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Complex geodesics in convex tube domains

SYLWESTER ZAJĄC

Abstract. We describe all the complex geodesics in convex tube domains. In the
case where the base of a convex tube domain does not contain any real line, the
obtained description involves the notion of boundary measure of a holomorphic
map and it is expressed in the language of real Borel measures on the unit circle.
Applying our result, we calculate all complex geodesics in convex tube domains
with unbounded base covering a special class of Reinhardt domains.

Mathematics Subject Classification (2010): 32F45 (primary); 32A07 (sec-
ondary).

1. Introduction

Among the most important objects in complex analysis connected with the theory of
holomorphically invariant functions there are two extremal ones: the Carathéodory
pseudodistance and the Lempert function. For a domain D ⇢ Cn , theCarathéodory
pseudodistance cD : D ⇥ D ! [0,1) is defined as

cD(z, w) = sup {⇢( f (z), f (w)) : f 2 O(D, D)}

and the Lempert function `D : D ⇥ D ! [0,1) as

`D(z, w) = inf {⇢(0, � ) : 9 f 2 O(D, D), � 2 (0, 1) : f (0) = z, f (� ) = w},

where D is the unit disc in C and ⇢ is the Poincaré distance on D. These objects
are closely related to the notion of complex geodesics, especially in convex do-
mains. A holomorphic map ' : D ! D is called a complex geodesic for D if it
admits a left inverse, i.e. a holomorphic function f : D ! D such that f � ' is
the identity of the unit disc. Equivalently, ' is a complex geodesic if and only if
it is an isometry between D equipped with the Poincaré distance and D equipped
with the Carathéodory pseudodistance. If points z, w 2 D lie in the image of a
complex geodesic, then cD(z, w) = `D(z, w). One can also consider “geodesics”
with respect to other holomorphically invariant pseudodistances, e.g. holomorphic
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isometries from D with the distance ⇢ to D with the Kobayashi pseudodistance,
etc. However, by the famous Lempert theorem (see [8] or [5, Chapter 8]), in convex
domains –which are the subject of the research in this paper– all these notions coin-
cide. The Lempert theorem states that if D ⇢ Cn is a taut convex domain then for
any pair of points z, w 2 D there exists a complex geodesic passing through them,
and for any point z 2 D and any non-zero vector v 2 Cn there exists a complex
geodesic f such that f (0) = z and f 0(0) is parallel to v over the field C. From
the Lempert theorem it follows that if D ⇢ Cn is a convex domain, then cD ⌘ `D .
Recall that a domain D ⇢ Cn is taut if every sequence ( fn)1n=1 ⇢ O(D, D) is
compactly divergent or admits a subsequence convergent to a map f 2 O(D, D).
If D is convex, then D is taut if and only if it contains no complex affine lines (see
e.g. [2, Theorem 1.1]).

A problem of describing and calculating formulas for all complex geodesics
of a given (not necessarily convex) domain is a fundamental subject of research in
complex analysis. In this paper we focus on this problem in the case of convex tube
domains. A domain D ⇢ Cn is called a tube domain if D is of the form � + iRn

for some domain � ⇢ Rn called the base of D. Throughout this paper we denote
the base of D by Re D. We present equivalent conditions for a holomorphic map
' : D ! D to be a complex geodesic and we calculate direct formulas for complex
geodesics in some classes of convex tube domains.

Results on complex geodesics obtained for tube domains may be applied, for
example, to Reinhardt domains. A domain G ⇢ Cn is called a Reinhardt do-
main if it is n-circled, i.e. (�1z1, . . . , �nzn) 2 G for every (z1, . . . , zn) 2 G and
�1, . . . , �n 2 T. Here T denotes the unit circle in C. Any Reinhardt domain con-
tained in (C⇤)

n , where C⇤ is the punctured plane, admits a natural covering by a
tube domain via the mapping (z1, . . . , zn) 7! (ez1, . . . , ezn ). What is more, the
pseudoconvex Reinhardt domains contained in (C⇤)

n are exactly those which are
covered by convex tubes. Complex geodesics of tube domains are useful in calcu-
lating `G-extremal discs in Reinhardt domains. Recall that a map f 2 O(D,G) is
called an `G-extremal disc for the points z, w 2 G if it “realizes” the infimum in the
definition of `G(z, w), i.e. if there exists � 2 (0, 1) such that f (0) = z, f (� ) = w
and `G(z, w) = ⇢(0, � ). It is known that if G ⇢ Cn is a Reinhardt domain and
D ⇢ Cn is a tube which covers G \ (C⇤)

n then any `G-extremal disc which does
not intersect the axes (i.e. that maps D into G \ (C⇤)

n) can be lifted to a complex
geodesic in D. If we know formulas of all complex geodesics in D, then, given
such an `G-extremal disc  = ( 1, . . . , n), we get that  is of the form  j = e' j
for a complex geodesic ' = ('1, . . . ,'n) in D, so we know a formula for  .

We shall see that for our purposes it is possible to restrict our considerations to
taut convex tubes, which, in view of the Lempert theorem, admit complex geodesics
passing through any pair of points. In fact, any convex tube in Cn is linearly bi-
holomorphic to a cartesian product of a taut convex tube and some Ck (see Ob-
servation 2.4). A convex tube is taut if and only if it contains no complex affine
lines or, equivalently, if its base contains no real affine lines. On such a tube the
Carathédory distance becomes a distance. If D ⇢ Cn is a taut convex tube do-
main and ' = ('1, . . . ,'n) : D ! D is a holomorphic map, then radial limits
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'⇤(�) = limr!1� '(r�) of ' exist for almost every � 2 T (with respect to the
Lebesgue measure LT on T) and, what is very important, ' admits a boundary
measure, i.e. a unique n-tuple µ = (µ1, . . . , µn) of (finite) real Borel measures on
T such that the following Poisson formula holds:

'(�) =

1
2⇡

Z
T

⇣ + �

⇣ � �
dµ(⇣ ) + iIm'(0), � 2 D

(by the integral with respect to the tuple µ = (µ1, . . . , µn) of measures we just
mean the tuple of integrals with respect to µ1, . . . , µn). Although µ is not a mea-
sure, but an n-tuple of measures, we call it the boundary measure for the map '.
The reader may find all necessary details in Section 2.

In Section 3 of this paper we characterise complex geodesics in taut convex
tubes in Cn . A starting point for us is the characterisation for bounded convex
domains presented in [9] and [5, Subsection 8.2] (and also discussed in the recent
paper [7]). It essentially uses boundedness of domains and it does not hold for
tubes, even in the simpliest case of a left half-plane in C. In this paper we prove the
following result, which gives an equivalent condition for a holomorphic map to be
a complex geodesic:

Theorem 1.1. Let D ⇢ Cn be a taut convex tube domain and let ' : D ! D be
a holomorphic map. Then ' is a complex geodesic for D if and only if there exists
a mapping h : C ! Cn of the form h(�) = ā�2 + b� + a with some a 2 Cn and
b 2 Rn , such that:

(i) Re
⇥
�̄h(�) • (z � '⇤(�))

⇤
< 0 for all z 2 D and a.e. � 2 T,

(ii) Re
h
h(�) •

'(0)�'(�)
�

i
< 0 for every � 2 D⇤.

Moreover, if the base of D is bounded, then condition (ii) can be omitted.

Here • is the standard dot product in Cn , i.e. z • w =

Pn
j=1 z jw j . If the base

of D is bounded, then the description becomes almost the same as in the case of
bounded convex domain. In that situation, it is not very hard to get nice integral
formulas for every complex geodesics for D. It can be done as, for instance, in
Example 4.6, where we consider the tube domain with the base equal to the unit
ball in R2. In the example we calculate real parts of almost all radial limits '⇤ of ',
using only condition (i), which says that for almost every � the vector �̄h(�) 2 Rn

is “outward” from Re D at the boundary point Re'⇤(�). Next, we obtain formula
for ' using Poisson formula, because –as the map Re' is bounded– the boundary
measure of ' is just the measure Re'⇤(�) dLT(�).

The situation becomes much more complicated if the base of D is unbounded,
even if it is bounded “from the right-hand side”, i.e. D ⇢ (�1, a)n + iRn for
some a 2 R. It turns out that generally many of the geodesics for such domains
have boundary measures absolutely different from Re'⇤(�) dLT(�), and even if
we calculate the radial limits of ' using (i), we cannot say much about ' itself.
Even in the simpliest case where D is a left half-plane in C, complex geodesics
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have boundary measures of the form ↵��0 for some ↵ < 0 and �0 2 T, while the
real parts of their radial limits vanish LT-almost everywhere on T. Here ��0 is the
Dirac delta at �0. If we want to calculate geodesics using Theorem 1.1, we must
use condition (ii), which seems to be rather hard to do.

