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W2,1 estimate for singular solutions to the Monge-Ampère equation

CONNOR MOONEY

Abstract. We prove an interior W2,1 estimate for singular solutions to the
Monge-Ampère equation, and construct an example to show our results are opti-
mal.

Mathematics Subject Classification (2010): 35J96 (primary); 35B65 (sec-
ondary).

1. Introduction

Interior W 2,p estimates for the Monge-Ampère equation

det D2u = f in �, u|@� = 0

were first obtained by Caffarelli assuming that f has small oscillation depending
on p (see [2]).

In the case that we only have �  f  3, De Philippis, Figalli and Savin
recently obtained interior W 2,1+✏ estimates for some ✏ depending only on n,3 and
3 (see [4, 5]). This result is optimal in light of counterexamples due to Wang [8]
obtained by seeking solutions with the homogeneity

u(x, y) =

1
�2+↵

u
⇣
�x, �1+↵ y

⌘
.

These can be viewed as estimates for strictly convex solutions to theMonge-Ampère
equation. Indeed, at a point x where u is strictly convex we can find a tangent plane
that touches only at x and lift it a little to carve out a set where u has linear boundary
data.

In [7] we show that solutions to �  det D2u  3 are strictly convex away
from a singular set of Hausdorff n � 1 dimensional measure zero, and as a conse-
quence we prove W 2,1 regularity for singular solutions. We also construct for any ✏
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a singular solution to det D2u = 1 in B1 ⇢ Rn (n � 3) with a singular set of Haus-
dorff dimension at least n�1� ✏ which is not inW 2,1+✏ . However, as ✏ ! 0 these
examples become arbitrarily large. In this paper we give a more precise, quantita-
tive version of the work done in [7] and improve the examples. Our main theorem
is:

Theorem 1.1. Assume that

�  det D2u  3 in B1 ⇢ Rn, kukL1(B1) < K .

Then for some ✏(n) and C(n, �,3, K ) we have 1u 2 L log✏ L and
Z
B1/2

1u (log(1+ 1u))✏ dx  C.

We also construct an example with a singular set of Hausdorff dimension exactly
n � 1 and second derivatives not in L logM L for M large, showing that the main
theorem is in a sense optimal and that we cannot improve our estimate on the Haus-
dorff dimension to n�1�✏ for any ✏. Since solutions in two dimensions are strictly
convex, this result is interesting for n � 3.

The paper is organized as follows. In Section 2 we present some preliminaries
on the geometry of sections. In Section 3 we state our key proposition and use
it to prove Theorem 1.1. In Section 4 we prove the key proposition, which is a
quantitative version of work done in [7] obtained by closely examining the geometry
of maximal sections. Finally, in Sections 5 and 6 we construct an example with a
singular set of Hausdorff dimension n � 1 and show that it gives optimality of
Theorem 1.1.

ACKNOWLEDGEMENTS. I would like to thank my thesis advisor Ovidiu Savin for
his patient guidance and encouragement.

2. Preliminaries

Let u : � ⇢ Rn
! R be a convex function. Then u has an associated Borel

measure Mu, called the Monge-Ampère measure, defined by

Mu(A) = |ru(A)|

where |ru(A)| represents the Lebesgue measure of the image of the subgradients
of u in A (see [6]). We say that u solves det D2u = f in the Alexandrov sense if

Mu = f dx .
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We define a section of u by

Sh(x) = {y 2 � : u(y) < u(x) + ru(x) · (y � x) + h}

for some subgradient ru(x) at x . Finally, we define Dn,�,3,K to be the collection
of convex functions satisfying

�  det D2u  3 in B1 ⇢ Rn, kukL1(B1)  K

in the Alexandrov sense and we say that a constant depending only on n, �,3 and
K is a universal constant. In this section we recall some geometric observations
about sections of solutions in Dn,�,3,K .

Lemma 2.1 (John’s lemma). If S ⇢ Rn is a bounded convex set with nonempty
interior, and 0 is the center of mass of S, then there exists an ellipsoid E and a
dimensional constant C(n) such that

E ⇢ S ⇢ C(n)E .

We call E the John ellipsoid of S. There is some linear transformation A such that
A(B1) = E , and we say that A normalizes S.

In the following two lemmas we present an important observation on the vol-
ume growth of sections that are not compactly contained and relate the volume of
compactly contained sections to the Monge-Ampère mass of these sections. Short
proofs can be found in [7].

Lemma 2.2. Assume that det D2u � � in � ⇢ Rn . Then if Sh(x) is any section of
u, we have

|Sh(x)|  Chn/2

for some constant C depending only on � and n.

The proof is just a barrier by above in the John ellipsoid for Sh(x).

Lemma 2.3. Let v be any convex function on � ⇢ Rn with v|@� = 0. Then

Mv(�) |�| � c(n)
����min�

v

����
n
.

