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Failure of the local-to-global property for CD(K, N) spaces

TAPIO RAJALA

Abstract. Given any K 2 R and N 2 [1,1] we show that there exists a com-
pact geodesic metric measure space satisfying locally the CD(0, 4) condition but
failing to satisfy CD(K , N ) globally. The space with this property is a suitable
non-convex subset of R2 equipped with the l1-norm and the Lebesgue measure.
Combining many such spaces gives a (non-compact) complete geodesic metric
measure space satisfying CD(0, 4) locally but failing to satisfy CD(K , N ) glob-
ally for every K and N .

Mathematics Subject Classification (2010): 53C23 (primary); 28A33, 49Q20
(secondary).

1. Introduction

A definition of Ricci curvature lower bounds in metric measure spaces was pro-
posed by Sturm in [23, 24], and independently at the same time by Lott and Villani
in [16]. The definitions were in terms of convexity properties of functionals in
the space of probability measures. The most relevant definition in the context of
this paper is the CD(0, N ) condition, with 0 taking the place of a lower bound on
the curvature, which is usually denoted by K 2 R in the more general definition
(K = 0 here means non-negative Ricci curvature), and N < 1 being the upper
bound on the dimension of the space. The CD(0, N ) condition on a metric measure
space (X,d,m) requires that between any two probability measures on the space
there exists at least one geodesic along which the entropy

EntN 0(⇢m) = �

Z
X

⇢
1� 1

N 0 dm

is convex for all N 0
� N . (See Section 2 for more details.)

Soon after the definition of CD(0, N ) had been introduced it was noticed that
Rn equipped with any norm and with the Lebesgue measure satisfies CD(0, n). See
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the end of Villani’s book [25] for an outline of the proof of this fact. In particular
we have:

Theorem 1.1 (Cordero-Erausquin, SturmandVillani).The space(R2,k·k1,L2)
satisfies CD(0, 2).

A problematic feature of spaces like (R2, || · ||1,L2) is that between most
of the points there exist a huge number of geodesics joining them. In particular,
there are a lot of branching geodesics. This is not only a feature of normed spaces;
branching geodesics are also known to exist, for example, in some positively curved
CD(K , N ) spaces, see the recent paper by Ohta [17]. Initially many results for
CD(K , N ) spaces were proven under the assumption that there are no branching
geodesics. Later some of these results have been proven without such assumption
(for instance local Poincaré inequalities [19, 20]). In some results the general case
with branching geodesics remains open.

Until now one of the basic open questions for general CD(K , N ) spaces was
the local-to-global property of the CD(K , N ) condition. It is known that under the
non branching assumption assuming CD(0, N ) (or CD(K ,1) or CD⇤(K , N )) to
hold locally (i.e. in a neighbourhood of any point) is the same as assuming it to hold
globally. For CD(K ,1) this was proven by Sturm [23], for CD(0, N ) by Villani
[25], and for CD⇤(K , N ) by Bacher and Sturm [7]. Such a property is natural
to expect from an abstract notion of Ricci curvature lower bounds –after all, the
classical definition is local. The notion CD⇤(K , N ) refers to the reduced curvature-
dimension condition. It is not (at least a priori) as restrictive as the CD(K , N )
condition, but it is more natural in the local-to-global questions.
In this paper we show that not even CD(0, N ) does, in general, have the local-to-
global property. The idea of our example showing that local CD(0, N ) does not
imply global CD(0, N ) is surprisingly simple. One starts with the observation,
which we already mentioned, that (R2, || · ||1) has lots of geodesics. There are
even so many geodesics that one can go around some Euclidean corners with them.
Therefore we at least have domains inR2 that are not convex in the Euclidean sense
but still (weakly) geodesically convex with the l1-norm. Next we observe that we
can locally move two identical objects around a corner, see the left picture in Figure
1.1. This roughly means that moving measures that are approximately the same
should not be a problem in view of the local CD(0, 2) condition.

For more general sets the 45 degree angle gives the extremal case when going
around a corner. See the right picture in Figure 1.1 for the extremal case. There
we have to shrink the measure in the vertical direction when we move it around
the corner. This suggests that we have to give up our hope on CD(0, 2). Still
the particular transport seems to satisfy CD(0, 4), for instance. However, when
we take thinner and thinner strips closer and closer to the corner we notice that the
estimates do not scale properly. An obvious idea to try to correct this is to smoothen
the corner, and in fact replacing the corner with a piece of a circle will do:
Example 1.2. Let K 2 R. Take X to be the closed subset of R2 shown in Figure
1.2. (We shall specify it more carefully in Section 3.) As the distance take d(x, y) =
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Figure 1.1. On the left we see how a measure can be easily transported around a corner
when our distance is given by the l1-norm. On the right we have the extremal case
when we go around a corner. In this case we have to squeeze the measure a bit.

||x � y||1 and as the reference measure the restriction of the Lebesgue measure
m = L2|X . The space (X,d,m) is a compact geodesic metric measure space

Figure 1.2. An illustration of the space X of Example 1.2 as a compact subset of R2
with the l1-norm. The space satisfies CD(0, 4) locally, but not globally.

satisfying CD(0, 4) locally, but failing to globally satisfy CD(K ,1) (and hence
CD(K , N ) and CD⇤(K , N ) for any N � 1).

We note that if in Example 1.2 we were to drop either the requirement that
(X,d) is complete or the requirement that it is geodesic the example would be
close to trivial. However, with both of these assumptions in place, if we want to
get the example as a subset of R2, we are forced to consider optimal transport at
and near the boundary of a non-convex set. Verifying the CD(0, 4) condition at the
boundary turned out to require some calculations.

Indeed, proving that (X,d,m) locally satisfies CD(0, 4) takes most of this
paper whereas the failure of global CD(K ,1) follows immediately by considering
optimal transport between measures with large supports on the opposite sides of the
’neck’. Gluing together infinitely many spaces of the type shown in Example 1.2
gives a (non compact) complete geodesic metric measure space satisfying CD(0, 4)
locally but failing the global CD(K ,1) for any K 2 R.

We will show that the space in Example 1.2 fails CD(K ,1). In fact, not only
does the space fail theCD(K ,1) condition but it also fails the measure contraction
propertyMCP(K , N ). This is easy to see with a similar argument showing the fail-
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ure of CD(K ,1). The MCP(K , N ) is a curvature-dimension condition involving
optimal transports from absolutely continuous measures to Dirac masses; for the
definition and basic properties see the papers by Sturm [24] and Ohta [18]. The
MCP(K , N ) is (almost) implied by the CD(K , N ) condition: The more restrictive
version of MCP(K , N ), requiring the existence of a Markov kernel (a universal
choice of geodesics) giving the MCP(K , N ), follows from the CD(K , N ) condi-
tion in non branching metric spaces, see [24]. The version of the MCP(K , N )
without the Markov kernel follows from the CD(K , N ) condition also without the
non branching assumption, see [20]. TheMCP(K , N ) is known to fail the local-to-
global property even in non branching metric spaces, see [24].

