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Multiple zeta values, Padé approximation and Vasilyev’s conjecture

STÉPHANE FISCHLER AND TANGUY RIVOAL

Abstract. Sorokin gave in 1996 a new proof that ⇡ is transcendental. It is
based on a simultaneous Padé approximation problem involving certain multiple
polylogarithms, which evaluated at the point 1 are multiple zeta values equal to
powers of ⇡ . In this paper we construct a Padé approximation problem of the
same flavour, and prove that it has a unique solution up to proportionality. At the
point 1, this provides a rational linear combination of 1 and multiple zeta values
in an extended sense that turn out to be values of the Riemann zeta function at odd
integers. As an application, we obtain a new proof of Vasilyev’s conjecture for
any odd weight, which concerns the explicit evaluation of certain hypergeometric
multiple integrals, first proved by Zudilin in 2003.

Mathematics Subject Classification (2010): 11M32 (primary); 41A21, 11J72,
33C60 (secondary).

1. Introduction

The goal of this paper is to provide a completely new proof of Vasilyev’s conjecture
for any odd weight d � 3 by solving a simultaneous Padé approximation problem
involving multiple polylogarithms. Before explaining in detail our approach, we
provide some background. Vasilyev [21] conjectured in 1996 that, for any integers
d � 2 and n � 0,

Jd,n :=

Z
[0,1]d

Qd
j=1 xnj (1� x j )ndx j
Qd(x1, . . . , xd)n+1

2 Q+Q⇣(2+ed)+Q⇣(4+ed)+· · ·+Q⇣(d)

(1.1)
where ed = 0 if d is even, ed = 1 otherwise, and Q1(x1) := 1� x1,

Qd(x1, . . . , xd) := 1� Qd�1(x1, . . . , xd�1)xd , d � 2
= 1�

�
1� (· · · 1� (1� x1)x2 · · · )xd�1

�
xd .
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This conjecture was already known to be true for d = 2 and d = 3, since Beuk-
ers [3] used these integrals to get new and quick versions of Apéry’s proofs [1]
of the irrationality of ⇣(2) and ⇣(3). Beukers’ integrals were generalized by Rhin
and Viola in [13, 14] to get the best known to date irrationality measures of ⇣(2)
and ⇣(3) (see however [26]). Vasilyev himself proved his conjecture in the cases
d = 4 and d = 5, results which in fact led him to the conjecture. The first
complete proof was given by Zudilin [25] who showed that Jd,n is equal to a
very-well-poised hypergeometric series whose value was already known to be in
Q + Q⇣(2 + ed) + Q⇣(4 + ed) + · · · + Q⇣(d). Two other proofs of Vasilyev’s
conjecture were subsequently found, one by Zlobin [23] (direct attack) and another
indirect one by Krattenthaler-Rivoal [12] (limiting case of Andrews’ hypergeomet-
ric identity, in the spirit of Zudilin). The fourth one, given in the present paper, is
completely different since it relies on solving a simultaneous Padé approximation
problem involving multiple polylogarithms.

To state this problem we need some notation. Given any finite word � built
on a (possibly infinite) alphabet {a, b, . . .}, we denote by {� } j := �� · · · � the
concatenation j times of � . By convention, {� }0 = ;. We will use two alphabets,
namely N⇤

= {1, 2, . . .} and {`, s}. We consider multiple polylogarithms in the
following extended sense:

Lia1a2···ap�1b1b2···bp (z) :=

X
k1&k2&···&kp�1

zk1

kb11 k
b2
2 · · · kbpp

; (1.2)

here |z| < 1, b j 2 N⇤ and a j 2 {`, s} for all j . For j = 1, . . . , p � 1, the symbol
& 2 {>,�} in k j & k j+1 is determined by the following rule: it is set to > if
a j = s, and to � if a j = `. In this way, s stands for a strict inequality, and ` for a
large one. If a j = s for any j we obtain the usual multiple polylogarithm

Li{s}p�1b1b2···bp (z) = Lib1b2···bp (z) =

X
k1>k2>···>kp�1

zk1

kb11 k
b2
2 · · · kbpp

;

if a j = ` for any j we obtain the variant denoted by Lab1b2···bp (z) in [4] and by
Leb1b2···bp (z) by Ulanskiı̆ and Zlobin, namely

Li{`}p�1b1b2···bp (z) =

X
k1�k2�···�kp�1

zk1

kb11 k
b2
2 · · · kbpp

.

For instance, Li`2,1(z) =

P
k1�k2�1

zk1
k21k2

plays a central role in Sorokin’s proof [19]
that ⇣(3) is irrational. Sorokin has also used in [20] the functions

Li{s`}r
{1}2r+1(1� x) =

X
k1>k2�k3>k4�···>k2r�k2r+1�1

(1� x)k1
k1k2 · · · k2r+1
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and
Li{`s}r�1`

{1}2r (1� x) =

X
k1�k2>k3�k4>···>k2r�1�k2r�1

(1� x)k1
k1k2 · · · k2r

,

which he denoted respectively by "r (x) and 'r (x). In this paper, all multiple poly-
logarithms Lia1a2···ap�1b1b2···bp (z) will be considered for z 2 C \ [1,1) using analytic
continuation. As usual, the integer p in (1.2) is called the depth or length, and
b1 + · · · + bp is the weight. The need to consider interlacings of strict and large
multiple summations for the summand of Lia1a2···ap�1b1b2···bp (z) naturally occurred to us as
an effect of reducing our Padé problem to the one in Sorokin’s paper [20] through
differentiation and the change of variable z ! 1� z.

Our main result is the explicit resolution of the following simultaneous Padé
approximation problem. Given integers n, r � 0, we want to find polynomials
A⇢,r,n(z), B⇢,r,n(z), C⇢,r,n(z), Dr,n(z) 2 C[z], for 0  ⇢  r , all of degree at most
n, such that

Sr,n(z) :=

rX
⇢=0


A⇢,r,n(z)Li

{`s}⇢`

2{1}2⇢+1

⇣1
z

⌘
+ B⇢,r,n(z)Li

{`s}⇢`

{1}2⇢+2

⇣1
z

⌘

+ C⇢,r,n(z)Li
{s`}⇢
{1}2⇢+1

⇣1
z

⌘�
+ Dr,n(z) = O

⇣ 1
z(r+1)(n+1)

⌘

Uj,r,n(z) :=

rX
⇢= j

A⇢,r,n(z)Li
{`}r�⇢

1{2}r�⇢
(1� z) + Bj,r,n(z)

= O
�
(1� z)n+1

�
, j = 0, . . . , r

Vj,r,n(z) :=

rX
⇢= j

A⇢,r,n(z)Li
{`}r�⇢

{2}r�⇢+1
(1� z) + C j,r,n(z)

= O
�
(1� z)n+1

�
, j = 0, . . . , r.

We will denote by Pr,n this Padé approximation problem. The various symbols O
have the following meaning. The function Sr,n(z) is obviously analytic at z = 1

and we ask its order there to be at least (r + 1)(n + 1). Similarly, the functions
Uj,r,n(z) and Vj,r,n(z) are analytic at z = 1 and we ask their orders there to be at
least n+1. This is a mixed Padé approximation problem, namely in between type I
problems and type I I problems. Similar mixed Padé approximation problems often
occur in the Diophantine theory of (multiple) zeta values; see for instance [10, 19,
20].