The proof is by comparing to the Monge-Ampère mass of the function whose graph
is the cone generated by the minimum point of v and @�.

Next, we recall the following geometric observation of Caffarelli for solutions
to the Monge-Ampère equation with bounded right hand side (see [1]). It says that
compactly contained sections Sh(x) are balanced around x .

Lemma 2.4. Assume that �  det D2u  3 in � ⇢ Rn . Then there exist c,
C(n, �,3) such that for all Sh(x) ⇢⇢ �, there is an ellipsoid E centered at 0 of
volume hn/2 with

cE ⇢ Sh(x) � x ⇢ CE .
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Finally, we give the following engulfing and covering properties of compactly con-
tained sections (see [3] and [5]). In the following ↵Sh(x) will denote the ↵ dilation
of Sh(x) around x .

Lemma 2.5. Assume that �  det D2u  3 in �. Then there exists � > 0 univer-
sal such that:

(1) If Sh(x) ⇢⇢ � then

S�h(x) ⇢

1
2
Sh(x).

(2) Suppose that for some compact D ⇢ �, we can associate to each x 2 D some
Sh(x) ⇢⇢ �. Then we can find a finite subcollection {Shi (xi )}Mi=1 such that
S�hi (xi ) are disjoint and

D ⇢ [
M
i=1Shi (xi ).

3. Statement of key proposition and proof of Theorem 1.1

In this section we state the key proposition and use it to prove our main theorem.
In [7] we show that the Monge-Ampere mass of u +

1
2 |x |

2 in small balls around
singular points is large compared to the mass of 1u. The proposition is a more
precise, quantitative version of this statement for long, thin sections. Let h̄(x) � 0
be the largest h such that Sh(x) ⇢⇢ B1. We say that Sh̄(x)(x) is the maximal section
at x . If h̄(x) = 0 then x is a singular point.

Proposition 3.1. If u 2 Dn,�,3,K , v = u +
1
2 |x |

2, x 2 B1/2 and h > h̄(x) then
there exist ⌘(n) and c universal such that for some r with

| log r | > c| log h|1/2,

we have
Mv(Br (x)) > crn�1| log r |⌘.

Remark 3.2. Let 6 denote the singular set of u, where h̄ = 0. It follows from
proposition 3.1 and a covering argument that

inf
�>0

(
1X
i=1

rn�1i | log ri |⌘ :

�
Bri (xi )

 
1

i=1 cover 6, ri < �

)
= 0

for some small ⌘(n), giving a quantitative version of the main theorem in [7] for
solutions to �  det D2u  3.

We will give a proof of Proposition 3.1 in the next section by closely examining
the geometric properties of maximal sections.
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The idea of the proof of Theorem 1.1 is to apply Proposition 3.1 in the thin
maximal sections, and then apply the W 2,1+✏ estimate of [5] in the larger sections
to show the following decay of the integral of 1u over its level sets:

Z
{1u>t}

1u dx 

C
| log t |✏

, (3.1)

for some ✏(n). Assuming this is true, theorem 1.1 follows easily by Fubini:
Z
B1/2

1u(log(1+ 1u))✏/2 dx  C
Z
B1/2

1u
Z 1+1u

1

1
t (log t)1�✏/2 dt dx

 C + C
Z

1

2

1
t (log t)1�✏/2

Z
{1u>t}

1u dx dt

 C + C
Z

1

2

1
t (log t)1+✏/2 dt

 C(✏).

To prove (3.1), We first recall the following theorem of De Philippis, Figalli and
Savin:

Theorem 3.3. Assume that

�  det D2u  3 in SH (0), u|@SH (0) = 0

and B1 is the John ellipsoid for SH (0). Then there exist C, ✏ depending only on
�,3 and n such that Z

SH/2(0)\{1u>t}
1u dx < Ct�✏ .

We will use the rescaled version of this theorem in the larger maximal sections.

Lemma 3.4. If u 2 Dn,�,3,K with x 2 B1/2 and Sh(x) ⇢⇢ B1, then for C univer-
sal and ✏(n, �,3) we haveZ

Sh/2(x)\{1u>t}
1u dx < Chn/2�1�✏ t�✏ .

Proof. By subtracting a linear function and translating assume that x = 0 and
u|@Sh(0) = 0. Let

u(x) = (det A)2/nũ
⇣
A�1x

⌘
where A normalizes Sh(x) and ũ has height H . Then

D2u(x) = C|Sh(0)|2/n
⇣
A�1

⌘
D2ũ

⇣
A�1x

⌘ ⇣
A�1

⌘T
.
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Applying the estimate on |Sh(0)| from Lemma 2.4 and letting d denote the length
of the smallest axis for the John ellipsoid of Sh(0), it follows that

1u(x)  C
✓
h
d2

◆
1ũ

⇣
A�1x

⌘
.