Although CD(K , N ) (and CD⇤(K , N )) fails to have the local-to-global prop-
erty, the more recent definition of Riemannian Ricci curvature bounds by Ambro-
sio, Gigli and Savaré [4] (see also [2] for some generalization and simplifications
and [6, 12] for the finite dimensional definitions), RCD⇤(K , N ) for short, could
still have the local-to-global property. The fact that RCD⇤(K , N ) spaces are es-
sentially non branching and there exist optimal maps from absolutely continuous
measures [14,15,22] strongly supports this conjecture.

ACKNOWLEDGEMENTS. The author is grateful for the many enlightening discus-
sions with Luigi Ambrosio and Nicola Gigli on this subject and he wishes to thank
the anonymous referee for several corrections. The author also acknowledges the
financial support of the Academy of Finland project no. 137528.

2. Preliminaries

In this paper the norm we mostly use is the l1-norm and hence we sometimes
abbreviate ||(x0, y0)�(x1, y1)|| := ||(x0, y0)�(x1, y1)||1 := max{|x0�x1|, |y0�
y1|}. We denote the Euclidean norm in R by | · |.

2.1. Optimal mass transportation

We will give here only a few facts about optimal mass transportation. For a more
detailed introduction we refer to the books by Villani [25] and by Ambrosio and
Gigli [1]. We denote by P(X) the space of Borel probability measures on the
complete and separable metric space (X,d) and byP2(X) ⇢ P(X) the subspace
consisting of all the probability measures with finite second moment. Our example
X is compact and thus for it we have P2(X) = P(X). However, in general
the measures with finite second moment are considered in order to have finite W2-
distance between the measures (see below for the definition of the distance W2).

Given two probability measures µ0, µ1 2 P(X) and a Borel cost function
c : X ⇥ X ! [0,1] the optimal mass transportation problem is to minimizeZ

X
c(x, y) d� (x, y) (2.1)
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among all � 2 P(X ⇥ X) with (p1)]� = µ0 and (p2)]� = µ1 , i.e. µ0 and
µ1 as the first and the second marginal. The pi denotes the projection to the i :th
component.

In the definition of the Ricci curvature lower bounds we will use the quadratic
transportation distance W2(µ0, µ1), which is given by the cost function c(x, y) =

d(x, y)2. In other words, for µ0, µ1 2 P2(X) it is defined by

W 2
2 (µ0, µ1) = inf

�

Z
X
d2(x, y) d� (x, y), (2.2)

where again the infimum is taken over all � 2 P(X ⇥ X) with µ0 and µ1 as the
first and the second marginal. Assuming the space (X,d) to be geodesic, also the
space (P2(X),W2) is geodesic. We denote by Geo(X) the space of (constant speed
minimizing) geodesics on (X,d). The notation et : Geo(X) ! X , t 2 [0, 1] is used
for the evaluation maps defined by et (� ) := �t . A useful fact is that any geodesic
(µt ) 2 Geo(P2(X)) can be lifted to a measure ⇡ 2 P(Geo(X)), so that (et )#⇡ =

µt for all t 2 [0, 1]. Given µ0, µ1 2 P2(X), we denote by OptGeo(µ0, µ1) the
space of all ⇡ 2 P(Geo(X)) for which (e0, e1)#⇡ realizes the minimum in (2.2).

A property of optimal transport plans that we will frequently use is cyclical
monotonicity. It holds in a great generality, and in particular in the minimization
problems we are considering in this paper. A set 0 ⇢ X ⇥ X is called c-cyclically
monotone if for any k 2 N and (x1, y1), . . . , (xk, yk) 2 0 we have

kX
i=1

c(xi , yi ) 

kX
i=1

c(xi , yi+1)

with the identification yk+1 = y1. Now, given µ0, µ1 2 P2(X) and an optimal
transport plan � minimizing (2.1) there exists a c-cyclically monotone subset 0
with full � -measure.

2.2. Ricci curvature lower bounds in metric measure spaces

The definition of the full CD(K , N ) condition is a bit complicated. In this paper we
will only need the special cases with K = 0 and N < 1, and with N = 1. In the
first case the definition reduces to the following:

Definition 2.1. Let N 2 [1,1). We say that a complete geodesic metric measure
space (X,d,m) satisfies the CD(0, N ) condition if for any two measures µ0, µ1 2

P(X) with support bounded and contained in supp(m) there exists a measure ⇡ 2

OptGeo(µ0, µ1) such that for every t 2 [0, 1] and N 0
� N we have

EntN 0(⇢tm)  (1� t)EntN 0(⇢0m) + tEntN 0(⇢1m), (2.3)

where for any t 2 [0, 1] we have written (et )]⇡ = ⇢tm + µs
t with µs

t ? m.
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Recall that the entropy EntN 0 with finite N 0 is defined as

EntN 0(⇢m) = �

Z
X

⇢
1� 1

N 0 dm.

For N 0
= 1 the definition of entropy that is used is

Ent1(µ) =

Z
X

⇢ log ⇢ dm,

ifµ = ⇢m is absolutely continuous with respect tom and Ent1(µ) = 1 otherwise.
It is used in defining the CD(K ,1) condition.

Definition 2.2. Let K 2 R. We say that a metric measure space (X,d,m) satisfies
the CD(K ,1) condition if for any two measures µ0, µ1 2 P(X) with support
bounded and contained in supp(m) there exists a measure ⇡ 2 OptGeo(µ0, µ1)
such that for every t 2 [0, 1] we have

Ent1(µt )  (1� t)Ent1(µ0) + tEnt1(µ1) �

K
2
t (1� t)W 2

2 (µ0, µ1),

where we have written µt = (et )]⇡ .

We will show that our example fails the CD(K ,1) condition but satisfies
CD(0, N ) locally. A complete geodesic metric measure space (X,d,m) is said
to satisfy CD(0, N ) locally if for any x 2 X there exists a radius r > 0 such
that for any µ0, µ1 2 P(X) with supports in B(x, r) there is a measure ⇡ 2

OptGeo(µ0, µ1) such that for every t 2 [0, 1] and N 0
� N we have (2.3).