The problem Pr,n can be trivially converted into a linear algebra problem. In-
deed, after noticing that Dr,n(z) is automatically determined by the polynomials
A⇢,r,n(z), B⇢,r,n(z), and C⇢,r,n(z) as the polynomial part of Sr,n(z) as z ! 1, this
Padé approximation problem amounts to solving a system of 3(r + 1)(n + 1) � 1
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linear equations in 3(r + 1)(n + 1) unknowns (the coefficients of the polynomials
A⇢,r,n(z), B⇢,r,n(z), and C⇢,r,n(z)). Hence, there is at least one non identically zero
solution. Our main theorem shows that the solution is unique up to a multiplicative
constant.

Theorem 1.1. For any integers n, r � 0, the function Sr,n(z) in Pr,n is given by
the following hypergeometric integral (up to a multiplicative constant), which con-
verges for any z 2 C \ [0, 1):

Sr,n(z) = (�1)n+1z(r+1)(n+1)

⇥

Z
[0,1]2r+3

u(r+1)(n+1)�1
0 (1�u0)n

r+1Q
j=1

�
(u jv j )(r� j+2)(n+1)�1(1�u j )n(1�v j )

n�
r+1Q
j=1

�
(z � u0u1v1 · · · u j�1v j�1u j )n+1(z � u0u1v1 · · · u jv j )n+1

� dudv.

(1.3)

For r = 0, the problem P0,n and the integral for S0,n(z) exactly match those con-
sidered by Sorokin in [19]. However, our derivation of the integral for S0,n(z) is
different from Sorokin’s.

For any r � 0, the integral representation (1.3) provides a new proof of Vasi-
lyev’s conjecture for odd weights, by taking z = 1 (see Section 2 for details).
It would be very interesting to obtain a new proof of the infiniteness of irrational
values among the ⇣(2r+1) (see [2,16]) by solving a Sorokin-type Padé problem in-
volving multiple polylogarithms as in Theorem 1.1, as Sorokin did [19] for Apéry’s
theorem (see Section 6 at the end of the paper).

As alluded to above, Theorem 1.1 is based on Sorokin’s proof [20] of the tran-
scendence of ⇡ , which relies on the resolution of a simultaneous Padé approxima-
tion problem involving certain multiple polylogarithms (see Section 5.3 for details),
as well as on the identity Li{s}r�1

{2}r (1) =
⇡2r

(2r+1)! for any integer r � 1.
The integral for Sr,n(z) can be used to get explicit expressions of the polynomi-

als, all of which obviously have rational coefficients. This can be done by various
means, for instance one can convert the integral into the series

Sr,n(z) =

n!
X

k0�···�k2r+1�1

(k0 � k1 + 1)n(k1 � k2 + 1)n · · · (k2r � k2r+1 + 1)n(k2r+1 � n)n
rY
j=0

�
(k2 j + (r � j)(n + 1))e jn+1(k2 j+1 + (r � j)(n + 1))n+1

�

⇥

1
zk0+r(n+1)

(where e0 = 2 and e j = 1 for j � 1) and then use the algorithm described in [4].
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The paper is organized as follows. In Section 2, we deduce Vasilyev’s con-
jecture for odd values of d from Theorem 1.1. In Section 3, we present a few
tools needed for the proof of Theorem 1.1, in particular an iterative construction of
hypergeometric multiple integrals. In Section 4, we prove an important representa-
tion formula for multiple polylogarithms and derive a few consequences useful in
the resolution of Pr,n . Section 5, devoted to the proof of Theorem 1.1, is decom-
posed in many steps. The first two steps show how to reduce the problem Pr,n to
Sorokin’s problem for ⇡2 (recalled in Section 5.3) and the subsequent steps com-
plete the proof. At last we construct in Section 6 a family of integrals, containing
(1.3), which enable one to prove that infinitely many odd zeta values ⇣(2r + 1) are
irrational [2, 16].

2. A new proof of Vasilyev’s conjecture for odd weights

To deduce Vasilyev’s conjecture from Theorem 1.1, we first define (when b1 � 2)
extended multiple zeta values by

⇣
a1a2···ap�1
b1b2···bp := Lia1a2···ap�1b1b2···bp (1) =

X
k1&k2&···&kp�1

1

kb11 k
b2
2 · · · kbpp

(2.1)

with the same definition for the symbols& as in Equation (1.2). In particular, when
a j = s for all j , we have the usual multiple zeta values ⇣ {s}p�1

b1b2···bp=⇣(b1, b2, . . . ,bp).
Then we remark that the Padé conditions for the functions Uj,r,n(z) and

Vj,r,n(z) in Pr,n ensure that all polynomials Bj,r,n(z) and C j,r,n(z) vanish at z = 1
( j = 0, . . . , r). Since multiple polylogarithms have (at most) a logarithmic sin-
gularity at z = 1, this implies that when we take the limit z ! 1 in (1.3), we
get

(�1)n+1
Z

[0,1]2r+3

⇥

u(r+1)(n+1)�1
0 (1� u0)n

r+1Y
j=1

�
(u jv j )(r� j+2)(n+1)�1(1� u j )n(1� v j )

n�

r+1Y
j=1

�
(1� u0u1v1 · · · u j�1v j�1u j )n+1(1� u0u1v1 · · · u jv j )n+1

� dudv

=

rX
⇢=0

A⇢,r,n(1)⇣
{`s}⇢`

2{1}2⇢+1
+ Dr,n(1)

where A⇢,r,n(1) and Dr,n(1) are rational numbers. Moreover, it is proved in [7,
Corollaire 8] that this multiple integral is equal to J2r+3,n for any integer r � 0 (see
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also Section 6 below). To complete the proof of Vasilyev’s conjecture in this case,
we simply need the following result, which plays the same role for us as the identity
Li{s}r�1

{2}r (1) =
⇡2r

(2r+1)! for Sorokin in [20].

Proposition 2.1. For any integer k � 1, we have

⇣
{`s}k�1`
2{1}2k�1 = ⇣

{`}k
{2}k1 = 2⇣(2k + 1). (2.2)

Proof. The second equality in (2.2) is proved in Zlobin’s paper [24]. To prove the
first equality, which we have not found in the literature, we use the representation
of (extended) multiple zeta values as Chen iterated integrals. Indeed, we have

⇣
{`s}k�1`
2{1}2k�1

=

Z
{0x2k+1···x11}

dx
x1x2(1�x2)(1�x3)x4(1�x4)(1�x5) · · · x2k(1�x2k)(1�x2k+1)

=

Z
{0y2k+1···y11}

dy
y1y2(1� y2)y3y4(1� y4)y5 · · · y2k(1� y2k)(1�y2k+1)

=⇣
{`}k
{2}k1,

where we have made the change of variables x j =1�y2k+2� j , j=1, . . . , 2k+1.

It is in general very difficult to evaluate Sorokin-type integrals such as (1.3)
(at z = 1) explicitly. It is proved in [4] that they are always rational linear forms
in multiple zeta values. It is much more difficult to specify which multiple zeta
values have a non zero coefficient; see the papers [5, 9] for some partial results in
the general case. In the papers [15, 17, 22], certain specific integrals are shown to
yield only zeta values (i.e., multiple zeta values of depth 1), which is a non-trivial
step. In the integral (1.3), the information is one level higher, with the cancelation
of even zeta values when z = 1.