Our main idea was to replace the conditions from Theorem 1.1 by one condi-
tion, expressed in the language of measure theory, which is similar to (i), but uses
the boundary measure µ of ' instead of its radial limits. This approach has two
great advantages. The first one is that if we calculate µ, then via Poisson formula
we obtain '. The second one is that, as we shall see, for some classes of domains
we can calculate µ in a quite similar way as the radial limits, that is, using “shape
properties” of the boundary of Re D. The main result of this paper is the following:

Theorem 1.2. Let D ⇢ Cn be a taut convex tube domain and let ' : D ! D be a
holomorphic map with the boundary measure µ. Then ' is a complex geodesic for
D if and only if there exists a map h : C ! Cn of the form h(�) = ā�2 + b� + a
with some a 2 Cn and b 2 Rn , such that h 6⌘ 0 and the measure

�̄h(�) •

⇣
Re z dLT(�) � dµ(�)

⌘

is negative for every z 2 D.

The expression �̄h(�) • (Re z dLT(�) � dµ(�)) is just the real measure

nX
j=1

�̄h j (�)
⇣
Re z j dLT(�) � dµ j (�)

⌘

on the unit circle T. Notation and all necessary properties of considered objects are
explained in Section 2. In Section 4 we present how to use Theorem 1.2 to calculate
complex geodesics in some classes of convex tube domains. We focus mainly on
tubes with unbounded base, where the situation is more interesting. In Example
4.5 we derive direct formulas for complex geodesics in convex tube domains in C2,
which are finite intersections of H2

�
and tubes of the form

n
(z1, z2) 2 C2 : pRe z1 + qRe z2 < ↵

o

for some p, q > 0 and ↵ < 0. Such domains cover finite intersections of Reinhardt
domains of the form

n
(z1, z2) 2 D2 : 0 < |z1|p|z2|q < ↵

o

for p, q > 0 and ↵ 2 (0, 1).
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2. Preliminaries

Let us begin with some notation: D is the unit disc in C, T is the circle @D, H�

is the left half-plane {z 2 C : Re z < 0}, S is the strip {z 2 C : Re z 2 (0, 1)},
D⇤ is the punctured unit disc, i.e. the set D \ {0}, LT is the Lebesgue measure
on T, and ��0 is the Dirac delta at a point �0 2 T. By Tc, c 2 D, we denote the
automorphism � 7!

��c
1�c̄� of D. For z, w 2 Cn , hz, wi is the standard hermitian

inner product in Cn , and z • w is the dot product, i.e. z • w = hz, w̄i. Vectors from
Cn are identified with vertical matrices n ⇥ 1, and hence z • w = zT · w, where for
a matrix A the symbol AT denotes the transpose of A and · is the standard matrix
multiplication. For a holomorphic map ' : D ! Cn , by '⇤(�) we denote the radial
limit limr!1� '(r�) of ' at a point � 2 T, whenever it exists. Finally, C(T) is
the space of all complex continuous functions on T, equipped with the supremum
norm, and H p, p 2 [1,1], is the Hardy space on the unit disc.
Definition 2.1. Let D ⇢ Cn be a convex domain and let ' : D ! D be a holo-
morphic map. We call ' a complex geodesic for D if there exists a holomorphic
function f : D ! D such that f �' = idD. In this situation we call f a left inverse
of '.
Definition 2.2. We say that a domain D ⇢ Cn is taut if every sequence ( fn)1n=1 ⇢

O(D, D) is compactly divergent or has a subsequence convergent locally uniformly
on D to a map f 2 O(D, D).

Complex geodesics are holomorphic isometries from D equipped with the
Poincaré distance to D equipped with the Carathéodory pseudodistance. If D is
a taut convex domain, then the Carathéodory pseudodistance becomes a distance,
and by the Lempert theorem, for any pair of points in D there exists a complex
geodesic passing through them.
Definition 2.3. We say that a domain D ⇢ Cn is a convex tube if D = � + iRn

for some convex domain � ⇢ Rn . In that situation we call � the base of D and we
denote it by Re D.
Observation 2.4. Let D ⇢ Cn be a convex tube domain. Then there exist a number
k 2 {0, . . . , n}, a convex tube G ⇢ Hk

�
and a complex affine isomorphism8 of Cn

such that 8(Rn) = Rn and 8(D) = G ⇥ Cn�k .
Moreover, a holomorphic mapping ' : D ! D is a complex geodesic for D if

and only if (81, . . . ,8k) � ' is a complex geodesic for G.

Sketch of the proof. It suffices to show the following claim: there existk2{0,. . . ,n},
a convex domain U ⇢ (�1, 0)k and a real affine isomorphism 9 of Rn such that
9(Re D) = U ⇥ Rn�k . The number k is chosen such that n � k is equal to the
maximal dimension of a real affine subspace contained in Re D. It may be assumed
that Re D = V ⇥Rn�k for a convex domain V ⇢ Rk containing no real affine lines.
Now one can proceed similarly as in the proof of [2, Proposition 3.5].

The condition 8(Rn) = Rn in Observation 2.4 implies that 8 maps tube do-
mains on tube domains. In view of the above observation, it is enough to restrict our
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considerations to taut convex tubes. It follows from [2, Theorem 1.1] that a convex
tube is taut if and only if its base contains no real affine lines. If D is a taut convex
tube, then k = n and 8(D) ⇢ Hn

�
. The last inclusion allows us to conclude that if

' : D ! D is a holomorphic map, then the radial limits '⇤(�) = limr!1� '(r�)
exist end belong to D for LT-almost every � 2 T. As we will see, ' admits also a
boundary measure. All details are presented below.

Now we recall some facts connected with complex measures on the unit cir-
cle. Below, we consider only Borel measures on T, so we usually omit the word
“Borel”. It is known that any finite positive measure on T is regular in the sense
that the measure of any Borel subset A ⇢ T may be approximated by the measures
of both compact subsets and open supersets of A. Hence, any complex measure on
T is regular, i.e. its variation is a regular measure. In view of the Riesz represen-
tation theorem, complex measures on T may be identified with continuous linear
functionals on C(T). Thus, a complex measure ⌫ on T is uniquely determined by
the sequence of integrals

R
T ⇣

k d⌫(⇣ ), k 2 Z. In this paper we usually use real
measures. By a real measure we just mean a complex measure with values in R.

We use common shortcut “a.e.” for phrase “almost everywhere” or “almost
every”. If not stated otherwise, it is meant with respect to the Lebesgue measure
(usually on T).

We use the symbols h·, ·i and • also for measures and functions. For exam-
ple, if µ is a tuple (µ1, . . . , µn) of complex measures and v = (v1, . . . , vn) is
a vector or a bounded Borel-measurable mapping on T, then hdµ, vi is the mea-
sure

Pn
j=1 v̄ j dµ j , and v • dµ is the measure

Pn
j=1 v j dµ j , etc. The fact that a

real measure ⌫ is positive (respectively negative, null) is shortly denoted by ⌫ � 0
(respectively ⌫  0, ⌫ = 0).

We introduce the family

M := { fµ + i↵ : µ is a real measure on T, ↵ 2 R},

where fµ : D ! C is the holomorphic function given by

fµ(�) =

1
2⇡

Z
T

⇣ + �

⇣ � �
dµ(⇣ ), � 2 D. (2.1)

It is a classical result (see e.g. [6, page 10]) that the measures Re fµ(r�)dLT(�)
tend weakly-* (as continuous linear functionals on C(T)) to µ when r ! 1�, i.e.
for every u 2 C(T) there isZ

T
u(�)Re fµ(r�)dLT(�) !

Z
T
u(�)dµ(�) as r ! 1�.

In particular, µ is uniquely determined by fµ. Thus, any f 2 M has a unique
decomposition f = fµ + i↵, and µ is then called the boundary measure of f .
From (2.1) it follows that if a real measure µ on T and f 2 O(D, C) are such that

Re f (�) =

1
2⇡

Z
T

1� |�|2

|⇣ � �|2
dµ(⇣ ), � 2 D, (2.2)
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then f 2 M and µ is the boundary measure for f . The right-hand side of (2.2)
is just the real part of the right-hand side of (2.1). It follows from (2.2) and from
weak-* limit property that if f 2M, then Re f � 0 onD if and only if its boundary
measure is positive.