Remark 2.3. There is a reduced version of the CD(K , N ) condition denoted by
CD⇤(K , N ), that was introduced in a paper by Bacher and Sturm [7]. The local-to-
global properties are more natural to expect for CD⇤(K , N ) rather than for
CD(K , N ). Indeed, in the non branching case CD⇤(K , N ) condition has the local-
to-global property, see [7]. For K � 0 and N 2 [1,1) we have

CD(K , N ) ) CD⇤(K , N ) ) CD
✓
N � 1
N

K , N
◆

(2.4)

and so for K > 0 the CD⇤(K , N ) condition is (at least a priori) less strict than
CD(K , N ). For the proof of this and for a more detailed discussion of the relation
with CD⇤(K , N ) and CD(K , N ) we refer to [7] (see also the papers by Caval-
letti and Sturm [10] and by Cavalletti [9]). Since we show that our example fails
CD(K ,1), it will also fail CD(K , N ) and CD⇤(K , N ) for all N . Also, our ex-
ample satisfies CD(0, N ) locally, and in this particular from (2.4) we see that the
CD(0, N ) condition is the same as the CD⇤(0, N ) one.
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2.3. Approximate differentiability and the Jacobian equation

Given two absolutely continuous measures µ0, µ1 2 P2(R2) and an optimal map
T : R2 ! R2 pushing µ0 to µ1, our aim is to express the density ⇢1 of µ1 using
the density ⇢0 of µ0 and the mapping T . Assuming T to be one-to-one and smooth,
this expression is the standard Jacobian equation

⇢1(T (x, y))JT (x, y) = ⇢0((x, y)) for µ0-almost every (x, y), (2.5)

where JT (x, y) is the absolute value of the Jacobian determinant of T . A way to
relax the assumptions on T to be one-to-one and smooth is to require it to be one-to-
one almost everywhere and approximately differentiable, see for instance the book
by Ambrosio, Gigli and Savaré [3, Lemma 5.5.3] for a precise statement.

Recall that a mapping f : U ! Rm , with U ⇢ Rn open, is called approxi-
mately differentiable at x 2 U if there exists a measurable function f̃ : U ! Rm

which is differentiable at x and for which

lim
r!0

Ln
⇣�
z 2 B(x, r) : f (z) = f̃ (z)

 ⌘
Ln(B(x, r))

= 1.

The approximate differential of f at x is defined to be that of f̃ at x . Correspond-
ingly we define the approximate partial derivatives (of the components), denoted
simply by @ fi

@zi .
Approximate differentiability for T would follow from the almost everywhere

existence of approximate partial derivatives, seeFederer’s book[13, Theorem3.1.4].
However, our mapping will not in general have approximate partial derivatives in all
the directions. Due to the special structure of our optimal maps the following easy
version will suffice. In the proposition below, and later on, we write the components
of a map f : R2 ! R2 as f1 and f2. In other words f (x, y) = ( f1(x, y), f2(x, y)).

Proposition 2.4. Let µ0, µ1 2 P2(R2) be absolutely continuous with respect to
L2 with densities ⇢0 and ⇢1, respectively, and let f : R2 ! R2 be a map such that
µ1 = f]µ0 and f is one-to-one outside a set of measure zero. Suppose that at µ0-
almost every point z 2 R2 there exists a set Dz ⇢ R2 for which z is a density point
and f1(x, y) = f1(x) for all (x, y) 2 Dz , i.e. approximately f1 does not depend
on y. Suppose also that, when restricted to Dz , f1 is increasing in x and f2(x, y) is
increasing in y for almost every x 2 R. Then (2.5) holds with J f (x, y) =

@ f1
@x

@ f2
@y .

Proof. Take z 2 R2 for which there exists Dz as in the statement of the proposition.
Take a measurable A ⇢ Dz and write Ax = {y 2 R : (x, y) 2 A}. Because
f1(x) is increasing in x and f2(x, y) is increasing in y for almost every x , f1 is
almost everywhere approximately differentiable and f2 has an approximate partial
derivative in the y-direction at almost every point. Since µ0 and µ1 are absolutely
continuous with respect to L2 and f is one-to-one outside a set of measure zero,
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we haveZ
A

⇢0((x̄, ȳ)) dL2(x̄, ȳ) = µ0(A) = µ1( f (A)) =

Z
f (A)

⇢1(x̃, ỹ) dL1(ỹ) dL1(x̃)

=

Z
1

�1

Z
Ax̄

⇢1( f (x̄, ȳ))
@ f2
@y

(x̄, ȳ) dL1(ȳ)
@ f1
@x

(x̄) dL1(x̄)

=

Z
A

⇢1( f (x̄, ȳ))
@ f2
@y

(x̄, ȳ)
@ f1
@x

(x̄, ȳ) dL2(x̄, ȳ).

The claim follows from this.

3. Details of the example

Most of this section is devoted to verifying the localCD(0, 4) condition in Example
1.2. The plan is to use the Jacobian equation (2.5) to estimate the density along a
chosen geodesic inP2(R2). Before arriving at this we will first show that we have
an optimal map T between two absolutely continuous measures µ0 and µ1, that
this map is essentially one-to-one and that it can be used in a Jacobian equation.
Using the optimal map T we will then select a midpoint measure whose support is
still inside our domain. Here we also have to make sure that the map sending an
initial point to the midpoint is essentially one-to-one. After this we verify that the
midpoint measure satisfies CD(0, 4) with respect to the endpoint measures. At the
very end we will also indicate why the global CD(K ,1) condition fails.

3.1. Definition of the local domain

Since Theorem 1.1 can be proven by approximating the norm || · ||1 with strictly
convex norms (see [25]), the CD(0, 4) condition (in fact the CD(0, 2) condition)
holds inside any domain that is convex in the Euclidean sense. What needs to
be done is to verify the CD(0, 4) condition inside domains of the type shown in
Figure 3.1.

Referring to Figure 3.1 for the notation, the width b � a and the height d +

b�a
2 �c of the domain E are assumed to be less than 1

128 . The bottom of the domain
is a piece of a sphere with radius one and whose center (xc, yc) satisfies

|x � xc| <
1
2
(y � yc) for all (x, y) 2 E . (3.1)

Let for every (x, y) 2 [a, b] ⇥ R the point (x, S(x)) be the vertical projection to
the lower (circular) boundary of E , see Figure 3.1. Notice that S(x) only depends
on x . Our assumption (3.1) guarantees (via K -convexity)

S
✓
x1 + x2
2

◆
�

S(x1) + S(x2)
2



|x1 � x0|2

2
for all x1, x2 2 [a, b]. (3.2)
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 b – a
2d +

d

c

a b

(x, y)

(x, S(x))

Figure 3.1. The local domain E where we verify the CD(0, 4) condition.

3.2. Preliminary reductions and definitions

Let us now mention two simplifications that we can always make when checking
the CD(0, N ) condition. We will return to both of them in more detail near the
end of the paper when we finally prove the CD(0, 4) condition. The first standard
reduction in checking the CD(0, N ) condition (or more generally CD(K , N ) or
CD⇤(K , N ) condition) is to assume the measures to be absolutely continuous with
respect to the reference measure. This reduction is possible because we can ap-
proximate any probability measure in the W2-distance by an absolutely continuous
measure without increasing the entropy.

The second standard simplification wemake is that we only define the midpoint
between any two given measures. This has been used for example by Bacher and
Sturm [7] and the author [21]. We can then iterate the procedure of taking midpoints
and eventually use the lower semi-continuity of the entropy to have the correct
entropy bound along the whole geodesic. Notice that if K 6= 0 this procedure
works only for the CD⇤(K , N ) condition and not for the CD(K , N ) condition.