3. General results on multiple polylogarithms

We gather in this section various results, useful in the proof of Theorem 1.1 but
which may also be of independent interest.

3.1. Differentiation rules for multiple polylogarithms

In this section, we describe how to differentiate a multiple polylogarithm. To begin
with, we state formulas of which the proofs are straightforward; we will use them
without further mentions. The letter a denotes a finite word built on the alphabet
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{`, s}, the letter b a finite word built on the alphabet N⇤, and t any integer � 2.
d
dz
Li1(z) =

1
1� z

,
d
dz

h
Li1

⇣1
z

⌘i
=

1
z(1� z)

,

d
dz
Li`a1b(z) =

1
z(1� z)

Liab(z),
d
dz

h
Li`a1b

⇣1
z

⌘i
=

1
1� z

Liab
⇣1
z

⌘
,

d
dz
Li`atb(z) =

1
z
Li`a(t�1)b(z),

d
dz

h
Li`atb

⇣1
z

⌘i
= �

1
z
Li`a(t�1)b

⇣1
z

⌘
,

d
dz
Lisa1b(z) =

1
1� z

Liab(z),
d
dz

h
Lisa1b

⇣1
z

⌘i
=

1
z(1� z)

Liab
⇣1
z

⌘
,

d
dz
Lisatb(z) =

1
z
Lisa(t�1)b(z),

d
dz

h
Lisatb

⇣1
z

⌘i
= �

1
z
Lisa(t�1)b

⇣1
z

⌘
.

We now state a general lemma, whose proof can be done by induction using
the formulas above.
Lemma 3.1. Let d, n � 0, and A(z) 2 C[z] be a polynomial of degree  d. Then
we have

dn+1

dzn+1
�
A(z)Lia1a2···ap�1b1b2···bp (z)

�
=

p+1X
i=0

biX
b0

=1

bAi,b0(z)
zn+1(1� z)n+1

Liai ai+1···ap�1b0bi+1bi+2···bp (z)

for some polynomials bAi,b0(z) of degree  d + n + 1; here we let bp+1 = 1 so
that in the sum there is one term corresponding to i = p + 1, and the associated
polylogarithm is equal to 1.

It is not difficult to see that in this lemma, each polynomial bAi,b0(z) depends
only on b1, . . . , bi�1, a1, . . . , ai�1, and bi �b0. However we will not use this remark
in the present paper.

Using the above relations in the same way, an analogous lemma yields poly-
nomials bA0

i,b0
(z) of degree  d + n + 1 such that

dn+1

dzn+1
�
A(z)Lia1a2···ap�1b1b2···bp (1/z)

�
=

p+1X
i=0

biX
b0

=1

bA0

i,b0
(z)

zn+1(1� z)n+1
Liai ai+1···ap�1b0bi+1bi+2···bp (1/z).

To take advantage of vanishing conditions like the ones on Uj,r,n(z) and Vj,r,n(z)
in the Padé problem Pr,n , the following variant of Lemma 3.1 is very useful.
Lemma 3.2. Let n � 0, and g(z) be a function holomorphic at z = 1, such that
g(z) = O

�
(z � 1)n+1

�
as z ! 1. Then we have

dn+1

dzn+1
�
g(z)Lia1a2···ap�1b1b2···bp (z)

�
=

p+1X
i=0

biX
b0

=1
hi,b0(z)Liai ai+1···ap�1b0bi+1bi+2···bp (z)

for some functions hi,b0(z) holomorphic at z = 1. As in Lemma 3.1, we let bp+1 = 1
so that in the sum there is one term corresponding to i = p+ 1, and the associated
polylogarithm is equal to 1.
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In other words, no pole appears at z = 1 if g vanishes to order at least n + 1 at
this point (since polylogarithms have at most a logarithmic divergence at 1).

3.2. An integral operator

Sorokin solved several Padé approximation problems involving multiple polyloga-
rithms (see [19] and [20], amongst other papers), which always lead to hypergeo-
metric multiple integrals. We define now an integral operator intimately related to
his approach (and therefore also to Theorem 1.1).

Given integers a, b, n � 0 and a function F(z), we let

Hn+1
a,b (F)(z) = (�1)n+1zn+1�a

Z 1

0

ua+b�n�2(1� u)n

(u � z)b
F
⇣ z
u

⌘
du. (3.1)

The assumptions on F and the properties of the function Hn+1
a,b (F) defined in this

way are detailed in the following:

Lemma 3.3. Let F(z) be holomorphic onC\[0, 1] and at z = 1; denote by ! � 0
its order of vanishing at 1. Given a, b, n � 0, let !0

= ! + a + b � n � 1 and
assume that !0

� 1.
Then Hn+1

a,b (F) is holomorphic on C \ [0, 1] and at z = 1; its order of van-
ishing at 1 is exactly !0. Moreover:

(i) Letting R = Hn+1
a,b (F), we have

F(z) =

1
n!
za(1� z)bR(n+1)(z); (3.2)

(ii) If R(z) is a function holomorphic onC\[0, 1] and at z = 1 such that R(1) =

0 and Equation (3.2) holds, then R = Hn+1
a,b (F).

We shall apply this lemma in two cases: either F(1) = 0 and a + b � n+ 1, or F
is the constant function F(z) = 1 and a+b � n+2. In both cases we have !0

� 1,
so thatHn+1

a,b (F) is holomorphic onC\[0, 1] and at z = 1, andHn+1
a,b (F)(1) = 0.

Proof. Let G(z) = z!F(z); then G(z) is holomorphic on C \ [0, 1] and at1, with
G(1) 6= 0. By definition of !0 we have

Hn+1
a,b (F)(z) = (�1)n+1z�!0

Z 1

0

u!0
�1(1� u)n

(uz � 1)b
G
⇣ z
u

⌘
du.

Since !0
� 1 and u/z 6= 1 for any u 2 [0, 1] (since z 2 C \ [0, 1]), this formula

shows that Hn+1
a,b (F) is holomorphic on C \ [0, 1] and at z = 1. It has order equal

to !0 at1 because G(1) 6= 0.
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To prove (i) and (ii), we perform the change of variable x = z/u and deduce

Hn+1
a,b (F)(z) = (�1)n+1

Z
1

z

(x � z)n

xa(1� x)b
F(x)dx .

Then assertions (i) and (ii) follow immediately from the following lemma, obtained
from the arguments given in [18, page 60].

Lemma 3.4. Let R, S be functions analytic on a neighborhood of1, with R(1) =

0. Then

1
n!
R(n+1)(z) = S(z) () R(z) = (�1)n+1

Z
1

z
(x � z)nS(x)dx . (3.3)

Note that, because of the assumptions on R, the left-hand side of (3.3) automatically
implies the convergence of the integral on the right-hand side. But of course one
must also assume the convergence of the integral for the converse. Moreover, the
equivalence (3.3) is nothing but the well-known fact that the (n + 1)-th primitive
of a function (vanishing at1) can be recovered by the Riemann-Liouville operator
defined at infinity by

D↵( f )(z) =

1
0(↵)

Z z

1

(z � x)↵�1 f (x)dx .

