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A Bernstein-type result for the minimal surface equation

ALBERTO FARINA

Abstract. We prove the following Bernstein-type theorem: if u is an entire
solution to the minimal surface equation, such that N � 1 partial derivatives @u

@x j
are bounded on one side (not necessarily the same), then u is an affine function.
Its proof relies only on the Harnack inequality on minimal surfaces proved in [4]
thus, besides its novelty, our theorem also provides a new and self-contained proof
of celebrated results of Moser and of Bombieri and Giusti.
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1. Introduction and main results

In this short article we are concerned with a Bernstein-type theorem for solutions
to the minimal surface equation

�div

 
rup

1+ |ru|2

!
= 0 in RN , N � 2. (1.1)

The classical Bernstein Theorem [2, 7] asserts that the affine functions are the only
solutions of (1.1) in R2. This result has been generalized to R3 by E. De Giorgi [5],
to R4 by J.F. Almgren [1] and, up to dimension N = 7, by J. Simons [9]. On the
other hand, E. Bombieri, E. De Giorgi and E. Giusti [3] proved the existence of a
non-affine solution of the minimal surface equation (1.1) for any N � 8. Neverthe-
less, J. Moser [8] was able to prove that, if ru is bounded on RN , then u must be
again an affine function, and this for every dimension N � 2. Later, E. Bombieri
and E. Giusti [4] generalized Moser’s result by assuming that only N � 1 partial
derivatives of u are bounded on RN , N � 2. To prove their result, the Authors
of [4] demonstrate a Harnack inequality for uniformly elliptic equations on mini-
mal surfaces (oriented boundary of least area) and then they use it to show that, if
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N � 1 partial derivatives of u are bounded on RN , then u has bounded gradient on
RN , and they conclude by invoking the result of Moser. Our main theorem (see
Theorem 1.1 below) provides a further extension of the above results. Its proof re-
lies only on the Harnack inequality on minimal surfaces proved in [4] thus, besides
its novelty, it also provides a new and self-contained proof of the celebrated results
of Moser and of Bombieri and Giusti. We believe that this is another interesting
feature of our work.

Our main result is stated in the following theorem.

Theorem 1.1. Assume N � 2. Let u be a solution of the minimal surface equa-
tion (1.1) such that N � 1 partial derivatives @u

@x j are bounded on one side (not
necessarily the same). Then u is an affine function.

ACKNOWLEDGEMENTS. The author thanks A. Savas-Halilaj and E. Valdinoci for
a careful reading of a first version of this article.

2. Auxiliary results and proofs

To prove our results we briefly recall some standard notations and some well-known
facts concerning the solutions of the minimal surface equation (1.1) (cf. [4], [6]).
For a given solution u of equation (1.1), we denote by S the minimal graph xN+1 =

u(x) over RN (i.e., the complete smooth area minimizing hypersurface without
boundary S ⇢ RN+1, given by the graph of u over the entireRN ). Then the (upward
pointing) unit normal to S at a point (x, u(x)) is ⌫ = (⌫1, . . . , ⌫N+1) =

(�ru(x), 1)
p

1+|ru(x)|2
and we can define the tangential derivatives �k by

�k :=

@

@xk
� ⌫k

N+1X
h=1

⌫h
@

@xh
8 k = 1, . . . , N + 1. (2.1)

Moreover the functions ⌫h satisfy the equation

N+1X
k=1

�k�k⌫h + c2⌫h = 0 on S, 8 h = 1, . . . , N + 1 (2.2)

where c2 :=

PN+1
j,k=1(� j⌫k)

2 denotes the sum of the squares of the principal cur-
vatures of the hypersurface S at the point (x, u(x)). Therefore, for any vector
a := (a1, . . . , aN+1) 2 RN+1, the function ( a · ⌫) =

PN+1
j=1 a jv j also solves

N+1X
k=1

�k�k( a · ⌫) + c2( a · ⌫) = 0 on S. (2.3)
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Lemma 2.1. Assume N � 2 and let S be a minimal graph xN+1 = u(x) over RN .
If v > 0 and w are smooth solutions of the equation (2.3) on S, then the smooth
function ✓ := arctan

�
w
v

�
2 L1(S) solves the equation

N+1X
k=1

�k
h�

v2 + w2
�
�k✓

i
= 0 on S. (2.4)

Proof. Consider the smooth complex-valued function z := v + iw. Since v > 0
everywhere, we have that z = ⇢ei✓ on S and