If a holomorphic function f : D ! C is of Hardy class H1, then it belongs
toM, its boundary measure is just Re f ⇤dLT and when r ! 1�, the functions
� 7! f (r�) tend to f ⇤ in the L1 norm with respect to the measure LT (see e.g.
[6, page 35]). Such a situation occurs e.g. when the real part of f is bounded
(see [6, page 87]). However, we emphasize that generally the boundary measure
of a function f 2 M is not equal to Re f ⇤dLT and formula (2.2) does not hold
for f with its radial limits, i.e. with the measure Re f ⇤dLT. For example, when
f (�) =

1+�
1�� , we have Re f

⇤(�) = 0 for a.e. � 2 T, while µ = 2⇡�1.
ByMn we denote the set of all mappings ' = ('1, . . . ,'n) 2 O(D, Cn)

with '1, . . . ,'n 2 M. By the boundary measure of ' we mean the n-tuple µ =

(µ1, . . . , µn) of measures with each µ j being the boundary measure of ' j . We
write the Poisson formula for mappings in the same way as for functions, i.e.

'(�) =

1
2⇡

Z
T

⇣ + �

⇣ � �
dµ(⇣ ) + iIm'(0), � 2 D, (2.3)

where the integral with respect to the tuple µ = (µ1, . . . , µn) is just the tuple of
integrals with respect to µ1, . . . , µn .

A weak-* limit argument and uniqueness of boundary measure show that if V
is a real m ⇥ n matrix, b 2 Rm and ' 2 Mn , then the map � 7! V · '(�) + b
belongs toMm and its boundary measure is just V · µ + b dLT.

The Herglotz representation theorem (see e.g. [6, page 5]) states that any f 2

O(D, C) with non-negative real part belongs toM. As a consequence, the family
O(D, Hn

�
) is contained inMn .

Observation 2.4 and the remarks made in last two paragraphs lead us to the
following important fact:
Observation 2.5. Let D ⇢ Cn be a taut convex tube domain and let ' : D ! D
be a holomorphic map. Then ' 2Mn , so ' admits a boundary measure.

Proof. Let 8 be as in Observation 2.4. Write 8(z) = V · z + b for a square matrix
V and a vector b 2 Cn . As 8(Rn) = Rn , the matrix V and the vector b have real
entries. Set e'(�) := V · '(�) + b. We have 8(D) ⇢ Hn

�
, so e'(D) ⇢ Hn

�
. In view

of the Herglotz representation theorem, the map e' belongs toMn and it admits a
boundary measureeµ. Put µ := (µ1, . . . , µn) := V�1

·(eµ�b dLT). One can check
that for each j = 1, . . . , n the equality (2.2) holds for ' j and µ j .

3. Characterisation of complex geodesics

In this section we focus on proving Theorems 1.1 and 1.2. We start showing The-
orem 1.1. Next we state Lemma 3.7 which allows us to derive Theorem 1.2 from
Theorem 1.1. As we shall see, Lemma 3.7 is an essential part of this section.
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The first result of this section provides us with sufficient conditions for a map
to be a geodesic:

Proposition 3.1. Let D ⇢ Cn be a taut convex tube domain, and let ' : D ! D be
a holomorphic map. Suppose that there exists a mapping h : C ! Cn of the form
h(�) = ā�2 + b�+ a with some a 2 Cn, b 2 Rn , such that:

(i) Re
⇥
�̄h(�) • (z � '⇤(�))

⇤
< 0 for all z 2 D and a.e. � 2 T,

(ii) Re
h
h(�) •

'(0)�'(�)
�

i
< 0 for every � 2 D⇤.

Then ' is a complex geodesic for D.

As it was mentioned in Section 2, the above sentence “a.e. � 2 T” is meant
with respect to the Lebesgue measure. Let us also clarify, that the sentence “for all
z 2 D and a.e. � 2 T” in (i) means “for all (z, �) 2 D ⇥ A, where A ⇢ T is some
Borel subset of full LT measure”. In other words, this “almost everywhere” in “a.e.
� 2 T” does not depend on z. Similar sentences in further theorems shall be meant
in the same way.
Remark 3.2. If Re D is bounded, then condition (ii) in Proposition 3.1 may be
omitted. It follows from the fact that Re' is bounded and hence the maps ' and
� 7! h(�) •

'(0)�'(�)
� are of class H1 (with h being a polynomial), so maximum

principle can be applied to deduce (ii) from (i) for z = '(0).
Remark 3.3. Generally, condition (i) in Proposition 3.1 turns out to be necessary
(see Proposition 3.6) but not sufficient for ' to be a complex geodesic for D. For
example, take D = H� and '(�) =

�2+1
�2�1 . One can check that ' satisfies (i) with

h(�) = �, but clearly it is not a complex geodesic for D and it does not satisfy
(ii). It means that in general (more precisely: for D with unbounded base) one
cannot deduce condition (ii) from (i) (with z = '(0)) using maximum principle for
harmonic functions, because the function in (ii) is not necessarily bounded from
above.

Proposition 3.1 is a consequence of the following general lemma. It is worth
to point out that the lemma works for any domain D in Cn , not necessarily tube.

Lemma 3.4. Let D ⇢ Cn be a domain and let ' : D ! D be a holomorphic map.
Suppose that there exists a map h 2 O(D, Cn) such that

Re
⇥
h(0) • '0(0)

⇤
6= 0

and for every z 2 D the function  z 2 O(D, C) defined as

 z(�) :=
'(0) � '(�)

�
• h(�) +

h(�) � h(0)
�

• (z � '(0)) + � h(0) • (z � '(0))

satisfies
Re z(�)  0, � 2 D.

Then the map ' admits a left inverse on D.
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One can check that if � 2 T is such that '⇤(�) and h⇤(�) exist, then  ⇤

z (�)
exists for every z 2 D and there holds

Re ⇤

z (�) = Re
⇥
�̄h⇤(�) • (z � '⇤(�))

⇤
, z 2 D. (3.1)

Observe that Proposition 3.1 follows directly from Lemma 3.4. Indeed, if D, ', h
are as in the proposition, then almost all radial limits of ' exist and using (3.1) we
get

Re ⇤

z (�) < 0 for all z 2 D and a.e. � 2 T.

Assumption (ii) and the fact that h is a polynomial imply that every Re z is
bounded from above. Thus, maximum principle gives Re z(�)  0 for all z 2 D
and � 2 D. The assumptions of Lemma 3.4 are fulfilled and the conclusion of
Proposition 3.1 follows.
Remark 3.5. One can check that if  z are as in Lemma 3.4, then

Re z(�)  0 for all (z, �) 2 D ⇥ D

if and only if the following two conditions holds:

(i) Re z is bounded from above for every z 2 D,
(ii) Re ⇤

z (�)  0 for all z 2 D and a.e. � 2 T.
Applying (3.1) we see that the above two conditions “correspond” to conditions
(ii) and (i) of Proposition 3.1. The reason for which Lemma 3.4 is not formulated
in the same way as Proposition 3.1 is to avoid using radial limits of ', as they
do not necessarily exist. From the assumptions of Lemma 3.4 it follows only that
there exist radial limits of the maps h and � 7! h(�) • '(�). One can deduce it
from the fact that almost all radial limits of every  z exist, which follows from the
assumption that  z(D) ⇢ H� for each z 2 D.

To show Lemma 3.4 we follow the proof of [5, Lemma 8.2.2]. The latter is
similar to Lemma 3.4, but it works for bounded domains and it is stated in a slightly
different form. In the proof of [5, Lemma 8.2.2] a version of maximum principle
for harmonic functions is applied a few times. It causes some troubles if we do not
assume boundedness of D, because knowing only that a function u : D ! R is
harmonic on D and u⇤ < 0 a.e. on T, generally we cannot conclude that u < 0 in
D. It turns out that the assumption Re z(�)  0 allows us to avoid this problem
and argue as in the proof of [5, Lemma 8.2.2].

Proof of Lemma 3.4. For ✏ � 0 define

8✏(z, �) = (z � '(�)) • h(�) � ✏�, z 2 Cn, � 2 D,

9✏(z, �) =

1
�
8✏(z, �), z 2 Cn, � 2 D⇤.

The function � 7! 9✏('(0), �) extends holomorphically through 0. There holds

9✏('(0), �) =  '(0)(�) � ✏, � 2 D, ✏ � 0.
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This implies
Re9✏('(0), �) < 0, � 2 D, ✏ > 0. (3.2)

Moreover, as Re '(0)(0) = �Re
⇥
h(0) • '0(0)

⇤
6= 0 and Re '(0)  0 on D,

maximum principle gives Re '(0) < 0 on D. Hence

Re90('(0), �) < 0, � 2 D. (3.3)

From (3.2) and (3.3) it follows that for every ✏ � 0 the point 0 is the only root of
the function � 7! 8✏('(0), �) on D and it is a simple root.