For Diophantine applications the value Hn+1
a,b (F)(1) is often the most interesting

one; conditions for this value to exist are given by the following lemma, whose
proof is straightforward.

Lemma 3.5. Assume that b  n + 1 and F(z) has (at most) a power of logarithm
divergence as z ! 1, with z 2 C \ [0, 1] (i.e., F(z) is locally a polynomial in
log(z�1) with coefficients holomorphic at 1). ThenHn+1

a,b (F)(z) has also (at most)
a power of logarithm divergence as z ! 1, with z 2 C \ [0, 1].

Moreover, if in addition b  n then Hn+1
a,b (F)(z) has a finite limit as z !

1, with z 2 C \ [0, 1], and this limit is given by taking z = 1 in the integral
representation of Equation (3.1), which is then convergent.

In Padé approximation problems with multiple polylogarithms, multiple in-
tegrals appear by applying successively integral operators Hn+1

a,b with various pa-
rameters. We shall write Hn+1

a,b H
n0

+1
a0,b0

for Hn+1
a,b � Hn0

+1
a0,b0

, so that Hn+1
a,b H

n0
+1

a0,b0
(F) =

Hn+1
a,b (Hn0

+1
a0,b0

(F)). We shall consider in Subsections 5.4 and 5.5 multiple integrals
of the form

Hn1+1
a1,b1H

n2+1
a2,b2 · · ·Hnp+1

ap,bp (1),

where the a j , b j , n j are non-negative integers and 1 denotes the function equal to 1
onC\[0, 1]; such integrals appear in Sorokin’s papers (e.g., [19] and [20]). Lemma
3.3 gives conditions on the parameters that ensure that this integral expression is
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holomorphic on C \ [0, 1] and at z = 1, and Lemma 3.5 plays the analogous role
for the behaviour at z = 1.

In the proof of Theorem 1.1 we shall use the following result which describes
the behaviour of this integral operator under the change of variable z 7! 1� z.

Lemma 3.6. For any integers a j , b j , n j , j = 1, . . . , p such that Hn1+1
a1,b1H

n2+1
a2,b2 · · ·

· · ·Hnp+1
ap,bp (1) is holomorphic on C \ [0, 1] and at 1, we have

Hn1+1
a1,b1H

n2+1
a2,b2 · · ·H

np+1
ap,bp (1)(1�z)=(�1)p+n1+n2+···+npHn1+1

b1,a1H
n2+1
b2,a2 · · ·H

np+1
bp,ap (1)(z)

for all z 2 C \ [0, 1].

Proof. This is a consequence of the following fact. Given f (z), we set f @(z) :=

f (1� z). Then

R(z) = Hn+1
a,b (S)(z) () R@(z) = (�1)n+1Hn+1

b,a (S@)(z).

This equivalence results from Lemma 3.3:

S(z)=
1
n!
za(1�z)bR(n+1)(z)() S(1�z)=

(�1)n+1

n!
zb(1�z)a

�
R(1�z)

�(n+1)
.

3.3. Functional linear independence of polylogarithms

The extended multiple polylogarithms defined in the introduction are very use-
ful to state and prove our result, but they are not really new functions: they are
linear combinations over Z of usual multiple polylogarithms (corresponding to
↵1 = . . . = ↵p�1 = s in (1.2)). This follows from the following elementary
relation (which is the starting point of [4]):

Lia1···a j�1`a j+1···ap�1b1b2···bp (z) = Lia1···a j�1sa j+1···ap�1b1b2···bp (z) + Lia1···a j�1a j+1···ap�1b1···b j�1b0b j+2···bp (z) (3.4)

where b0
= b j + b j+1.

In the proof of Theorem 1.1 we shall use the following result.

Lemma 3.7. For any k � 0, let ak be a word on the alphabet {`, s} of length k� 1,
with a1 = a0 = ;. Then the polylogarithms Liak

{1}k (1/z), for k � 0, are linearly
independent over the fieldM0 of functions meromorphic at 1.

Proof. To begin with, let us consider for any p � 0 the set Fp of all functions
analytic onC\[0, 1] that can be written as

Pp
i=0 hi (z)(log(1�

1
z ))

i where h0(z), . . . ,
h p(z) are functions holomorphic on C \ [0, 1] and at z = 1. Of course all functions
holomorphic on C \ [0, 1] and at z = 1 belong to F0, and Li1(1/z) = � log(1�

1
z )
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belongs to F1. We claim that for any p � 0, for any ↵1, . . . ,↵p�1 2 {`, s} and any
b1, . . . , bp � 1, we have

Lia1···ap�1b1b2···bp (1/z) 2 Fp.

In other words, all multiple polylogarithms of depth p belong to Fp. This claim
can be proved using monodromy, but we shall prove it directly by induction on the
weight b1+· · ·+bp. We have already noticed that it holds if b1+· · ·+bp  1. Now
remark that if f is analytic on C \ [0, 1] and g 2 Fp is such that f 0(z) =

�1
z g(z)

then f 2 Fp, because Fp is stable under primitivation and products with functions
holomorphic at 1. On the other hand, if f 0(z) =

1
1�z g(z) or f

0(z) =
1

z(1�z)g(z)
then f 2 Fp+1. Using the differentiation rules for polylogarithms stated at the
beginning of Subsection 3.1, this proves the claim.

Now assume that for some k � 1 the function Liak
{1}k (1/z) is a linear combina-

tion overM0 of the Li
a j
{1} j (1/z) for 0  j  k � 1. Using the claim this implies

Liak
{1}k (1/z) 2 Fk�1. Now applying Equation (3.4) as many times as needed one can

write Liak
{1}k (1/z) � Li{s}k�1

{1}k (1/z) as a Z-linear combination of extended multiple
polylogarithms of depth k�1; applying the claim again proves that Li{s}k�1

{1}k (1/z) =

(�1)k
�
log(1 �

1
z )
�k belongs to Fk�1 (this identity belongs to the folklore and is

readily proved by induction and differentiation). But this provides a non-trivial
linear relation, with coefficients holomorphic at 1, between powers of the func-
tion log(1 �

1
z ). This is impossible since log(z) is transcendental over the field

of functions meromorphic at the origin. This contradiction concludes the proof of
Lemma 3.7.

4. Weight functions of multiple polylogarithms

In this section we study the weight functions of multiple polylogarithms and com-
pute some of them. This part is at the heart of the proof of Theorem 1.1, since
weights obey the same derivation rules as the corresponding polylogarithms (see
below).

