A criterion for good reduction of Drinfeld modules and Anderson motives in terms of local shtukas

Urs Hartl and Simon HüSken

Abstract

For an Anderson A-motive over a discretely valued field whose residue field has A-characteristic ε, we prove a criterion for good reduction in terms of its associated local shtuka at ε. This yields a criterion for good reduction of Drinfeld modules. Our criterion is the function-field analog of Grothendieck's [15, Proposition IX.5.13] and de Jong's [19, 2.5] criterion for good reduction of an Abelian variety over a discretely valued field with residue characteristic p in terms of its associated p-divisible group

Mathematics Subject Classification (2010): 11G09 (primary); 145L05 (secondary).

1. Introduction

We fix a finite field \mathbb{F} with r elements and characteristic p. Let \mathcal{C} be a smooth projective and geometrically irreducible curve over \mathbb{F} with function field $Q=\mathbb{F}(\mathcal{C})$. Let $\infty \in \mathcal{C}$ be a closed point and let $A=\Gamma\left(\mathcal{C} \backslash\{\infty\}, \mathcal{O}_{\mathcal{C}}\right)$ be the \mathbb{F}-algebra of those rational functions on \mathcal{C} which are regular outside ∞. For every \mathbb{F}-algebra R we let σ be the endomorphism of $A_{R}:=A \otimes_{\mathbb{F}} R$ given by $\sigma:=\mathrm{id}_{A} \otimes \operatorname{Frob}_{r, R}: a \otimes b \mapsto$ $a \otimes b^{r}$ for $a \in A$ and $b \in R$.

Let o_{L} be a complete discrete valuation ring containing \mathbb{F}, with fraction field L, uniformizing parameter π, maximal ideal $\mathfrak{m}_{L}=(\pi)$ and residue field $\ell=o_{L} / \mathfrak{m}_{L}$. We assume that ℓ is a finite field extension of ℓ^{p}. This is equivalent to saying that ℓ has a finite p-basis over ℓ^{p} in the sense of [7, Section V.13, Definition 1]. It holds for example if ℓ is perfect, or if ℓ is a finitely generated field. Since every Anderson A-motive over L can be defined over a finitely generated subfield of L our restriction on ℓ is not serious. Let $c^{*}: A \rightarrow o_{L}$ be a homomorphism of \mathbb{F}-algebras such that the kernel of the composition $A \rightarrow o_{L} \rightarrow \ell$ is a maximal

We thank the Deutsche Forschungsgemeinschaft for supporting this research in form of SFB 878.
Received April 25, 2013; accepted in revised form January 16, 2014.
Published online February 2016.
ideal ε in A. We say that the residue field ℓ has finite A-characteristic ε. We do not assume that $c^{*}: A \rightarrow o_{L}$ is injective. So L can have either generic A characteristic $\operatorname{ker} c^{*}=(0)$ or finite A-characteristic $\operatorname{ker} c^{*}=\varepsilon$. In the following we will consider various $A_{o_{L}}$-algebras. In all of them we consider the ideal generated by $\left\{a \otimes 1-1 \otimes c^{*}(a): a \in A\right\} \subset A_{o_{L}}$. By abuse of notation we denote all these ideals by \mathfrak{J}.

By an Anderson A-motive over L we mean a pair $\underline{M}=\left(M, F_{M}\right)$ consisting of a locally free A_{L}-module M of finite rank, and an injective A_{L}-homomorphism $F_{M}: \sigma^{*} M \rightarrow M$ where $\sigma^{*} M:=M \otimes_{A_{L}, \sigma} A_{L}$, such that $\operatorname{coker}\left(F_{M}\right)$ is a finite dimensional L-vector space and is annihilated by a power of \mathfrak{J}. We say that \underline{M} has good reduction over o_{L} if there exists a locally free $A_{o_{L}}$-module \mathcal{M} and an injective $A_{o_{L}}$-homomorphism $F_{\mathcal{M}}: \sigma^{*} \mathcal{M} \rightarrow \mathcal{M}$ such that $\left(\mathcal{M}, F_{\mathcal{M}}\right) \otimes_{A_{o_{L}}} A_{L} \cong \underline{M}$ and $\operatorname{coker}\left(F_{\mathcal{M}}\right)$ is a finite free o_{L}-module which is annihilated by a power of \mathfrak{J}. We call $\underline{\mathcal{M}}=\left(\mathcal{M}, F_{\mathcal{M}}\right)$ a good model of \underline{M}. In particular if $\underline{M}=\underline{M}(\phi)$ is the Anderson A motive associated with a Drinfeld A-module ϕ over L, then \underline{M} has good reduction if and only if ϕ has good reduction; see Proposition 4.10.

Anderson A-motives are function-field analogs of Abelian varieties. For an Abelian variety \mathcal{A} over a discretely valued field K with residue field of characteristic p there are criteria for good reduction in terms of local data. For a prime number $l \neq p$ the criterion of Néron-Ogg-Shavarevich [22, Section 1, Theorem 1] states that \mathcal{A} has good reduction if and only if the l-adic Tate module $T_{l} \mathcal{A}$ of \mathcal{A} is unramified as a $\operatorname{Gal}\left(K^{\text {alg }} / K\right)$-representation. At the prime p the criterion of Grothendieck [15, Proposition IX.5.13] (for $\operatorname{char}(K)=0$), respectively de Jong [19, 2.5] (for char $(K)=p$) states that \mathcal{A} has good reduction if and only if the Barsotti-Tate group $\mathcal{A}\left[p^{\infty}\right]$ has good reduction.

These criteria have function-field analogs for Anderson A-motives. The ana\log of the Néron-Ogg-Shavarevich-criterion was proved by Gardeyn [12, Theorem 1.1]. In this article we simultaneously prove the analog of Grothendieck's and de Jong's criterion. Here the function-field analogs of Barsotti-Tate groups are local shtukas [17, Section 2.1] which are defined as follows. Let $A_{o_{L},(\varepsilon, \pi)}$ be the (ε, π)-adic completion of $A_{o_{L}}$. An (effective) local shtuka at ε over o_{L} is a pair $\underline{\hat{M}}=\left(\hat{M}, F_{\hat{M}}\right)$ consisting of a finite free $A_{o_{L},(\varepsilon, \pi)}$-module \hat{M} and an injective $A_{o_{L},(\varepsilon, \pi)}$-homomorphism $F_{\hat{M}}: \sigma^{*} \hat{M} \rightarrow \hat{M}$ such that $\operatorname{coker}\left(F_{\hat{M}}\right)$ is a finite free o_{L}-module and is annihilated by a power of \mathfrak{J}. The local shtuka associated with a good model $\underline{\mathcal{M}}$ of an Anderson A-motive is $\underline{\hat{M}}(\mathcal{M}):=\underline{\mathcal{M}} \otimes_{A_{o_{L}}} A_{o_{L},(\varepsilon, \pi)}$. Strictly speaking effective local shtukas are the function field analogs of the F-crystals of Barsotti-Tate groups. The analogs of the latter are called ε-divisible local Andersonmodules and their category is equivalent to the category of effective local shtukas; see [18] for more details. Our analog of Grothendieck's and de Jong's reduction criterion is now the following:

Corollary 6.6. Let \underline{M} be an Anderson A-motive over L. Then \underline{M} has good reduction over o_{L} if and only if there is an effective local shtuka $\hat{\hat{M}}$ at ε over o_{L} and an isomorphism $\underline{M} \otimes_{A_{L}} A_{o_{L},(\varepsilon, \pi)}[1 / \pi] \cong \underline{\hat{M}} \otimes_{A_{o_{L},(\varepsilon, \pi)}} A_{o_{L},(\varepsilon, \pi)}[1 / \pi]$.
(In the body of the text we prove a slightly stronger statement.) This applies in particular if \underline{M} is the Anderson A-motive associated with a Drinfeld module ϕ over L to give a criterion for good reduction of ϕ in terms of its associated local shtuka. The reformulation of this criterion in terms of the ε-divisible local Anderson-module of ϕ is given in [18].

Acknowledgements. We would like to thank the anonymous referee for his careful reading and for asking an interesting question which lead to the answer given in Remark 5.4.

2. The base rings

Let o_{L} be an equi-characteristic complete discrete valuation ring containing the finite field \mathbb{F}, with quotient field $L=\operatorname{Frac}\left(o_{L}\right)$ and residue field $\ell=o_{L} / \mathfrak{m}_{L}$, where $\mathfrak{m}_{L} \subset o_{L}$ is the maximal ideal of o_{L}. We assume that ℓ is a finite field extension of $\ell^{p}:=\left\{b^{p}: b \in \ell\right\}$. We fix a uniformizer $\pi=\pi_{L}$ of o_{L} and sometimes identify o_{L} with $\ell \llbracket \pi \rrbracket$. Let $v=v_{\pi}=\operatorname{ord}_{\pi}(\cdot)$ be the discrete valuation on L normalized by $v(\pi)=1$.

We assume that there is an o_{L}-valued point $c \in \mathcal{C}\left(o_{L}\right)$ such that the corresponding \mathbb{F}-morphism $c: \operatorname{Spec}\left(o_{L}\right) \rightarrow \mathcal{C}$ factors via $\mathcal{C} \backslash\{\infty\} \subset \mathcal{C}$. Such a datum corresponds to a homomorphism of \mathbb{F}-algebras $c^{*}: A \rightarrow o_{L}$ which we call the characteristic map. We further assume that the closed point $V(\pi) \subset \operatorname{Spec}\left(o_{L}\right)$ is mapped to a closed point ε of $\operatorname{Spec}(A) \subset \mathcal{C}$. The latter is the kernel of the composition $A \rightarrow o_{L} \rightarrow \ell$. So, in accordance with Drinfeld's terminology [9], we call ε the residue characteristic or residual characteristic place of Q. By continuity, the characteristic map $c^{*}: A \rightarrow o_{L}$ factors through a morphism of complete discrete valuation rings $A_{\varepsilon} \rightarrow o_{L}$ where A_{ε} is the completion of A at the characteristic place ε. Note that $A_{\varepsilon} \rightarrow o_{L}$ is injective if c^{*} is injective, and factors through A / ε if c^{*} is not injective.
Remark 2.1. Since A is a Dedekind domain there is a power ε^{m} which is a principal ideal in A. We fix a generator t of ε^{m} and frequently use the finite flat monomorphism of \mathbb{F}-algebras $\iota: \mathbb{F}[z] \rightarrow A, z \mapsto t$.

For any \mathbb{F}-algebra R we abbreviate $A_{R}:=A \otimes_{\mathbb{F}} R$. In particular, $A_{o_{L}} \subset A_{L}$ is a noetherian integral domain, and by virtue of the equality $A_{\ell} \cong A_{o_{L}} / \pi A_{o_{L}}$ it follows that $\pi \in o_{L}$ is a prime element of $A_{o_{L}}$.
Definition 2.2. Let $A_{o_{L}, \pi}$ (respectively, $\left.A_{o_{L},(\varepsilon, \pi)}\right)$ be the completion of the $o_{L^{-}}$ algebra $A_{o_{L}}$ for the π-adic topology (respectively, the (ε, π)-adic topology).

By Krull's Theorem ([8], III.3.2), the ring $A_{o_{L}}$ is separated for both the π-adic and the (ε, π)-adic topology. The topological o_{L}-algebra $A_{o_{L}, \pi}$ is admissible in the sense of Raynaud, i.e. it is of topologically finite presentation and has no π-torsion. In particular, the L-algebra $A_{o_{L}, \pi}[1 / \pi]$ is affinoid in the sense of rigid analytic geometry; see [4-6].

For example if $\mathcal{C}=\mathbb{P}_{\mathbb{F}}^{1}$ and $A=\mathbb{F}[z]$ then we have $A_{o_{L}}=o_{L}[z]$ and correspondingly $A_{L}=L[z]$. Let us specify that $\varepsilon=z \mathbb{F}[z]$. Our choice of a uniformizer π gives rise to an identification $o_{L}=\ell \llbracket \pi \rrbracket$. Consequently $o_{L} \llbracket z \rrbracket=\ell \llbracket \pi \rrbracket \llbracket z \rrbracket=$ $\ell \llbracket \pi, z \rrbracket=A_{o_{L},(\varepsilon, \pi)}$. On the other hand, the π-adic completion of $o_{L}[z]$ equals $o_{L}\langle z\rangle:=\left\{\sum_{i=0}^{\infty} b_{i} z^{i}: v\left(b_{i}\right) \rightarrow \infty(i \rightarrow \infty)\right\}$, and since $L\langle z\rangle=o_{L}\langle z\rangle \otimes_{o_{L}} L$, we may view $A_{o_{L}, \pi}[1 / \pi]$ as a replacement, for general \mathcal{C}, of the Tate algebra $L\langle z\rangle$ of strictly convergent power series in one indeterminate z over L, which serves as coordinate ring for the one-dimensional affinoid unit ball in rigid analytic geometry.