Assume for a moment that

there exists f 2 O(D, D) such that 80(z, f (z)) = 0, z 2 D. (3.4)

We claim that f is a left inverse for '. There holds f ('(0)) = 0, because 0 is the
only root of � 7! 80('(0), �) on D. Set

01 = {(z, f (z)) : z 2 D}, 02 = {('(�), �) : � 2 D}.

It is clear that 01 ⇢ 8�1
0 (0) and 02 ⇢ 8�1

0 (0). We have 80('(0), 0) = 0 and,
by inequality (3.3), @80@� ('(0), 0) = 90('(0), 0) 6= 0. Thus, the implicit mapping
theorem gives that there exists an open neighbourhood U ⇢ D ⇥ D of ('(0), 0)
such that U \ 8�1

0 (0) is equal to the graph of some holomorphic function of the
variable z defined near '(0) which maps '(0) to 0. Since ('(0), 0) 2 01, shrinking
U if necessary we get U \ 8�1

0 (0) = U \ 01. Therefore U \ 02 ⇢ U \ 01, so
('(�), �) 2 U \ 01 for � near 0. This implies f ('(�)) = � for � near 0 and hence
on the whole D.

It remains to prove (3.4), and for this it suffices to show that

for any ✏ > 0 there is f✏ 2 O(D, D) such that 8✏(z, f✏(z)) = 0, z 2 D. (3.5)

Indeed, using the Montel theorem we choose a sequence ( f✏k )k (✏k ! 0 as k !

1) convergent to a holomorphic function f : D ! C. As 0 is the only root of
� 7! 8✏('(0), �), we get f✏('(0)) = 0 and hence f (D) ⇢ D, which allows us to
derive (3.4).

The statement (3.5) follows from the following claim:

for every ✏ > 0 and K ⇢⇢ D there exists r 2 (0, 1) such that
Re9✏(z, �) < 0 for z 2 K , |�| 2 [r, 1). (3.6)

Indeed, assume (3.6) and fix ✏ > 0. Let z 2 D and let r = r(✏, z) be taken as
above for K = {z}. The function � 7! 8✏(z, �) has no roots in D \ rD, because
Re9✏(z, �) < 0 for |�| 2 [r, 1). Moreover,

1
2⇡ i

Z
rT

@8✏
@� (z, �)
8✏(z, �)

d� = 1+

1
2⇡ i

Z
rT

@9✏
@� (z, �)
9✏(z, �)

d� = 1. (3.7)
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The last integral is just the index at 0 of the curve s 7! 9✏(z, reis), equal to 0 by
(3.6). In view of (3.7), the function � 7! 8✏(z, �) has only one root in D (counting
with multiplicities). Denote this root by f✏(z). The function f✏ : D ! D satisfies
8✏(z, f✏(z)) = 0 for every z 2 D. We need only to show that it is holomorphic.

Fix K ⇢⇢ D and let r = r(✏, K ) be as in (3.6). Again, � 7! 8✏(z, �) has
no roots in D \ rD for z 2 K , so f✏(K ) ⇢ rD. As f✏(z) is the only root of
� 7! 8✏(z, �) and it belongs to rD, we have the formula

f✏(z) =

1
2⇡ i

Z
rT
�

@8✏
@� (z, �)
8✏(z, �)

d�, z 2 K , (3.8)

which implies that f✏ is holomorphic in the interior of K . As K is arbitrary, we
obtain f✏ 2 O(D, D).

It remains to show (3.6). Fix ✏ > 0 and K ⇢⇢ D. For z 2 K and � 2 D⇤ we
have

Re9✏(z, �) = Re z(�) + Re

1
�
h(0) • (z � '(0)) � � h(0) • (z � '(0))

�
� ✏.

The second term of the right-hand side tends uniformly (with respect to z 2 K ) to
0 as |�| ! 1, and the first term is non-positive. This gives (3.6) and finishes the
proof.

Now we state necessary conditions for a map ' to be a complex geodesic:

Proposition 3.6. Let D ⇢ Cn be a taut convex tube domain, let ' : D ! D be a
complex geodesic and let f : D ! D be a left inverse for '. Define

h(�) :=

✓
@ f
@z1

('(�)), . . . ,
@ f
@zn

('(�))

◆
, � 2 D.

Then:

(i) h(�) = ā�2 + b�+ a for some a 2 Cn, b 2 Rn , and h 6⌘ 0,
(ii) Re

⇥
�̄h(�) • (z � '⇤(�))

⇤
< 0 for all z 2 D and a.e. � 2 T,

(iii) Re
h
h(�) •

'(0)�'(�)
�

i
< 0 for every � 2 D⇤.

Propositions 3.1 and 3.6 immediately give Theorem 1.1. In the proof of Proposition
3.6 we strongly use the assumption that D is a convex tube domain.

Proof of Proposition 3.6. Differentiating the equality f ('(�)) = � we get

h(�) • '0(�) = 1, � 2 D. (3.9)

In particular, h 6⌘ 0.



1348 SYLWESTER ZAJĄC

For z 2 D and t 2 [0, 1] define

fz,t (�) := f ((1� t)'(�) + t z), � 2 D.

We have fz,t 2 O(D, D) and fz,0(�) = �. One can also check that

d| fz,t (�)|2

dt

�����
t=0

= 2Re
⇥
�̄h(�) • (z � '(�))

⇤
. (3.10)

On the other hand, since fz,t 2 O(D, D), [1, Lemma 1.2.4] gives

1� | fz,t (�)|
1� |�|

�

1� | fz,t (0)|
1+ | fz,t (0)|

.

We get the inequality

| fz,t (�)| � |�| 

2| fz,t (0)|
1+ | fz,t (0)|

(1� |�|).

Therefore

| fz,t (�)|2 � |�|2

t
 2

| fz,t (�)| � |�|

t


4
���1t fz,t (0)

���
1+ | fz,t (0)|

(1� |�|).

Taking the limit for t tending to 0, we obtain

d| fz,t (�)|2

dt

�����
t=0

 4(1�|�|)

���� d fz,t (0)dt

����
t=0

����  4(1�|�|) |h(0)•(z�'(0))|. (3.11)

In summary, from (3.10) and (3.11) we get the following important inequality:

Re
⇥
�̄h(�) • (z � '(�))

⇤
 2(1� |�|) |h(0) • (z � '(0))|, � 2 D, z 2 D. (3.12)

Putting z = '(0) in (3.12) and dividing this inequality by |�|2 we obtain the weak
inequality in (iii). The strong one follows frommaximum principle for the harmonic
function

D 3 � 7! Re

h(�) •

'(0) � '(�)

�

�
.

It is bounded from above, because we already proved the weak inequality in (iii),
and it is non-constant, because its value at � = 0 equals to �Re

⇥
h(0) • '0(0)

⇤
=

�1, by (3.9). Condition (iii) is proved.
Putting z = '(0) + ise j in (3.12), where j 2 {1, . . . , n}, s 2 R and e1, . . . , en

is the usual canonical base of Cn , we get

Re
⇥
�̄h(�) • ('(0) � '(�))

⇤
 Im

�
�̄h j (�)

�
s + 2(1� |�|) |h j (0)||s|.



COMPLEX GEODESICS IN CONVEX TUBE DOMAINS 1349

Hence, for fixed � 2 D the function of variable s on the right-hand side is bounded
from below. One can check that this implies��Im �

�̄h j (�)
���

 2(1� |�|) |h j (0)|, � 2 D. (3.13)

Writing h j (�) = h j (0) + �g j (�) we obtain

|�|2
��Im g j (�)

��
�

��Im �
�̄h j (0)

���
 2 (1� |�|)

��h j (0)�� .
From this it follows that Im g j is bounded on the annulus D \

1
2D. By maximum

principle, Im g j is bounded on whole D, so g j and h j are of class H1. In particular,
almost all radial limits of g j and h j exist. Taking limit for � tending radially to T
in (3.13), we obtain Im (�̄h⇤

j (�)) = 0 a.e. on T. This implies

Im
⇣
g⇤

j (�) � h j (0)�
⌘

= Im
⇣
�̄h⇤

j (�)
⌘

= 0 for a.e. � 2 T.