Throughout this section, we consider non-empty words b. It is well-known
that usual multiple polylogarithms Liab(z) (with a = ss · · · s) can be analytically
continued to the cut plane C \ [1,+1). They vanish at z = 0 and their growth as
z ! 1 is at most a power of log(z), with 0 < arg(z) < 2⇡ . Moreover, the function
defined on the cut by

lim
y!0+

⇥
Liss···sb (x + iy) � Liss···sb (x � iy)

⇤

is C1 on (1,+1) with at most a (power of) logarithm singularity at x = 1 and
x = 1. All these properties also hold for Liab(z) for any word a because such
functions are simply linear combinations with rational coefficients of the Liss···sb (z)
(using repeatedly Equation (3.4) above).
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As an (important) application, we prove the following:

Lemma 4.1. For any fixed z 2 C \ [0, 1], any a and any b 6= ;, we have

Liab

✓
1
z

◆
=

Z 1

0

!ab(x)
z � x

dx, (4.1)

where

!ab(x) :=

1
2i⇡

lim
y!0+


Liab

✓
1
x

+ iy
◆

� Liab

✓
1
x

� iy
◆�

2 L1([0, 1]). (4.2)

The weight function !ab(x) is C
1 on (0, 1), with at most (power of) logarithm

singularities at x = 0 and x = 1.

Proof. For any fixed z 2 C \ [1,+1), let us consider the Cauchy representation
formula

Liab(z) =

z
2i⇡

Z
C

Liab(t)
t (t � z)

dt,

where C is any simple closed curve surrounding z and not crossing the cut [1,+1).
We can deform C to a simple closed curve defined as follows: given " > 0 and
R > 0 (such that |z| < R), we glue together two straight lines [1 + i", R + i"],
[1� i", R � i"], a semi-circle of center 1 and diameter [1� i", 1+ i"] and an arc
of circle of center 0 passing through R + i" and R � i" (both arcs not crossing
[1,+1)). The analytic properties of Liab(z) are such that we can let " ! 0 and
R ! 1 to get the representation

Liab(z) = z
Z

1

1

!ab(1/t)
t (t � z)

dt

= z
Z 1

0

!ab(x)
1� zx

dx (by letting x = 1/t),

where !ab(x) is defined by (4.2). We obtain (4.1) by changing z to 1/z.

(This proof is not specific to multiple polylogarithms. Such weighted integral rep-
resentations are known as Stieltjes representations; see [11, page 591, Theorem
12.10d].)

We note two important consequences of the expression (4.2) for !ab(x). To
begin with, if

d
dz


Liab

✓
1
z

◆�
= R(z)Lia

0

b0

✓
1
z

◆
,

then
d
dx

!ab(x) = R(x)!a
0

b0 (x)
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where the function R(z) is one of �

1
z
,

1
1� z

and
1

z(1� z)
(see Subsection 3.1).

In other words, weights obey the same derivation rules as the corresponding poly-
logarithms. This observation will be crucial in Subsection 5.1. Moreover, we also
remark that if the value Liab(1) is finite, then !ab(1) = 0.
Lemma 4.2. For any x 2 (0, 1) and any integer k � 0, we have

!
{`s}k�1`
{1}2k (x) = Li{s`}k�1

{1}2k�1(x), (4.3)

!
{s`}k
{1}2k+1(x) = Li{`s}k�1`

{1}2k (x), (4.4)
and

!
{`s}k`
2{1}2k+1(x) =

kX
j=0
Li{`} j1{2} j (1� x)Li{s`}k� j

{1}2k�2 j+1(x) (4.5)

+

k+1X
j=1
Li{`} j�1

{2} j (1� x)Li{`s}k� j`
{1}2k�2 j+2(x)

= �Li{s`}k2{1}2k (x) + Li{`}k
{2}k+1(1). (4.6)

Proof. Equations (4.3) and (4.4) are readily checked by expanding 1
z�x =P

1

n=0
xn
zn+1 in the integral (4.1). To prove (4.5), we remark that both sides differen-

tiate to the same function �
1
x!

{`s}k`
{1}2k+2(x) = �

1
x Li

{s`}k
{1}2k+1(x), since all functions but

this precise one are killed by telescoping when differentiating the right-hand side
of (4.5). It follows that the functions on both sides of (4.5) differ only by a con-
stant. This constant must be 0 because both sides vanish at x = 1 (see the remark
just before Lemma 4.2). The same argument yields also

!
{`s}k`
2{1}2k+1(x) = �

Z 1
x
Li{s`}k

{1}2k+1(x)dx = �Li{s`}k2{1}2k (x) + Ck

for some constant Ck . This constant is seen to be equal to Li{`}k
{2}k+1(1) by taking

x = 0 in (4.5). This proves (4.6), and concludes the proof of Lemma 4.2.

In the setting of the Padé problem Pr,n , we define the function

Pr,n(z) =

rX
⇢=0


A⇢,r,n(z)!

{`s}⇢`

2{1}2⇢+1
(z)+ B⇢,r,n(z)!

{`s}⇢`

{1}2⇢+2
(z)+C⇢,r,n(z)!

{s`}⇢
{1}2⇢+1

(z)
�

obtained from Sr,n by replacing every polylogarithmwith its weight (see Lemma 4.4
below). By (4.3), (4.4) and (4.6), this function Pr,n is analytic on the disk |z| < 1,
with a (power of) logarithm singularity at z = 1. In particular, it is in L1([0, 1]).
The following lemma is an immediate consequence of (4.3), (4.4), (4.5) and the
definition of Uj,r,n(z) and Vj,r,n(z). As in the rest of the paper, we continue analyt-
ically all polylogarithms to C \ [1,+1).
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Lemma 4.3. For any z 2 C \ [1,+1),

Pr,n(z) =

rX
j=0


Uj,r,n(z)Li

{s`} j
{1}2 j+1(z) + Vj,r,n(z)Li

{`s} j�1`
{1}2 j (z)

�
.

We conclude this section with the precise connection between Pr,n(z) and Sr,n(z).

Lemma 4.4. In the setting of the Padé problem Pr,n , for any z 2 C\ [0, 1] we have

Sr,n(z) =

Z 1

0

Pr,n(x)
z � x

dx .

Proof. By definition of Sr,n(z) and Lemma 4.1, for any z 2 C \ [0, 1] we have

Sr,n(z) =

rX
⇢=0


A⇢,r,n(z)

Z 1

0

!
{`s}⇢`

2{1}2⇢+1
(x)

z � x
dx + B⇢,r,n(z)

Z 1

0

!
{`s}⇢`

{1}2⇢+2
(x)

z � x
dx

+ C⇢,r,n(z)
Z 1

0

!
{s`}⇢
{1}2⇢+1

(x)

z � x
dx
�

+ Dr,n(z)

=

Z 1

0

Pr,n(x)
z � x

dx +

rX
⇢=0

Z 1

0


A⇢,r,n(z) � A⇢,r,n(x)

z � x
!

{`s}⇢`

2{1}2⇢+1
(x)

+

B⇢,r,n(z) � B⇢,r,n(x)
z � x

!
{`s}⇢`

{1}2⇢+2
(x)

+

C⇢,r,n(z) � C⇢,r,n(x)
z � x

!
{s`}⇢
{1}2⇢+1

(x)
�
dx + Dr,n(z).

Hence,

Sr,n(z) =

Z 1

0

Pr,n(x)
z � x

dx + polynomial(z). (4.7)

But, as z ! 1, Sr,n(z) = O(1/z) and
R 1
0

Pr,n(x)
z�x dx ! 0 (because Pr,n(x) 2

L1([0, 1]), as noticed above). Therefore, the polynomial in (4.7) is identically 0
and this completes the proof of Lemma 4.4.