Using change of variables and Theorem 3.3 we obtain that
Z
Sh/2(0)\{1u>t}

1u dx  C(det A)

✓
h
d2

◆Z
SH/2(0)\{1ũ>c d2h t}

1ũ(y) dy

 C(det A)

✓
h
d2

◆1+✏

t�✏ .

Since det A = hn/2 up to a universal constants and d > ch since u is locally
Lipschitz, the conclusion follows.

Let F� = {x 2 B1/2 :
�
2  h̄(x) < � }.

Lemma 3.5. Let u 2 Dn,�,3,K . Then there is some C universal and ✏(n, �,3)
such that Z

F� \{1u>t}
1u dx < C� �✏ t�✏

Proof. By Lemma 2.5 we can take a cover of F� by sections {Sh̄i (xi )/2(xi )}
M�

i=1 with
xi 2 F� and S�h̄i (xi )(xi ) disjoint for some universal �. ThenZ

F� \{1u>t}
1u dx  CM� � n/2�1�✏ t�✏

by Lemma 3.4. We need to estimate the number of sections M� in our Vitali cover
of F� .

Take x 2 F� and consider Sh̄(x)(x), which touches @B1. By translation and
subtracting a linear function assume that x = 0 and u|@S

�2 h̄(0)(0) = 0. By rotating
and applying Lemma 2.4 assume that S�2h̄(0)(0) contains the line segment from
�cen to cen , with c universal.

Let wt be the restriction of u to {xn = t} and let

Swt
= S�2h̄(0)(0) \ {xn = t}

be the slice of S�2h̄(0)(0) at xn = t . Since |S�2h̄(0)(0)|  C� n/2 and this section has
length 2c in the en direction, it follows from convexity that

��Swt
��
Hn�1  C� n/2.
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By convexity, u(ten) < ��2h̄(0)/2 for �c/2  t  c/2. Applying Lemma 2.3, we
conclude that for t 2 [�c/2, c/2],

Mwt
�
Swt

�
> c� n/2�1.

Let r be the distance between @S�2h̄(0)(0) and @(2S�2h̄(0)(0)). Divide 2S�2h̄(0)(0)
into the slices

Sk = 2S�2h̄(0)(0) \ {kr < xn < (k + 1)r}

for k = �
c
2r to

c
2r . Let v = u +

1
2 |x |

2. Then rv(Sk) contains a ball of radius r/2
around each point in rv(Sw(k+1/2)r ) (see Figure 3.1), so

Mv
�
Sk
�

� crMv
�
Sw(k+1/2)r

�
� cr� n/2�1.

Summing from k = �
c
2r to

c
2r we obtain that���rv
�
2S�2h̄(0)(0)

���� � c� n/2�1.

Using that 2S�2h̄i (xi ) ⇢ S�h̄i (xi ) are disjoint and summing over i we obtain that

M� � n/2�1 < C

and the conclusion follows.

Proof of Theorem 1.1. We first consider the set where h̄(x) 
1
t1/2 . At any point in

this set, by Proposition 3.1, we can find some r > 0 such that | log r | > c| log t |1/2
and

Mv
�
Br (x)

�
> crn�1(log t)⌘/2.

We conclude thatZ
Br (x)

1u dx  Crn�1 

C
(log t)⌘/2Mv

�
Br (x)

�
.

Covering {1u > t} \ {h̄(x) 
1
t1/2 } with these balls and taking a Vitali subcover

{Bri (xi )}, we obtain thatZ
{1u>t}\

n
h̄(x)< 1

t1/2

o1u dx 

C
(log t)⌘/2

X
i
Mv(Bri (xi )) 

C
(log t)⌘/2 ,

giving the desired bound over the “near-singular” points.
We now study the integral of 1u over the remaining subset of {1u > t}. Take

k0 so that
2k0�1  t1/2 < 2k0 .
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Sk

Skw(k+1/2)r

Br/2(y)

Ñv

Ñv(Br/2(y))

Ñv(Sk         )w(k+1/2)r2Sd2h(0)

2Sd2h(0)

Figure 3.1. rv(Sk) contains an r/2-neighborhood of the surface rv(Sw(k+1/2)r ), which
projects in the xn direction to a set ofHn�1 measure at least c� n/2�1.

Applying Lemma 3.5 we obtain that

Z
{1u>t}\

n
h̄(x)> 1

t1/2

o1u dx 

k0X
i=0

Z
{1u>t}\F2�i

1u dx

 Ct�✏
k0X
i=1

2✏i

 Ct�✏/2,

giving the desired bound.

4. Quantitative behavior of maximal sections

In this section we closely examine the geometric properties of maximal sections of
solutions in Dn,�,3,K to prove Proposition 3.1.