The function � 7! i(g j (�) � h j (0)�) is of class H1 and real parts of its radial
limits vanish a.e. on T, so its boundary measure is a null measure. Therefore
g j (�) � h j (0)� is equal to some real constant b j . This gives (i) and allows us to
extend h to the whole C.

Taking limit for � tending radially to T in (3.12), we get the weak inequality
in (ii). The strong inequality follows from the fact that for a.e. � 2 T the mapping

D 3 z 7! Re
⇥
�̄h(�) • (z � '⇤(�))

⇤
2 R

is affine over R, non-constant, and hence open.

Note that we can obtain the statement (i) in Proposition 3.6 immediately, using
more general results (see [3, Theorem 3]).

We are ready to prove Theorem 1.2 which will follow, as announced, from
Theorem 1.1 and the following important:

Lemma 3.7. Let D ⇢ Cn be a taut convex tube, let ' : D ! D be a holomorphic
map with the boundary measure µ, and let h(�) = ā�2 + b�+ a, � 2 D, for some
a 2 Cn , b 2 Rn , with h 6⌘ 0. Then

the measure �̄h(�) •

⇣
Re z dLT(�) � dµ(�)

⌘
is negative for every z 2 D (m)

if and only if the following two conditions holds:

(i) Re
⇥
�̄h(�) • (z � '⇤(�))

⇤
< 0 for all z 2 D and a.e. � 2 T,

(ii) Re
h
h(�) •

'(0)�'(�)
�

i
< 0 for every � 2 D⇤.

All measures in (m) are regular and real. Let us also note that in view of this lemma,
the function h in Theorem 1.2 is the same h as in Theorem 1.1. We shall use this
fact in Section 4.
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Proof of Lemma 3.7. We start with showing that conditions (i) and (ii) are both
satisfied if and only if

Re z(�)  0 for all � 2 D, z 2 D, (3.14)

where  z : D ! C is the holomorphic function defined as

 z(�)=
'(0) � '(�)

�
•h(�)+

h(�) � h(0)
�

•(z�'(0))+� h(0) • (z � '(0)) (3.15)

for z 2 D, � 2 D⇤ (and extended holomorphically through 0). The functions  z
are defined in the same way as in Lemma 3.4. As D is a taut convex tube, almost
all radial limits of ' exist. What is more, whenever '⇤(�) exists, there also exists
 ⇤

z (�) for every z 2 D. There holds

Re ⇤

z (�) = Re
⇥
�̄h(�) • (z � '⇤(�))

⇤
for all z 2 D and a.e. � 2 T. (3.16)

Now, if (i) and (ii) hold, then Re z is bounded from above and Re ⇤

z < 0 a.e.
on T, so the maximum principle gives (3.14). On the other hand, (3.14) allows us
to derive the weak inequalities in (i) and (ii). As h 6⌘ 0, the strong inequality in
(i) follows from the fact that the map z 7! Re

⇥
�̄h(�) • (z � '⇤(�))

⇤
is open for

a.e. � 2 T. The strong inequality in (ii) is a consequence of maximum princi-
ple, because by (i) with z = '(0), the function � 7! Re

h
h(�) •

'(0)�'(�)
�

i
is not

identically equal to 0.
Let ⌫z denote the measure in condition (m), that is

⌫z = �̄h(�) •

⇣
Re z dLT(�) � dµ(�)

⌘
.

To finish the proof, it suffices to show that conditions (3.14) and (m) are equivalent,
and for this it is enough to prove that  z 2 M and ⌫z is the boundary measure of
 z .

We claim that formula (2.2) holds for Re z and ⌫z , i.e.

Re z(�) =

1
2⇡

Z
T

1� |�|2

|⇣ � �|2
d⌫z(⇣ ), � 2 D, z 2 D. (3.17)

In view of the definition ofM, this will complete the proof. Fix z 2 D. Set

⌫z,1 = �̄h(�) •

⇣
Re'(0)dLT(�) � dµ(�)

⌘
,

⌫z,2 = Re
⇥
�̄ (h(�) � h(0)) • (z � '(0))

⇤
dLT(�),

⌫z,3 = Re
⇥
�̄h(0) • (z � '(0))

⇤
dLT(�).

Every ⌫z,k is a real measure on T. Using the fact that �̄h(�) 2 Rn for � 2 T, we
can write ⌫z as the sum ⌫z = ⌫z,1 + ⌫z,2 + ⌫z,3. On the other hand, the function  z
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equals to sum of three functions, as in (3.15):  z =  z,1 +  z,2 +  z,3, where

 z,1(�) =

'(0) � '(�)

�
• h(�),

 z,2(�) =

h(�) � h(0)
�

• (z � '(0)),

 z,3(�) = � h(0) • (z � '(0)).

To get (3.17) it suffices to show that the terms of the sum for ⌫z “correspond” to the
terms of the sum for  z , i.e. that for k = 1, 2, 3 there holds

Re z,k(�) =

1
2⇡

Z
T

1� |�|2

|⇣ � �|2
d⌫z,k(⇣ ), � 2 D, z 2 D. (3.18)

We have
⌫z,2 = Re


h(�) � h(0)

�
• (z � '(0))

�
dLT(�)

and
⌫z,3 = Re

h
� h(0) • (z � '(0))

i
dLT(�).

Therefore, it follows directly from classical Poisson formula for functions which
are harmonic in a neighbourhood of D that (3.18) holds for k = 2, 3. To finish the
proof it remains to show it for k = 1.

Observe the following fact: if u 2 C(T), � and �r (r 2 (0, 1)) are real mea-
sures on T such that �r tend weakly-* to � when r ! 1�, then the measures ud�r
tend weakly-* to ud� .

We apply this fact in the following way. Write ' = ('1, . . . ,'n), µ =

(µ1, . . . , µn) and h = (h1, . . . , hn). Since Re' j (r�)dLT(�) tend weakly-* to
µ j and � 7! �̄h j (�) is continuous on T, the measures �̄h j (�)Re' j (r�)dLT(�)

tend to �̄h j (�)dµ j (�). This implies

�̄h j (�)Re
�
' j (0) � ' j (r�)

�
dLT(�) �! �̄h j (�)

⇣
Re' j (0)dLT(�) � dµ j (�)

⌘
for j = 1, . . . , n. Taking the sum over j = 1, . . . , n and using the fact that
�̄h j (�) 2 R, we obtain

⌫z,1 = lim
r!1�

Re

'(0) � '(r�)

�
• h(�)

�
dLT(�).

For r 2 (0, 1) the function � 7! Re
h
'(0)�'(r�)

� • h(�)
i
is harmonic in a neigh-

bourhood of D, so for fixed � 2 D the classical Poisson formula gives

1
2⇡

Z
T

1� |�|2

|⇣ � �|2
Re


'(0) � '(r⇣ )

⇣
• h(⇣ )

�
dLT(⇣ )=Re


'(0) � '(r�)

�
• h(�)

�
.

The last expression converges to Re z,1(�) when r ! 1� and hence (3.18) holds
for k = 1. The proof is complete.
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4. Calculating complex geodesics

In this section we focus on deriving formulas for complex geodesics in convex tubes
in C2 covering finite intersections of Reinhardt domains of the form

n
(z1, z2) 2 D2 : 0 < |z1|p|z2|q < ↵

o

with some p, q > 0 and ↵ 2 (0, 1) (Example 4.5). For this, we state two lemmas
which partially describe boundary measures of geodesics in some special situations
(Lemmas 4.2 and 4.3) and which are applied afterwards to calculate all complex
geodesics in the example.

Before we start analysing the examples, we make a few useful remarks. Below
we assume that D ⇢ Cn is a taut convex tube domain.

If ' : D ! D is a complex geodesic and � 2 T is such that �̄h(�) 6= 0 and the
inequality Re

⇥
�̄h(�) • (z � '⇤(�))

⇤
< 0 holds for all z 2 D, then '⇤(�) 2 @D and

the vector �̄h(�) is outward from D at '⇤(�) (and hence it is outward from Re D at
Re'⇤(�), as �̄h(�) 2 Rn). This observation is helpful in deriving some information
about h and ', or even in deriving a formula for ' in the case of bounded base of
D, as, for instance, in Example 4.6. However, it turns out that it is not sufficient if
the base of D is unbounded.

If ' is a complex geodesic for D, then, by Lemma 3.7, the mapping h from
Theorem 1.2 satisfies the conclusion of Theorem 1.1, and vice versa (what is more,
h may be chosen as in Proposition 3.6). In particular, given a map h as in Theorem
1.2 we can apply for it the conclusions made in the previous paragraph. Let us note
that a map h satisfying the conclusion of Theorem 1.2 need not to be unique.