Let us then turn to the notation and definitions that are less standard than the
ones we recalled in Section 2. Given a metric space (X,d), for z0, z1 2 X we
denote the set of all the midpoints between z0 and z1 by

Mid(z0, z1) :=

⇢
z 2 X : d(z0, z) = d(z1, z) =

1
2
d(z0, z1)

�
.

We will not make the distance d visible in the notation because Mid will only be
used for (R2, || · ||1) and (P2(R2),W2), and for those no confusion should arise.

In the following we will often consider separately the part of the transport
that moves more in the horizontal (or vertical) direction. In order to simplify the
presentation we define the set of horizontal transportation

H :=

n
((x0, y0), (x1, y1)) 2 R2 ⇥ R2 : |x0 � x1| > |y0 � y1|

o
,
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the set of vertical transportation

V :=

n
((x0, y0), (x1, y1)) 2 R2 ⇥ R2 : |x0 � x1| < |y0 � y1|

o

and the set of diagonal transportation

D :=

n
((x0, y0), (x1, y1)) 2 R2 ⇥ R2 : |x0 � x1| = |y0 � y1|

o
.

Given any � 2 P(R2 ⇥ R2), the restricted measure �
|H moves every infinitesimal

mass more in the horizontal direction than the vertical, �
|V the other way around,

and �
|D moves mass in the diagonal directions.

3.3. Selecting an optimal map

One possible way of trying to obtain the needed optimal maps could be to analyse
the proof of Theorem 1.1, or the CD(0, 2) condition in (R2, || · ||1,L2). However,
we chose a more direct approach of first selecting a suitable optimal transport plan
via three consecutive minimizations and then showing that this plan has all the
desired properties. The idea behind the three minimizations is that the l1-norm
allows locally a lot of freedom for the coordinate in which the mass is transported
less. By doing extra minimization on the two directions separately after the main
minimization, we will increase the monotonicity properties of the optimal transport.

The idea of using consecutive minimizations to choose a better optimal trans-
port plan goes back to [5, 11] where the existence of optimal maps from absolutely
continuous measures in Rn for cost functions of the form c(x, y) = ||x � y|| was
proven - first with any crystalline norm ||·|| by Ambrosio, Kirchheim and Pratelli [5]
and then with any norm || · || by Champion and De Pascale [11]. Let us also note
that the existence of an optimal map in our case with c(x, y) = ||x � y||2

1
has been

proven by Carlier, De Pascale and Santambrogio in [8]. We will prove here the
existence of a specific optimal transport map using the consecutive minimizations
in order to keep the paper reasonably self-contained and, more importantly, in order
to guarantee that the chosen optimal plan has all the needed cyclical monotonicity
properties.

Let us give the three minimizations. Suppose that µ0, µ1 2 P2(R2) are given.
Let Opt1(µ0, µ1) ⇢ P(R2 ⇥ R2) be the set of those � that minimizeZ

R2⇥R2
||z1 � z2||2d� (z1, z2)

and satisfy (p1)]� = µ0 and (p2)]� = µ1. The set Opt1(µ0, µ1) is a nonempty
closed and convex subset ofP(R2 ⇥ R2). Next let Opt2(µ0, µ1) ⇢ Opt1(µ0, µ1)
be the set of those � that minimizeZ

R2⇥R2
|x1 � x2|2d� ((x1, y1), (x2, y2))
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in Opt1(µ0, µ1). Again Opt2(µ0, µ1) is a nonempty closed and convex subset of
P(R2 ⇥ R2). Finally let Opt3(µ0, µ1) ⇢ Opt2(µ0, µ1) be the set of those � that
minimize Z

R2⇥R2
|y1 � y2|2d� ((x1, y1), (x2, y2))

in Opt2(µ0, µ1). Clearly also Opt3(µ0, µ1) is nonempty. We will see in Proposition
3.2 that in the case µ0 ⌧ L2 the set Opt3(µ0, µ1) consists of only one optimal plan
which is given by a map. Before this, let us list the cyclical monotonicity properties
we immediately get from the three minimizations.

Lemma 3.1. Let µ0, µ1 2 P2(R2) and � 2 Opt3(µ0, µ1). Then there exists a set
0 ⇢ R2 ⇥ R2 of full � -measure such that for all (z1, w1), (z2, w2) 2 0 we have

||z1 � w1||
2
+ ||z2 � w2||

2
 ||z1 � w2||

2
+ ||z2 � w1||

2 (3.3)

and for all ((x1, y1), (x 0

1, y
0

1)), ((x2, y2), (x
0

2, y
0

2)) 2 0 we have

|y1 � y0

1|
2
+ |y2 � y0

2|
2

 |y1 � y0

2|
2
+ |y2 � y0

1|
2,

if |x1 � x 0

1|
2
+ |x2 � x 0

2|
2

= |x2 � x 0

1|
2
+ |x1 � x 0

2|
2 (3.4)

and

|x1 � x 0

1|
2
+ |x2 � x 0

2|
2

 |x1 � x 0

2|
2
+ |x2 � x 0

1|
2,

if |y1 � y0

1|
2
+ |y2 � y0

2|
2

= |y2 � y0

1|
2
+ |y1 � y0

2|
2.

(3.5)

Let us then prove that in the case µ0 ⌧ L2 the optimal plan in Opt3(µ0, µ1) is
given by a map. This is a fairly standard consequence of Lemma 3.1, so we present
only parts of the proof to give the idea.

Proposition 3.2. Suppose µ0 ⌧ L2. ThenOpt3(µ0, µ1) is a singleton and its only
element is induced by an optimal map T .

Proof. The fact that Opt3(µ0, µ1) is a singleton follows once we know that any
element in Opt3(µ0, µ1) is induced by an optimal map. Indeed, if there were two
different measures � 1, � 2 2 Opt3(µ0, µ1), then by convexity also � 3 =

1
2 (� 1 +

� 2) 2 Opt3(µ0, µ1). However, the measure � 3 would not be induced by a map.
Suppose now that there exists � 2 Opt3(µ0, µ1) that is not induced by a map.