Let u 2 Dn,�,3,K and fix x 2 B1/2. Then for any h > h̄(x), Sh(x) is not
compactly contained in @B1. If h̄(x) > 0, then by Lemma 2.4, Sh̄(x)(x) contains an
ellipsoid E centered at x with a long axis of universal length 2c.

If h̄(x) = 0 and L is the tangent to u at x then it is a consequence of lemma 2.4
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(see [1]) that {u = L} has no extremal points, and in particular for any h > 0 we
know Sh(x) contains a line segment (independent of h) exiting @B1 at both ends.

By translating and subtracting a linear function assume that x = 0 andru(0)=
0. By rotating assume that Sh(0) contains the line segment from �cen to cen for all
h > h̄(0). For the rest of the section denote h̄(0) by just h̄.

Let w be the restriction of u to {xn = 0} with sections Sw
h . Since |Sh(0)| <

Chn/2 for all h and Sh̄(0) contains a line segment of universal length in the en
direction, we have ��Sw

h (0)
��
Hn�1 < Chn/2

for h � h̄. In the following analysis we need to focus on those sections of w with
the same volume bound. The following property is sufficient:
Property F: We say Sw

h (y) satisfies property F if

w(y) + rw(y) · (�y) + h � h̄.

(See Figure 4.1).

w

hh

y0
Figure 4.1. Sw

h (y) satisfies property F if the tangent plane at y, lifted by h, lies above
h̄ at 0.

Lemma 4.1. If Sw
h (y) satisfies property F then

��Sw
h (y)

�� < Chn/2.

Proof. The plane u(y) + ru(y) · (z � y) + h is greater than h̄ along z = ten for
either t > 0 or t < 0. Since u < h̄ on the segment from �cen to cen , it follows that
Sh(y) contains the line segment from 0 to cen or �cen . Since |Sh(y)| < Chn/2 the
conclusion follows.

The first key lemma says that w grows logarithmically faster than quadratic in
at least two directions at a level comparable to h̄. Let

dy1 (h) � dy2 (h) � . . . � dyn�1(h)

denote the axis lengths of the John ellisoid for Sw
h (y).



1292 CONNOR MOONEY

Lemma 4.2. For any h > h̄ there exist ✏(n), C0 universal, h0 < e�| log h|1/2 and y
such that Sw

h0(y) satisfies property F and

dyn�2(h0) < C0h
1/2
0 | log h0|�✏ .

The next lemma says that if w grows logarithmically faster than quadratic in at
least two directions up to height h then the Monge-Ampère mass of u +

1
2 |x |

2 is
logarithmically larger than the mass of1u in a ball with radius comparable to h1/2.

Lemma 4.3. Fix ✏ > 0 and assume that for some h > 0, Sw
h (y) satisfies property

F . Then there exist ⌘1, ⌘2(n, ✏) and C depending on universal constants and ✏ such
that if

dyn�2(h) < h1/2| log h|�✏

then for some r < Ch1/2| log h|�⌘1 we have

M
✓
u +

1
2
|x |2

◆
(Br (0)) > C�1rn�1| log r |⌘2 .

These lemmas combine to give the key proposition:

Proof of Proposision 3.1. By Lemma 4.2, there is some Sh(y) satisfying property
F with

dyn�2(h) < C0h1/2| log h|�✏,

with ✏(n), C0 universal and h < e�| log(�+h̄(x))|1/2 for any �. The conclusion follows
from Lemma 4.3.

We now turn to the proofs of Lemmas 4.2 and 4.3.

Proof of Lemma 4.2. Assume by way of contradiction that for all h < h0 and Sw
h (y)

satisfying property F we have

dyn�2(h) > C0h1/2| log h|�✏,

for h0 depending on h̄ and C0, ✏ we will choose later. We divide the proof into two
steps.
Step 1: Define the breadth b(h) as the minimum distance between two parallel
tangent hyperplanes to @Sw

h (0). We show that for h̄| log h̄| < h < h0 we have

b(h/2) >

✓
1
2

+

C1
| log h|

◆
b(h)

for some C1 large depending on C0. Let x0 be the center of mass of Sw
h (0) and

rotate so that the John ellipsoid for Sw
h (0) is A(B1) + x0, where

A = diag
⇣
d01 (h), . . . , d

0
n�1(h)

⌘
.
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Let P1, P2 be the tangent hyperplanes to @Sw
h/2(0) a distance b(h/2) apart. Let

x1, x2 be points where P1 and P2 become tangent to @Sw
h (0) when we slide them

out. Assume that the distance between 0 and the plane tangent at x1 is larger than
that between 0 and the plane tangent at x2. (See Figure 4.2).

x1

x2

Sh(0)w

Sh/2(0)w

0
P2

P1

b(h/2)

Figure 4.2.

Let x̃1 be the image of x1 under A�1 and let

w̃(x) = (det A)�2/nw(Ax).