There is a natural embedding $A_{L} \rightarrow A_{o_{L}, \pi}[1 / \pi]$ which, for general \mathcal{C}, replaces the completion homomorphism $L[z] \rightarrow L\langle z\rangle$, and which itself can be regarded as a completion map with respect to the L-algebra norm-topology on the reduced affinoid L-algebra $A_{o_{L}, \pi}[1 / \pi]$ and its restriction on A_{L}; see [4, Section 1.4, Proposition 19]. Note that the canonical homomorphism $A_{o_{L}} \rightarrow A_{o_{L},(\varepsilon, \pi)}$ factors uniquely via $A_{o_{L}, \pi}$, where the induced map $A_{o_{L}, \pi} \rightarrow A_{o_{L},(\varepsilon, \pi)}$ identifies $A_{o_{L},(\varepsilon, \pi)}$ with the $(\varepsilon, \pi) A_{o_{L}, \pi}$-adic completion of $A_{o_{L}, \pi}$. Since $A_{o_{L}, \pi}$ is a regular integral domain,
 injective and flat.

Recall that there is a finite flat monomorphism of \mathbb{F}-algebras $\iota: \mathbb{F}[z] \rightarrow A$ which identifies the indeterminate z with the generator $t \in A$ of ε^{m} chosen in Remark 2.1. The o_{L}-algebra homomorphism $\iota \otimes \mathrm{id}: o_{L}[z] \rightarrow A_{o_{L}}, \sum_{\nu} a_{\nu} z^{\nu} \mapsto$ $\sum_{\nu} t^{\nu} \otimes a_{\nu}$, is finite flat, so that we obtain finite flat maps
$o_{L}\langle z\rangle \rightarrow A_{o_{L}, \pi}, \quad L\langle z\rangle \rightarrow A_{o_{L}, \pi}[1 / \pi], \quad o_{L} \llbracket z \rrbracket \rightarrow A_{o_{L},(t, \pi)}, \quad \ell[z] \rightarrow A_{\ell}$.
Here the (t, π)-adic completion $A_{o_{L},(t, \pi)}$ of $A_{o_{L}}$ equals $A_{o_{L},(\varepsilon, \pi)}$ since $(\varepsilon, \pi)^{m} \subset$ $\left(\varepsilon^{m}, \pi\right)=(t, \pi)$ in $A_{o_{L}}$.

Lemma 2.3. If $A_{o_{L}, \varepsilon}$ denotes the ε-adic completion of $A_{o_{L}}$, the canonical map $A_{o_{L}, \varepsilon} \rightarrow A_{o_{L},(\varepsilon, \pi)}$ is an isomorphism.

3. Frobenius modules

The r-Frobenius Frob ${ }_{r}: o_{L} \rightarrow o_{L}, x \mapsto x^{r}$, gives rise to an endomorphism

$$
\sigma=\operatorname{id}_{A} \otimes \operatorname{Frob}_{r}: A_{o_{L}} \rightarrow A_{o_{L}}, \quad a \otimes x \mapsto a \otimes x^{r}
$$

which extends to give a map $\mathrm{id}_{A} \otimes \operatorname{Frob}_{r, L}: A_{L} \rightarrow A_{L}$ again denoted by σ. On the other hand, reducing $\bmod \pi$ gives $\bar{\sigma}=\mathrm{id}_{A} \otimes \operatorname{Frob}_{r, \ell}: A_{\ell} \rightarrow A_{\ell}$. The latter is a finite flat endomorphism of the Dedekind domain A_{ℓ}, because ℓ is finite over ℓ^{p}. The map $\sigma: A_{o_{L}} \rightarrow A_{o_{L}}$ is π-adically and (ε, π)-adically continuous and therefore extends to give endomorphisms $A_{o_{L}, \pi} \rightarrow A_{o_{L}, \pi}$ and $A_{o_{L},(\varepsilon, \pi)} \rightarrow A_{o_{L},(\varepsilon, \pi)}$, again denoted by σ.

Lemma 3.1. In the commutative diagram

both squares are co-Cartesian, and the vertical arrows are finite flat.
We let the proof be preceded by the following:
Remark 3.2. Via the identification $o_{L}=\ell \llbracket \pi \rrbracket$, the r-Frobenius Frob ${ }_{r, o_{L}}: o_{L} \rightarrow$ o_{L} is mirrored by the map $\ell \llbracket \pi \rrbracket \rightarrow \ell \llbracket \pi \rrbracket, \sum_{\nu=0}^{\infty} a_{\nu} \pi^{\nu} \mapsto \sum_{\nu=0}^{\infty} a_{\nu}^{r} \pi^{r \nu}$. Choosing an ℓ^{r}-basis of ℓ and lifting it to a subset W of o_{L}, this implies $\left(\text { Frob }_{r, o_{L}}\right)_{*} o_{L}=$ $\bigoplus_{i=0}^{r-1} \bigoplus_{w \in W} o_{L} w \pi^{i}$, so that $\mathrm{Frob}_{r, o_{L}}: o_{L} \rightarrow o_{L}$ is finite flat.

Proof of Lemma 3.1. By base change the remark implies that $\sigma=\mathrm{id}_{A} \otimes \mathrm{Frob}_{r, o_{L}}$: $A_{o_{L}} \rightarrow A_{o_{L}}$ is finite flat, and that $A_{o_{L}} \otimes_{\sigma, A_{o_{L}}} A_{o_{L}, \pi}$ is a finite flat $A_{o_{L}, \pi}$-module and hence equals the π-adic completion of the $A_{o_{L}}$-module $\sigma_{*} A_{o_{L}}$. If we let $\mathfrak{a}=$ $\sigma\left(\pi A_{o_{L}}\right) A_{o_{L}}=\pi^{r} A_{o_{L}}$ and $\mathfrak{b}=\pi A_{o_{L}}$, we get $\mathfrak{b}^{r}=\mathfrak{a} \subset \mathfrak{b}$. Consequently, by [10, Lemma 7.14], the inverse systems $\left(A_{o_{L}} / \mathfrak{a}^{n}\right)_{n}$ and $\left(A_{o_{L}} / \mathfrak{b}^{n}\right)_{n}$ give the same limit, which shows that the square on the left is co-Cartesian, and that $\sigma: A_{o_{L}, \pi} \rightarrow$ $A_{o_{L}, \pi}$ is finite flat. Similarly, we have $\sigma(\varepsilon, \pi) A_{o_{L}}=\left(\varepsilon, \pi^{r}\right) \subset(\varepsilon, \pi)$ as well as $(\varepsilon, \pi)^{r} \subset\left(\varepsilon, \pi^{r}\right)$, which proves that the displayed diagram qualifies $A_{o_{L},(\varepsilon, \pi)}$ as tensor product $A_{o_{L},(\varepsilon, \pi)} \otimes_{A_{o_{L}}, \sigma} A_{o_{L}}$, and that $\sigma: A_{o_{L},(\varepsilon, \pi)} \rightarrow A_{o_{L},(\varepsilon, \pi)}$ is finite flat.

Finally, note that the embedding of o_{L}-algebras $\iota \otimes \mathrm{id}: o_{L}[z] \rightarrow A_{o_{L}}$ commutes with $\sigma: A_{o_{L}} \rightarrow A_{o_{L}}$ and the r-Frobenius lift of $o_{L}[z]$, given by $o_{L}[z] \rightarrow$ $o_{L}[z], \sum_{v} a_{v} z^{\nu} \mapsto \sum_{v} a_{v}^{r} z^{\nu}$. Consequently, also the embeddings from (2.1) are Frobenius-equivariant.

Let B be an o_{L}-algebra together with a ring endomorphism $\sigma: B \rightarrow B$ such that σ and $\mathrm{Frob}_{r, o_{L}}: o_{L} \rightarrow o_{L}$ are compatible with the structure map $o_{L} \rightarrow B$. For example, B could be any of the base rings considered above.
Definition 3.3. We define the category $\operatorname{FMod}(B)$ of Frobenius B-modules (or simply F-modules over B) as follows:

- An object of $\operatorname{FMod}(B)$ is a pair $\underline{M}=(M, F)$ consisting of a B-module M which is locally free of finite rank, together with an injective B-linear map $F=$ $F_{M}: \sigma^{*} M \rightarrow M$, where $\sigma^{*} M:=M \otimes_{B, \sigma} B$.
- A morphism of Frobenius B-modules $\left(M, F_{M}\right) \rightarrow\left(N, F_{N}\right)$ is a B-linear map $\phi: M \rightarrow N$ between the underlying B-modules such that ϕ is F-equivariant, i.e. such that $\phi \circ F_{M}=F_{N} \circ \sigma^{*} \phi$. It is called an isomorphism if ϕ is an isomorphism of the underlying B-modules.

Let B^{\prime} be a flat B-algebra together with a ring endomorphism $\sigma: B^{\prime} \rightarrow$ B^{\prime} extending the Frobenius lift of B, as explained before. Then the exact functor $\cdot \otimes_{B} B^{\prime}$ from B-modules to B^{\prime}-modules yields a functor $\operatorname{FMod}(B) \rightarrow \operatorname{FMod}\left(B^{\prime}\right)$. If the structure map $B \rightarrow B^{\prime}$ is, in addition, injective then the induced functor on $\operatorname{FMod}(B)$ is faithful since, given a map $f: M \rightarrow N$ of finite projective B-modules, restricting its image $f \otimes \mathrm{id}: M \otimes_{B} B^{\prime} \rightarrow N \otimes_{B} B^{\prime}$ to M gives back f. In particular, we obtain a natural commutative diagram of categories and faithful functors

Slightly abusing notation, we agree to write $\underline{M} \otimes_{B} B^{\prime}$ for $\left(M \otimes_{B} B^{\prime}, F_{M} \otimes \mathrm{id}_{B^{\prime}}\right)$, whenever $\underline{M}=\left(M, F_{M}\right)$.

4. Anderson motives

Let $\mathfrak{J} \subset A_{o_{L}}$ be the ideal generated by $a \otimes 1-1 \otimes c^{*}(a)$ for all $a \in A$. For example, if $\mathcal{C}=\mathbb{P}_{\mathbb{F}}^{1}$ and $A=\mathbb{F}[z]$, then $\mathfrak{J}=(z-\zeta) \subset o_{L}[z]$ where $\zeta=c^{*}(z)$. Note that the convention introduced in Remark 2.1 that $(z)=\varepsilon^{m}$ implies $\zeta \in \mathfrak{m}_{L}$. So $\zeta=0$ if c^{*} is not injective. By abuse of notation we denote the ideal generated by \mathfrak{J} in any $A_{o_{L}}$-algebra again by \mathfrak{J}. We consider the following variant of Anderson's [1] t-motives.

Definition 4.1. An Anderson A-motive over L is an object $\underline{M}=\left(M, F_{M}\right) \in$ $\operatorname{FMod}\left(A_{L}\right)$ such that $\operatorname{coker}\left(F_{M}\right)$ is a finite-dimensional L-vector space and is annihilated by a power of \mathfrak{J}. A morphism of Anderson A-motives is defined as a morphism inside $\operatorname{FMod}\left(A_{L}\right)$.

Since $\operatorname{Spec}\left(A_{L}\right)$ is of finite type over L, one can consider its rigid analytification $\operatorname{Spec}\left(A_{L}\right)^{\text {an }}$; see $[4,5,11]$. In accordance with [2], we denote this rigid analytic L-space by $\mathfrak{A}(\infty)$. On the other hand, the formal completion of the $o_{L^{-}}$ scheme $X=\operatorname{Spec}\left(A_{o_{L}}\right)$ along its special fiber $V(\pi)$ leads to the formal o_{L}-scheme $\mathfrak{X}=\operatorname{Spf}\left(A_{o_{L}, \pi}\right)$; see $\left[14, \mathrm{I}_{\text {new }}\right.$, I.10.8.3]. Its associated rigid analytic space $\mathfrak{X}_{\text {rig }}$ ($[4,11]$) is given by the affinoid L-space $\mathfrak{A}(1):=\operatorname{Sp}\left(A_{o_{L}, \pi}[1 / \pi]\right)$. This space can be regarded as the unit disc of the rigid analytic space $\mathfrak{A}(\infty)$ as it corresponds to "radius of convergence 1 ", hence the notation.