Then the disintegration {� z} of � with respect to p1 is not a Dirac mass for a µ0-
positive set of points z 2 R2. Now there are several cases to check. We use different
cyclical monotonicities to arrive at a contradiction in each of the cases. The different
cases are:

(i) � z(H) > 0 and � z(V ) > 0 for a µ0-positive set of z;
(ii) � z|H , � z|V or � z|D is not a Dirac mass for a µ0-positive set of z;
(iii) � z(D) > 0 and � z(H) > 0 (or � z(V ) > 0) for a µ0-positive set of z.
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The contradiction follows from all of the cases in a similar way. We will only
give details in the first case. Thus assume that � z(H) > 0 and � z(V ) > 0 for a
µ0-positive set of z. Let 0 ⇢ R2 ⇥ R2 be the set from Lemma 3.1 having all the
cyclical monotonicity properties. Suppose that the set

{z 2 R2 : � z(H \ 0) > 0 and � z(V \ 0) > 0}

has positive µ0-measure. Now there exist � > ✏ > 0 and (xh, yh), (xv, yv) 2 R2
such that

||(xh, yh) � (xv, yv)|| � 4�

and the set

A =

⇢
z 2 R2 : � z

⇣�
((x1, y1), (x2, y2)) : |y1 � y2| < |x1 � x2| � ✏

 

\ 0 \ R2 ⇥ B((xh, yh), �)
⌘

> 0

and � z

⇣�
((x1, y1), (x2, y2)) : |x1 � x2| < |y1 � y2| � ✏

 

\ 0 \ R2 ⇥ B((xv, yv), �)
⌘

> 0
�

has positive µ0-measure. Let (x̄, ȳ) be a density point of A. By symmetry, assume
||(x̄, ȳ) � (xv, yv)|| � 2�. Because (x̄, ȳ) is a density point, for some x 2 [x̄ �

✏
2 , x̄+

✏
2 ] there exist y1, y2 2 [ȳ�

✏
2 , ȳ+

✏
2 ], y1 6= y2, such that (x, y1), (x, y2) 2 A.

We may assume that |yv � y2| < |yv � y1|. Let (xh,2, yh,2) 2 B((xh, yh), �) and
(xv,1, yv,1) 2 B((xv, yv), �) be such that

((x, y1), (xv,1, yv,1)), ((x, y2), (xh,2, yh,2)) 2 0,

|y2 � yh,2| < |x � xh,2| � ✏ and |x � xv,1| < |y1 � yv,1| � ✏.

But now

||(x, y2) � (xv,1, yv,1)||
2
+ ||(x, y1) � (xh,2, yh,2)||2

= |y2 � yv,1|
2
+ |x � xh,2|2< |y1 � yv,1|

2
+ |x � xh,2|2

= ||(x, y1) � (xv,1, yv,1)||
2
+ ||(x, y2) � (xh,2, yh,2)||2

contradicting the cyclical monotonicity (3.3) of 0. This proves the claim in the
case (i).

In the case (ii) we argue similarly and use the cyclical monotonicities (3.3) and
(3.4) if � z|H is not Dirac, (3.3) and (3.5) if � z|V is not, and (3.3) if � z|D is not. In
the case (iii) we use (3.4) if � z(D) > 0 and � z(H) > 0, and (3.5) if � z(D) > 0
and � z(V ) > 0.
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Next we list some properties of the map T in the case µ0, µ1 ⌧ L2. Re-
call that we use the notation T1 and T2 for the components of T , i.e. T (x, y) =

(T1(x, y), T2(x, y)).

Lemma 3.3. Let µ0 ⌧ L2, T the map from Proposition 3.2 and 0 the set from
Lemma 3.1. Then for all (x, y1), (x, y2), (x1, y), (x2, y) 2 F = {(x, y) 2 R2 :

((x, y), T (x, y)) 2 0} we have the following.

If y1 6= y2 and T1(x, y1) = T1(x, y2), then
T2(x, y1) � T2(x, y2)

y1 � y2
� 0 (3.6)

and

if x1 6= x2 and T2(x1, y) = T2(x2, y), then
T1(x1, y) � T1(x2, y)

x1 � x2
� 0. (3.7)

Proof. Suppose that (3.6) does not hold for some (x, y1), (x, y2) 2 F . We may
assume that y2 < y1 so that T2(x, y1) < T2(x, y2). By the cyclical monotonicity
(3.3) we have |T1(x, y1)� x | � |T2(x, y1)� y1| and |T1(x, y2)� x | � |T2(x, y2)�

y2|. Therefore

||T (x, y1) � (x, y1)|| = ||T (x, y1) � (x, y2)|| = ||T (x, y2) � (x, y2)||
= ||T (x, y2) � (x, y1)||.

But now

|T2(x, y1) � y2|2 + |T2(x, y2) � y1|2 < |T2(x, y1) � y1|2 + |T2(x, y2) � y2|2

violating the cyclical monotonicity (3.4). This proves (3.6). The inequality (3.7)
follows similarly from the cyclical monotonicities (3.3) and (3.5).

In estimating the densities at the midpoints we will also need an infinitesimal
version of Lemma 3.3. Recalling the discussion from Section 2.3 we would like to
use a Jacobian equation

⇢1(T (x, y))JT (x, y) = ⇢0((x, y)) for µ0-almost every (x, y). (3.8)

Here a few comments are in order. As we mentioned in Section 2.3, usually in writ-
ing the Jacobian equation the mapping is assumed to be at least approximately dif-
ferentiable almost everywhere. However, the optimal map T is not in general ap-
proximately differentiable. To see this, take a measurable function f : [0,1]! [0,1]
that is not approximately differentiable and consider the optimal transport between
the uniform measures on [0, 1]2 and {(x+3, y) : x 2 [0, 1], y 2 [ f (x), f (x)+1]}.

Nevertheless, because locally in H we are sending vertical lines to vertical
lines by cyclical monotonicity (3.3) the first coordinate function T1 is approximately
differentiable almost everywhere. Then, because of cyclical monotonicity (3.4) the
second coordinate function T2 is approximately differentiable in the variable y for
almost every x . Now, since T1 was locally approximately constant in y, we get (3.8)
in H using Proposition 2.4. Similarly we get it also in V and D.
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Lemma 3.4. Let µ0, µ1 ⌧ L2 and Opt3(µ0, µ1) = {(id,T)]µ0}. Then the map T
satisfies µ0-almost everywhere

@T1
@x

� 0 and
@T2
@y

� 0 if ((x, y), T (x, y)) 2 H [ V . (3.9)

Still µ0-almost everywhere we have that

T1 is locally approximately constant in y, if ((x, y), T (x, y)) 2 H and
T2 is locally approximately constant in x, if ((x, y), T (x, y)) 2 V .

(3.10)

Proof. Let us start by showing that in H vertical lines are locally approximately
sent to vertical lines outside a set of µ0-measure zero. Let 0 be the cyclically
monotone set from Lemma 3.1 and

FH = {(x, y) 2 R2 : ((x, y), T (x, y)) 2 0 \ H}.

Take a density point (x, y) 2 FH of FH where T is approximately continuous. Let
A ⇢ FH be such that (x, y) is a density point of A and T |A is continuous.

Let ✏ > 0 be such that |x�T1(x, y)| > |y�T2(x, y)|+ ✏ and 0 < � < ✏
2 such

that for every (x̄, ȳ) 2 A we have

||(x, y) � (x̄, ȳ)|| < � =) ||T (x, y) � T (x̄, ȳ)|| <
✏

2
.