5. Resolution of the Padé problem Pr,n

In this section we prove Theorem 1.1, using the tools of Sections 3 and 4. Starting
with a solution Sr,n(z) of the Padé problem Pr,n , we apply the differential operator
zn+1
n!
� d
dz
�n+1 and prove in Subsections 5.1 and 5.2 that the resulting function is a so-

lution of another Padé approximation problem, denoted by Qr,n and stated in Sub-
section 5.3. Then we observe in Subsection 5.3 that Qr,n is nothing but Sorokin’s
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problem [20] for ⇡2, denoted byRr,n , up to a change of variable z 7! 1� z. Since
Sorokin has proved that Rr,n has a unique solution up to proportionality, the same
result holds forQr,n and Pr,n .

To conclude the proof of Theorem 1.1, we deduce in Subsections 5.4 and 5.5
the integral representation (1.3) of Sr,n(z) from Sorokin’s integral representation of
the solution ofRr,n , using the integral operator introduced in Subsection 3.2.

5.1. First reduction

Let Sr,n(z) be a solution of the Padé problem Pr,n . By Lemma 3.1, there exist some
polynomials Ǎ⇢,r,n(z), B̌⇢,r,n(z) and Čr,n(z) of degree  2n + 1 such that

bSr,n(z) :=

zn+1

n!
S(n+1)
r,n (z) =

rX
⇢=0


Ǎ⇢,r,n(z)

(1� z)n+1
Li{`s}⇢`

{1}2⇢+2

✓
1
z

◆

+

B̌⇢,r,n(z)
(1� z)n+1

Li{s`}⇢
{1}2⇢+1

✓
1
z

◆�
+

Čr,n(z)
(1� z)n+1

= O
✓

1
z(r+1)(n+1)

◆
.

(5.1)

As in Section 4 we consider the function Pr,n(z) defined by

Pr,n(z) =

rX
⇢=0


A⇢,r,n(z)!

{`s}⇢`

2{1}2⇢+1
(z)+B⇢,r,n(z)!

{`s}⇢`

{1}2⇢+2
(z)+C⇢,r,n(z)!

{s`}⇢
{1}2⇢+1

(z)
�
.

Since it is obtained from Sr,n by replacing each polylogarithm by its weight, it obeys
the same derivation rules (see the remark before Lemma 4.2). This implies that

bPr,n(z) :=

zn+1

n!
P(n+1)
r,n (z)

=

rX
⇢=0


Ǎ⇢,r,n(z)

(1� z)n+1
!

{`s}⇢`

{1}2⇢+2
(z) +

B̌⇢,r,n(z)
(1� z)n+1

!
{s`}⇢
{1}2⇢+1

(z)
�

=

rX
⇢=0


Ǎ⇢,r,n(z)

(1� z)n+1
Li{s`}⇢

{1}2⇢+1
(z) +

B̌⇢,r,n(z)
(1� z)n+1

Li{`s}⇢�1`
{1}2⇢ (z)

�
(5.2)

with the same polynomials Ǎ⇢,r,n(z) and B̌⇢,r,n(z); here we have used Equa-
tions (4.3) and (4.4) in Lemma 4.2 to compute the weights.

Now, by Lemmas 3.2, 4.3 and the Padé conditions at z = 1 in Pr,n for Uj,r,n
and Vj,r,n , the function bPr,n(z) is necessarily of the form

bPr,n(z) =

rX
j=0


h2 j+1(z)Li

{s`} j
{1}2 j+1(z) + h2 j (z)Li

{`s} j�1`
{1}2 j (z)

�
(5.3)
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for some functions h j holomorphic at z = 1. We have obtained two expressions forbPr,n(z), namely Equations (5.2) and (5.3). Using Lemma 3.7 they have to coincide,
that is Ǎ⇢,r,n(z)

(1�z)n+1 = h2⇢+1(z) and
B̌⇢,r,n(z)
(1�z)n+1 = h2⇢(z) for any ⇢ = 0, . . . , r . Therefore

(1� z)n+1 divides Ǎ⇢,r,n(z) and B̌⇢,r,n(z).
We now claim that (1 � z)n+1 also divides Čr,n(z). To prove this, we use the

integral representation for Sr,n(z) given by Lemma 4.4. Differentiating n + 1 times
under the integral, we obtain

bSr,n(z) = (n + 1)(�z)n+1
Z 1

0

Pr,n(x)
(z � x)n+2

dx .

Again by Lemma 4.3 and the Padé conditions at z = 1 in Pr,n for Uj,r,n and Vj,r,n ,
we deduce that

Pr,n(x) = O
⇣
(1� x)n+1

⇣
1+ | log(1� x)|2r+1

⌘⌘

as x ! 1, x < 1. Therefore the singularity of bSr,n(z) at z = 1 is at most a power
of logarithm. The expression (5.1) for bSr,n(z), together with the above deductions
made for Ǎ⇢,r,n(z) and B̌⇢,r,n(z), implies the claim.

We can summarize the above results as follows: there exist polynomialsbA⇢,r,n(z), bB⇢,r,n(z) (⇢ 2 {0, . . . , r}) and bCr,n(z), all of degree at most n, such
that

bSr,n(z) =

rX
⇢=0

bA⇢,r,n(z)Li
{`s}⇢`

{1}2⇢+2

✓
1
z

◆

+
bB⇢,r,n(z)Li

{s`}⇢
{1}2⇢+1

✓
1
z

◆�
+
bCr,n(z) = O

✓
1

z(r+1)(n+1)

◆
.

(5.4)

5.2. Second reduction

We want to find further Padé conditions involving the polynomials bA⇢,r,n(z),bB⇢,r,n(z) (⇢ 2 {0, . . . , r}) and bCr,n(z). For this, we form the functions

Q j,r,n :=

rX
⇢= j


� A⇢,r,n(z)Li

{s`}⇢� j
2{1}2⇢�2 j

(z) + B⇢,r,n(z)Li
{s`}⇢� j
{1}2⇢�2 j+1

(z)

+ C⇢,r,n(z)Li
{`s}⇢� j�1`
{1}2⇢�2 j

(z)
�

where j = 0, . . . , r , and A⇢,r,n(z), B⇢,r,n(z), C⇢,r,n(z) are the polynomials in our
initial Padé problem Pr,n . Each Q j,r,n(z) is holomorphic at z = 0 and the rules of
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differentiation of multiple polylogarithms (see Section 3.1) show that

bQ j,r,n(z) :=

zn+1

n!
Q(n+1)
j,r,n (z)

=

rX
⇢= j

bA⇢,r,n(z)Li
{s`}⇢� j
{1}2⇢�2 j+1

(z) +
bB⇢,r,n(z)Li

{`s}⇢� j�1`
{1}2⇢�2 j

(z)
�

= O(zn+1)

for all j = 0, . . . r . The main point here is that the polynomials bA⇢,r,n(z) andbB⇢,r,n(z) are the same as in Equation (5.4).