Observe the following fact: given a finite positive measure ⌫ on T and a non-
negative continuous function u on T with u�1({0}) = {�1, . . . , �m}, if ud⌫ is a null
measure, then ⌫ =

Pm
j=1 ↵ j�� j for some constants ↵1, . . . ,↵m � 0.

Recall that by [5, Lemma 8.4.6], if h 2 O(D, C) is of class H1 and such that
�̄h⇤(�) > 0 for a.e. � 2 T, then h is of the form c(�� d)(1� d̄�) for some d 2 D,
c > 0. In particular, �̄h(�) = c|��d|

2 for � 2 T and the function h has at most one
zero on T (counting without multiplicities). By the observation we made above, if
⌫ is a finite negative measure on T such that the measure �̄h(�)d⌫(�) is null, then
⌫ = ↵��0 for some ↵  0, �0 2 T, with ↵h(�0) = 0 (we take �0 = d if d 2 T,
otherwise ⌫ is null and we put ↵ = 0 with an arbitrary �0). We shall quite often use
this fact.

Let as also note that if for some p, v 2 Rn the inequality hRe z � p, vi < 0
holds for all z 2 D and ' : D ! D is a holomorphic map with the boundary
measure µ, then a similar inequality holds for measures: hdµ � p dLT, vi  0.
This is an immediate consequence of the fact that this measure is equal to the weak-
* limit of the negative measures hRe'(r�) � p, vi dLT(�), when r ! 1�. In
particular, if Re D ⇢ (�1, 0)n , then µ1, . . . , µn  0.
Example 4.1. This example is just an introduction. We present an application of
Theorem 1.2 for calculating complex geodesics in the simpliest n-dimensional con-
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vex tube with unbounded base. A modification of the argument below let us derive
Lemma 4.2, which plays a key role in Example 4.5.

A map ' 2 Mn with the boundary measure µ = (µ1, . . . , µn) is a complex
geodesic for the domain Hn

�
if and only if µ j0 = ↵��0 for some j0 2 {1, . . . , n},

↵ < 0, �0 2 T.
Indeed, assume that ' is a geodesic for Hn

�
and let h = (h1, . . . , hn) be as in

Theorem 1.2, i.e. h 6⌘ 0 and

�̄h(�) •

⇣
Re z dLT(�) � dµ(�)

⌘
 0, z 2 Hn

�
.

Taking the limit for z tending to 0 we obtain �̄h(�)•dµ(�) � 0. On the other hand,
�̄h j (�) � 0 on T, because h is continuous on T and �̄h(�) is outward fromHn

�
for

a.e. � 2 T, and µ j  0, as Re' j < 0 on D. This implies �̄h(�) • dµ(�)  0, and
finally:

�̄h1(�)dµ1(�) + . . . + �̄hn(�)dµn(�) = 0.

Since all terms of the above sum are negative measures, we have �̄h j (�)dµ j (�) = 0
for every j = 1, . . . , n. There exists j0 such that h j0 6⌘ 0, and as µ j is non-null for
every j (because Re' j 6⌘ 0), the function h j0 must admit a root �0 on T. Hence,
we have µ j0 = ↵��0 for some ↵ < 0. In view of (2.3), the map ' j0 is given by the
formula

' j0(�) =

↵

2⇡
�0 + �

�0 � �
+ i�, � 2 D,

for some real constant �, which is a well-known expression for a complex geodesic
of Hn

�
.

Lemma 4.2. Let D ⇢ Cn be a taut convex tube and let p 2 @Re D. Define

V :=

�
v 2 Rn

: hRe z � p, vi < 0, z 2 D
 
.

Let ' : D ! D be a complex geodesic for D with the boundary measureµ and let h
be as in Theorem 1.2. Put A :=

�
� 2 T : �̄h(�) 2 int V

 
. Then �A dµ = p�A dLT

and Re'⇤(�) = p for every � 2 A.

In the situation of the above lemma, if int V 6= ?, then we can say that Re D
has a “vertex” at the point p. The aim of the lemma is to handle the situation
where Re'⇤ sends some �’s to that vertex. To detect some (not all) of these �’s we
analyse the behaviour of the function h instead of analysing behaviour of Re'⇤. All
�’s detected in this way form the set A (this is the reason for which in the definition
of A there is int V , not V itself – for � such that �̄h(�) 2 V \ int V it is possible
that Re'⇤(�) 6= p). This approach allows us to state not only that Re'⇤(�) = p
for � 2 A, but much more: the boundary measure of ' is equal to p dLT on the set
A. This lemma plays a key role in Example 4.5.

If the set int V is not empty, then it is an open, convex, infinite cone with the
vertex at 0. In the case n = 2 one can find two vectors v1, v2 2 Rn such that int V
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consists of those v 2 Rn which lies “between” v1 and v2, i.e. int V = {v 2 Rn
:

det[v1, v], det[v, v2] > 0}.
In the definition of A the set int V cannot be replaced by V , because then the

equality �A dµ = p�A dLT does not hold any longer. For example, take D = H2
�
,

p = (0, 0), and let ' be given by the measure �(�1, �1 + ��1), that is '(�) =

1
2⇡

⇣
�+1
��1 ,

�+1
��1 +

��1
�+1

⌘
. The map ' is clearly a geodesic for D and one can check

that if h = (h1, h2) is as in Theorem 1.2, then h1(1) = 0 and h2 ⌘ 0 (because
�̄h2(�) � 0 on T and h has roots on T at 1 and �1). As V = [0,1)2 \ {(0, 0)}, we
have {� 2 T : �̄h(�) 2 V } = T \ {1}, while the measure µ is clearly not equal to
(0, 0) on T \ {1}.

Proof. Wemay assume that int V 6=?. For linearly independent vectors v1,. . . ,vn 2

int V set
Qv1,...,vn := {↵1v1 + . . . + ↵nvn : ↵1, . . . ,↵n > 0}.

One can check that the sets Qv1,...,vn form an open covering of int V , and hence it
suffices to show the conclusion with the set int V replaced by Qv1,...,vn .

Fix v1, . . . , vn 2 int V linearly independent, and let W be a non-singular, real
n⇥n matrix with rows v1, . . . , vn . Set Q := Qv1,...,vn , B := {� 2 T : �̄h(�) 2 Q}.

We are going to show that �B dµ = p�B dLT and Re'⇤
= p on B. Let

eµ :=

�eµ1, . . . ,eµn
�

:= W ·

⇣
dµ � p dLT

⌘
.

As eµ j = hdµ � p dLT, v j i, the measures eµ j are negative. The mapping

eh(�) :=

⇣eh1(�), . . . ,ehn(�)⌘ :=

⇣
W�1

⌘T
· h(�), � 2 C,

satisfies �̄eh(�) 2 (0,1)n for � 2 B, because (WT )�1 · (↵1v1 + . . . + ↵nvn) =

(↵1, . . . ,↵n). Thus
�B(�) �̄eh(�) • deµ(�)  0.

By the definition of eµ andeh, there is
�̄eh(�)•⇣W ·(Re z� p) dLT(�)�deµ(�)

⌘
= �̄h(�)•

⇣
Re z dLT(�) � dµ(�)

⌘
, z2D,

so the measure �B(�) �̄eh(�)•(W ·(Re z� p) dLT(�)�deµ(�)) is negative for every
z 2 D. Taking limit for z tending to p, we obtain

�B(�) �̄eh(�) • deµ(�) � 0.

In summary, the measure �B(�) �̄eh(�) • deµ(�) is null. As it is the sum of the
negative measures �B(�) �̄eh j (�)deµ j (�), all of them are null, and hence all �Bdeµ j
are also null. Therefore

�B dµ = W�1
· �B deµ + p�B dLT

= p�B dLT,

so the first part is proved.
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For the second, applying Poisson formula to ' � p, we have

Re'(�) � p =

1
2⇡

Z
T\B

1� |�|2

|⇣ � �|2
d(µ � pLT)(⇣ ), � 2 D,

so Re'(r�) ! p as r ! 1�, for any � 2 B.

Lemma 4.3. Let D ⇢ Cn be a taut convex tube and let V be a real m ⇥ n matrix
with linearly independent rows v1, . . . , vm 2 Rn , m � 1, such that the domain

eD := {V · z : z 2 D}

is a taut convex tube in Cm .
(i) Let ' : D ! D be a complex geodesic for D, and let h be as in Theorem 1.2.

If �̄h(�) 2 spanR{v1, . . . , vm} for every � 2 T, then the mapping e' : � 7!