We study the following instance of rigid analytic τ-sheaves over $A_{o_{L}, \pi}[1 / \pi]$, in the sense of [2].
Definition 4.2. An analytic Anderson $A(1)$-motive over L is an object $\underline{M}=$ $\left(M, F_{M}\right) \in \operatorname{FMod}\left(A_{o_{L}, \pi}[1 / \pi]\right)$ such that $\operatorname{coker}\left(F_{M}\right)$ is a finite-dimensional L vector space and is annihilated by a power of \mathfrak{J}. A morphism of analytic Anderson $A(1)$-motives is defined as a morphism in the category $\operatorname{FMod}\left(A_{o_{L}, \pi}[1 / \pi]\right)$.

Here the prefix " $A(1)-$-" indicates that we are considering an analytic variant of Anderson A-motives over the rigid analytic "unit disc" $\mathfrak{A}(1)$ in $\operatorname{Spec}\left(A_{L}\right)$.

Proposition 4.3. The natural functor $\operatorname{FMod}\left(A_{L}\right) \rightarrow \operatorname{FMod}\left(A_{o_{L}, \pi}[1 / \pi]\right), \underline{M} \mapsto$ $\underline{M} \otimes_{A_{L}} A_{o_{L}, \pi}[1 / \pi]$ restricts to a functor (Anderson A-motives over L) \rightarrow (analytic Anderson A(1)-motives over L).
Definition 4.4. (a) Let $\underline{M}_{L} \in \operatorname{FMod}\left(A_{L}\right)$ be an F-module over A_{L}. A model of \underline{M}_{L} is a pair $(\underline{\mathcal{M}}, \alpha)$ consisting of an object $\underline{\mathcal{M}} \in \operatorname{FMod}\left(A_{o_{L}}\right)$ and an isomorphism $\alpha: \underline{M_{L}} \xrightarrow{\sim} \underline{\mathcal{M}} \otimes_{A_{o_{L}}} A_{L}$ inside $\operatorname{FMod}\left(A_{L}\right)$.
(b) Let $\underline{M}_{L} \in \operatorname{FMod}\left(A_{o_{L}, \pi}[1 / \pi]\right)$ be an F-module over $A_{o_{L}, \pi}[1 / \pi]$. A (formal) model of \underline{M}_{L} is a pair $(\underline{\mathcal{M}}, \alpha)$ consisting of an object $\underline{\mathcal{M}} \in \operatorname{FMod}\left(A_{o_{L}, \pi}\right)$ and an isomorphism $\alpha: \underline{M}_{L} \xrightarrow{\sim} \underline{\mathcal{M}} \otimes_{A_{o_{L}, \pi}} A_{o_{L}, \pi}[1 / \pi]$ inside $\operatorname{FMod}\left(A_{o_{L}, \pi}[1 / \pi]\right)$.
(c) In both cases a morphism of models $\beta:(\underline{\mathcal{M}}, \alpha) \rightarrow\left(\underline{\mathcal{M}^{\prime}}, \alpha^{\prime}\right)$ is an isomorphism $\beta: \underline{\mathcal{M}} \xrightarrow{\sim} \underline{\mathcal{M}}^{\prime}$ of F-modules satisfying $\alpha^{\prime}=\beta[1 / \pi] \circ \alpha$. In particular the sets $\operatorname{Hom}\left((\underline{\mathcal{M}}, \alpha),\left(\underline{\mathcal{M}}^{\prime}, \alpha^{\prime}\right)\right)$ contain at most one element.
We will sometimes drop the α from the notation and simply speak of $\underline{\mathcal{M}}$ as a model of \underline{M}_{L}.

For every $\underline{\mathcal{M}} \in \operatorname{FMod}\left(A_{o_{L}}\right)$, respectively $\underline{\mathcal{M}} \in \operatorname{FMod}\left(A_{o_{L}, \pi}\right)$ we can consider the reduction $\underline{\mathcal{M}} \otimes_{A_{o_{L}}} A_{\ell}$, respectively $\underline{\mathcal{M}} \otimes_{A_{o_{L}, \pi}} A_{\ell}$. Note, however, that this does not induce a functor from $\operatorname{FMod}\left(A_{o_{L}}\right)$, respectively $\operatorname{FMod}\left(A_{o_{L}, \pi}\right)$ to $\operatorname{FMod}\left(A_{\ell}\right)$, since the induced F-map need not be injective. This circumstance lies at the origin of our study of good models:
Definition 4.5. Let \mathcal{M} be a model of an F-module \underline{M}_{L} over A_{L}, respectively over $A_{o_{L}, \pi}[1 / \pi]$. Then $\underline{\mathcal{M}}$ is called a good model if $\underline{\mathcal{M}} / \pi \underline{\mathcal{M}}$ is an F-module over A_{ℓ}, i.e. if the induced $\overline{A_{\ell}}$-linear map

$$
\bar{\sigma}^{*}(\mathcal{M} / \pi \mathcal{M})=(\mathcal{M} / \pi \mathcal{M}) \otimes_{A_{\ell}, \bar{\sigma}} A_{\ell} \rightarrow \mathcal{M} / \pi \mathcal{M}
$$

is injective.
If \underline{M}_{L} is an (analytic) Anderson motive there is an alternative notion of good reduction as follows.
Definition 4.6. Let $\underline{\mathcal{M}}$ be a model of an Anderson A-motive \underline{M}_{L}, respectively of an analytic Anderson $A(1)$-motive \underline{M}_{L}. Then $\underline{\mathcal{M}}$ is called a good model in the strong sense if coker $\left(F_{\mathcal{M}}\right)$ is a finite free o_{L}-module and is annihilated by \mathfrak{J}^{d}, for some $d \geq 0$. In this case we also say that $\underline{\mathcal{M}}$ has good reduction over o_{L}.

Theorem 4.7. Let $\underline{\mathcal{M}}$ be a model of an Anderson A-motive, respectively of an analytic Anderson $A(1)$-motive \underline{M}_{L}. Then $\underline{\mathcal{M}}$ is a good model in the weak sense of Definition 4.5 if and only if it is a good model in the strong sense of Definition 4.6.
Proof. Since $\sigma^{*} \mathcal{M}$ is locally free over $A_{o_{L}}$, respectively over $A_{o_{L}, \pi}$, the natural map $\sigma^{*} \mathcal{M} \rightarrow \sigma^{*} M_{L}$ is injective and hence $F_{\mathcal{M}}$ is injective because $F_{M_{L}}$ is. We obtain a short eqact sequence

$$
\begin{equation*}
0 \longrightarrow \sigma^{*} \mathcal{M} \xrightarrow{F_{\mathcal{M}}} \mathcal{M} \longrightarrow \operatorname{coker}\left(F_{\mathcal{M}}\right) \longrightarrow 0 \tag{4.1}
\end{equation*}
$$

Let $\underline{\mathcal{M}}$ be a good model in the strong sense. Tensoring the short exact sequence (4.1) with ℓ over o_{L} and using that coker $\left(F_{\mathcal{M}}\right)$ is supposed to be free over o_{L} shows that the induced A_{ℓ}-linear map $\bar{\sigma}^{*}(\mathcal{M} / \pi \mathcal{M}) \rightarrow \mathcal{M} / \pi \mathcal{M}$ remains injective. So $\underline{\mathcal{M}}$ is a good model in the weak sense.

Conversely suppose that $\underline{\mathcal{M}}$ is a good model in the weak sense. This time tensoring (4.1) with ℓ over o_{L} yields

$$
\begin{aligned}
0 \longrightarrow \operatorname{Tor}_{1}^{o_{L}}\left(\operatorname{coker} F_{\mathcal{M}}, \ell\right) & \longrightarrow \sigma^{*} \mathcal{M} \otimes_{o_{L}} \ell \xrightarrow{F_{\mathcal{M}} \otimes \mathrm{id}_{\ell}} \mathcal{M} \otimes_{o_{L}} \ell \\
& \operatorname{coker}\left(F_{\mathcal{M}}\right) \otimes_{o_{L}} \ell \longrightarrow 0
\end{aligned}
$$

By assumption $F_{\mathcal{M}} \otimes \mathrm{id}_{\ell}$ is injective, and so $0=\operatorname{Tor}_{1}^{o_{L}}\left(\operatorname{coker} F_{\mathcal{M}}, \ell\right)=\{x \in$ $\left.\operatorname{coker}\left(F_{\mathcal{M}}\right): \pi x=0\right\}$ and $\operatorname{coker}\left(F_{\mathcal{M}}\right)$ is flat over o_{L} by [10, Corollary 6.3]. This implies $\operatorname{coker}\left(F_{\mathcal{M}}\right) \hookrightarrow \operatorname{coker}\left(F_{\mathcal{M}}\right) \otimes_{o_{L}} L=\operatorname{coker}\left(F_{M_{L}}\right)$. Since $\operatorname{coker}\left(F_{M_{L}}\right)$ is annihilated by \mathfrak{J}^{d} for some d, the same is true for $\operatorname{coker}\left(F_{\mathcal{M}}\right)$ which therefore is a finitely generated $A_{o_{L}} / \mathfrak{J}^{d}$-module, respectively $A_{o_{L}, \pi} / \mathfrak{J}^{d}$-module, and a fortiori a finitely generated o_{L}-module. Being flat, $\operatorname{coker}\left(F_{\mathcal{M}}\right)$ is a finite free o_{L}-module. Thus \mathcal{M} is a good model in the strong sense.

Remark 4.8. In [13] Gardeyn develops a theory of semi-stable reduction of analytic Anderson $A(1)$-motives \underline{M}_{L}. He shows that after replacing L by a finite separable extension, \underline{M}_{L} has a model $\underline{\mathcal{M}}$ such that the reduction $F_{\mathcal{M}} \otimes \mathrm{id} \ell$ is not nilpotent [13, Proposition 3.3]. If $\underline{\overline{\mathcal{M}}^{\prime}} \subset \underline{\mathcal{M}} / \pi \underline{\mathcal{M}}$ is the maximal Frobenius $A_{\ell^{-}}$ submodule with injective $F_{\overline{\mathcal{M}}^{\prime}}$, he further shows that the support of $\operatorname{coker}\left(F_{\overline{\mathcal{M}}^{\prime}}\right)$ is a finite set $S \subset \operatorname{Spec} A_{\ell}$. After removing S from $\mathfrak{A}(1):=\operatorname{Sp}\left(A_{o_{L}, \pi}[1 / \pi]\right)$ one can lift $\underline{\mathcal{M}}^{\prime}$ to an F-submodule $\left.\underline{\mathcal{M}}^{\prime} \subset \mathcal{M}\right|_{\mathfrak{A}(1) \backslash S}$ which has good reduction in the weak sense of Definition 4.5; see [13, Theorem 4.7]. As one sees from the following example, it is false in general that S is the zero locus of \mathfrak{J} in Spec A_{ℓ} and so we cannot expect that $\underline{\mathcal{M}}^{\prime}$ has good reduction in the strong sense of Definition 4.6.

Let $A=\mathbb{F}[z]$ and $\zeta=c^{*}(z) \in \mathfrak{m}_{L}$. Then $\mathfrak{J}=(z-\zeta)$. Let $\mathcal{M}=o_{L}\langle z\rangle^{\oplus 2}$ and $F_{\mathcal{M}}=\left(\begin{array}{cc}0 & \pi(z-\zeta) \\ \pi & z-1\end{array}\right)$. Then $\underline{\mathcal{M}}=\left(\mathcal{M}, F_{\mathcal{M}}\right)$ is a model of the analytic Anderson $A(1)$-motive $\underline{M}_{L}:=\underline{\mathcal{M}} \otimes_{o_{L}} L$. The reduction $\underline{\mathcal{M}} / \pi \underline{\mathcal{M}}=\left(\ell[z]^{\oplus 2},\left(\begin{array}{cc}0 & 0 \\ 0 & z-1\end{array}\right)\right)$ contains the maximal Frobenius A_{ℓ}-submodule $\overline{\mathcal{M}}^{\prime}=\ell[z] \cdot\binom{0}{1}$, whose Frobenius is $F_{\overline{\mathcal{M}}^{\prime}}=z-1$. So $S=V(z-1) \neq V(z)=V(\mathfrak{J})$.

Proposition 4.9. If \underline{M}_{L} is an Anderson A-Motive over L having a (good) model $\underline{\mathcal{M}}$ then its analytification $\underline{M}_{L} \otimes_{A_{L}} A_{o_{L}, \pi}[1 / \pi]$ is an analytic Anderson $A(1)$-motive having the (good) model $\widehat{\mathcal{M}}:=\underline{\mathcal{M}} \otimes_{A_{o_{L}}} A_{o_{L}, \pi}$ and the reduction $\widehat{\mathcal{M}} / \pi \underline{\mathcal{M}}$ of $\widehat{\mathcal{M}}$ is canonically isomorphic to the reduction $\underline{\mathcal{M}} / \pi \mathcal{M}$ of \mathcal{M}.