N+1X
k=1

�k�k z + c2z = 0 on S, (2.5)

where ⇢ :=

p

v2 + w2 > 0 everywhere on S. Hence, by definition of �k we get

0 =

N+1X
k=1

�k�k
⇣
⇢ei✓

⌘
+ c2⇢ei✓ =

N+1X
k=1

�k
⇣
ei✓ �k⇢ + i⇢ei✓ �k✓

⌘
+ c2⇢ei✓

=

N+1X
k=1

ei✓ �k�k⇢+iei✓ �k✓�k⇢+i⇢ei✓ �k�k✓+i
⇣
ei✓ �k⇢ + i⇢ei✓ �k✓

⌘
�k✓ + c2⇢ei✓

=

N+1X
k=1

ei✓ �k�k⇢ � ⇢ei✓ �k✓�k✓ + iei✓
�
⇢�k�k✓ + 2�k⇢�k✓

�
+ c2⇢ei✓ on S.

Hence

0 =

N+1X
k=1

�k�k⇢ � ⇢�k✓�k✓ + i
�
⇢�k�k✓ + 2�k⇢�k✓

�
+ c2⇢ on S

and taking the imaginary part of the latter identity we obtain

0 =

N+1X
k=1

⇢�k�k✓ + 2�k⇢�k✓ =

1
⇢

N+1X
k=1

�k
h
⇢2�k✓

i
on S

which immediately implies (2.4).

Now we are in position to prove our main result.

Proof of Theorem 1.1. We divide the proof into three steps.

Step 1. Every partial derivative of u is bounded on one side.
By assumption there exists an integer n 2 {1, . . . , N } such that for every inte-
ger j 2 {1, . . . , N } \ {n} := J , the partial derivative @u

@x j is bounded on one
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side. We set A := {↵ 2 J :
@u
@x↵ is bounded from below} and B := {� 2 J :

@u
@x� is bounded from above}. Hence

8↵ 2 A 9 c↵ > 0 :

@u
@x↵

+ c↵ > 1 on RN, (2.6)

8� 2 B 9 c� > 0 : c� �

@u
@x�

> 1 on RN. (2.7)

Now we observe that

|ru|2 =

✓
@u
@xn

◆2
+

X
↵2A

✓
@u
@x↵

◆2
+

X
�2B

✓
@u
@x�

◆2
(2.8)

=

✓
@u
@xn

◆2
+

X
↵2A

✓
@u
@x↵

+ c↵ � c↵
◆2

+

X
�2B

✓
c� �

@u
@x�

� c�
◆2

(2.9)

=

✓
@u
@xn

◆2
+

X
↵2A

✓
@u
@x↵

+ c↵
◆2

+

X
↵2A

c2↵ � 2
X
↵2A

c↵
✓

@u
@x↵

+ c↵
◆
(2.10)

+

X
�2B

✓
c� �

@u
@x�

◆2
+

X
�2B

c2� � 2
X
�2B

c�
✓
c� �

@u
@x�

◆
(2.11)



✓
@u
@xn

◆2
+

X
↵2A

✓
@u
@x↵

+ c↵
◆2

+

X
�2B

✓
c� �

@u
@x�

◆2
+

X
j2J

c2j (2.12)



✓
@u
@xn

◆2
+

"X
↵2A

✓
@u
@x↵

+ c↵
◆

+

X
�2B

✓
c� �

@u
@x�

◆#2
+

X
j2J

c2j (2.13)

where in the latter we have used (2.6) and (2.7).
Now we set ⇠ :=

P
↵2A e↵ �

P
�2B e� 2 RN , k1 :=

P
j2J c2j > 0, k2 :=P

j2J c j > 0, where {e1, . . . , eN } denotes the canonical basis ofRN and we rewrite
(2.13) as ✓

@u
@xn

◆2
+

�
ru · ⇠ + k2

�2
+ k1 on RN (2.14)

and observe that
ru · ⇠ + k2 > 1 on RN, (2.15)

again by (2.6) and (2.7).
Combining (2.8)-(2.14) and (2.15) we find

1+

��
ru
��2



✓
@u
@xn

◆2
+

�
2+ k1

��
ru · ⇠ + k2

�2 (2.16)



�
2+ k1

� "✓ @u
@xn

◆2
+

�
ru · ⇠ + k2

�2#
. (2.17)
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Set � := (�en, 0) 2 RN+1, ⌧ := (�⇠, k2) 2 RN+1 and consider the functions
w :=

@u
@xn

p

1+|ru|2
= (� · ⌫) and v :=

ru·⇠+k2
p

1+|ru|2
= ( ⌧ · ⌫) > 0. Since v > 0

and w are solutions of the equation (2.3), an application of Lemma 2.1 implies that
✓ := arctan

