
N

Z
RN

1

(1+ |z|2)
N+2
2

1
|z|N�2 dz.

We are now ready to prove our main result.

Proof of Theorem 1.1. Thanks to Lemma 5.1, we know that

u =

kX
j=1

Uµ j +  with  = T �1(�)

is a solution to problem (1.3) if and only if ⇠ is a critical point of I"(⇠), where the
existence of � is guaranteed by Proposition 4.3.

Finding a critical point of I"(⇠) is equivalent to finding one of eI"(⇠), which is
defined as

eI"(⇠) = �

✓
N � 1
2

◆N�1 !N�1
"

I"(⇠) +

a1
"

+ a2 + a3 log ".

On the other hand, from Lemmas 5.2 and 5.3, using (5.2), we have

I"(⇠) = I"(V ) + o(") =

✓
2

N � 1

◆N�1 1
!N�1

J (U) + o(")

=

✓
2

N � 1

◆N�1 1
!N�1

⇥
a1 + a2" � '(31, . . . ,3k)" + a3" log "

⇤
+ o(")
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as " ! 0, where '(3) is defined by (5.4) and o(") is uniform in the C1-sense. Then
we have

eI"(⇠) = '(3) + o(1), (5.5)

where o(1) is uniform in the C1-sense as " ! 0.
If we set s1 = 31, s j =

3 j
3 j�1

, we can write '(31, . . . ,3k) as

'(s1, . . . , sk) = a4s
N+2�(N�2)q

2
1 � a5k log s1 �

kX
j=2


a5(k � j + 1) log s j�a6s

N�2
2

j

�

=: '̃1 �

kX
j=2

'̃ j ,

with
'̃1 = a4s

N+2�(N�2)q
2

1 � a5k log s1
and

'̃ j = a5(k � j + 1) log s j � a6s
N�2
2

j , j = 2, . . . , k.

We note that

s̄1 =

✓
2a5k

a4(N + 2� (N � 2)q)

◆ 2
N+2�(N�2)q

(5.6)

is the critical point of '̃1, and

s̄ j =

✓
2a5(k � j + 1)

(N � 2)a6

◆ 2
N�2

, j = 2, . . . , k, (5.7)

is the critical point of '̃ j . Moreover

'̃00

1 (s̄1) < 0, '̃00

j (s̄ j ) < 0, j = 2, . . . , k.

So (s̄1, s̄2, . . . , s̄k) is a nondegenerate critical point of '(s1, . . . , sk). Thus

3⇤

:= (s̄1, s̄2s̄1, s̄3s̄2s̄1, . . . , s̄k ⇥ . . . ⇥ s̄2s̄1)

is a nondegenerate critical point of '(3). It follows that the local degree
deg(r'(3),O, 0) is well defined and is nonzero, where O is an arbitrarily small
neighborhood of 3⇤. Hence from (5.5), for " > 0 small enough, we have that
deg(r⇠eI"(⇠), ¯O, 0) 6= 0, where ¯O is a small neighborhood of ⇠⇤

= (⇠⇤

1 , . . . , ⇠
⇤

k )
and

⇠⇤

j =


( j � 1) +

1
p⇤

� q

�
log

1
"

�

N � 2
2

log
�
s̄ j s̄ j�1 . . . s̄1

�
, for 8 j = 1, . . . , k.

So ⇠⇤ is a critical point of eI"(⇠), which implies there is a critical point of I".
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Furthermore, if for some i , |x � ⇠i |  C0 with some C0 > 0, then we have
|�| = o(W (x � ⇠i )). Thus  (|z|) = T �1(�(x)) = o(wµi ) for 1Cµi  |z|  Cµi .
Moreover, from (c) of Lemma 2.1, we get that Rµi = o(wµi ) for 1Cµi  |z|  Cµi .
Therefore we obtain (1.5) holds with

3⇤

j = s̄ j s̄ j�1 . . . s̄1, j = 1, . . . , k

where s̄ j are given by (5.6) and (5.7). This finishes the proof.

6. Appendix

6.1. Proof of Lemma 2.1

In order to prove Lemma 2.1, we introduce the Green function. For a fixed z 2 RN ,
let G(z, y) be the Green function of �1+ I , which satisfies

�1G(z, y) + G(z, y) = �z(y) in RN ,

G(z, y) ! 0 |y| ! 1.

We have the following:

Lemma 6.1. |G(z, y)| 

( C
|y�z|N�2 for 0 < |y � z|  1

C|y � z|
1�N
2 e�|y�z| for |y � z| � 1.