V · '(�) is a complex geodesic for eD.
(ii) If for a holomorphic map ' : D ! D the mapping e' : � 7! V · '(�) is a

complex geodesic for eD, then ' is a complex geodesic for D.
This lemma allows us to “decrease” the dimension n, when we are trying to find
a formula for ', provided that the functions h1, . . . , hn are linearly dependent. In
such situation, if we know formulas for geodesics in eD (e.g. for m = 1, because
then eD is a strip or a half-plane inC), then by (i) we obtain some information about
', and by (ii) we conclude that it may be hard to get something more if we have
no additional knowledge. We use this lemma in Example 4.5, where the set @Re D
consists of segments and half-lines.

The situation when h1, . . . , hn are linearly dependent occurs e.g. when for
some proper affine subspace W of Rn there is Re'⇤(�) 2 intW (W \ @Re D) on
the set of positive LT measure, because then the vectors �̄h(�) are orthogonal to
W on the set of positive measure and hence on whole T (by the identity principle).
Here intW denotes the interior with respect to W . If the set intW (W \ @Re D) is
non-empty, then W \ Re D = ?.

Note that in the situation as in (ii) the map ' admits in fact a left inverse defined
on the convex tube domain {z 2 Cn

: V · z 2
eD}, which may be larger than D and

not taut (its base may contain real lines).

Proof. We prove the first part. The matrix V T may be viewed as a complex linear
isomorphism from Cm to spanC{v1, . . . , vm}. The mappingeh : C ! Cm defined
aseh(�) =

�
V T ��1

· h(�) is of the form ā�2+ b�+ a (with some a 2 Cm , b 2 Rm)
and it satisfies eh(�)T · V = h(�)T and eh 6⌘ 0. We are going to apply Theorem
1.2 for e', eD,eh. A weak-* limit argument shows that the boundary measure eµ of e'
equals V · dµ. For any z 2 D there is

�̄eh(�) •

⇣
V · Re z dLT(�) � deµ(�)

⌘
= �̄eh(�)T · V ·

⇣
Re z dLT(�) � dµ(�)

⌘

= �̄h(�) •

⇣
Re z dLT(�) � dµ(�)

⌘
.

The last measure is negative.
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To prove the second part it suffices to observe that if f :
eD ! D is a left

inverse for e', then the map z 7! f (V · z), defined on the domain {z 2 Cn
: V · z 2eD} � D, is a left inverse for '.

Example 4.4. A map ' 2M with the boundary measure µ is a complex geodesic
for the strip S if and only if

µ = �
{�2T: �̄h (�)>0} dLT (4.1)

for some function h : � 7! ā�2 + b� + a with a 2 C, b 2 R, |b| < 2|a| (the last
condition is equivalent to LT({� 2 T : �̄h(�) > 0}) 2 (0, 2⇡)).

Indeed, assume that ' is a complex geodesic for S and let h be as in Theorem
1.2. The vector �̄h(�) is outward from ReS = (0, 1) at Re'⇤(�) 2 @ReS = {0, 1}
for a.e. � 2 T, so Re'⇤(�) = 1 when �̄h(�) > 0, and Re'⇤(�) = 0 when
�̄h(�) < 0 (for a.e. �). Thus µ = Re'⇤dLT

= �
{�2T: �̄h (�)>0} dLT. As ' is non-

constant, there is 0 6= µ 6= LT, and hence LT({� 2 T : �̄h(�) > 0}) 2 (0, 2⇡).
Of course, formulas for geodesics in S are well-known, and it is good to write

explicitly the formula for the map induced by the boundary measure (4.1) (we shall
need it in Example 4.5). Take h as above. The mapping

⌧ (�) := �

i
⇡
log

✓
i
1+ �

1� �

◆
, (4.2)

where log denotes the branch of the logarithm with the argument in [0, 2⇡), is a
biholomorphism from D to S. It extends continuously to D \ {�1, 1}, and it sends
the arc {� 2 T : Im� > 0} to the line 1+ i R and the arc {� 2 T : Im� < 0} to the
line i R. Put c =

�b
2|a|+

p

4|a|2�b2
.One can check that Im (iTc( ā

|a|�)) 2 �̄h(�) (0,1)

for every � 2 T. This implies that the map � 7! ⌧
⇣
iTc

⇣
ā
|a|�

⌘⌘
sends the arc

{� 2 T : �̄h(�) > 0} to the line 1+ i R and the arc {� 2 T : �̄h(�) < 0} to the line
i R. It is of class H1, so its boundary measure equals �

{�2T: �̄h (�)>0} dLT. Since its
value at 0 is real, we obtain the equality

'h(�) :=

1
2⇡

Z
{⇣2T: ⇣̄h(⇣ )>0}

⇣ + �

⇣ � �
dLT(⇣ ) = ⌧

⇣
iTc

⇣
ā
|a|�

⌘⌘
, � 2 D. (4.3)

We shall use it in Example 4.5. Let us recall that the above equality holds for every
h : C ! C of the form ā�2+b�+a, a 2 C, b 2 R, with |b| < 2|a|, or equivalently:
LT({� 2 T : �̄h(�) > 0}) 2 (0, 2⇡).
Example 4.5. Consider a convex tube domain D with Re D contained in (�1, 0)2
and @Re D being a sum of a horizontal half-line contained in (�1, 0] ⇥ {0}, a
vertical half-line contained in {0} ⇥ [�1, 0), and some finite number of segments.
More formally: let

D :=

n
z 2 C2 :

⌦
Re z � p j , v j

↵
< 0 for j = 1, . . . ,m

o
,
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where m � 2, v1, . . . , vm 2 [0,1)2, p0, . . . , pm 2 (�1, 0]2, v j = (v j,1, v j,2),
p j = (p j,1, p j,2) are such that:

• 0 = p0,1 = p1,1 > p2,1 > . . . > pm�1,1 > pm,1,
• 0 = pm,2 = pm�1,2 > pm�2,2 > . . . > p1,2 > p0,2,
• det

⇥
v j , v j+1

⇤
> 0 for j = 1, . . . ,m � 1,

• hp j+1 � p j , v j+1i = 0 for j = 0, . . . ,m � 1

(the points p0 and pm play only a supporting role). The base of D is shown in
Figure 4.1. By the assumptions we have:

• hRe z � p j , v j+1i < 0 for z 2 D, j = 0, . . . ,m � 1,
• v1,1 > 0, v1,2 = 0, vm,1 = 0, vm,2 > 0,
• @Re D = {0} ⇥ (�1, p1,2] [

Sm�2
j=1 [p j , p j+1] [ (�1, pm�1,1] ⇥ {0}.

vm
vm – 1

v…

v2

v1
p0

p1

p2

p…

pm – 1pm
(0,0)

Figure 4.1. The base of D.

Let ' 2 O(D, D) be a complex geodesic and let µ = (µ1, µ2) be its boundary
measure. Choose h as in Theorem 1.2, i.e. h(�) = ā�2 + b� + a with a =

(a1, a2) 2 C2, b = (b1, b2) 2 R2, h = (h1, h2), h 6⌘ 0, such that

�̄h(�) •

⇣
Re z dLT(�) � dµ(�)

⌘
 0, z 2 D. (4.4)

For a.e. � 2 T the vector �̄h(�) is outward from Re D at the boundary point
Re'⇤(�), so

�̄hl(�) � 0, � 2 T, l = 1, 2.
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Set

A j :=

�
� 2 T : det

⇥
�̄h(�), v j

⇤
< 0 < det

⇥
�̄h(�), v j+1

⇤ 
, j = 1, . . . ,m � 1,

Bj :=

�
� 2 T : det

⇥
�̄h(�), v j

⇤
= 0

 
, j = 1, . . . ,m,

B :=

m[
j=1

Bj .

The sets A1, . . . , Am�1, B are pairwise disjoint and we have

B [

m�1[
j=1

A j = T

because every non-zero vector from [0,1)2 lies “between” some v j and v j+1, or
is parallel to some v j .

If LT(B) > 0 then for some j0 2 {1, . . . ,m} there is LT(Bj0) > 0 and the
identity principle gives Bj0 = T. Applying part (i) of Lemma 4.3 to the 1 ⇥ 2
matrix with the row v j0 we get that h'(·) � p j0, v j0i is a geodesic for H�. In view
of part (ii) of that lemma, the condition obtained is sufficient for ' to be a complex
geodesic, so there is nothing more to do in this case.