�
w
v

�
2 L1(S) solves the equation

N+1X
k=1

�k
h�

v2 + w2
�
�k✓

i
= 0 on S. (2.18)

Thanks to (2.16)-(2.17) we see that the above equation (2.18) is uniformly elliptic
on S. Indeed, from (2.16)-(2.17) we get

1+ |ru|2

2+ k1


"✓
@u
@xn

◆2
+

�
ru · ⇠ + k2

�2#
 2

�
N + k22

� h
1+ |ru|2

i
(2.19)

which implies

1
2+ k1

 v2 + w2  2
�
N + k22

�
on S. (2.20)

Thus ✓ must be constant, by an application of the Harnack inequality proved by
Bombieri and Giusti (cf. [4, Theorem 5]), i.e., w = �v on S, for some � 2 R.
The latter immediately implies that @u

@xn has a sign. In particular, all the partial
derivatives of u are bounded on one side.

Step 2. For every unit vector ⌘ 2 RN the directional derivative @u
@⌘ has sign, that is,

one and only one of the following assertions holds:

(i)
@u
@⌘

(x) = 0 8x 2 RN ,

(ii)
@u
@⌘

(x) > 0 8x 2 RN ,

(iii)
@u
@⌘

(x) < 0 8x 2 RN .

Let � be any unit vector of RN and set I := {1, . . . , N }, A := {↵ 2 I :
@u
@x↵

is bounded from below} and B := {� 2 I :
@u
@x� is bounded from above}. Hence

8↵ 2 A 9 c↵ > 0 :

@u
@x↵

+ c↵ > 1 on RN, (2.21)

8� 2 B 9 c� > 0 : c� �

@u
@x�

> 1 on RN, (2.22)
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and proceeding as before we obtain

✓
@u
@�

◆2


��
ru
��2



"X
↵2A

✓
@u
@x↵

+ c↵
◆

+

X
�2B

✓
c� �

@u
@x�

◆#2
+

X
j2I

c2j (2.23)

= (ru · ⇠ + k4)2 + k3 on RN (2.24)

and
ru · ⇠ + k4 > 1 on RN, (2.25)

where ⇠ :=

P
↵2A e↵ �

P
�2B e� 2 RN , k3 :=

PN
j=1 c2j > 0, k4 :=

PN
j=1 c j > 0.

We notice that ⇠ , k3 and k4 are independent of the unit vector � and let
{⌘, �2, . . . , �N } be an orthonormal basis of RN . From (2.23)-(2.24) we get

1+ |ru|2 = 1+

✓
@u
@⌘

◆2
+

NX
j=2

✓
@u
@� j

◆2
 1+

✓
@u
@⌘

◆2

+ (N � 1)
h�

ru · ⇠ + k4
�2

+ k3
i (2.26)

and using (2.25) in the latter we immediately infer that

1+ |ru|2 

�
N + (N � 1)k3

� "✓@u
@⌘

◆2
+

�
ru · ⇠ + k4

�2# (2.27)

 3
�
N + (N � 1)k3

��
N + k24

� h
1+

��
ru
��2i . (2.28)

Setting � := (�⌘, 0) 2 RN+1, ⌧ := (�⇠, k4) 2 RN+1, w :=

@u
@⌘

p

1+|ru|2
= (� · ⌫)

and v :=
ru·⇠+k4

p

1+|ru|2
= ( ⌧ · ⌫) > 0, and applying Lemma 2.1 as before, we see

that the function ✓ := arctan
�

w
v

�
2 L1(S) solves the equation (2.4), which is

again unifomly elliptic on S in view of the above (2.27)-(2.28). It follows that ✓ is
constant, which implies that the directional derivative @u

@⌘ has a sign.

Step 3. End of the proof.
Either u is constant, and in this case we are done, or there exists x0 2 RN such
that ru(x0) 6= 0. In the latter case there are N � 1 unit vectors of RN , denoted by
�1, . . . , �N�1, which are orthogonal to ru(x0), i.e., such that

0 = ru(x0) · � j =

@u
@� j

(x0) 8 j = 1, . . . , N � 1. (2.29)

By the previous step, we must have

@u
@� j

(x) ⌘ 0 on RN , 8 j = 1, . . . , N � 1, (2.30)
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thus u(x) = h(⌧ · x), where ⌧ =
ru(x0)
|ru(x0)| and h = h(t) is a non constant solution

of the ODE �

✓
h0

p

1+|h0
|
2

◆
0

= 0 on R. A direct integration of the latter gives

h(t) = at + b, a 6= 0. Thus u is an affine function.
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