Observe that w̃ is the restriction of ũ(x) = (det A)�2/nu(Ax 0, xn) which solves
�  det D2u  3, so that sections Sw̃

h of w̃ satisfying property F with h̄ replaced
by (det A)�2/nh̄ have volume bounded above by Chn/2. Furthermore, since the
distance between 0 and the plane tangent at x1 was larger and the images of the
tangent planes under A�1 are separated by distance at least 2, we have |x̃1| � 1.

By convexity we can find ỹ on the line segment connecting 0 to x̃1 such that

rw̃(ỹ) ·

x̃1
|x̃1|

=

H
|x̃1|

,

where H = det A�2/nh is the height of w̃. Let h̃ be the smallest t such that 0 2

Sw̃
t (ỹ). We aim to bound h̃ below, which heuristically rules out cone-like behavior
in the x̃1 direction. Let

h⇤

= h̃ + (det A)�2/nh̄.

We have chosen h⇤ so that Sw̃
h⇤(ỹ) and Sw

� (y) = A(Sw̃
h⇤(ỹ)) satisfy property F ,

where � = (det A)2/nh⇤. (See Figure 4.3). It follows that

|Sw̃
h⇤(ỹ)| < C(h⇤)n/2.

We now bound the volume of Sw̃
h⇤(ỹ) by below. Since 0, x̃1 are in this section, it has

diameter at least 1. Since w̃ has height H it has interior Lipschitz constant CH , so
the smallest axis of the John ellipsoid for Sw̃

h⇤(ỹ) has length at least c h
⇤

H . We turn to
the remaining axes.
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H

w̃

h̃

ỹ
x̃1

0(det A)-2/n h
Figure 4.3. Lifting the tangent plane at ỹ by h⇤

= h̃+det(A)�2/nh̄ we obtain a section
of w̃ satisfying property F .

Let Ey be the John ellipsoid for Sw
� (y). By contradiction hypothesis for any n � 2

dimensional plane P passing through the center of Ey , we can find a n � 3 dimen-
sional plane P 0 contained in P such that P 0

\ Ey is an n � 3 dimensional ellipsoid
with axes dy1,P 0

� . . . � dyn�3,P 0
satisfying

dyn�3,P 0
> C0�1/2| log �|�✏ .

Take P such that A�1(P) is perpendicular to the segment connecting 0 and x̃1. By
using the hypothesis and that w is locally Lipschitz we have

d0n�2(h)d
0
n�1(h) > cC0h3/2| log h|�✏ .

Since
d01 (h) . . . d0n�1(h) < Ch

n
2 ,

this gives
d01 (h) . . . d0n�3(h) <

C
C0

h
n�3
2 | log h|✏ .

It follows that A�1 changes the n � 3 dimensional volume of P 0
\ Ey by a factor

of at least
c(n)

d01 (h) . . . d0n�3(h)
� cC0h�

n�3
2 | log h|�✏ .

Since
det A > chn/2| log h|�C(n)✏

(by the contradiction hypothesis) and � = (det A)2/nh⇤ we conclude that

���Sw̃
h⇤(ỹ) \ A�1(P 0)

���
Hn�3

>C1

�
�1/2| log �|�✏

�n�3
d01 (h) . . . d0n�3(h)

�C1(h⇤)
n�3
2 (det A)

n�3
n h�

n�3
2
�
C| log h| + | log h⇤

|

�
�C(n)✏
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for some large C1 depending on C0. We also have

H = h(det A)�2/n  | log h|C(n)✏ .

Using that the remaining axes have lengths at least 1 and c h
⇤

H we obtain���Sw̃
h⇤(ỹ)

��� > C1(h⇤)
n�1
2 | log h|�C(n)✏(C| log h| + | log h⇤

|)�C(n)✏ .

Using that |Sw̃
h⇤(ỹ)| < C(h⇤)n/2 we get a lower bound on h⇤:

h⇤ > C1| log h|�C(n)✏ .

(See Figure 4.4 for the simple case n = 3.)

0

> 1

> ch*/Hx1̃
Sh* (y)w̃ ˜

Figure 4.4. For the case n = 3, the above figure implies that |Sw̃
h⇤(ỹ)| > ch⇤/H . This,

combined with the volume estimate |Sw̃
h⇤(ỹ)| < C(h⇤)3/2 and the upper bound on H

from the contradiction hypothesis give a lower bound of c| log h|�C✏ for h⇤.

Recalling the definition of h⇤ and using again the lower bound on det A it follows
that

h̃ + C
h̄
h
| log h|C(n)✏ > C1| log h|�C(n)✏ .

Taking ✏ to be small enough that C(n)✏ = 1/2 and using that h̄| log h̄| < h we get

h̃ > C1| log h|�1/2.

Finally, let
⇣
1
2 + �

⌘
x̃1 be the point where w̃ =

H
2 . It is clear from convexity (see

Figure 4.5) that
2� H � h̃.