Suppose that there exist (x1, y1), (x1, y2) 2 A such that ||(x, y) � (x1, y1)|| < �,
||(x, y) � (x1, y2)|| < � and T1(x1, y1) < T1(x1, y2). Now for any (x̄, ȳ) 2 A with
x̄ 6= x1 and ||(x, y) � (x̄, ȳ)|| < � we have

T1(x̄, ȳ)  T1(x1, y1) or T1(x̄, ȳ) � T1(x1, y2)

by cyclical monotonicity (3.3), the choice of ✏ and �, and the fact that A ⇢ FH .
Therefore there exist only countably many x̃ 2 [x � �, x + �] for which T1(A \

{x̃}⇥]y � �, y + �[) is not an empty set or a singleton. This proves the claim that
outside a set of µ0-measure zero vertical lines are locally approximately sent to
vertical lines in H .

In proving (3.9) first assume that ((x, y), T (x, y)) 2 H . Then by the cyclical
monotonicity (3.3) we have @T1

@x � 0. The claim @T2
@y � 0 follows from (3.6) as well

as the fact that in H vertical lines are locally approximately sent to vertical lines. In
a similar way we can prove (3.9) assuming ((x, y), T (x, y)) 2 V .

The first claim in (3.10) is a restatement of the fact that in H vertical lines
are locally approximately sent to vertical lines and the second claim follows analo-
gously.
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3.4. Defining the midpoint

As we already saw in the Introduction (Figure 1.1) we have to deviate the midpoint
of a geodesic from the Euclidean midpoint by an amount depending on the end-
points of the geodesics. A geodesic going in a diagonal direction has to remain
the same geodesic and a geodesic going in the horizontal direction can deviate the
most.

The idea behind defining the midpoint the way we do here is that we want
to keep the height of the transport right for a (vertical) CD(0, 2) condition. If the
height is exactly the correct one for the condition between vertical strips with their
base on the sphere bounding our domain, it will also be infinitesimally correct.

Naturally the correction for the midpoints needs to be done only in the horizon-
tal part H of the transport. For the vertical part V and the diagonal part D we can
use the Euclidean midpoints (who will respectively give a CD(0, 2) and CD(0, 1)
condition for those parts of the transport).

The midpoint µ 1
2
will be defined using the mapping M : E ⇥ E ! R2 given

by

M ((x0, y0), (x1, y1)) =

✓
x0 + x1
2

,
y0 + y1
2

◆
, (3.11)

if ((x0, y0), (x1, y1)) /2 H (corresponding to the Euclidean midpoint in the non
horizontal transport), and by

M ((x0, y0), (x1, y1)) =

✓
x0 + x1
2

,max
⇢
y0 + y1
2

,
S(x0) + S(x1)

2
+ (x0 � x1)2

+

1
4

⇣p
y0 � S(x0) +

p
y1 � S(x1)

⌘2 �◆
,

(3.12)

if ((x0, y0), (x1, y1)) 2 H (corresponding to the vertical shrinking to satisfy the
CD(0, 2) condition in the horizontal transport). See Figure 3.2 for an illustration
of the selection of the midpoint in this case.

The first thing to check is that M really gives midpoints. As usual, we write
M = (M1,M2).

Lemma 3.5. M ((x0, y0), (x1, y1)) 2 Mid ((x0, y0), (x1, y1)).

Proof. We may assume x0  x1. If ((x0, y0), (x1, y1)) /2 H , the claim is obvious.
Let then ((x0, y0), (x1, y1)) 2 H so that M is given by (3.12). By symmetry, we
may assume that y0  y1. We have to show that

M2 ((x0, y0), (x1, y1)) � y0 

x1 � x0
2

(3.13)

and
y1 � M2 ((x0, y0), (x1, y1)) 

x1 � x0
2

. (3.14)
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 S(x0) + S(x1) 
2

 y0 + y1
2

(x0, y0) (x1, y1)

h0
h1

h1
2

(x0, S(x0))

(x1, S(x1))

M ((x0, y0), (x1, y1))

+ (x0 + x1)2) ,(
Figure 3.2. The midpoint M ((x0, y0), (x1, y1)) for horizontal transport from (x0, y0)
to (x1, y1) is defined so that below the midpoint we have sufficient room to satisfy
CD(0, 2) vertically, i.e. in the illustration h 1

2
satisfies

q
h 1
2

=
1
2
�p

h0 +

p

h1
�
.

Because M2 is increasing in y1, for verifying (3.13) it is enough to check the ex-
treme case y1 � y0 = x1 � x0 (even though in this case the mapping M is defined
using (3.11)). Notice that by assumption on the width and height of E we have

|y1 � y0|, |y0 � S(x0)| 

1
128

(3.15)

and by (3.1) we have

|S(x1) � S(x0)| 

1
2
|x1 � x0| =

1
2
|y1 � y0|. (3.16)

From (3.15) we have

64(y0 � S(x0)) 

1
2

 (1� 8(y1 � y0))2

which gives

2(y0�S(x0))+
1
2
(y1�y0)�4(y1�y0)2

=

r
4(y0�S(x0))2+

1
4
(y1�y0)2(1�8(y1�y0))2+2(y0�S(x0))(y1�y0)(1�8(y1�y0))

�

q
4(y0 � S(x0))2 + 2(y1 � y0)(y0 � S(x0)).
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This together with (3.16) gives

4(y1 � y0)2 

 r
y0 � S(x0) +

1
2
(y1 � y0) �

p
y0 � S(x0)

!2



⇣p
y0 � S(x0) + (y1 � y0) + (S(x0) � S(x1)) �

p
y0 � S(x0)

⌘2

=

⇣p
y1 � S(x1) �

p
y0 � S(x0)

⌘2
which is (3.13) in the extreme case y1 � y0 = x1 � x0.

The inequality (3.14) follows from

M2 ((x0, y0), (x1, y1)) 

y0 + y1
2

and the fact that ((x0, y0), (x1, y1)) 2 H .

The second thing to check is that the midpoints are inside our domain E .
Lemma 3.6. The mapping M has values in E .

Proof. Again, if ((x0, y0), (x1, y1)) /2 H , the claim is obvious. Hence, suppose
((x0, y0), (x1, y1)) 2 H . By Lemma 3.5 we know that M ((x0, y0), (x1, y0)) 2

Mid ((x0, y0), (x1, y0)). Therefore the only thing to check is that

M2 ((x0, y0), (x1, y0)) > S
✓
x0 + x1
2

◆
.

This follows from our assumptions on the domain E , more precisely from (3.2).

3.5. Verifying the local CD(0, 4) condition

In order to be able to use the Jacobian equation (2.5) for the midpoints we first have
to check that our mapping giving the midpoint is essentially one-to-one.
Lemma 3.7. Let µ0, µ1 2 P(E) with µ0, µ1 ⌧ L2. Let T be the optimal map
from Proposition 3.2. Then the map M � (id, T ) is one-to-one outside a set of µ0-
measure zero.