Proof. By radial symmetry, we can write G(z, y) = G(r) with r = |y � z|. Since
G(r) is singular at zero and tends to zero at infinity, we can verify that G is given
by

G(r) =

N � 2

(2⇡)
N
2 0( N2 )2

r
2�N
2 K N�2

2
(r),

where K N�2
2

(r) is a Modified Bessel Function of the Second Kind, see [15]. For

N = 3, the function G has the explicit form G(r) =
e�r
4⇡r . In general, we have that

K N�2
2

(r) ⇠

0( N�2
2 )

2 (2r )
N�2
2 for r close to 0, and K N�2

2
(r) ⇠

q
⇡
2r e

�r for r large.
Using these estimates, we obtain the result.

Proof of Lemma 2.1. (a) It is a direct consequence of the maximum principle.
(b) Define the barrier function Q(z) = µ

N�2
2 |z|�(N+2). It satisfies �1Q(z) +

Q(z) � cµ
N�2
2 |z|�(N+2) for all |z| � R with R > 0 a large constant, here c is

positive constant. Since Q(z) = µ
N�2
2 R�(N+2) for |z| = R and Uµ(z)  wµ(z) 

↵Nµ
N�2
2 |z|�(N�2) for all |z| � 0. Set '(z) = AQ(z) � Uµ(z) for some constant

A > 0, we then have �1'(z) + '(z) � 0 for |z| � R, and '(z) � 0 for |z| = R by
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choosing suitable constant A. By the maximum principle we getUµ(z)  AQ(z) =

Aµ
N�2
2 |z|�(N+2) for |z| � R.
(c) Using the representation

Rµ(z) =

Z
RN

G(y � z)wµ(y)dy

and standard convolution estimates we can obtain the stated bounds for Rµ.

Set eZµ(z) = @µUµ(z), Zµ(z) = @µwµ(z); then Z̃µ(z) satisfies
8<
:

�1eZµ +
eZµ =

N+2
N�2w

4
N�2
µ Zµ in RN

eZµ(z) ! 0 as |z| ! 1.

We can write eZµ(z) = Zµ(z) + @µRµ(z); then @µRµ(z) satisfies
(

�1(@µRµ(z)) + @µRµ(z) = �@µwµ(z) in RN

@µRµ(z) ! 0 as |z| ! 1.

We observe that | � @µwµ(z)|  Cµ�1wµ; then we have:

Corollary 6.2. One has��@µRµ(z)
��
 Cµ�1

|Rµ(z)| for 8 z 2 RN . (6.1)

Moreover, by the maximum principle, we have that

|
eZµ(z)|  Cµ

N�4
2 |z|�(N+2) for |z| � R, (6.2)

where R is a large positive number but fixed in Lemma 2.1.

6.2. Expansion of energy

Proof of Lemma 5.3. The proof is very similar to the one in [20]. The difference is
that we have more terms in the energy and the initial approximation is also some-
what different. We have

J (U) =


1
2

Z
RN

(|rU |
2
+U2) �

1
p⇤

+ 1

Z
RN

U p⇤
+1
�

+


1

p⇤
+ 1

Z
RN

U p⇤
+1

�

1
p⇤

+ 1+ "

Z
RN

U p⇤
+1+"

�
�

�

q + 1

Z
RN

Uq+1

=: J1 + J2 + J3, (6.3)

where U =

kP
j=1

Uµ j with Uµ j = wµ j + Rµ j .
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As in [20] but using the estimates of Rµ in Lemma 2.1 we can get

J1 =

k
N
↵
p⇤

+1
N

Z
RN

1
(1+ |z|2)N

dz

� "
k�1X
l=1

✓
3l+1
3l

◆ N�2
2
↵
p⇤

+1
N

Z
RN

1

(1+ |z|2)
N+2
2

1
|z|N�2 dz + o(").

(6.4)

As in [20] we also obtain

J2 = "
k

(p⇤
+ 1)2

↵
p⇤

+1
N

Z
RN

1
(1+ |z|2)N

dz

� "
k

p⇤
+ 1

↵
p⇤

+1
N

Z
RN

1
(1+ |z|2)N

log
↵N

(1+ |z|2)
N�2
2
dz

+ "
(N � 2)2

4N

✓
↵
p⇤

+1
N

Z
RN

1
(1+ |z|2)N

dz
◆ kX
i=1

log3i

+

(N � 2)2

4N

✓
↵
p⇤

+1
N

Z
RN

1
(1+ |z|2)N

dz
◆

⇥

kX
i=1

✓
2(i � 1)
N � 2

+

2
N + 2� (N � 2)q

◆
" log " + o(").

(6.5)

We will do with detail the estimate of the term J3.
Given � > 0 small but fixed, let µ1, . . . , µk be given by (2.10); set µ0 =

�2

µ1
and µk+1 = 0. Define the following annulus

Ai := B(0,pµiµi�1)\B(0,pµiµi+1), for i = 1, . . . , k.