Recalling that H < c| log h|C(n)✏ < c| log h|1/2, we obtain

� � C1| log h|�1.

Let l1, l2 be the distances from 0 to the translations of P1 and P2 which are tangent
to @Sw

h (0) so that b(h)  l1+ l2. The previous analysis implies that P1 and P2 have
distance at least

⇣
1
2 + �

⌘
l1 and 12 l2 from 0. Since l1 � l2 it follows that

b(h/2) �

✓
1
2

+ �

◆
l1 +

1
2
l2 �

✓
1+ �

2

◆
(l1 + l2).

Since � �
C1

| log h| , step 1 is finished.



1296 CONNOR MOONEY

x1̃

H

H/2
w̃

g x1 ˜

2g x1 ˜
Figure 4.5. By convexity 2� is at least h̃/H , giving a quantitative modulus of continuity
for rw near 0 which we exploit in Step 2 to obtain a contradiction.

Step 2: We iterate Step 1 to prove the lemma. First assume that h̄ > 0 and that
h̄| log h̄| = 2�k and h0 = 2�k0 . Note that d0n�1(h) > c(n)b(h) and that d0n�1(h0) >

c2�k0 since u is locally Lipschitz. Iterating step 1 for C1 large we obtain

d0n�1
�
2�k�

� c(1/2+ C1/k)(1/2+ C1/(k � 1)) . . . (1/2+ C1/k0)2�k0

� c2�k exp

 
C1

kX
i=k0

1
i

!

� 2�k k
k0

,

showing that

d0n�1
�
h̄| log h̄|

�
� ch̄

��log h̄�� ⇣��log h̄�� | log h0|�1⌘ .

Finally, take | log h0| = | log h̄|1/2. We conclude using convexity that

d0n�1
�
h̄
�

>
��log h̄���1 d �h̄ ��log h̄��� > ch̄

��log h̄��1/2 .

Since
d01
�
h̄
�
. . . d0n�1

�
h̄
�

< Ch̄n/2

we thus have
d0n�2

�
h̄
�

< Ch̄1/2
��log h̄���✏(n)

,

giving the desired contradiction.
In the case that h̄ = 0, we may run the above iteration for any h > 0 starting

at height h0 = e�| log h|1/2 to obtain the contradiction.
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Proof of Lemma 4.3. First assume that dy1 (h) < h1/2| log h|�↵1 for some ↵1. Since
|Sw
h (y)| < Chn/2, Lemma 2.3 gives

Mw
�
Sw
h (y)

�
> ch

n�2
2 .

Take C(n) large enough that for r = C(n)h1/2| log h|�↵1 ,

Sw
h (y) ⇢ Br/2(0).

Clearly,

M
✓
1
2
|x |2 + w

◆ �
Sw
h (y)

�
> Mw

�
Sw
h (y)

�
.

Furthermore, r

⇣
u +

1
2 |x |

2
⌘

(Br (0)) contains a ball of radius r/2 around every

point in r

⇣
u +

1
2 |x |

2
⌘

(Sw
h (y)) (see Figure 4.6). We conclude that

M
✓
u +

1
2
|x |2

◆
(Br (0)) > crMw

�
Sw
h (y)

�

� crh
n�2
2

� crn�1| log h|(n�2)↵1

� crn�1| log r |(n�2)↵1 .

Sk  (y)w Ñ(u +  x 2/2)

Ñ(u +  x 2/2)(Br/2(x))

Ñ(u +  x 2/2)(Sh (y))w

Br/2(x)

Br(0)   r2<< h
Figure 4.6. r(u + |x |2/2)(Br (0)) contains an r/2-neighborhood of the surface r(u +

|x |2/2)(Sw
h (y)), which projects in the xn direction to a set of Hn�1 measure at least

crn�2| log r |(n�2)↵1 .

We proceed inductively. Assume that dyi (h) > h1/2| log h|�↵i for i = 1, . . . , k � 1
and that

dyk (h) < h1/2| log h|�↵k
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for some ↵1, . . . ,↵k to be chosen shortly. We aim to apply Lemma 2.3 to slices
of the section Sw

h (y) at 0, but we need the height of the plane w(y) + rw(y) ·

(x � y) + h at 0 to be at least h. We thus consider Sw
2h(y) instead. Note that

dyi (2h) > h1/2| log h|�↵i for i  k�1 and by convexity dyk (2h) < 2h1/2| log h|�↵k .
Rotate so that the axes align with those for the John ellipsoid of Sw

2h(y). Take
the restriction ofw to the subspace spanned by ek, . . . , en�1, and call this restriction
wk . Let

Swk
= Sw

2h(y) \ {x1 = . . . = xk�1 = 0},

the slice of the section Sw
2h(y) in this subspace. Then since

dy1 (2h) . . . dyn�1(2h)  Ch
n
2 ,

by hypothesis we have
��Swk

��
Hn�k  Ch

n+1�k
2 | log h|↵1+...+↵k�1 .