Proof. The statement without the properties of being a good model is obvious.
 in the sense of Definition 4.5 if and only if $\widehat{\mathcal{M}}$ is a good model in the sense of Definition 4.5.

Let us also mention the following result of Gardeyn on good reduction of Drinfeld A-modules.

Proposition 4.10. Let $\phi: A \rightarrow L[\tau]$ be a Drinfeld A-module over L; see [9] or [21]. Let $\underline{M}=\underline{M}(\phi)$ be the associated Anderson A-motive; see [1, Section 4.1] or [12, Section 8.1]. Then the following are equivalent:
(i) ϕ has good reduction over o_{L}, i.e. ϕ is isomorphic over L to a Drinfeld A module $\psi: A \rightarrow L[\tau]$ satisfying $\psi(A) \subset o_{L}[\tau]$ such that the reduction $\bar{\psi}: A \rightarrow o_{L}[\tau] \rightarrow \ell[\tau]$ is a Drinfeld A-module over ℓ of the same rank as ψ and ϕ;
(ii) \underline{M} has good reduction over o_{L} in the weak and strong senses of Definitions 4.6 and 4.5.

Proof. Gardeyn [12, Theorem 8.1] proved that ϕ has good reduction over o_{L} if and only if \underline{M} has a good model in the weak sense. So the proposition follows from Theorem 4.7.

5. Local shtukas and analytic Anderson motives

Anderson A-motives can be viewed as function-field analogs of Abelian varieties. Barsotti-Tate groups, which can be associated with Abelian varieties over $\mathbb{Z}_{p^{-}}$ schemes, have effective local shtukas as function-field analogs.
Definition 5.1. An (effective) local shtuka at ε over o_{L} is an object $\underline{\hat{M}}=\left(\hat{M}, F_{\hat{M}}\right) \in$ $\operatorname{FMod}\left(A_{o_{L},(\varepsilon, \pi)}\right)$ such that $\operatorname{coker}\left(F_{\hat{M}}\right)$ is a finite free o_{L}-module and is annihilated by a power of \mathfrak{J}.
Remark 5.2. If the residue field $\mathbb{F}_{\varepsilon}=A / \varepsilon$ of ε is larger than \mathbb{F}, i.e., if the degree $d_{\varepsilon}:=\left[\mathbb{F}_{\varepsilon}: \mathbb{F}\right]>1$, the ring $A_{o_{L},(\varepsilon, \pi)}$ is not an integral domain but a product $A_{o_{L},(\varepsilon, \pi)}=\prod_{i \in \mathbb{Z} / d_{\varepsilon} \mathbb{Z}} A_{o_{L},(\varepsilon, \pi)} / \mathfrak{a}_{i}$ of integral domains. To describe this product decomposition, note that $A_{o_{L},(\varepsilon, \pi)}=\lim _{\leftarrow} A_{o_{L}} / \varepsilon^{n}=\lim _{\leftarrow}\left(A / \varepsilon^{n}\right) \otimes_{\mathbb{F}} o_{L}=A_{\varepsilon} \widehat{\otimes}_{\mathbb{F}} o_{L}$. By Cohen's structure theorem $A_{\varepsilon} \cong \mathbb{F}_{\varepsilon} \llbracket z_{\varepsilon} \rrbracket$ for a uniformizer z_{ε} of A at ε. Then $\mathfrak{a}_{i}=\left(\alpha \otimes 1-1 \otimes c^{*}(\alpha)^{r^{i}}: \alpha \in \mathbb{F}_{\varepsilon} \subset A_{\varepsilon}\right)$, where we use that $c^{*}: A \rightarrow o_{L}$ factors through $c^{*}: A_{\varepsilon} \rightarrow o_{L}$. The factors $A_{o_{L},(\varepsilon, \pi)} / \mathfrak{a}_{i}$ are isomorphic to $o_{L} \llbracket z_{\varepsilon} \rrbracket$ and hence are integral domains. They are cyclically permuted by σ because $\sigma\left(\mathfrak{a}_{i}\right)=$ \mathfrak{a}_{i+1}. By [3, Proposition 8.8] the functor $\left(\hat{M}, F_{\hat{M}}\right) \mapsto\left(\hat{M} / \mathfrak{a}_{0} \hat{M},\left(F_{\hat{M}}\right)^{d_{\varepsilon}}\right)$ is an equivalence between the category of effective local shtukas at ε over o_{L} as in Definition 5.1 and the category of pairs $\left(\hat{M}_{0}, \widetilde{F}_{\hat{M}}\right)$ where \hat{M}_{0} is a free module of finite rank over $A_{o_{L},(\varepsilon, \pi)} / \mathfrak{a}_{0}$ and $\widetilde{F}_{\hat{M}}:\left(\sigma^{d_{\varepsilon}}\right)^{*} \hat{M}_{0} \rightarrow \hat{M}_{0}$ is injective with $\operatorname{coker}\left(\widetilde{F}_{\hat{M}}\right)$ being a finite free o_{L}-module. In $[16,17]$ these pairs $\left(\hat{M}_{0}, \widetilde{F}_{\hat{M}}\right)$ are called (effective) local shtukas.

The following criterion for good reduction of analytic Anderson $A(1)$-motives can be regarded as a good-reduction Local-Global Principle at the characteristic place.

Theorem 5.3. Let $\underline{M}_{L}=\left(M_{L}, F_{M_{L}}\right)$ be an analytic Anderson A(1)-motive over L such that $\operatorname{coker}\left(F_{M_{L}}\right)$ is annihilated by \mathfrak{J}^{d} for some d. Then the following assertions are equivalent:
(i) \underline{M}_{L} admits a good model in the strong sense of Definition 4.6;
(ii) There is an effective local shtuka $\underline{\hat{M}}=\left(\hat{M}, F_{\hat{M}}\right)$ at ε over o_{L} such that $\operatorname{coker}\left(F_{\hat{M}}\right)$ is annihilated by \mathfrak{J}^{d}, and an isomorphism $\underline{M}_{L} \otimes_{A_{o_{L}, \pi}[1 / \pi]} A_{o_{L},(\varepsilon, \pi)}[1 / \pi] \cong$ $\underline{\underline{M}} \otimes_{A_{o_{L},(\varepsilon, \pi)}} A_{o_{L},(\varepsilon, \pi)}[1 / \pi]$ in $\operatorname{FMod}\left(A_{o_{L},(\varepsilon, \pi)}[1 / \pi]\right)$.

Proof. 1. In order to show that (ii) implies (i), we let $f: M_{L} \otimes A_{o_{L},(\varepsilon, \pi)}[1 / \pi] \xrightarrow{\sim}$ $\hat{M} \otimes A_{o_{L},(\varepsilon, \pi)}[1 / \pi]=: \hat{M}[1 / \pi]$ be an F-equivariant isomorphism of $A_{o_{L},(\varepsilon, \pi)}[1 / \pi]-$ modules as in (ii). We have canonical F-equivariant $A_{o_{L}, \pi}$-linear maps

$$
i: M_{L} \rightarrow M_{L} \otimes_{A_{o_{L}, \pi}[1 / \pi]} A_{o_{L},(\varepsilon, \pi)}[1 / \pi], \quad j: \hat{M} \rightarrow \hat{M}[1 / \pi]
$$

where i (respectively, j) is injective since M_{L} (respectively, \hat{M}) is flat. Consider the $A_{o_{L}, \pi}$-module $\mathcal{M}=\operatorname{im}(i) \cap f^{-1}(\operatorname{im}(j))$. We will show that \mathcal{M} is a good model of \underline{M}_{L}. The inclusion $\mathcal{M} \hookrightarrow M_{L}$ gives rise to an $A_{o_{L}, \pi}[1 / \pi]$-linear embedding $\mathcal{M}[1 / \pi] \hookrightarrow M_{L}[1 / \pi] \cong M_{L}$, which is in fact an isomorphism, because if $m \in M_{L}$ there is an $s \geq 0$ such that $\pi^{s} f(m \otimes 1) \in \operatorname{im}(j)$, i.e. $\pi^{s} m \in \mathcal{M}$.
2. In order to show that \mathcal{M} is a finitely generated $A_{o_{L}, \pi}$-module we use the embed$\operatorname{ding} \iota: \mathbb{F}[z] \rightarrow A$ from Remark 2.1 and the induced maps $L\langle z\rangle \rightarrow A_{o_{L}, \pi}[1 / \pi]$ and $o_{L} \llbracket z \rrbracket \rightarrow A_{o_{L},(\varepsilon, \pi)}$ from (2.1). Let $\left(e_{1}, \ldots, e_{m}\right)$ be a basis of M_{L} over the principal ideal domain $L\langle z\rangle$. Furthermore, let $\left(d_{1}, \ldots, d_{n}\right)$ be a basis for \hat{M} over the local ring $o_{L} \llbracket z \rrbracket$. Note that the basis $\left(e_{1}, \ldots, e_{m}\right)$ gives rise to an isomorphism $\left.M_{L} \otimes_{L\langle z\rangle} o_{L} \llbracket z \rrbracket[1 / \pi] \cong o_{L} \llbracket z \rrbracket\right][1 / \pi]^{\oplus m}$. For every $v=1, \ldots, n$ we consider $f^{-1}\left(d_{\nu}\right)$ and regard it as an element of the right-hand side of this isomorphism. We choose $N \geq 0$ big enough, such that $f^{-1}\left(\pi^{N} d_{\nu}\right) \in o_{L} \llbracket z \rrbracket^{\oplus m}$ for all ν, say

$$
f^{-1}\left(\pi^{N} d_{v}\right)=\left(\rho_{\nu, 1}, \ldots, \rho_{v, m}\right)
$$

where $\rho_{\nu, \mu} \in o_{L} \llbracket z \rrbracket$. Now let $x \in \mathcal{M}$. Via f we obtain $f(x)=\sum_{\nu} \lambda_{\nu} d_{v}$ in \hat{M}, with suitable $\lambda_{\nu} \in o_{L} \llbracket z \rrbracket$. Consequently $f\left(\pi^{N} x\right)=\sum_{v} \lambda_{v}\left(\pi^{N} d_{\nu}\right)$, so that the image of $\pi^{N} x$ in $o_{L} \llbracket z \rrbracket^{\oplus m}$ satisfies $\pi^{N} x=\sum_{\mu}\left(\sum_{\nu} \lambda_{\nu} \rho_{\nu, \mu}\right) e_{\mu}$. The appearing scalars $h_{\mu}=\sum_{\nu} \lambda_{\nu} \rho_{\nu, \mu}$ have, in fact, to be elements of $L\langle z\rangle \cap o_{L} \llbracket z \rrbracket=o_{L}\langle z\rangle$. Inside M_{L} we may write $x=\pi^{-N} \pi^{N} x=\sum_{\mu} h_{\mu} \pi^{-N} e_{\mu}$, so that we may conclude

$$
\mathcal{M} \subset \sum_{\mu} o_{L}\langle z\rangle \pi^{-N} e_{\mu}
$$

Being a submodule of a finitely generated module over a noetherian ring, \mathcal{M} has to be a finitely generated $o_{L}\langle z\rangle$-module and hence a finitely generated $A_{o_{L}, \pi}$-module.
3. We claim that $\mathcal{M} / \pi \mathcal{M}$ is torsion-free and hence free over $\ell[z]$, because it is finitely generated. Let $x \in \mathcal{M}$, and let $\lambda \in o_{L}\langle z\rangle$ be such that $\lambda \notin \pi o_{L}\langle z\rangle$ and $\lambda x \in$
$\pi \mathcal{M}$, say $\lambda x=\pi y$ for some $y \in \mathcal{M}$. In order to prove that $\mathcal{M} / \pi \mathcal{M}$ is torsion-free we must show that $x \in \pi \mathcal{M}$. First suppose that $\lambda \in o_{L}\langle z\rangle \cap o_{L} \llbracket z \rrbracket^{\times}$. We consider $\pi^{-1} x \in M_{L}$. In fact, this element lies in \mathcal{M}, since we have $f\left(\pi^{-1} x\right)=\lambda^{-1} f(y) \in$ \hat{M}. Consequently $x=\pi\left(\pi^{-1} x\right) \in \pi \mathcal{M}$.