Consider the situation where LT(B) = 0; the set B is then finite and v j,2h1 �

v j,1h2 6⌘ 0, which in particular gives h1 6⌘ 0, h2 6⌘ 0. By equation (4.4) we get that
the measure �B(�) �̄h(�) • dµ(�) is positive (�B dLT is null). Since �̄hl(�) � 0
on T and µl  0, we have �B(�)�̄hl(�)dµl(�)  0 (l = 1, 2). Hence, the measure
�B(�) �̄h(�) • dµ(�) is negative and in summary it is null. As it is equal to sum of
the negative measures �B(�)�̄h1(�)dµ1(�) and �B(�)�̄h2(�)dµ2(�), both of them
are null. Each hl has at most one root on T (counting without multiplicities), so
�B dµl = ↵l��l for some �l 2 T, ↵l  0, with ↵lhl(�l) = 0. Applying Lemma 4.2
to D, p j , ' and h (the set A in the lemma is here exactly the set A j ) we obtain

�A j dµ = p j�A j dLT, j = 1, . . . ,m � 1.

Therefore

µl =

m�1X
j=1

p j,l�A j dLT
+ ↵l��l , l = 1, 2, (4.5)

because µl =

Pm�1
j=1 �A j dµl + �Bdµl . At this point, using (4.5) and the Poisson

formula we can express the map ' as an integral with parameters a, b, ↵1, ↵2, and
up to an imaginary constant. In fact, it is possible to derive a direct formula for it
using the mappings 'h defined in equation (4.3) in Example 4.4. To this end, let

C j :=

�
� 2 T : det

⇥
�̄h(�), v j

⇤
< 0

 
, j = 1, . . . ,m. (4.6)

We have C1 � C2 � . . . � Cm . The set (C j \C j+1) \ A j ⇢ B is of zero Lebesgue
measure and A j ⇢ C j \ C j+1, so �A j dLT

= �C j dLT
� �C j+1dLT. Moreover,
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LT(C1) = 2⇡ and LT(Cm) = 0, because C1 = {� 2 T : �̄h2(�) > 0} and
Cm = {� 2 T : �̄h1(�) < 0} = ?. Thus, formula (4.5) may be written as

µl = p1,ldLT
+

m�1X
j=2

�
p j,l � p j�1,l

�
�C j dLT

+ ↵l��l , l = 1, 2. (4.7)

The measures �C j dLT induces complex geodesics in S, provided that LT(C j ) 2

(0, 2⇡), because

C j =

�
� 2 T : �̄

�
v j,1h2(�) � v j,2h1(�)

�
> 0

 
(see Example 4.4 for details). Therefore, it is fine to remove from the sum (4.7)
those j’s which do not satisfy this condition. Thus, set

k1 := max
n
j � 1 : LT�C j

�
= 2⇡

o
, k2 := min

n
j  m : LT(C j ) = 0

o
. (4.8)

There is 1  k1 < k2  m. By (4.7) we obtain

µl = pk1,ldLT
+

k2�1X
j=k1+1

�
p j,l � p j�1,l

�
�C j dLT

+ ↵l��l , l = 1, 2 (4.9)

(note that it is possible that the above sum is empty, i.e. that k1+1 > k2�1). Now,
for j 2 {k1 + 1, . . . , k2 � 1} we have LT(C j ) 2 (0, 2⇡), and the Poisson formula
allows us to derive the following formula for ':

'l(�)= pk1,l+
k2�1X
j=k1+1

�
p j,l�p j�1,l

�
'v j,1h2�v j,2h1(�)+

↵l
2⇡

�l+�

�l��
+i�l , l=1, 2, (4.10)

where �1, �2 are some real constants and 'v j,1h2�v j,2h1 are as in (4.3), i.e.

'v j,1h2�v j,2h1(�) = ⌧

✓
iTc j

✓
v j,1a2 � v j,2a1
|v j,1a2 � v j,2a1|

�

◆◆
, � 2 D,

with ⌧ (�) = �
i
⇡ log

⇣
i 1+�1��

⌘
and

c j =

�

�
v j,1b2 � v j,2b1

�
2
��v j,1a2 � v j,2a1

��
+

q
4
��v j,1a2 � v j,2a1

��2
�

�
v j,1b2 � v j,2b1

�2
(note that for j = k1+1, . . . , k2�1 there is |v j,1b2�v j,2b1| < 2|v j,1a2�v j,2a1|,
because LT(C j ) 2 (0, 2⇡), and hence c j and 'v j,1h2�v j,2h1 are well-defined).
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In summary, a holomorphic map ' : D ! C2 is a complex geodesic for the
domain D if and only if at least one of the following conditions holds:

(i) '(D) ⇢ D and for some j 2 {1 . . .m} the map � 7! h'(�) � p j , v j i is a
complex geodesic for H�, or

(ii) '(D) ⇢ D and the map ' is of the form (4.10) with some �1, �2 2 T,
↵1,↵2  0, �1,�2 2 R, and a map h = (h1, h2) of the form ā�2+b�+a with
a = (a1, a2) 2 C2, b = (b1, b2) 2 R2, such that �̄h1(�), �̄h2(�) � 0 on T,
↵1h1(�1) = ↵2h2(�2) = 0, v j,1h2 � v j,2h1 6⌘ 0 for any j = 1 . . . ,m, where
k1, k2 are given by (4.8) with C j given by (4.6).

So far, we have proved only that if ' is a complex geodesic for D, then it satisfies
one of the above conditions. We are going to show the opposite implication now.
Take a holomorphic map ' : D ! C2. If ' satisfies (i), then Lemma 4.3 does the
job, so consider the situation as in (ii). As '(D) ⇢ D, clearly ' admits a boundary
measure µ = (µ1, µ2). Then (4.10) holds, which gives (4.9) and hence (4.7). As
v j,1h2� v j,2h1 6⌘ 0 for any j , the set B is of LT measure 0, so �A j = �C j ��C j+1

a.e. on T (with respect to LT). Thus, (4.7) implies (4.5). From the equality (4.5) it
follows that

�A j dµl = p j,l�A j dLT and �Bdµl = ↵l��l for j = 1, . . . ,m�1, l = 1, 2. (4.11)

Indeed, since T is equal to sum of the pairwise disjoint sets A1, . . . , Am�1, B, the
first statement is obvious, and for the second observe that if ↵l = 0, then we are
done, and if ↵l < 0, then hl(�l) = 0, so �l 62 A j for any j and hence �l 2 B.

If we show that for every set E 2 {A1, . . . , Am�1, B} and every point z 2 D
the measure

�̄h(�) •

⇣
Re z �E (�) dLT(�) � �E (�) dµ(�)

⌘
is negative, then we are done via Theorem 1.2.

If E = B, then �E dLT is a null measure and as �̄hl(�)↵l d��l (�) = 0, l =

1, 2, by (4.11) the measure �̄h(�) • �E (�) dµ(�) is also null.
If E = A j for some j = 1, . . . ,m�1, then by (4.11) we need to show that the

measure �̄h(�)• (Re z� p j )�A j (�) dLT(�) is negative for every z 2 D. But if � 2

A j , then the vector �̄h(�) lies “between” v j and v j+1, so �̄h(�) = �1v j + �2v j+1
for some �1, �2 � 0 and hence �̄h(�) • (Re z � p j )  0.

Therefore, we proved that complex geodesics for D are exactly the mappings
of the form (i) or (ii).

At the end we present a simple example of convex tube domain with bounded
base. Here, the condition with radial limits (Theorem 1.1) suffices to obtain a direct
formula for the real part of a geodesic ', as its boundary measure is just Re'⇤dLT.
Example 4.6. Let

D =

n
(z1, z2) 2 C2 : (Re z1)2 + (Re z2)2 < 1

o
.
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Let ' : D ! D be a complex geodesic and let h be as in Theorem 1.1. For a.e.
� 2 T the vector �̄h(�) is a normal vector to @Re D at the point Re'⇤(�) 2 @Re D,
so �̄h(�) 2 [0,1)Re'⇤(�). As kRe'⇤(�)k = 1 (we mean the euclidean norm),
we get

Re'⇤(�) =

�̄h(�)���̄h(�)
�� for a.e. � 2 T.

The map h is of the form ā�2 + 2b�+ a with a 2 Cn , b 2 Rn , (a, b) 6= (0, 0), so

Re'⇤(�) =

Re (ā�) + b
kRe (ā�) + bk

, a.e. � 2 T. (4.12)

As the boundary measure of ' equals Re'⇤dLT, we can derive an integral formula
for ' using Poisson formula.

On the other hand, by a similar argument one can show that any ' 2 O(D, D)
satisfying (4.12) with some a 2 Cn , b 2 Rn , (a, b) 6= (0, 0), is a complex geodesic
for D.
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