Since Sw
h (y) contains 0 and Swk is the slice of Sw

2h(y), we know that wk has height
at least h in Swk . Using this and Lemma 2.3,

Mwk
�
Swk

�
� ch

n�k�1
2 | log h|�(↵1+...+↵k�1).

Finally, take C(n) large enough that for r = C(n)h1/2| log h|�↵k we have

Swk
⇢ Br/2(0).

By strict quadratic growth, r

⇣
u +

1
2 |x |

2
⌘

(Br (0)) contains a ball of radius r/2
around every point in r(u +

1
2 |x |

2)(Swk ). It follows that

M
✓
u +

1
2
|x |2

◆
(Br (0)) � cMwk

�
Swk

�
rk

� ch
n�k�1
2 | log h|�(↵1+...+↵k�1)rk

� crn�1| log r |(n�k�1)↵k�(↵1+...+↵k�1).

Choose �i so that (n � k � 1)�k � (�1 + . . . + �k�1) = 1 and let ↵i = c�i , with c
chosen so that ↵n�2 = ✏. If dy1 (h) < h1/2| log h|�↵1 , we are done by the first step,
so assume not. Then apply the inductive step for i = 2, . . . , n � 2 to conclude the
proof.

5. Example

In this section we construct a solution to det D2u = 1 in R3 such that 6 has Haus-
dorff dimension exactly 2. A small modification gives the analagous example inRn
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with a singular set of Hausdorff dimension n � 1. This shows that the estimate on
the Hausdorff dimension of the singular set in [7] cannot be improved to n � 1� �
for any �.

We proceed in several steps:

(1) The key step is to construct a subsolution w in R3 satisfying det D2w � 1
that degenerates along {x1 = x2 = 0} and grows logarithmically faster than
quadratic in the x1 direction, in particular like x21 | log x1|

4.
(2) Next, we construct S ⇢ [�1, 1] of Hausdorff dimension 1 and a convex

function v on [�1, 1] such that v separates from its tangent line faster than
r2| log r |4 at each point in S.

(3) Finally, we obtain our example by solving the Dirichlet problem

det D2u = 1 in � =

�
|x 0

| < 1
 

⇥ (�1, 1), u|@� = C(v(x1) + |x2|)

and comparing with w at points in S ⇥ {0} ⇥ {±1}.

In the following analysis c,C will denote small and large constants respectively.

Construction of w. We first seek a function with just faster than quadratic growth
in one direction and sections Sh(0) with volume smaller than h3/2. To that end, let

g(x1, x2) = x21 | log x1|
↵

+

|x2|
| log x2|�

for some ↵,� to be chosen shortly. It is tempting to guess w = g(x1, x2)(1+ x23).
However, the dominant terms in the determinant of the Hessian near the x2 axis are

| log x1|↵

| log x2|2�

✓
1

| log g|
� x23

◆
,

where the first comes from the diagonal entries and the second from the mixed
derivatives. Thus, this function is not convex. This motivates the following modifi-
cation:

w(x 0, x3) = g(x 0)

 
1+

x23��log g�x 0

���
!

.

It is straightforward to check that the leading terms in the determinant of the Hessian
(taking x3 small) are

x21 | log x1|
2↵��x2(log x2)�+1 log g

�� +

| log x1|↵��(log x2)1+2� log g�� ,
since now the mixed derivative terms have the same homogeneity in log(g) as the
diagonal terms. For |x 0

| small, the first term is large in {|x2| < |x1|3}, and by
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taking ↵ = 2 + 2� the second term is bounded below by a positive constant in
{|x2| � |x1|3}. Thus, up to rescaling and multiplying by a constant we have

det D2w � 1

in � = {|x 0
| < 1} ⇥ (�1, 1). For convenience, we take � = 1 and ↵ = 4 for the

rest of the example.

Construction of S. Start with the interval [�1/2, 1/2]. For the first step remove
an open interval of length 5

6 from the center. At the kth step, remove intervals a
fraction 5

k+5 of the length of the remaining 2
k intervals from their centers. Denote

the centers of the removed intervals by {xi,k}2
k
i=1, and the intervals by Ii,k . Finally,

let
S = [�1, 1] � [i,k Ii,k .

Let lk = |Ii,k |. It is easy to check

lk =

10
k + 5

2�k
✓
1�

5
k + 4

◆
. . .

✓
1�

5
6

◆



C
k6
2�k .

One checks similarly that the length of the remaining intervals after the kth step is
at least

2�kk�15.

It follows that

inf

(
1X
i=1

ri | log(ri )|15 : {Bri (xi )} cover S, ri < �

)
> c (5.1)

for all � > 0. In particular, the Hausdorff dimension of S is exactly 1.