Let us next assume that $\lambda=z^{n}$ and show that $z^{n} x \in \pi \mathcal{M}$ implies $x \in \pi \mathcal{M}$ for any $n \geq 0$. By induction, it suffices to consider the case $n=1$. So suppose $z x \in \pi \mathcal{M}$, say $z x=\pi y$. Let $f(x)=\sum_{v} \beta_{v} d_{v}$, where $\left(d_{1}, \ldots, d_{n}\right)$ is the finite $o_{L} \llbracket z \rrbracket$-basis of \hat{M} fixed before. The relation $z x=\pi y$ implies that $\pi \mid z \beta_{v}$ for every index ν, so that $\pi \mid \beta_{v}$ for every v. Therefore $\pi^{-1} x \in M_{L}$ necessarily maps via f to an element of \hat{M}, i.e. $x \in \pi \mathcal{M}$.

Finally we treat the case for general $\lambda=\sum_{s} \lambda_{s} z^{s}$ and suppose that $\lambda \notin$ $o_{L} \llbracket z \rrbracket^{\times}$, that is $\pi \mid \lambda_{0}$. This means we find $\lambda^{\prime} \in o_{L}[z]$ and $\lambda^{\prime \prime} \in o_{L}\langle z\rangle \cap o_{L} \llbracket z \rrbracket^{\times}$ such that $\lambda=\pi \lambda^{\prime}+z^{N} \lambda^{\prime \prime}$ for some $N \geq 1$. We have $\pi y=\lambda x=\pi \lambda^{\prime} x+z^{N} \lambda^{\prime \prime} x$. In particular $z^{N} \lambda^{\prime \prime} x=\pi\left(y-\lambda^{\prime} x\right) \in \pi \mathcal{M}$ and by the above $\lambda^{\prime \prime} x \in \pi \mathcal{M}$ and $x \in \pi \mathcal{M}$.

Thus we have proved that $\mathcal{M} / \pi \mathcal{M}$ is free over $\ell[z]$. It follows that $\mathcal{M} / \pi \mathcal{M}$ is locally free of finite rank over A_{ℓ}.
4. We claim that \mathcal{M} is locally free of finite rank over $A_{o_{L}, \pi}$. Since it is finitely generated it only remains to show that \mathcal{M} is flat over $A_{o_{L}, \pi}$. Since $A_{o_{L}, \pi}$ is π-adically complete and separated, $\pi A_{o_{L}, \pi}$ is contained in the Jacobson radical $\mathfrak{j}\left(A_{o_{L}, \pi}\right)$ by [20, Theorem 8.2], and the $A_{o_{L}, \pi}$-module \mathcal{M} is finitely generated, so that \mathcal{M} is π-adically ideally Hausdorff in the sense of [8, III.5.1]. In the preceding step we have shown that $\mathcal{M} / \pi \mathcal{M}$ is flat over $A_{\ell} \cong A_{o_{L}, \pi} / \pi A_{o_{L}, \pi}$, and we know that \mathcal{M} has no π-torsion, so that the canonical map $\pi A_{o_{L}, \pi} \otimes_{A_{o_{L}, \pi}} \mathcal{M} \rightarrow \pi \mathcal{M}$ is an isomorphism. Therefore, by Bourbaki's Flatness Criterion [8, Section III.5.2, Théorème 1 (iii)], we may conclude that \mathcal{M} is indeed flat over $A_{o_{L}, \pi}$.
5. We note that $\sigma^{*} \mathcal{M}=\sigma^{*} \operatorname{im}(i) \cap\left(\sigma^{*} f\right)^{-1}\left(\sigma^{*} \operatorname{im}(j)\right)$ because the functor σ^{*} is exact by Lemma 3.1. By the F-equivariance of f we obtain a Frobenius $F_{\mathcal{M}}$: $\sigma^{*} \mathcal{M} \rightarrow \mathcal{M}$. It is injective because $F_{M_{L}}$ is. We set $\underline{\mathcal{M}}:=\left(\mathcal{M}, F_{\mathcal{M}}\right)$.
6. Next we claim that $\mathfrak{J}^{d} \operatorname{coker}\left(F_{\mathcal{M}}\right)=0$. Let $x=\sum_{\nu} h_{\nu} m_{\nu} \in \mathfrak{J}^{d} \mathcal{M}$ where $h_{v} \in \mathfrak{J}^{d}$ and $m_{v} \in \mathcal{M}$. Since coker $\left(F_{M_{L}}\right)$ is annihilated by \mathfrak{J}^{d}, there is a (unique) $y \in \sigma^{*} M_{L}$ such that $x=\sum_{\nu} h_{\nu} m_{\nu}=F_{M_{L}}(y)$. We have to show that $y \in \sigma^{*} \mathcal{M}=$ $\sigma^{*} \operatorname{im}(i) \cap\left(\sigma^{*} f\right)^{-1}\left(\sigma^{*} \operatorname{im}(j)\right)$. So it remains to see that $\left(\sigma^{*} f\right)(y) \in \operatorname{im}\left(\sigma^{*} j\right)$. Indeed, inside $\hat{M}[1 / \pi]$ we have $f(x)=f\left(F_{M_{L}}(y)\right)=F_{\hat{M}}\left(\left(\sigma^{*} f\right)(y)\right)$. On the other hand, the linearity of f and j gives that $f(x)=\sum_{\nu} h_{\nu} f\left(m_{v} \otimes 1\right)=j\left(y^{\prime}\right)$ for some $y^{\prime} \in \mathfrak{J}^{d} \hat{M} \subset \operatorname{im}\left(F_{\hat{M}}\right)$, say $y^{\prime}=F_{\hat{M}}\left(y^{\prime \prime}\right)$ for a $y^{\prime \prime} \in \sigma^{*} \hat{M}$. Thus $f(x)=$ $F_{\hat{M}}\left(\left(\sigma^{*} j\right)\left(y^{\prime \prime}\right)\right)$. So finally, since $F_{\hat{M}}: \sigma^{*} \hat{M}[1 / \pi] \rightarrow \hat{M}[1 / \pi]$ is injective, we obtain that $\left(\sigma^{*} f\right)(y)=\left(\sigma^{*} j\right)\left(y^{\prime \prime}\right)$, as desired.
7. Finally we show that the kernel V of $\bar{F}: \sigma^{*}(\mathcal{M} / \pi \mathcal{M}) \rightarrow \mathcal{M} / \pi \mathcal{M}$ is trivial. This implies that $\underline{\mathcal{M}}$ is a good model of \underline{M}_{L} in the weak sense of Definition 4.5, which is enough by Theorem 4.7.

We have already shown that $\mathfrak{J}^{d} \mathcal{M} \subset \operatorname{im}\left(F_{\mathcal{M}}\right)$. Since $(z-\zeta) \in \mathfrak{J}$ for $\zeta:=$ $c^{*}(z) \in o_{L}$ we have a chain of $o_{L}\langle z\rangle$-modules $(z-\zeta)^{d} \mathcal{M} \subset \operatorname{im}\left(F_{\mathcal{M}}\right) \subset \mathcal{M}$. The
element $\zeta \in o_{L}$ is zero $\bmod \pi$, and we obtain

$$
\begin{equation*}
z^{d}(\mathcal{M} / \pi \mathcal{M}) \subset \operatorname{im}(\bar{F}) \subset \mathcal{M} / \pi \mathcal{M} \tag{5.1}
\end{equation*}
$$

We know that $\mathcal{M} / \pi \mathcal{M}$ is finite free over $\ell[z]$. Therefore the middle term $W:=$ $\operatorname{im}(\bar{F})$ in the latter chain has full rank inside $\mathcal{M} / \pi \mathcal{M}$. Finally, taking ranks in the (split) short exact sequence of finite free $\ell[z]$-modules

$$
0 \rightarrow V \rightarrow \sigma^{*}(\mathcal{M} / \pi \mathcal{M}) \xrightarrow{\bar{F}} W \rightarrow 0
$$

accomplishes the proof that V indeed is trivial.
8. Conversely, in order to show that (i) implies (ii), suppose that (\mathcal{M}, α) is a good model of \underline{M}_{L}. We define

$$
\underline{\hat{M}}=\underline{\mathcal{M}} \otimes_{A_{o_{L}, \pi}} A_{o_{L},(\varepsilon, \pi)},
$$

i.e. $\underline{\hat{M}}$ equals the completion of $\underline{\mathcal{M}}$ for the $(\varepsilon, \pi) A_{o_{L}, \pi}$-adic topology. It is clear that the F-equivariant isomorphism $\alpha: M_{L} \xrightarrow{\sim} \mathcal{M}[1 / \pi]$ of $A_{o_{L}, \pi}[1 / \pi]$-modules gives rise to a natural F-equivariant $A_{o_{L},(\varepsilon, \pi)}[1 / \pi]$-linear isomorphism

$$
M_{L} \otimes_{A_{o_{L}, \pi}[1 / \pi]} A_{o_{L},(\varepsilon, \pi)}[1 / \pi] \cong \hat{M}[1 / \pi]
$$

We claim that $\underline{\hat{M}}$ is a local shtuka. Indeed, by base change, \hat{M} is again locally free of finite rank. Furthermore, since the completion map $A_{o_{L}, \pi} \rightarrow A_{o_{L},(\varepsilon, \pi)}$ is Frobeniusequivariant and flat, we obtain an injective map $\hat{M} \otimes_{\left(A_{o_{L},(\varepsilon, \pi)}\right), \sigma} A_{o_{L},(\varepsilon, \pi)} \rightarrow \hat{M}$. Let C^{\prime} be its cokernel, and let $C=\operatorname{coker}\left(F_{\mathcal{M}}\right)$, i.e. $C^{\prime} \cong C \otimes_{A_{o_{L}, \pi}} A_{o_{L},(\varepsilon, \pi)}$. Since C is annihilated by \mathfrak{J}^{d} the module C^{\prime} equals C and it is finite free over o_{L}. Thus $\underline{\hat{M}}$ is an effective local shtuka over o_{L}.

Remark 5.4. Steps $1-4$ in the previous proof suggest that there is an equivalence of categories

$$
\begin{aligned}
\mathcal{F} & :\left\{\begin{array}{l}
\text { finite locally free } \\
A_{o_{L}, \pi} \text {-modules } \mathcal{M}
\end{array}\right\} \\
& \stackrel{\sim}{\longleftrightarrow}\left\{\begin{array}{l}
\text { triples }\left(M_{L}, \hat{M}, f\right) \text { consisting of } \\
\bullet \text { a finite locally free } A_{o_{L}, \pi}[1 / \pi] \text {-module } M_{L}, \\
\bullet \text { a finite locally free } A_{o_{L},(\varepsilon, \pi)} \text {-module } \hat{M}, \text { and } \\
\bullet \text { an isomorphism of } A_{o_{L},(\varepsilon, \pi)}[1 / \pi] \text {-modules } \\
f: M_{L} \otimes_{A_{o_{L}, \pi}}[1 / \pi] A_{o_{L},(\varepsilon, \pi)}[1 / \pi] \xrightarrow{\longrightarrow} \hat{M} \otimes_{A_{o_{L},(\varepsilon, \pi)}} A_{o_{L},(\varepsilon, \pi)}[1 / \pi]
\end{array}\right\} \\
\mathcal{M} & \longmapsto\left(\mathcal{M} \otimes_{A_{o_{L}, \pi}} A_{o_{L}, \pi}[1 / \pi], \mathcal{M} \otimes_{A_{o_{L}, \pi}} A_{o_{L},(\varepsilon, \pi)}, \operatorname{id}_{\mathcal{M} \otimes A_{o_{L},(\varepsilon, \pi)}[1 / \pi]}\right),
\end{aligned}
$$

where on the right a morphism $\underline{h}=\left(h_{L}, \hat{h}\right):\left(M_{L}, \hat{M}, f\right) \rightarrow\left(M_{L}^{\prime}, \hat{M}^{\prime}, f^{\prime}\right)$ consists of a morphism $h_{L}: M_{L} \rightarrow M_{L}^{\prime}$ and a morphism $\hat{h}: \hat{M} \rightarrow \hat{M}^{\prime}$ such that $f^{\prime} \circ\left(h_{L} \otimes \operatorname{id}_{A_{o_{L},(\varepsilon, \pi)}[1 / \pi]}\right)=\left(\hat{h} \otimes \operatorname{id}_{A_{o_{L},(\varepsilon, \pi)}[1 / \pi]}\right) \circ f$.