5.3. The intermediate Padé problemQr,n

The previous two sections show that any solution Sr,n(z) to the problem Pr,n yields
(by differentiating n + 1 times and multiplying by zn+1/n!) a solution to the fol-
lowing problem: given non-negative integers r and n, find polynomials bA⇢,r,n(z),bB⇢,r,n(z) (for 0  ⇢  r) and bCr,n(z), of degrees  n, such that the following
holds:

bSr,n(z) :=

rX
⇢=0

bA⇢,r,n(z)Li
{`s}⇢`

{1}2⇢+2

✓
1
z

◆
+
bB⇢,r,n(z)Li

{s`}⇢
{1}2⇢+1

✓
1
z

◆�

+
bCr,n(z) = O

✓
1

z(r+1)(n+1)

◆
,

bQ j,r,n(z) :=

rX
⇢= j

bA⇢,r,n(z)Li
{s`}⇢� j
{1}2⇢�2 j+1

(z) +
bB⇢,r,n(z)Li

{`s}⇢� j�1`
{1}2⇢�2 j

(z)
�

= O(zn+1), j = 0, . . . , r.

We shall denote this Padé approximation problem by Qr,n . It amounts to solving a
linear system of 2(r + 1)(n + 1) � 1 equations in 2(r + 1)(n + 1) unknowns (the
coefficients of the polynomials bA⇢,r,n(z) and bB⇢,r,n(z)). Hence it has at least one
non trivial solution and our next task is to prove that is has exactly one solution up
to a multiplicative constant.

To do so, we will identify the problem with one already solved by Sorokin [20].
We first observe the effect of changing z to 1� z in the Padé problemQr,n .

Lemma 5.1. For any z 2 C \ [0, 1], we have

Li{s`}⇢
{1}2⇢+1

✓
1
z

◆
= (�1)⇢+1 Li{s}⇢1{2}⇢

✓
1

1� z

◆
,

Li{`s}⇢`

{1}2⇢+2

✓
1
z

◆
= (�1)⇢+1 Li{s}⇢

{2}⇢+1

✓
1

1� z

◆
.
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Proof. We prove these identities by induction on ⇢. They hold trivially for ⇢ = 0
and by differentiation of both sides at level ⇢, we get the identity at level ⇢ � 1. We
deduce that the identity at level ⇢ holds, up to some additive constant. This constant
must be 0 because both sides vanish at z = 1.

Therefore, when we change z to 1� z, the Padé problemQr,n becomes

bSr,n(1� z) :=

rX
⇢=0

(�1)⇢+1
bA⇢,r,n(1� z)Li{s}⇢

{2}⇢+1

✓
1
z

◆

+
bB⇢,r,n(1� z)Li{s}⇢1{2}⇢

✓
1
z

◆�

+
bCr,n(1� z) = O

✓
1

(1� z)(r+1)(n+1)

◆
= O

✓
1

z(r+1)(n+1)

◆

bQ j,r,n(1� z) :=

rX
⇢= j

bA⇢,r,n(1� z)Li{s`}⇢� j
{1}2⇢�2 j+1

(1� z)

+
bB⇢,r,n(1� z)Li{`s}⇢� j�1`

{1}2⇢�2 j
(1� z)

�

= O((1� z)n+1), j = 0, . . . , r.

Let us define

eA⇢,r,n(z) = (�1)⇢+1bA⇢,r,n(1� z), eB⇢,r,n(z) = (�1)⇢+1bB⇢,r,n(1� z),
eCr,n(z) =

bCr,n(1� z), eSr,n(z) =
bSr,n(1� z), eQ j,r,n(z) = �

bQ j,r,n(1� z).

With this notation, the Padé problemQr,n now reads

eSr,n(z) :=

rX
⇢=0

eA⇢,r,n(z)Li
{s}⇢
{2}⇢+1

✓
1
z

◆
+
eB⇢,r,n(z)Li

{s}⇢
1{2}⇢

✓
1
z

◆�
+
eCr,n(z)

= O
✓

1
z(r+1)(n+1)

◆

eQ j,r,n(z) :=

rX
⇢= j

(�1)⇢
eA⇢,r,n(z)Li

{s`}⇢� j
{1}2⇢�2 j+1

(1�z)+eB⇢,r,n(z)Li
{`s}⇢� j�1`
{1}2⇢�2 j

(1�z)
�

= O((1� z)n+1), j = 0, . . . , r.

In spite of different notation, we recognize here Sorokin’s problem [20] for ⇡2 of
weight 2r + 2, which we denote by Rr,n from now on. Sorokin proved that this
problem has a unique solution up to proportionality. Therefore the same property
holds for Qr,n , and also for Pr,n . This concludes the proof of Theorem 1.1, except
for the integral representation (1.3) of Sr,n(z) that we shall prove now.
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5.4. Hypergeometric integrals for S̃r,n(z) and Sr,n(z)

Sorokin has found an explicit integral formula for the solution eSr,n(z) of his Padé
problemRr,n stated in Section 5.3 (see [20, Lemma 17, page 1835]), namely

eSr,n(z) = (�1)(r+1)n
Z

[0,1]2r+2

r+1Y
j=1

xnj (1� x j )n ynj (1� y j )n� z
x1y1···x j�1y j�1 � x j y j

�n+1 dx jdy j . (5.5)

In this and the next subsections we shall deduce from it the integral expression (1.3)
of Sr,n(z), using the relation

zn+1

n!
S(n+1)
r,n (z) =

eSr,n(1� z) (5.6)

and the integral operator defined in Subsection 3.2.

To begin with, we recall that Sorokin solved his Padé approximation problem
Rr,n recursively and showed that, for any integer r � 1 and any z 2 C \ [0, 1],

S̃r�1,n(z) =

1
n!2

zn+1(1� z)n+1
�
zn+1 S̃(n+1)

r,n (z)
�(n+1) (5.7)

and

S̃0,n(z) =

Z 1

0

Z 1

0

xn(1� x)n yn(1� y)n

(z � xy)n+1
dxdy.

It is not hard to see that, with the notation of Subsection 3.2, we have for z 2

C \ [0, 1]:

S̃0,n(z) = Hn+1
n+1,0

 Z 1

0

xn(1� x)n

(z � x)n+1
dx

!
= Hn+1

n+1,0H
n+1
n+1,n+1(1), (5.8)

where 1 is the constant function equal to 1 on C \ [0, 1]. We can apply the general
properties of hypergeometric integrals proved in Subsection 3.2 to (5.7) and we get
the following result, which is nothing but (5.5) written in a different language (see
Subsection 5.5 for details). We recall that f @(z) := f (1 � z) and we denote by
Hk

= H �H � · · · �H the composition of an integral operator H with itself k times.

Proposition 5.2. For any z 2 C \ [0, 1] and any integer r � 0, we have

S̃r,n(z) = (Hn+1
n+1,0H

n+1
n+1,n+1)

r+1(1)(z) (5.9)

and
S̃@
r,n(z) = (Hn+1

0,n+1H
n+1
n+1,n+1)

r+1(1)(z). (5.10)
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Equation (5.9) follows immediately from Equation (5.8) and the relation

S̃r,n = Hn+1
n+1,0H

n+1
n+1,n+1(S̃r�1,n),

which is just a translation of Equation (5.7) (using Lemma 3.3). Then Equation
(5.10) follows from (5.9) by means of Lemma 3.6. Now Equation (5.6) reads

zn+1

n!
S(n+1)
r,n (z) = S̃@

r,n(z) (5.11)

and limz!1 Sr,n(z) = 0 for any r � 0, so that Lemma 3.3 yields

Sr,n(z) = Hn+1
n+1,0(

eS@
r,n)(z).