We observe that B(0, �) =

Sk
i=1 Ai . On each Ai the leading term in

kP
j=1

Uµ j is

Uµi . Then we have

�(q+1)J3 = �
kX
l=1

Z
Al

2
4
 
Uµl +

kX
j=1, j 6=l

Uµ j

!q+1

�Uq+1
µl � (q +1)Uq

µl

kX
j=1, j 6=l

Uµ j

3
5

+�
kX
l=1

Z
Al
Uq+1

µl + �(q + 1)
kX
l=1

Z
Al

kX
j=1, j 6=l

Uq
µlUµ j

+�

Z
RN

\B(0,�)

 
kX
j=1

Uµ j

!q+1

=: J3,1 + J3,2 + J3,3 + J3,4.
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By the mean value theorem, for some t 2 [0, 1], we have

J3,1 = �
q(q + 1)

2

kX
l=1

Z
Al

 
Uµl + t

kX
j=1, j 6=l

Uµ j

!q�1  kX
j=1, j 6=l

Uµ j

!2

 C�
kX

j,l=1, j 6=l

Z
Al

wq�1
µl w2µ j + C�

kX
i, j,l=1, i, j 6=l

Z
Al

wq�1
µi w2µ j .

Now
kX

j,l=1, j 6=l

Z
Al

wq�1
µl w2µ j =

kX
j,l=1, j 6=l

Z
Al

(wq�1
µl w

q�1
q

µ j )w
q+1
q

µ j



kX
j,l=1, j 6=l

✓Z
Al

wq
µlwµ j

◆ q�1
q
✓Z

Al
wq+1

µ j

◆ 1
q

,

(6.6)

and
kX

i, j,l=1, i, j 6=l

Z
Al

wq�1
µi w2µ j 

kX
i, j,l=1, i, j 6=l

✓Z
Al

wq+1
µi

◆ q�1
q+1

✓Z
Al

wq+1
µ j

◆ 2
q+1

. (6.7)

If j > l we have

Z
Al

wq
µlwµ j dz = ↵

q+1
N

Z
p

µlµl+1|z|p

µlµl�1

µ
N�2
2 q

l

(µ2l + |z|2)
N�2
2 q

µ
N�2
2

j

(µ2j + |z|2)
N�2
2
dz

=

✓
µ j

µl

◆ N�2
2

µ
�

N�2
2 q+

N+2
2

l

"
↵
q+1
N

Z
RN

1

(1+ |z|2)
N�2
2 q

1
|z|N�2 dz + o(1)

#
,

(6.8)

while for j < l we have

Z
Al

wq
µlwµ j dx = ↵

q+1
N

Z
p

µlµl+1|z|p

µlµl�1

µ
N�2
2 q

l

(µ2l + |z|2)
N�2
2 q

µ
N�2
2

j

(µ2j + |z|2)
N�2
2
dz

=

✓
µl
µ j

◆N�2
2

µ
�

N�2
2 q+

N+2
2

l ↵
q+1
N

Z
q

µl+1
µl

|z|
q

µl�1
µl

1

(1+|z|2)
N�2
2 q

1

(1+ ( µl
µ j

)2|z|2)
N�2
2
dz



✓
µl
µ j

◆ N�2
2

µ
�

N�2
2 q+

N+2
2

l ↵
q+1
N

Z
q

µl+1
µl

|z|
q

µl�1
µl

1

(1+ |z|2)
N�2
2 q

dz,

(6.9)
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and for i 6= l we have

Z
Al

wq+1
µi  Cµ

�
N�2
2 q+

N+2
2

i

8>>>><
>>>>:

✓
µl
µi

◆ N
2

if i  l � 1 < l
 

µ2i
µlµl�1

!N�2
2 q�1

if i � l + 1 > l.
(6.10)

From (6.6)-(6.10), (1.4) and (2.10), we get J3,1 = o(").
Moreover,

J3,2 = �
kX
l=1

Z
Al

wq+1
µl + �

kX
l=1

Z
Al

(Uq+1
µl � wq+1

µl )

= "3
N+2�(N�2)q

2
1 �

Z
RN

1

(1+ |z|2)
(N�2)(q+1)

2
dz + o(").

From (6.8) and (6.9), we have

J3,3  C�
kX
l=1

Z
Al

kX
j=1, j 6=l

Uq
µlUµ j  C�

kX
l=1

Z
Al

kX
j=1, j 6=l

wq
µlwµ j = o(").

Finally,

J3,4 = �

Z
RN

\B(0,�)

 
kX
j=1

Uµ j

!q+1

 C
kX
j=1

Z
RN

\B(0,�)
wq+1

µ j dz = o(").

Thus we get

J3 = �"3
N+2�(N�2)q

2
1

�

q + 1

Z
RN

1

(1+ |z|2)
(N�2)(q+1)

2
dz + o("). (6.11)

From (6.3), (6.4), (6.5) and (6.11), we obtain (5.3).
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