However, this is false as can be seen from the following example, where we take $A=\mathbb{F}[z]$. We choose an element $a \in \ell \llbracket z \rrbracket \subset \ell((z))$ such that $a \notin \ell(z)$, and we let $\Delta=\left(\begin{array}{c}1 \\ \pi^{-1} a \\ 0\end{array} \pi^{-1}\right)$. Set $M_{L}=L\langle z\rangle^{\oplus 2}, \hat{M}=\Delta \cdot o_{L} \llbracket z \rrbracket^{\oplus 2}$ and $f=\operatorname{id}_{o_{L} \llbracket z \|[1 / \pi]^{2}}$. Then $\Delta^{-1}=\left(\begin{array}{cc}1 & -a \\ 0 & \pi\end{array}\right) \in o_{L} \llbracket z \rrbracket^{2 \times 2}$ and

$$
o_{L} \llbracket z \rrbracket^{\oplus 2}=\Delta \cdot \Delta^{-1} o_{L} \llbracket z \rrbracket^{\oplus 2} \subset \hat{M} \subset \pi^{-1} o_{L} \llbracket z \rrbracket^{\oplus 2}
$$

If there were a finite free $A_{o_{L}, \pi}$-module \mathcal{M} with $\left(h_{L}, \hat{h}\right): \mathcal{F}(\mathcal{M}) \xrightarrow{\sim}\left(M_{L}, \hat{M}, f\right)$, then it had to satisfy $\mathcal{M} \cong M_{L} \cap \hat{M}$ with h_{L} and \hat{h} induced from the inclusions $M_{L} \cap \hat{M} \subset M_{L}$ and $M_{L} \cap \hat{M} \subset \hat{M}$. So we may take directly $\mathcal{M}:=M_{L} \cap \hat{M}$. It satisfies $o_{L}\langle z\rangle^{\oplus 2} \subset \mathcal{M} \subset \pi^{-1} o_{L}\langle z\rangle^{\oplus 2}$. We claim that, in fact, the first inclusion is an equality. Namely let $\binom{v}{w}=\binom{\pi^{-1} v_{0}+v^{\prime}}{\pi^{-1} w_{0}+w^{\prime}} \in \mathcal{M}$ with $v_{0}, w_{0} \in \ell[z]$ and $v^{\prime}, w^{\prime} \in o_{L}\langle z\rangle$. Then $\Delta^{-1}\binom{v}{w}=\binom{\pi^{-1} v_{0}+v^{\prime}-\pi^{-1} a w_{0}-a w^{\prime}}{w_{0}+\pi w^{\prime}} \in o_{L} \llbracket z \rrbracket^{\oplus 2}$. This implies $v_{0}=a w_{0}$ in $\ell \llbracket z \rrbracket$. If $w_{0} \neq 0$ we get $a=v_{0} / w_{0} \in \ell(z)$ in contradiction to our assumption. So $w_{0}=v_{0}=0$ and $\binom{v}{w} \in o_{L}\langle z\rangle^{\oplus 2}$. This proves our claim that $\mathcal{M}=o_{L}\langle z\rangle^{\oplus 2}$. We conclude that $\mathcal{F}(\mathcal{M}) \not \equiv\left(M_{L}, \hat{M}, f\right)$ and \mathcal{F} is not an equivalence of categories.

After this example the following result is even more surprising.
Corollary 5.5. Let \underline{M}_{L} be an analytic Anderson $A(1)$-motive over L. Then there is an equivalence of categories

$$
\begin{gathered}
\left\{\begin{array}{l}
\text { good models }(\underline{\mathcal{M}}, \alpha) \text { of } \underline{M_{L}} \text { in the } \\
\text { sense of Definitions } 4.6 \text { and } 4.5
\end{array}\right\} \\
\stackrel{\sim}{\longleftrightarrow}\left\{\begin{array}{l}
\text { pairs }(\hat{\hat{M}}, f) \text { consisting of } \\
\bullet \text { a local shtuka } \hat{\hat{M}} \text { at } \varepsilon \text { over } o_{L}, \text { and } \\
\bullet \text { an isomorphism in } \operatorname{FMod}\left(A_{o_{L},(\varepsilon, \pi)}[1 / \pi]\right) \\
f: \underline{M_{L}} \otimes A_{o_{L},(\varepsilon, \pi)}[1 / \pi] \xrightarrow{\sim} \underline{\hat{M}}[1 / \pi]
\end{array}\right\} \\
(\underline{\mathcal{M}}, \alpha) \longmapsto(\underline{\mathcal{M}}, \alpha) \otimes_{A_{o_{L}, \pi}} A_{o_{L},(\varepsilon, \pi)},
\end{gathered}
$$

where on the right-hand side a morphism of pairs $\hat{\beta}:(\underline{\hat{M}}, f) \xrightarrow{\sim}\left(\hat{\underline{M}}^{\prime}, f^{\prime}\right)$ is defined to be an isomorphism of local shtukas $\hat{\beta}: \underline{\hat{M}} \xrightarrow{\sim} \underline{\underline{M}}^{\prime}$ satisfying $f^{\prime}=\hat{\beta} \circ f$.

Proof. Suppose that $(\underline{\mathcal{M}}, \alpha)$ is a good model of \underline{M}_{L}. In the proof of 5.3 we have seen that its completion $\underline{\hat{\mathcal{M}}}:=\underline{\mathcal{M}} \otimes_{A_{o_{L}, \pi}} A_{o_{L},(\varepsilon, \pi)}$ is a local shtuka at ε. The F-equivariant isomorphism $\alpha: M_{L} \xrightarrow{\sim} \mathcal{M}[1 / \pi]$ of $A_{o_{L}, \pi}[1 / \pi]$-modules induces
the isomorphism

$$
\begin{aligned}
f & :=\alpha \otimes \operatorname{id}_{A_{o_{L},(\varepsilon, \pi)}[1 / \pi]}: M_{L} \otimes_{A_{o_{L}, \pi}[1 / \pi]} A_{o_{L},(\varepsilon, \pi)}[1 / \pi] \\
& \sim \hat{\mathcal{M}} \otimes_{A_{o_{L},(\varepsilon, \pi)}} A_{o_{L},(\varepsilon, \pi)}[1 / \pi]
\end{aligned}
$$

which is F-equivariant, and satisfies $\mathcal{M}=f\left(M_{L}\right) \cap \hat{\mathcal{M}}$, because $A_{o_{L}, \pi}=$ $A_{o_{L}, \pi}[1 / \pi] \cap A_{o_{L},(\varepsilon, \pi)}$.

To see that this functor is fully faithful let (\mathcal{M}, α) and $\left(\mathcal{M}^{\prime}, \alpha^{\prime}\right)$ be good models of \underline{M}_{L} and let $\hat{\beta}:(\underline{\hat{\mathcal{M}}}, f):=(\underline{\mathcal{M}}, \alpha) \otimes_{A_{o_{L}, \pi}} A_{o_{L},(\varepsilon, \pi)} \xrightarrow{\sim}\left(\underline{\hat{\mathcal{M}}^{\prime}}, f^{\prime}\right):=$ $\left(\underline{\mathcal{M}^{\prime}}, \alpha^{\prime}\right) \otimes_{A_{o_{L}, \pi}} A_{o_{L},(\varepsilon, \pi)}$ be an isomorphism. This means $f^{\prime}=\hat{\beta} \circ f$. Applying $\mathcal{M}=f\left(M_{L}\right) \cap \hat{\mathcal{M}}$ and $\mathcal{M}^{\prime}=f^{\prime}\left(M_{L}\right) \cap \hat{\mathcal{M}}^{\prime}$ we see that $\hat{\beta}(\mathcal{M})=\mathcal{M}^{\prime}$. Therefore $\beta:=\left.\hat{\beta}\right|_{\mathcal{M}}: \mathcal{M} \xrightarrow{\sim} \mathcal{M}^{\prime}$ is the desired isomorphism satisfying $\beta \otimes \mathrm{id}_{A_{o_{L},(\varepsilon, \pi)}}=\hat{\beta}$. This implies $\alpha^{\prime}=\beta \circ \alpha$ and the F-equivariance of β, and hence $\beta:(\mathcal{M}, \alpha) \xrightarrow{\sim}$ $\left(\underline{\mathcal{M}^{\prime}}, \alpha^{\prime}\right)$.

To prove essential surjectivity, let a local shtuka $\underline{\hat{M}}$ together with an isomorphism $f: \underline{M}_{L} \otimes_{A_{o_{L}, \pi}[1 / \pi]} A_{o_{L},(\varepsilon, \pi)}[1 / \pi] \xrightarrow{\sim} \underline{\hat{M}}[1 / \pi]$ be given. It remains to show that the $(\varepsilon, \pi) A_{o_{L}, \pi}$-adic completion $\underline{\hat{\mathcal{M}}}:=\underline{\mathcal{M}} \otimes_{A_{o_{L}, \pi}} A_{o_{L},(\varepsilon, \pi)}$ of the good model $\mathcal{M}=M_{L} \cap f^{-1}(\hat{M})$ gained in the proof of 5.3 gives back $\underline{\hat{M}}$. Then we take α as the canonical isomorphism id : $\mathcal{M} \otimes_{A_{o_{L}, \pi}} A_{o_{L}, \pi}[1 / \pi] \xrightarrow{\sim} M_{L}$. By construction of $\underline{\mathcal{M}}$, the map f restricts to an embedding $\mathcal{M} \hookrightarrow \hat{M}$, which in turn induces an F-equivariant and $A_{o_{L},(\varepsilon, \pi)}$-linear map $\psi:=\left.f\right|_{\hat{\mathcal{M}}}: \hat{\mathcal{M}} \rightarrow \hat{M}$, which becomes an isomorphism after inverting π. Our aim is to show that already the map ψ is an isomorphism $(\mathcal{M}$, id $) \otimes_{A_{o_{L}, \pi}} A_{o_{L},(\varepsilon, \pi)} \xrightarrow{\sim}(\hat{\underline{M}}, f)$. According to Remark 5.4 we have to use the Frobenius morphisms $F_{\hat{\mathcal{M}}}$ and $F_{\hat{M}}$ in an essential way.

We know that \mathcal{M} is finite free over $o_{L}\langle z\rangle$ and that $\mathrm{rk}_{o_{L} \llbracket z \rrbracket}(\hat{\mathcal{M}})=\mathrm{rk}_{o_{L} \llbracket z \rrbracket}(\hat{M})=$: s. We fix an $o_{L} \llbracket z \rrbracket$-basis \mathfrak{B} (respectively, \mathfrak{C}) of $\hat{\mathcal{M}}$ (respectively, of \hat{M}) and let $\mathbf{A}=\mathfrak{C}[\psi]_{\mathfrak{B}} \in o_{L} \llbracket z \rrbracket^{s \times s}$ be the matrix which describes ψ with respect to \mathfrak{B} and \mathfrak{C}. Likewise, we let

$$
\mathbf{T}=\mathfrak{B}\left[F_{\hat{\mathcal{M}}}\right]_{\sigma^{*} \mathfrak{B}}, \quad \mathbf{T}^{\prime}=\mathfrak{C}\left[F_{\hat{M}}\right]_{\sigma^{*} \mathfrak{C}}
$$

be the matrices corresponding to $F_{\hat{\mathcal{M}}}$ and $F_{\hat{M}}$, so that $\mathbf{A T}=\mathbf{T}^{\prime} \sigma(\mathbf{A})$ by virtue of the F-equivariance of ψ. In order to see that ψ is an isomorphism, we need to show that $\operatorname{det}(\mathbf{A})$ is a unit in $o_{L} \llbracket z \rrbracket$. To begin with, an elementary application of the Weierstraß Division Theorem for $o_{L} \llbracket z \rrbracket$ ([8, VII.3.8.5]) shows that the kernel of the epimorphism $o_{L} \llbracket z \rrbracket \rightarrow o_{L}, z \mapsto \zeta$, is generated by $z-\zeta$, so that the latter is a prime element of $o_{L} \llbracket z \rrbracket$. Furthermore, recall that $o_{L} \llbracket z \rrbracket$, being a regular local ring, is factorial ($[20], 20.3$). We know that $\hat{\mathcal{M}}$ is a local shtuka, so that $F_{\hat{\mathcal{M}}}$ becomes an isomorphism after inverting $z-\zeta$ which means that $\operatorname{det}(\mathbf{T})^{-1}$ lies in $o_{L} \llbracket z \rrbracket\left[\frac{1}{z-\zeta}\right]$. Say we have a relation $(z-\zeta)^{e}=\operatorname{det}(\mathbf{T}) u$ in $o_{L} \llbracket z \rrbracket$, for some $e \geq 0$ and some $u \in o_{L} \llbracket z \rrbracket$. By a comparison of powers of $z-\zeta$, we
may assume that u is not divisible by $z-\zeta$. In this equation there is only one prime element of $o_{L} \llbracket z \rrbracket$ occurring on both sides, which, by factoriality, implies that u has to be a unit in $o_{L} \llbracket z \rrbracket$. Let $(z-\zeta)^{e^{\prime}}=\operatorname{det}\left(\mathbf{T}^{\prime}\right) u^{\prime}$ be the corresponding relation for the local shtuka \hat{M}, with a unit $u^{\prime} \in o_{L} \llbracket z \rrbracket^{\times}$and some suitable $e^{\prime} \geq 0$. Since $\hat{\mathcal{M}} \rightarrow \hat{M}$ becomes an isomorphism after inverting π, we see that $\operatorname{det}(\mathbf{A}) \in$ $o_{L} \llbracket z \rrbracket[1 / \pi]^{\times}$. Note that the natural reduction-mod-z map $o_{L} \llbracket z \rrbracket \rightarrow o_{L}, h \mapsto h(0)$, induces an epimorphism of Abelian groups $o_{L} \llbracket z \|\left[\frac{1}{\pi}\right]^{\times} \rightarrow L^{\times}$, so that the absolute term $\delta:=\operatorname{det}(\mathbf{A})(0)$ of $\operatorname{det}(\mathbf{A})$ lies in L^{\times}. By virtue of the relations derived above, the equation $\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{T})=\operatorname{det}\left(\mathbf{T}^{\prime}\right) \sigma(\operatorname{det}(\mathbf{A}))$ yields