Hence, by (5.10) in Proposition 5.2, we obtain the following result (using also
Lemma 3.5 to take limits as z ! 1):

Proposition 5.3. For any z 2 C \ [0, 1] and any integer r � 0, we have

Sr,n(z) = Hn+1
n+1,0(H

n+1
0,n+1H

n+1
n+1,n+1)

r+1(1)(z). (5.12)

Moreover, both sides of (5.12) are defined and equal for z = 1.

5.5. Explicit multiple integrals

The integral expression for Sr,n(z) given in Theorem 1.1 is simply the explicit “ex-
pansion” of the formula (5.12) given in Proposition 5.3 above. Let us provide details
on this expansion.

For any function F analytic on C \ [0, 1] and at infinity, Equation (3.1) in
Subsection 3.2 reads

Hn+1
n+1,n+1(F)(z) = (�1)n+1

Z 1

0

un(1� u)n

(u � z)n+1
F
⇣ z
u

⌘
du.

This function Hn+1
n+1,n+1(F)(z) is analytic on C \ [0, 1] and at infinity, and vanishes

to an order � n + 1 at1 (using Lemma 3.3). The same property can be proved in
the same way for the following function:

Hn+1
0,n+1H

n+1
n+1,n+1(F)(z) = zn+1

Z 1

0

v�1(1� v)n

(v � z)n+1

Z 1

0

un(1� u)n

(u � z/v)n+1
F
⇣ z
uv

⌘
dudv

= zn+1
Z 1

0

Z 1

0

vn(1� v)nun(1� u)n

(v � z)n+1(uv � z)n+1
F
⇣ z
uv

⌘
dudv.



MULTIPLE ZETA VALUES AND VASILYEV’S CONJECTURE 21

By induction on r � 0 this implies, using Equation (5.10):

S̃@
r,n(z) = (Hn+1

0,n+1H
n+1
n+1,n+1)

r+1(1)(z) = z(r+1)(n+1)

⇥

Z
[0,1]2(r+1)

r+1Y
j=1

�
(u jv j )(r� j+2)(n+1)�1(1� u j )n(1� v j )

n�

r+1Y
j=1

�
(z � u1v1 · · · u j�1v j�1u j )n+1(z � u1v1 · · · u jv j )n+1

�dudv.

Therefore the equality

Hn+1
n+1,0(H

n+1
0,n+1H

n+1
n+1,n+1)

r+1(1)(z) = (�1)n+1
Z 1

0
u�1
0 (1� u0)n S̃@

r,n(z/u0)du0

yields, using Proposition 5.3:

Sr,n(z) = (�1)n+1z(r+1)(n+1)

⇥

Z
[0,1]2r+3

u(r+1)(n+1)�1
0 (1�u0)n

r+1Q
j=1

�
(u jv j )(r� j+2)(n+1)�1(1�u j )n(1�v j )

n�
r+1Q
j=1

�
(z � u0u1v1 · · · u j�1v j�1u j )n+1(z � u0u1v1 · · · u jv j )n+1

� dudv.

This completes the proof of Theorem 1.1.

6. Beyond Vasilyev’s conjecture: irrationality of odd zeta values

A natural problem is to find a proof that the numbers ⇣(2r + 1), for r � 1, span
an infinite-dimensionalQ-vector space [2,16] that would be analogous to Sorokin’s
proof that ⇡ is transcendental [20] (since Sorokin’s result is equivalent to the fact
that the numbers ⇣(2r), for r � 1, span an infinite-dimensionalQ-vector space). In
particular, such a proof would involve a Padé approximation problem with multiple
polylogarithms.

Let � be an integer such that 1  �  r + 2. To achieve this goal, it is enough
to relate the very-well-poised hypergeometric series

1X
k=1

(k +

n
2
)
(k � �n)�n(k + n + 1)�n

(k)2r+4n+1
, (6.1)

which can be used to prove the above mentioned result (see for instance [8]), to
such a Padé approximation problem. An analogous work has been done in [10],
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where this series is related to a Padé approximation problem involving only classical
polylogarithms, namely of depth 1.

We shall prove now that for � = 1 the hypergeometric series (6.1) is equal (up
to a sign) to Sr,n(1), thereby providing in this case the relation we are looking for.
For any � we shall prove that this series is the value at z = 1 of a function Sr,n,� (z)
which generalizes Sr,n(z); what is missing is a Padé approximation problem of
which Sr,n,� (z) would be a solution. We believe that a suitable generalisation of the
problem Pr,n solved in Theorem 1.1 could have this property.

With this aim in view, we consider the function Sr,n,� (z) defined by

zn+1

n!
S(�n+1)
r,n,� (z) = S̃@

r,n(z)

and limz!1 Sr,n,� (z) = 0; in this way we have Sr,n,1(z) = Sr,n(z) (see Equation
(5.11)). We have

Sr,n,� (z) = H�n+1
n+1,0(

eS@
r,n)(z).

The equality

H�n+1
n+1,0(H

n+1
0,n+1H

n+1
n+1,n+1)

r+1(1)(z)

= (�1)�n+1z(��1)n
Z 1

0
u(1�� )n�1
0 (1� u0)�n S̃@

r,n(z/u0)du0

yields, using Proposition 5.3:

Sr,n,� (z) = (�1)�n+1z(r+� )n+r+1

⇥

Z
[0,1]2r+3

u(r��+2)n+r
0 (1�u0)�n

r+1Q
j=1

�
(u jv j )(r� j+2)(n+1)�1(1�u j )n(1�v j )

n�
r+1Q
j=1

�
(z � u0u1v1 · · · u j�1v j�1u j )n+1(z � u0u1v1 · · · u jv j )n+1

� dudv.

This function has the following value at z = 1:

Sr,n,� (1) = (�1)�n+1

⇥

Z
[0,1]2r+3

u(r��+2)n+r
0 (1�u0)�n

r+1Q
j=1

�
(u jv j )(r� j+2)(n+1)�1(1�u j )n(1�v j )

n�
r+1Q
j=1

�
(1� u0u1v1 · · · u j�1v j�1u j )n+1(1� u0u1v1 · · · u jv j )n+1

� dudv.

Using Proposition 17 of [7] (which amounts to a change of variables) one obtains

Sr,n,� (1)=(�1)�n+1
Z

[0,1]a�1

a�1Q
j=1

x�n
j (1� x j )n

(1� x1x2 · · · xa�1)�n+1
Q

2 ja�2
jeven

(1� x1x2 · · · x j )n+1
dx
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with a = 2r + 4. Then using Zlobin’s result [23] or another change of variables
(namely Théorème 10 of [7]), one obtains the Vasilyev-type integral

Sr,n,� (1) = (�1)�n+1
Z

[0,1]a�1

Qa�1
j=1 x

�n
j (1� x j )n

Qa�1(x1, · · · , xa�1)�n+1
dx.

Now Theorem 5 of [25] yields

Sr,n,� (1) = (�1)�n+1
1X
k=1

⇣
k +

n
2

⌘ (k � �n)�n(k + n + 1)�n
(k)an+1

.

Up to a sign, this is exactly the very-well poised hypergeometric series (6.1).
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