Construction of v. Let

f (x) =

⇢
|x | |x |  1
2|x | � 1 |x | > 1

We add rescalings of f together to produce the desired function:

v(x) =

1X
k=1

k4l2k f
⇣
l�1k (x � xi,k)

⌘
.
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We now check that v satisfies the desired properties:

(1) v is convex, as the sum of convex functions. Furthermore, using that lk <
C2�kk�6 we have

|v(x)|  C
1X
k=1

2kX
i=1

k4lk  C
1X
k=1

k�2
 C

so v is bounded.
(2) Let x 2 S. We aim to show that v separates from a tangent line more than

r2| log(r)|4 a distance r from x . By subtracting a line assume that v(x) = 0
and that 0 is a subgradient at x . Assume further that x + r < 1/2 and that
lk < r  lk�1. There are two cases to examine:

Case 1: There is some y 2 (x + r/2, x + r) \ S. Then by the construction of
S it is easy to see that there is some interval Ii,k such that Ii,k ⇢ (x, x + r). On
this interval, v grows by

k4l2k � cl2k | log(lk)|
4

� cr2| log(r)|4.

Case 2: Otherwise, there is an interval Ii, j of length exceeding r/2 such that
(x + r/2, x + r) ⇢ Ii, j . Then at the left point of Ii, j , the slope of v jumps by
at least k4lk . It follows that at x + r , v is at least

crk4lk � cr2| log(r)|4.

Thus, v has the desired properties.

Construction of u. We recall the following lemma on the solvability of the Monge-
Ampère equation (see [6]).

Lemma 5.1. If � is open and convex, µ is a finite Borel measure and ' is contin-
uous on @� then there exists a unique convex solution u 2 C(�̄) to the Dirichlet
problem

det D2u = µ, u|@� = '.

Let '(x1, x2, x3) = C(v(x1) + |x2|) for a constant C we will choose shortly, and
obtain u by solving the Dirichlet problem

det D2u = 1 in � =

�
|x 0

| < 1
 

⇥ [�1, 1], u|@� = '.

Take x 2 S ⇥ {0} ⇥ {±1}. By translating and subtracting a linear function assume
that x1 = 0 and 0 is a subgradient for ' at x . Taking C large we guarantee that

'(x1, x2,±1) > C
⇣
x21 | log(x1)|

4
+ |x2|

⌘
> w(x1, x2,±1)
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for all x1, x2, and that that ' > w on the sides of �. Thus, u � w in all of �. Since
u = 0 at both (0, 0,±1) and w(0, 0, x3) = 0 for all |x3| < 1, we have by convexity
that u = 0 along (0, 0, x3).

This shows that for these examples

6 ⇢ S ⇥ {0} ⇥ (�1, 1),

which has Hausdorff dimension exactly 2.
Remark 5.2. To get the analagous example in Rn , take

u(x1, x2, x3) + x24 + . . . + x2n .

6. Optimality of Theorem 1.1

In [7] we construct for any ✏ solutions to det D2u = 1 in Rn that are not in W 2,1+✏ ,
but as ✏ ! 0 these examples blow up. In this section we aim to improve this by
showing that the example in the previous section is not in W 2,1+✏ for any ✏, and in
fact the second derivatives are not in L logM L for M large.

Let �(x) = (1 + x)(log(1 + x))M for some M large. Then � is convex for
x � 0, so for any nonnegative integrable function f and ball Br we have by Jensen’s
inequality that Z

Br
�(rn f (x)) dx � crn�

✓Z
Br
f (x) dx

◆
.

Taking f (x) = r�n1u(x) we obtain

Z
Br

(1+ 1u)(log(1+ 1u))M dx � c
✓Z

Br
1u dx

◆✓
log

✓
r�n

Z
Br

1u dx
◆◆M

.

Recall that at points x 2 S⇥ {0}⇥ (�1, 1)n�2 the subsolutions w touch u by below,
and that w grows like |x2|| log x2|�1 at x . It follows that

sup
@Br (x)

(u � u(x)) � cr | log r |�1.

Applying convexity we conclude that

Z
Br (x)

(1+ 1u) (log(1+ 1u))M dx � c
✓Z

@Br (x)
u⌫

◆✓
log

✓
r�n

Z
@Br (x)

u⌫

◆◆M

� crn�1| log r |�1
⇣
log

⇣
cr�1

| log(r)|�1
⌘⌘M

� crn�1| log r |M�1.
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Cover 6 \ B1/2 with balls of radius less than � and take a Vitali subcover {Bri }Ni=1.
We then have

Z
B1/2

(1+ 1u) (log(1+ 1u))M dx � c
NX
i=1

rn�1i | log ri |M�1,

and for M large the right side goes to1 as � ! 0 by equation 5.1.
Thus, the second derivatives of u are not in L logM L for M large, and in

particular u is not in W 2,1+✏ for any ✏.
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