$$
\operatorname{det}(\mathbf{A}) u^{-1}(z-\zeta)^{e}=u^{\prime-1}(z-\zeta)^{e^{\prime}} \sigma(\operatorname{det}(\mathbf{A}))
$$

which modulo z gives $\delta^{q-1}=\frac{u^{\prime}(0)}{u(0)}(-\zeta)^{e-e^{\prime}}$ in L^{\times}. Suppose for a moment that $e=e^{\prime}$. In this case it follows at once that δ is a unit in o_{L}, so that $\operatorname{det}(\mathbf{A})$ is a unit in $o_{L} \llbracket z \rrbracket$. Therefore it remains to verify that our assumption $e=e^{\prime}$ is justified. This can be seen as follows: The reduction-mod- π map $o_{L} \llbracket z \rrbracket \rightarrow \ell \llbracket z \rrbracket$ is an epimorphism with kernel $\pi o_{L} \llbracket z \rrbracket$, and via applying the functor $\cdot \otimes_{o_{L} \llbracket z \rrbracket} \ell \llbracket z \rrbracket$ to $F_{\hat{M}}: \sigma^{*} \hat{M} \rightarrow \hat{M}$ we obtain a commutative diagram

where in the upper row (respectively, the bottom row) both modules are finite free of the same rank over $o_{L} \llbracket z \rrbracket$ (respectively, over $\left.\ell \llbracket z \rrbracket\right)$ and the arrow is given by $F_{\hat{M}}$ (respectively, by $\left.\bar{F}=F_{\hat{M}} \otimes \mathrm{id}_{\ell \llbracket z \rrbracket}\right)$. The reduced matrix $\overline{\mathbf{T}^{\prime}} \in \ell \llbracket z \rrbracket^{s \times s}$ describes the map \bar{F} with respect to the $\ell \llbracket z \rrbracket$-bases $\overline{\sigma^{*}} \overline{\mathfrak{C}}=\bar{\sigma}^{*} \overline{\mathfrak{C}}$ of $\bar{\sigma}^{*} \hat{M} / \pi \hat{M}$ and $\overline{\mathfrak{C}}$ of $\hat{M} / \pi \hat{M}$ respectively, and from what we have seen before, we derive the relation $\operatorname{det}\left(\overline{\mathbf{T}^{\prime}}\right) \overline{u^{\prime}}=z^{e^{\prime}}$, i.e. $e^{\prime}=\operatorname{ord}_{z}\left(\operatorname{det}\left(\overline{\mathbf{T}^{\prime}}\right)\right)$, the latter being true since $\overline{u^{\prime}} \in \ell \llbracket z \rrbracket^{\times}$. In particular we have $\operatorname{det}\left(\overline{\mathbf{T}^{\prime}}\right) \in \ell \llbracket z \rrbracket-\{0\}$. A similar observation for the local shtuka $\hat{\mathcal{M}}$ instead of \hat{M} shows that $e=\operatorname{ord}_{z}(\operatorname{det}(\overline{\mathbf{T}}))$. Let $C=\operatorname{coker}\left(F_{\hat{\mathcal{M}}}\right)$ and $C^{\prime}=\operatorname{coker}\left(F_{\hat{M}}\right)$. Multiplication with the matrix $\overline{\mathbf{T}^{\prime}}$ gives rise to a finite presentation $\ell \llbracket z \rrbracket^{s} \rightarrow \ell \llbracket z \rrbracket^{s} \rightarrow C^{\prime} / \pi C^{\prime} \rightarrow 0$. Taking determinants in an equation of the form $\mathbf{S}_{1} \overline{\mathbf{T}^{\prime}} \mathbf{S}_{2}=\operatorname{Diag}\left(a_{1}, \ldots, a_{d}, 0,0, \ldots, 0\right)$, where $\mathbf{S}_{1}, \mathbf{S}_{2} \in \mathrm{Gl}_{s}(\ell \llbracket z \rrbracket)$ are suitable matrices such that $a_{1}, \ldots, a_{d} \in \ell \llbracket z \rrbracket-\{0\}$ are the elementary divisors of $\overline{\mathbf{T}^{\prime}}$ (see [7], VII.4.5.1), yields that necessarily $d=s$, so that $C^{\prime} / \pi C^{\prime}$ is a torsion $\ell \llbracket z \rrbracket$-module and

$$
C^{\prime} / \pi C^{\prime} \cong \ell \llbracket z \rrbracket / a_{1} \ell \llbracket z \rrbracket \oplus \ldots \oplus \ell \llbracket z \rrbracket / a_{s} \ell \llbracket z \rrbracket \cong \ell^{n_{1}} \oplus \ldots \oplus \ell^{n_{s}}
$$

where $n_{j}=\operatorname{ord}_{z}\left(a_{j}\right)$ and $\sum_{j} n_{j}=e^{\prime}$, i.e. $e^{\prime}=\operatorname{ord}_{z}\left(\operatorname{det}\left(\overline{\mathbf{T}^{\prime}}\right)\right)=\operatorname{rk}_{\ell}\left(C^{\prime} / \pi C^{\prime}\right)=$ $\mathrm{rk}_{o_{L}}\left(C^{\prime}\right)$, the latter equation being valid since $C^{\prime} / \pi C^{\prime} \cong C^{\prime} \otimes_{o_{L} \llbracket z \rrbracket} \ell \llbracket z \rrbracket$. Finally,
imitating this argument for the local shtuka $\hat{\mathcal{M}}$ yields that $e=\operatorname{ord}_{z}(\operatorname{det}(\overline{\mathbf{T}}))=$ $\mathrm{rk}_{\ell}(C / \pi C)=\mathrm{rk}_{o_{L}}(C)$. So it remains to show that $\mathrm{rk}_{o_{L}}(C)=\mathrm{rk}_{o_{L}}\left(C^{\prime}\right)$. Indeed, we know that $\psi: \hat{\mathcal{M}} \rightarrow \hat{M}$ gives back f in the generic fiber, which means that ψ is an isomorphism after inverting π. Therefore, inverting π in the commutative diagram with exact rows

exhibits $\left(\sigma^{*} \psi\right)[1 / \pi]=\sigma^{*}(\psi[1 / \pi])$ and $\psi[1 / \pi]$ as $o_{L} \llbracket z \rrbracket[1 / \pi]$-linear isomorphisms, so that the Snake Lemma yields $C^{\prime}[1 / \pi] \cong C[1 / \pi]$, and we obtain $\operatorname{rk}_{o_{L}}\left(C^{\prime}\right)=\operatorname{dim}_{L}\left(C^{\prime}[1 / \pi]\right)=\operatorname{dim}_{L}(C[1 / \pi])=\operatorname{rk}_{o_{L}}(C)$, as desired.

6. The reduction criterion for Anderson motives

Definition 6.1. (a) Let $\underline{\mathcal{M}} \in \operatorname{FMod}\left(A_{o_{L}}\right)$. Following Gardeyn [13], $\underline{\mathcal{M}}$ is called $A_{o_{L}}$-maximal if for every $\underline{\mathcal{N}} \in \operatorname{FMod}\left(A_{o_{L}}\right)$ the canonical map

$$
\operatorname{Hom}_{F \operatorname{Mod}\left(A_{o_{L}}\right)}(\underline{\mathcal{N}}, \underline{\mathcal{M}}) \rightarrow \operatorname{Hom}_{\operatorname{FMod}\left(A_{L}\right)}(\underline{\mathcal{N}}[1 / \pi], \underline{\mathcal{M}}[1 / \pi])
$$

is surjective (and hence bijective).
(b) An object $\underline{\mathcal{M}^{\prime}} \in \operatorname{FMod}\left(A_{o_{L}, \pi}\right)$ is called $A_{o_{L}, \pi}$-maximal if for every $\underline{\mathcal{N}}^{\prime} \in$ $\operatorname{FMod}\left(A_{o_{L}, \pi}\right)$ the canonical map

$$
\operatorname{Hom}_{\mathrm{FMod}\left(A_{o_{L}, \pi}\right)}\left(\underline{\mathcal{N}}^{\prime}, \underline{\mathcal{M}}^{\prime}\right) \rightarrow \operatorname{Hom}_{\mathrm{FMod}\left(A_{o_{L}, \pi}[1 / \pi]\right)}\left(\underline{\mathcal{N}}^{\prime}[1 / \pi], \underline{\mathcal{M}}^{\prime}[1 / \pi]\right)
$$

is surjective (and hence bijective).
(c) Let $\underline{M} \in \operatorname{FMod}\left(A_{L}\right)$. An object $\underline{\mathcal{M}} \in \operatorname{FMod}\left(A_{o_{L}}\right)$ is called an $A_{o_{L}}$-maximal model for \underline{M} if $\underline{\mathcal{M}}[1 / \pi] \cong \underline{M}$ inside $\operatorname{FMod}\left(A_{L}\right)(i . e . \underline{\mathcal{M}}$ is a model for $\underline{M})$ and if $\underline{\mathcal{M}}$ is $A_{o_{L}}$-maximal. Correspondingly, given $\underline{M}^{\prime} \in \operatorname{FMod}\left(A_{o_{L}, \pi}[1 / \pi]\right)$, an object $\underline{\mathcal{M}}^{\prime} \in \operatorname{FMod}\left(A_{o_{L}, \pi}\right)$ is called an $A_{o_{L}, \pi}$-maximal model for \underline{M}^{\prime} if $\underline{\mathcal{M}}^{\prime}[1 / \pi] \cong \underline{M}^{\prime}$ inside $\operatorname{FMod}\left(A_{o_{L}, \pi}[1 / \pi]\right)$ and if $\underline{\mathcal{M}}^{\prime}$ is $A_{o_{L}, \pi}$-maximal.

The existence of ($A_{o_{L}}$ and $A_{o_{L}, \pi^{-}}$)maximal models has been established in [13].

Proposition $6.2\left(\left[13, \operatorname{Proposition~2.13]).~Let~} \underline{M} \in \operatorname{FMod}\left(A_{L}\right)\right.\right.$. Then the following assertions hold:
(i) \underline{M} admits an $A_{o_{L}}$-maximal model, which is unique up to unique isomorphism;
(ii) If a model $\underline{\mathcal{M}} \in \operatorname{FMod}\left(A_{o_{L}}\right)$ of \underline{M} is good in the weak sense of Definition 4.5, then it is $A_{o_{L}}$-maximal.

The next proposition is a variant of Gardeyn's theory of maximal models.

Proposition 6.3. The following assertions hold:
(i) Every $\underline{M} \in \operatorname{FMod}\left(A_{o_{L}, \pi}[1 / \pi]\right)$ admits a maximal model, which is unique up to unique isomorphism;
(ii) If $\underline{M} \in \operatorname{FMod}\left(A_{L}\right)$ is given and if $\underline{\mathcal{M}} \in \operatorname{FMod}\left(A_{o_{L}}\right)$ is an $A_{o_{L}}$-maximal model of \underline{M} then $\underline{\mathcal{M}} \otimes_{A_{o_{L}}} A_{o_{L}, \pi} \in \operatorname{FMod}\left(A_{o_{L}, \pi}\right)$ is an $A_{o_{L}, \pi}$-maximal model of $\underline{M} \otimes_{A_{L}} A_{o_{L}, \pi}[1 / \pi] \in \operatorname{FMod}\left(A_{o_{L}, \pi}[1 / \pi]\right)$;
(iii) Let $\underline{M} \in \operatorname{FMod}\left(A_{o_{L}, \pi}[1 / \pi]\right)$ and let $\underline{\mathcal{M}} \in \operatorname{FMod}\left(A_{o_{L}, \pi}\right)$ be a model of \underline{M}. If $\underline{\mathcal{M}}$ is a good model in the weak sense of Definition 4.5, then it is $A_{o_{L}, \pi^{-}}$ maximal.