Proof. Let 0 be the set from Lemma 3.1. Suppose that there exist (x1,y1), (x2,y2)2
E so that ((x1, y1), T (x1, y1)), ((x2, y2), T (x2, y2)) 2 0, (x1, y1) 6= (x2, y2) and

M � (id, T )(x1, y1) = M � (id, T )(x2, y2). (3.17)

First observe that by cyclical monotonicity (3.3) we have

||(x1, y1) � M � (id, T )(x1, y1))|| = ||(x2, y2) � M � (id, T )(x1, y1))||
= ||M � (id, T )(x1, y1)) � T (x1, y1)|| (3.18)
= ||M � (id, T )(x1, y1)) � T (x2, y2)||.
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We have three cases to check:

(i) ((x1, y1), T (x1, y1)), ((x2, y2), T (x2, y2)) 2 H ;
(ii) ((x1, y1), T (x1, y1)), ((x2, y2), T (x2, y2)) /2 H ;
(iii) ((x1, y1), T (x1, y1)) 2 H , ((x2, y2), T (x2, y2)) /2 H .

In the case (i) we have for i = 1, 2 that

((xi , yi ),M � (id, T )(xi , yi )), (M � (id, T )(xi , yi ), T (xi , yi )) /2 V

since M � (id, T )(xi , yi ) is a midpoint between (xi , yi ) and T (xi , yi ). Therefore by
(3.18) we have x1 = x2 and T1(x1, y1) = T1(x2, y2). By symmetry we may assume
y1 < y2. Then by Lemma 3.3 we have T2(x1, y1) < T2(x2, y2). Since M2 is strictly
increasing in both of the y-coordinates, we have

M2 � (id, T )(x1, y1) < M2 � (id, T )(x2, y2)

contradicting the assumption (3.17).
In the case (ii) we have, similarly as in the case (i), y1 = y2 and T2(x1, y1) =

T2(x2, y2). The assumption (3.17) gives

x1 + T1(x1, y1)
2

=

x2 + T1(x2, y2)
2

.

This implies via Lemma 3.3 that x1= x2, which contradicts the assumption (x1,y1) 6=
(x2,y2).

Finally we have the case (iii). Wemay assume x1 < T1(x1, y1). If T1(x2, y2) <
T1(x1, y1), then ((x2, y2), T (x2, y2)) 2 V and consequently

((x2, y2),M � (id, T )(x1, y1)), (M � (id, T )(x1, y1), T (x2, y2)) 2 V .

By cyclical monotonicity (3.3) we have

((x1, y1),M � (id, T )(x1, y1)), (M � (id, T )(x1, y1), T (x1, y1)) /2 V

since otherwise M � (id, T )(x1, y1)) would not be a midpoint of (x1, y1) and
T (x1, y1). Now if it would happen that ((x1, y1),M � (id, T )(x1, y1)) 2 H , then

||(x1, y1) � T (x2, y2)|| < ||(x1, y1) � M � (id, T )(x1, y1)||
+ ||M � (id, T )(x1, y1) � T (x2, y2)||

= ||(x1, y1) � T (x1, y1)||

and similarly if (M � (id, T )(x1, y1), T (x1, y1)) 2 H , then

||(x2, y2) � T (x1, y1)|| < ||(x2, y2) � M � (id, T )(x1, y1)||
+ ||M � (id, T )(x1, y1) � T (x1, y1)||

= ||(x1, y1) � T (x1, y1)||.
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Both of these contradict (3.3) via (3.18). Thus we have either ((x1,y1), T (x1,y1))2
D contradicting (iii), or we have x1 = T1(x1, y1) in which case again

||(x1, y1) � T (x2, y2)|| < ||(x1, y1) � T (x1, y1)||

or
||(x2, y2) � T (x1, y1)|| < ||(x1, y1) � T (x1, y1)||

contradict (3.3). On the other hand, if T1(x2, y2) = T1(x1, y1), we have y2 < y1,
x1 = x2 and T2(x1, y1) < T2(x2, y2) contradicting (3.6).

Now we are in a position to estimate the density of the midpoint measure.
Recall the definition of EntN :

EntN (⇢m) = �

Z
X

⇢1�
1
N dm.

Proposition 3.8. Let µ0, µ1 2 P(E) with µ0, µ1 ⌧ L2. Then for all N � 4 we
have

EntN (µ 1
2
) 

1
2

(EntN (µ0) + EntN (µ1)) ,

where µ 1
2

= (M � (id, T ))]µ0 with T being the optimal map from Proposition 3.2.

Proof. We will show that for µ0-almost every (x, y) 2 E we have

⇢ 1
2
(M((x, y), T (x, y)))�

1
4 �

1
2

⇣
⇢0((x, y))�

1
4 + ⇢1(T (x, y))�

1
4
⌘

, (3.19)

where µ0 = ⇢0L2, µ1 = ⇢1L2 and µ 1
2

= (M � (id, T ))]µ0 = ⇢ 1
2
L2. The claim

of the Proposition then follows by Hölder’s inequality and integration.
By Lemma 3.7 the mapping M � (id, T ) is essentially one-to-one. Our claim

(3.19) will therefore follow via the Jacobian identity (2.5) if we are able to show
that

JM�(id,T )(x, y)
1
4 �

1
2

⇣
1+ JT (x, y)

1
4
⌘

(3.20)

holds µ0-almost everywhere.
By Lemma 3.4 we have µ0-almost everywhere in H [ V that T1 is locally

approximately constant in y, @T1
@x � 0 and @T2

@y � 0. Thus µ0-almost everywhere in
H [ V we can write, using Proposition 2.4,

JT (x, y) =

@T1
@x

@T2
@y

. (3.21)

For the density ⇢ 1
2
we will need to estimate the Jacobian determinant of the mapping

M � (id, T ). Recall that the mapping is given by

(M � (id, T ))(x, y) =

✓
x + T1
2

,
y + T2
2

◆
,
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if ((x, y), T (x, y)) /2 H , and by

(M � (id, T ))(x, y) =

✓
x + T1
2

,max
⇢
y + T2
2

,
S(x) + S(T1)

2

+

1
4

⇣p
y � S(x) +

p
T2 � S(T1)

⌘2
+ (x � T1)2

�◆
,

if ((x, y), T (x, y)) 2 H .
Again by Lemma 3.4 we have µ0-almost everywhere

JM�(id,T )(x, y) =

1
2

✓
1+

@T1
@x

◆
·

1
2

✓
1+

@T2
@y

◆
, (3.22)

if ((x, y), T (x, y)) 2 V or if ((x, y), T (x, y)) 2 H and

y + T2
2

�

S(x) + S(T1)
2

+

1
4

⇣p
y � S(x) +

p
T2 � S(T1)

⌘2
+ (x � T1)2, (3.23)

and

JM�(id,T )(x, y)=
1
2

✓
1+

@T1
@x

◆
·

1
4

 
1+

@T2
@y

+

s
T2�S(T1)
y�S(x)

+

s
y � S(x)
T2�S(T1)

@T2
@y

!
,

(3.24)
if ((x, y), T (x, y)) 2 H and (3.23) does not hold.