Proof. For (i) (respectively (ii); respectively (iii)), see [13], 3.3(i) (respectively 3.4(i); respectively $2.13($ ii)). Note that strictly speaking Gardeyn proves these statements for the rings $\Gamma\left(\mathfrak{A}(\infty), \mathcal{O}_{\mathfrak{A}(\infty)}\right)$ instead of $A_{o_{L}, \pi}[1 / \pi]$ and $\Gamma\left(\mathfrak{A}(\infty), \mathcal{O}_{\mathfrak{A}(\infty)}\right) \cap$ $A_{o_{L}, \pi}$ instead of $A_{o_{L}, \pi}$. His arguments carry over literally to our rings.

We may conclude:
Proposition 6.4. In the weak sense of Definition 4.5 a Frobenius A_{L}-module \underline{M} admits a good model over $A_{o_{L}}$ if and only if $\underline{M} \otimes_{A_{L}} A_{o_{L}, \pi}[1 / \pi] \in \operatorname{FMod}\left(A_{o_{L}, \pi}[1 / \pi]\right)$ admits a good model over $A_{o_{L}, \pi}$. If this is the case, the functor $(\underline{\mathcal{M}}, \alpha) \mapsto$ $\left(\underline{\mathcal{M}} \otimes_{A_{o_{L}}} A_{o_{L}, \pi}, \alpha \otimes \operatorname{id}_{A_{o_{L}, \pi}[1 / \pi]}\right)$ is an equivalence of categories between the good models of \underline{M} and the good models of $\underline{M} \otimes_{A_{L}} A_{o_{L}, \pi}[1 / \pi]$.

Proof. First suppose that \underline{M} admits a good model $\underline{\mathcal{M}} \in \operatorname{FMod}\left(A_{o_{L}}\right)$. It follows that \mathcal{M} is an $A_{o_{L}}$-maximal model of \underline{M}. Furthermore, its image $\underline{\mathcal{M}} \otimes_{A_{o_{L}}} A_{o_{L}, \pi}$ inside $\operatorname{FMod}\left(A_{o_{L}, \pi}\right)$ is an $A_{o_{L}, \pi}$-maximal model of $\underline{M} \otimes_{A_{L}} A_{o_{L}, \pi}[1 / \pi]$. Since the reduction of $\underline{\mathcal{M}}$ is canonically isomorphic to the reduction of $\underline{\mathcal{M}} \otimes_{A_{o_{L}}} A_{o_{L}, \pi}$ by Proposition 4.9, it follows that the latter is a good model.

Conversely, suppose that $\underline{M} \otimes_{A_{L}} A_{o_{L}, \pi}[1 / \pi]$ admits a good model $\underline{\widehat{\mathcal{M}}} \in$ $\operatorname{FMod}\left(A_{o_{L}, \pi}\right)$. Necessarily $\underline{\widehat{\mathcal{M}}}$ is a maximal model by Proposition 6.3 (iii). We know that there is an $A_{o_{L}}$-maximal model $\underline{\mathcal{M}} \in \operatorname{FMod}\left(A_{o_{L}}\right)$ of \underline{M} such that $\underline{\mathcal{M}} \otimes_{A_{o_{L}}} A_{o_{L}, \pi} \cong \widehat{\mathcal{M}}$, and that the reduction of $\widehat{\mathcal{M}}$ is canonically isomorphic to the reduction of $\underline{\mathcal{M}}$ by Propositions $6.2,6.3$ (ii) and 4.9. Since $\underline{\widehat{\mathcal{M}}}$ is a good model, so is \mathcal{M}. This proves the first statement and it also proves essential surjectivity of the functor.

To prove full faithfulness let $(\underline{\mathcal{M}}, \alpha)$ and $\left(\underline{\mathcal{M}}^{\prime}, \alpha^{\prime}\right)$ be good models of \underline{M} and let $\hat{\beta}: \underline{\mathcal{M}} \otimes_{A_{o_{L}}} A_{o_{L}, \pi} \xrightarrow{\sim} \underline{\mathcal{M}^{\prime}} \otimes_{A_{o_{L}}} A_{o_{L}, \pi}$ be an isomorphism in $\operatorname{FMod}\left(A_{o_{L}, \pi}\right)$ satisfying $\alpha^{\prime} \otimes \mathrm{id}=\hat{\beta} \circ(\alpha \otimes \mathrm{id})$. Since $A_{o_{L}}=A_{L} \cap A_{o_{L}, \pi}$ inside $A_{o_{L}, \pi}[1 / \pi]$, we can recover \mathcal{M} as $\mathcal{M}=\alpha(M) \cap \mathcal{M} \otimes_{A_{o_{L}}} A_{o_{L}, \pi}$. This implies $\hat{\beta}(\mathcal{M})=\mathcal{M}^{\prime}$ and $\beta:=\left.\hat{\beta}\right|_{\mathcal{M}}$ is the desired isomorphism $\beta: \underline{\mathcal{M}} \xrightarrow{\sim} \underline{\mathcal{M}}$ with $\alpha^{\prime}=\beta \circ \alpha$. This proves full faithfulness.

For Anderson A-motives Proposition 6.4 and Theorem 4.7 imply the following:
Corollary 6.5. Let \underline{M} be an Anderson A-motive over L. Then in the strong sense of Definition 4.6, \underline{M} admits a good model $\underline{\mathcal{M}}$ if and only if the associated analytic Anderson $A(1)$-motive $\underline{M} \otimes_{A_{L}} A_{o_{L}, \pi}[1 / \pi]$ admits a good model \mathcal{M}^{\prime}. If this is the case, the functor $(\underline{\mathcal{M}}, \alpha) \mapsto\left(\underline{\mathcal{M}} \otimes_{A_{o_{L}}} A_{o_{L}, \pi}, \alpha \otimes \operatorname{id}_{A_{o_{L}, \pi}[1 / \pi]}\right)$ is an equivalence of categories between the good models of \underline{M} and the good models of $\underline{M} \otimes_{A_{L}} A_{o_{L}, \pi}[1 / \pi]$.

This corollary together with Theorem 5.3 and Corollary 5.5 implies the following criterion for good reduction of Anderson A-motives, which can be regarded as an analog of the reduction criteria for Abelian varieties of Grothendieck [15, Proposition IX.5.13] and de Jong [19, 2.5].

Corollary 6.6. Let \underline{M} be an Anderson A-motive over L such that coker $\left(F_{\underline{M}}\right)$ is annihilated by \mathfrak{J}^{d} for some d. Then the following assertions are equivalent:
(i) \underline{M} admits a good model ($\underline{\mathcal{M}}, \alpha$) in the strong sense of Definition 4.6, i.e. there is an object $\underline{\mathcal{M}} \in \operatorname{FMod}\left(A_{o_{L}}\right)$ such that $\operatorname{coker}\left(F_{\underline{\mathcal{M}}}\right)$ is a finite free o_{L}-module and is annihilated by \mathfrak{J}^{d}, together with an isomorphism $\alpha: \underline{M} \xrightarrow{\sim} \mathcal{M}[1 / \pi]$ inside $\operatorname{FMod}\left(A_{L}\right)$;
(ii) There is an effective local shtuka $\underline{\hat{M}}$ at ε over o_{L} such that $\operatorname{coker}\left(F_{\hat{M}}\right)$ is annihilated by \mathfrak{J}^{d}, and an isomorphism $\underline{M} \otimes_{A_{L}} A_{o_{L},(\varepsilon, \pi)}[1 / \pi] \cong \underline{\hat{M}}[1 / \pi]$ inside $\operatorname{FMod}\left(A_{o_{L},(\varepsilon, \pi)}[1 / \pi]\right)$.

Moreover, there is an equivalence of categories

$$
\begin{gathered}
\\
\stackrel{\left\{\begin{array}{l}
\text { good models }(\mathcal{M}, \alpha) \text { of } \underline{M} \text { in the } \\
\text { sense of Definitions } 4.6 \text { and } 4.5
\end{array}\right\}}{\sim}\left\{\begin{array}{l}
\text { pairs }(\hat{\underline{M}}, f) \text { consisting of } \\
\bullet \text { a local shtuka } \hat{\hat{M}} \text { at } \varepsilon \text { over } o_{L}, \text { and } \\
\bullet \text { an isomorphism in } \operatorname{FMod}\left(A_{o_{L},(\varepsilon, \pi)}[1 / \pi]\right) \\
f: \underline{M} \otimes_{A_{L}} A_{o_{L},(\varepsilon, \pi)}[1 / \pi] \xrightarrow{\longrightarrow} \underline{\hat{M}}[1 / \pi]
\end{array}\right\} \\
(\underline{\mathcal{M}}, \alpha) \longmapsto(\underline{\mathcal{M}}, \alpha) \otimes_{A_{o_{L}}} A_{o_{L},(\varepsilon, \pi)},
\end{gathered}
$$

where on the right-hand side a morphism of pairs $\hat{\beta}:(\underline{\hat{M}}, f) \xrightarrow{\sim}\left(\hat{\underline{M}}^{\prime}, f^{\prime}\right)$ is defined to be an isomorphism of local shtukas $\hat{\beta}: \underline{\hat{M}} \xrightarrow{\sim} \underline{\hat{M}}^{\prime}$ satisfying $f^{\prime}=$ $\hat{\beta} \circ f$.

References

[1] G. Anderson t-motives, Duke Math. J. 53 (1986), 457-502.
[2] G. Böckle and U. Hartl, Uniformizable families of t-motives, Trans. Amer. Math. Soc. 359 (2007), 3933-3972.
[3] M. Bornhofen and U. Hartl Pure Anderson motives and Abelian τ-sheaves, Math. Z. 268 (2011), 67-100.
[4] S. Bosch, "Lectures on Formal and Rigid Geometry", Lecture Notes in Math., Vol. 2105, Springer-Verlag, Berlin, 2014.
[5] S. Bosch, U. GÜntzer and R. Remmert, "Non-Archimedean Analysis", Grundlehren, Vol. 261, Springer-Verlag, Berlin, 1984.
[6] S. Bosch and W. LÜtkebohmert, Formal and rigid geometry I. Rigid spaces, Math. Ann. 295 (1993), 291-317.
[7] N. Bourbaki, "Eléments de mathématique - Algèbre", Masson, Paris, 1981.
[8] N. Bourbaki, "Eléments de mathématique - Algèbre Commutative", Hermann, Paris, 1967.
[9] V. G. Drinfeld, Elliptic modules, Math. USSR-Sb. 23 (1976), 561-592.
[10] D. Eisenbud, "Commutative Algebra with a View Toward Algebraic Geometry", GTM Vol. 150, Springer-Verlag, Berlin, 1995.
[11] J. FRESNEL and M. VAN DER PUT, "Géométrie analytique rigide et applications", Progress in Mathematics, Vol. 218, Birkhäuser, Basel, 2004.
[12] F. Gardeyn, A Galois criterion for good reduction of τ-sheaves, J. Number Theory 97 (2002), 447-471.
[13] F. Gardeyn, The structure of analytic τ-sheaves, J. Number Theory 100 (2003), 332-362.
[14] A. GROTHENDIECK, "Élements de géométrie algébrique", Publ. Math. IHES, Vol. 4, 8, 11, $17,20,24,28,32$, Bures-Sur-Yvette, 1960-1967; see also Grundlehren, Vol. 166, SpringerVerlag, Berlin, 1971.
[15] P. Deligne, A. Grothendieck et al., "SGA 7: Groupes de monodromie en géométrie algébrique", LNM, Vol. 288, Springer, Berlin-Heidelberg, 1972.
[16] U. HARTL, A dictionary between Fontaine-theory and its analogue in equal characteristic, J. Number Theory 129 (2009), 1734-1757.
[17] U. Hartl, Period spaces for Hodge structures in equal characteristic, Ann. of Math. 173 (2011), 1241-1358.
[18] U. HARTL and R. K. Singh, Local shtukas and divisible local Anderson-modules, in preparation.
[19] A. J. DE JONG, Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math. 134 (1998), 301-333.
[20] H. Matsumura, "Commutative Ring Theory", Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge University Press, 1986.
[21] H. Matzat, Introduction to Drinfeld modules, In: "Drinfeld Modules, Modular Schemes and Applications" (Alden-Biesen, 1996), World Sci. Publishing, River Edge, NJ, 1997, 316.
[22] J.-P. SERRE and J. Tate, Good reduction of Abelian varieties, Ann. of Math. 88 (1968), 492-517.

Universität Münster
Mathematisches Institut
Einsteinstr. 62
D-48149 Münster, Germany
urs.hartl@uni-muenster.de