Let us check (3.20) in the case (3.24) holds. The case where (3.22) holds
follows easily and the case ((x, y), T (x, y)) 2 D will be considered at the end of
the proof. First observe that

1+

@T1
@x

�

1
2

 
1+

r
@T1
@x

!2

and s
T2 � S(T1)
y � S(x)

+

s
y � S(x)
T2 � S(T1)

@T2
@y

� 2

s
@T2
@y

.

Therefore

JM�(id,T )(x, y) �

1
16

 
1+

r
@T1
@x

!2  
1+

s
@T2
@y

!2
.

Now, in order to obtain (3.20) it is then sufficient to have
 
1+

r
@T1
@x

! 
1+

s
@T2
@y

!
�

 
1+

✓
@T1
@x

@T2
@y

◆ 1
4
!2

,



FAILURE OF THE LOCAL-TO-GLOBAL PROPERTY FOR CD(K, N) SPACES 65

which immediately follows from

 ✓
@T1
@x

◆ 1
4

�

✓
@T2
@y

◆ 1
4
!2

� 0.

Let us then consider the case ((x, y), T (x, y)) 2 D. By changing to coordinates
x̃ =

1
p

2
(x + y), ỹ =

1
p

2
(x � y) we may assume that either T̃1(x̃, ỹ) � x̃ or

T̃2(x̃, ỹ) � ỹ (in the new coordinates) is constant. Assuming the first, we have

@ T̃1
@ x̃

= 1 and
@ T̃1
@ ỹ

= 0

and hence by Proposition 2.4

JT̃ (x̃, ỹ) =

@ T̃2
@ ỹ

,

which is non-negative µ0-almost everywhere in D by cyclical monotonicity (3.3),
and

JM̃�(id,T̃ )(x̃, ỹ) =

1
2

 
1+

@ T̃1
@ x̃

!
·

1
2

 
1+

@ T̃2
@ ỹ

!
=

1
2
�
1+ JT̃ (x̃, ỹ)

�

leading to (3.20).

Proposition 3.8 then gives the CD(0, 4) condition in E . We also justify here
the initial reductions.

Theorem 3.9. The space (E, || · ||1,L2|E ) satisfies CD(0, 4).

Proof. We have to show that for any µ0, µ1 2 P(E) there exists a geodesic (µt ) ⇢

P(E) along which we have the estimate

EntN (µt )  (1� t)EntN (µ0) � tEntN (µ1) (3.25)

for all N � 4 and t 2 (0, 1).
Let us first show that we can obtain this for t =

1
2 . Take ✏ > 0 and consider

the approximated measures µ0,✏ = ⇢0,✏L2, µ1,✏ = ⇢1,✏L2 that are obtained from
the measures µ0 and µ1 by setting

⇢i,✏ =

µi (E \ [n✏, (n + 1)✏) ⇥ [m✏, (m + 1)✏))
L2 (E \ [n✏, (n + 1)✏) ⇥ [m✏, (m + 1)✏))

on
E \ [n✏, (n + 1)✏) ⇥ [m✏, (m + 1)✏)



66 TAPIO RAJALA

for every n,m 2 Z, i = 0, 1. If necessary, we can move the grid slightly so that

E \ [n✏, (n + 1)✏) ⇥ [m✏, (m + 1)✏) 6= ;

() L2 (E \ [n✏, (n + 1)✏) ⇥ [m✏, (m + 1)✏)) > 0

for every n,m 2 Z.
Now EntN (µi,✏)EntN (µi) for all N>1 by Jensen’s inequality,W2(µi,✏,µi)

✏ and µi,✏ ⌧ L2. From µ0,✏ to µ1,✏ there exists an optimal map T given by
Proposition 3.2 and by Proposition 3.8 we get

EntN (µ 1
2 ,✏

) 

1
2
�
EntN (µ0,✏) + EntN (µ1,✏)

�


1
2

(EntN (µ0) + EntN (µ1)) ,

withµ 1
2 ,✏

= (M�(id, T ))]µ0,✏ . Lemma 3.5 guarantees thatµ 1
2 ,✏

2 Mid(µ0,✏, µ1,✏)
and Lemma 3.6 that µ 1

2 ,✏
2 P(E). Letting ✏ # 0 along a subsequence we find a

weak limit measure µ 1
2

2 Mid(µ0, µ1) satisfying

EntN (µ 1
2
) 

1
2

(EntN (µ0) + EntN (µ1))

for all N � 4 by the lower semi-continuity of the entropies EntN .
Now that we have (3.25) at t =

1
2 we can continue by taking midpoints between

µ0 and µ 1
2
, and between µ 1

2
and µ1 and in this way obtain (3.25) at t =

1
4 and

t =
3
4 . Continuing iteratively we get (3.25) for a dense set of times. Finally, by

the lower semi-continuity of EntN we have (3.25) for all t , the measures µt being
obtained as weak limits of µs as s ! t along the dyadic time points.

3.6. Failure of the global CD(K ,1) condition

Finally, let us show the calculation implying that the space X does not globally
satisfy CD(K , N ). Since, given any K 2 R and N 2 [1,1), the CD(K , N )
condition implies the CD(K ,1) condition, it suffices to check the case N = 1.

Theorem 3.10. Given K 2 R, the space (X, || · ||1,L2|X ) can be constructed in
such a way that it does not satisfy CD(K ,1).

Proof. Let A0, A1 ⇢ X be two rectangles that are identical (up to a translation in
the horizontal direction) and are located on the opposite sides of the thin part of
the space X . Define µ0 =

1
L2(A0)L2|A0

and µ1 =
1

L2(A1)L2|A1
. See Figure 3.3

for an illustration. Since A1 is a translation of A0 in the horizontal direction by
some distance l, every optimal transport between µ0 and µ1 transports infinitesimal
measures by a constant distance l.

Suppose that the space (X, || · ||1,L2|X ) satisfies CD(K ,1). Then there
exists µ 1

2
= ⇢ 1

2
L2 2 Mid(µ0, µ1) satisfying

Ent1(µ 1
2
) =

Z
⇢ 1
2
log ⇢ 1

2
dL2  � logL2(A0) �

K
8
l2.
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On the other hand by Jensen’s inequality

Ent1(µ 1
2
) � � logL2(A),

where A = {x 2 X : ⇢ 1
2
(x) > 0}. Therefore

L2(A) � e
K
8 l
2
L2(A0),

where the multiplicative factor e
K
8 l
2 depends only on K and l. Therefore, by making

the thin part of the space thin enough, the corresponding midpoint measure does not
fit into the thin part and we have a contradiction. See again Figure 3.3.

m0 m1h

l

< e      hs
K l2

Figure 3.3. The space fails to satisfy the CD(K ,1) condition. The measure µ0 cannot
be transported to µ1 without the midpoint measure µ 1

2
having too small support.
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